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ABSTRACT OF THE DISSERTATION

Automated Scalable Management of Data Center Networks

by

Radhika Niranjan Mysore

Doctor of Philosophy in Computer Science

University of California, San Diego, 2013

Professor Amin Vahdat, Chair

Data centers today are growing in size and becoming harder to manage. It is

more important than ever to concentrate on management of such large networks, and ar-

rive at simple yet efficient designs that involve minimum manual intervention. Reducing

network management costs can lead to better service availability, response times and in-

crease return on investment. In this dissertation, we focus on three aspects of data center

network management, the network fabric, policy enforcement and fault localization.

There are inherent challenges due to scale in each of these areas. Firstly, simple,

plug-and-play networks are known not to scale, leading network operators to often stitch

complex interior and exterior gateway protocols to connect large data centers. Second,

network isolation policies can become too huge for network hardware to handle as the

number of applications multiplexed on a single data center increase. Thirdly diagnosis

xvii



can become extremely hard because of the sheer number of components interacting for

a service to be successful. Localizing the fault is often left to knowledgeable operators

who work together in war rooms to track down and fight problems. Such an approach

can be time consuming, tedious and reduce availability.

To address these challenges, we propose to compose the data center management

system with these three contributions:

(i) PortLand: A scalable layer 2 network fabric that completely eliminates loops

and broadcast storms and combines the best elements of traditional layer 2 and layer 3

network fabrics: plug-and-play, support for scale, mobility and path diversity.

(ii) FasTrak: A policy enforcement system that moves network isolation rules

between server software and network hardware so that performance sensitive traffic is

not subject to unnecessary overheads and latency. FasTrak enables performance sensi-

tive applications to move into multi-tenant clouds and supports their requirements.

(iii) Gestalt: A fault localization algorithm, developed from first principles, that

can operate in large scale networks and beats existing localization algorithms on local-

ization accuracy or time or both.

We have prototyped and evaluated each of these systems and believe that these

can be easily implemented with minor modifications to data center switches and end

hosts.
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Chapter 1

Introduction

There is an increasing trend toward migrating applications, computation and

storage into data centers spread across the Internet. Benefits from commodities of scale

are leading to the emergence of “mega data centers” hosting applications running on

tens of thousands of servers [meg]. For instance, a web search request may access an

inverted index spread across 1,000+ servers, and data storage and analysis applications

may interactively process petabytes of information stored on thousands of machines.

Data centers networks usually host multiple such applications having unique network

demands.

These data center networks represent a new class of networks differentiated by

scale and the strict, often conflicting requirements of quality of service, isolation and

agility that applications place on them. Management and control of such networks is

hard. Like the Internet, these networks are large, and it is desirable that they be easy

to configure. Routing should be efficient and additionally provide visibility for ease of

diagnosis and repair. Mobility of applications is common, so data center network pro-

tocols must be designed to allow mobility across the network without service disruption

(something that is achieved only partially in the Internet). Finally it is important that

the network provide quality of service guarantees to applications and isolate them from

each other. As such data center networks must deal with a lot of application specific net-

work state. Unlike the Internet, all these properties must hold together, and best-effort

network service will not do.

At the same time, data center networks come with certain advantages; For e.g.,
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they are largely managed by a single entity and as such do not have stringent inter-

operability demands, they usually are highly engineered with many common recurring

design elements and have a more controlled stucture than traditional networks. Because

the constraints these networks operate in are so different, directly applying different

solutions for each of the above requirements from what exists for the general Internet

usually results in a very kludgy, error prone management setup. Our interactions with

Facebook and Microsoft inform us that traditional solutions have frequently failed or

require excessive investment in money or time [fac09, lyn12].

The key question that this dissertation aims to answer is how to build an man-

agement system tailored to meet data center network requirements.

1.1 Data Center Network Management Challenges

Many challenges around data center network management can be trivially traced

back to scale. How can one reduce manual data center configuration required with

scale? Where should the network state that increases with increasing number of data

center applications be placed so that it can be effectively be applied on a per-packet

basis? How does one design a fault localization algorithm that can explore all possible

sets of failures in a data center in a short amount of time? These questions are hard due

to the following challenges:

1.1.1 Address assignment and forwarding: Plug-and-play fabrics

do not scale

What kind of addresses should the network fabric forward on? Traditionally

layer 2 fabrics forward based on flat MAC addresses that come pre-configured with the

device. As such layer 2 networks have a plug-and-play property not requiring manual

configuration. Unfortunately layer 2 fabrics do not scale very well because every net-

work device is required to remember where each flat address is located with respect to

itself. In a data center, this means that network devices have to remember locations of

hundreds of thousands of servers. Network devices do not have sufficient memory to
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handle all of this state. Layer 2 fabrics have other shortcomings that prevent them from

scaling and being used directly in data centers.

On the other hand, layer 3 fabrics forward based on hierarchical IP addresses that

encode location. Sufficient manual configuration is required to assign IP addresses to

servers based on their location in the network, which increases with increase in network

size. However once configured, these fabrics scale very well because the network device

can tell where each server is based on its IP prefix.

Thus, scalable network fabrics are those that forward on location based ad-

dresses. But assignment of location based addresses mandates manual configuration,

which in turn does not scale, and is error prone. In this work we ask the question: Is

it possible to build a network fabric that forwards on location based addresses and yet

does not mandate manual configuration?

1.1.2 Policy enforcement: Multi-tenant data centers cannot both

scale to large number of applications and expect bare-metal

network performance

As the number of applications multiplexed on a single data center increase, the

network state required to ensure adequate quality of service and isolation for applica-

tion traffic increases. This problem is increasingly apparent in multi-tenant data centers

where many customers with conflicting needs run applications on a shared network.

Since network devices have limited memory, they cannot hold all the application spe-

cific network state. The common solution employed today is to place this network state

in software in the servers. This network state has to be consulted on a per-packet basis

and puts stress on server CPU. The resulting software network processing pipeline also

adds unpredictable latency and reduces throughput of application traffic.

Thus there is a trade-off between number of applications that a data center can

multiplex, and the performance it can provide to the applications. In this work we seek to

find techniques to provide adequate network performance to critical applications while

multiplexing as many applications as possible within data centers.
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1.1.3 Fault localization: With scale, ensuring both accurate and

timely diagnosis becomes hard

Data center networks and applications that run on them depend on the health

of a very large number of entities and exhibit complex interactions with these entities,

which makes diagnosis hard. For e.g., in Lync [lyn12], a messaging system that runs

in Microsoft’s data centers, there are over 8000 components that interact in complex

ways. When diagnosing what state of the system caused a particular set of failures,

the localization algorithm might have to theoretically explore 28000 possible component

states to localize a fault in Lync, assuming each component has two valid states i.e., it is

either healthy or has failed. However if a localization algorithm takes a long time, there

might be limited use of its result because it is possible to run manual diagnosis within

that amount of time to get to the diagnosis. As such the usefulness of a localization

algorithm is dependent on not only its accuracy, but also the time it takes to deliver a

diagnosis.

As scale of networks grow, automated fault localization becomes increasingly

difficult and needs to compromise on either accuracy or time. Things are further ex-

acerbated by monitoring noise and other factors. In this work we try to derive a fault

localization algorithm from first principles that is more accurate and/or less time con-

suming compared to existing fault localization algorithms built for large networked sys-

tems. The main goal is to reduce mean-time-to-recovery and reduce service disruption

in large networks.

1.2 Management in Today’s Data Centers

Management in most data centers today derives heavily from techniques used

in wide area networks. In this section we explore most commonly used techniques for

each of the three challenges presented.
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1.2.1 Address assignment and Forwarding

There are a number of available data forwarding techniques in data center net-

works. The high-level dichotomy is between creating a layer 2 network or a layer 3

network, each with associated trade-offs. A layer 3 approach assigns IP addresses to

hosts hierarchically based on their directly connected switch.

Standard intra-domain routing protocols such as OSPF [Moy98] may be em-

ployed among switches to find shortest paths among hosts. Failures in large-scale net-

work topologies will be commonplace. OSPF can detect such failures and then broad-

cast the information to all switches to avoid failed links or switches. Transient loops

with layer 3 forwarding is less of an issue because the IP-layer TTL limits per-packet

resource consumption while forwarding tables are being asynchronously updated. Un-

fortunately layer 3 forwarding imposes high administrative burden requiring manual

assignment of IP addresses to subnetworks, set subnet identifiers on a per switch basis,

synchronize DHCP server state with subnet identifiers, etc.

For these reasons, certain data centers deploy a layer 2 network where forward-

ing is performed based on flat MAC addresses. A layer 2 fabric imposes less adminis-

trative overhead. Layer 2 fabrics have their own challenges of course. Standard Ethernet

bridging [otICS01] does not scale to networks with tens of thousands of hosts because

of the need to support broadcast across the entire fabric. Worse, the presence of a single

forwarding spanning tree (even if optimally designed) would severely limit performance

in topologies that consist of multiple available equal cost paths.

A middle ground between a layer 2 and layer 3 fabric consists of employing vir-

tual lans, i.e., VLANs to allow a single logical layer 2 fabric to cross multiple switch

boundaries. While feasible for smaller-scale topologies, VLANs also suffer from a num-

ber of drawbacks. For instance, they require bandwidth resources to be explicitly as-

signed to each VLAN at each participating switch, limiting flexibility for dynamically

changing communication patterns. Next, each switch must maintain state for all hosts

in each VLAN that they participate in, limiting scalability. Finally, VLANs also use a

single forwarding spanning tree, limiting performance.
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1.2.2 Policy enforcement

Virtualization is a commonly used technique in data centers to isolate multiple

applications and customers. A virtual switch in the hypervisor, called the vswitch, man-

ages traffic transiting between virtual machines (VMs) on a single host, and between

those VMs and the network at large. In a multi-tenant setting the vswitch is typically

configured to isolate traffic of VMs belonging to different tenants. Such a vswitch is

also used to enforce security, QoS rules and interface rate limits as per application re-

quirements. The network fabric on the other hand is only responsible for routing packets

to the appropriate servers.

Since these rules are being applied on a per-packet basis, network processing in

the virtual switch results in software queuing. Unlike hardware queues that have de-

terministic processing time, the vswitch queue is processed opportunistically between

other tasks the hypervisor has to perform. Therefore packets in the queue are suscepti-

ble to unpredictable delays. These delays can cause significant drop in service through-

put. As more and more VMs are multiplexed on the same server and network traffic

increases, the vswitch queue can become a bottleneck.

1.2.3 Fault localization

Practical fault localization in large scale systems is a black art. Most localization

algorithms are used in conjunction with manual diagnosis, because manual diagnosis is

usually considered to yield the best results in terms of accuracy. But this comes at the

expense of large time-to-diagnosis and operator effort. We have consistently heard from

operators (e.g., at both Google and Microsoft) that the effectiveness of existing fault

localization algorithms depends on the network, and this dependence is mysterious. As

networks grow it is hard to keep the localization algorithm up to date. There are no

studies that connect network characteristics to the choice of algorithm; thus, determining

an appropriate fault localization approach for a given network is difficult.

With Lync we find that manual localization is employed for most trouble-tickets

and diagnosis takes hours to multiple days.
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1.3 Emerging trends for redesigning for manageability

Recently there have been a number of proposals to overcome the shortcomings of

existing protocols applied to data centers. In this section we explore alternative network

fabrics, policy enforcement techniques, and proposed fault localization algorithms.

1.3.1 Address assignment and Forwarding

RBridges and TRILL [PED+09] and their IETF standardization effort, address

some of the routing challenges in layer 2 Ethernet. RBridges run a layer 2 routing

protocol among switches. Essentially switches broadcast information about their lo-

cal connectivity along with the identity of all directly connected end hosts. Thus, all

switches learn the switch topology and the location of all hosts. To limit forwarding

table size, ingress switches map destination MAC addresses to the appropriate egress

switch (based on global knowledge) and encapsulate the packet in an outer MAC header

with the egress switch identifier. In addition, RBridges add a secondary header with a

TTL field to protect against loops. To reduce the state and communication overhead as-

sociated with routing in large-scale networks, recent work [CCN+06,CCK+06,CKR08]

explores using DHTs to perform forwarding on flat labels. These proposals scale better

than layer 2 and also support mobility. However each of these has some shortcomings;

for e.g., RBridges still requires manual configuration, and SEATTLE [CKR08] is prone

to transient loops and service disruption for long time during switch failures.

1.3.2 Policy enforcement

[MYM+11,PYK+10,SKG+11,CKRS10,ovs,hyp,mid] suggest that the vswitch

is the best place to achieve scalable tenant network communication, security, and re-

source isolation. Most of these proposals do not consider the resulting performance im-

pact at scale. vCRIB [MYSG13], proposes a unified rule management system that splits

network rules between hypervisors and network hardware. While vCRIB recognizes that

the vswitch can become a bottleneck if used excessively for network processing, vCRIB

only aims to reduce the number of rules placed in vswitch, without reducing the number

of packets that have to transit the vswitch. It is well known that effect of processor con-
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text switches, copies, and interrupt overhead in I/O-intensive virtualized environments

significantly reduces network performance [AA06, RS07, Liu10]. As such vCRIB does

not achieve significant performance gains. In the same vein, NIC tunnel offloads are

being proposed and standardized [emu, stt] to reduce some of the network processing

burden from software. Tunnel termination network switches [ari] are being introduced

at the boundary of virtualized environments and non-virtualized environments, typically

configured with static tunnels. However, security rule checking and rate limiting are still

largely retained in the vswitch and L4 software or hardware middleboxes.

1.3.3 Fault localization

Fault localization has also been studied widely [KYGCS05, CKFF02, BCG+07,

KMV+09, DTDD07, ALMP10, KKV05, KYGCS07, KYY+95, Ris05, SS04a]. However

Codebook is the only technique known to be applied in real systems in conjunction with

manual diagnosis. Some diagnostic tools like [MGS+09, NKN12, OA11] leave fault

localization to a knowledgeable network operator and aim to provide the operator with

a reduced dependency graph for a particular failure. In this work we explore inference

techniques for large networks that narrow the space of possible culprits as much as

possible for the network operator with minimal manual intervention.

1.4 Automated scalable management system for data c-

enter networks

In this work we propose a automated scalable management system which con-

sists of three parts: A scalable layer 2 fabric for data centers called PortLand, a scalable

policy enforcement system that optimizes rule placement to maximize application net-

work performance called FasTrak, and a scalable fault localization algorithm for large

networked systems called Gestalt. Both PortLand and FasTrak use logically centralized

controllers to control network state while Gestalt can run within such a controller to

localize and pinpoint faults. The PortLand controller controls naming and forwarding

paths set up in the network and the FasTrak controller determines where policy rules are
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placed. We have built prototypes for all three parts and evaluated them to get a sense of

their benefits and costs.

1.4.1 PortLand [NMPF+09]: A Scalable Network Fabric for Data

Centers

PortLand is built with the goal of achieving the following five goals together:

1) Data center fabrics must be plug-and-play 2) Workload mobility across the entire

data must be supported 3) The fabric must completely utilize path diversity in physical

infrastructure 4) The fabric must ensure there are no loops and 5) Failure convergence

must be rapid. These five goals were those that were highlighted from our conversations

with network operators. Our key insight in building PortLand was that data centers are

usually built as multi-rooted trees. This insight helps us build a distributed location

discovery protocol that enables the fabric to be plug-and-play, and yet similar to layer 3

fabrics.

1.4.2 FasTrak [NMPV]: A Scalable Policy Enforcement Controller

for Multi-Tenant Data Centers

FasTrak is built with a goal to enable performance sensitive network bound ap-

plications to be migrated to the shared environment of multi-tenant clouds. Multi-tenant

data centers help share the same physical infrastructure among tens of thousands of ten-

ants, eliminating infrastructure costs for them. But because of the enormous amount

of network state that needs to be maintained on behalf of the tenants, these data cen-

ters place all policy rules in hypervisors on servers. Enforcing these rules in software

imposes significant computational overhead, as well as increased latency. FasTrak uses

network hardware as a cache and moves rules back and forth between hypervisors and

switch hardware, focusing on minimizing the overall average latency of the network.
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1.4.3 Gestalt [NMMVV]: A Scalable Fault Localization Algorithm

for Large Networked Systems

To develop a localization algorithm that can work for a variety of networks from

first principles, we develop a framework that captures the design space of existing prac-

tical fault localization algorithms. It is based on the observation that the essence of

these algorithms can be anatomized into a common three-part pattern, and different al-

gorithms can be seen as making different choices for each part. Using this framework,

we analyze the effectiveness of each algorithm and its choices at addressing challenges

that large, complex networks present. Our analysis helps develop a fault localization

tool Gestalt that can localize faults in any large network. Experiments with simulated

and real failures over three diverse networks show that Gestalt has higher accuracy or

lower overhead than existing algorithms.
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Chapter 2

PortLand: A Scalable Fault Tolerant

Layer 2 Data Center Network Fabric

This chapter considers the requirements for a scalable, easily manageable, fault-

tolerant, and efficient data center network fabric. Trends in multi-core processors, end-

host virtualization, and commodities of scale are pointing to future single-site data cen-

ters with millions of virtual end points. Existing layer 2 and layer 3 network protocols

face some combination of limitations in such a setting: lack of scalability, difficult man-

agement, inflexible communication, or limited support for virtual machine migration.

To some extent, these limitations may be inherent for Ethernet/IP style protocols when

trying to support arbitrary topologies. We observe that data center networks are often

managed as a single logical network fabric with a known baseline topology and growth

model. We leverage this observation in the design and implementation of PortLand,

a scalable, fault tolerant layer 2 routing and forwarding protocol for data center envi-

ronments. Through our implementation and evaluation, we show that PortLand holds

promise for supporting a “plug-and-play” large-scale, data center network.

2.1 Introduction

There is an increasing trend toward migrating applications, computation and

storage into data centers spread across the Internet. Benefits from commodities of scale

are leading to the emergence of “mega data centers” hosting applications running on

11
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tens of thousands of servers [meg]. For instance, a web search request may access an

inverted index spread across 1,000+ servers, and data storage and analysis applications

may interactively process petabytes of information stored on thousands of machines.

There are significant application networking requirements across all these cases.

In the future, a substantial portion of Internet communication will take place

within data center networks. These networks tend to be highly engineered, with a num-

ber of common design elements. And yet, the routing, forwarding, and management

protocols that we run in data centers were designed for the general LAN setting and are

proving inadequate along a number of dimensions. Consider a data center with 100,000

servers, each hosting 32 virtual machines (VMs). This translates to a total of three mil-

lion IP and MAC addresses in the data center. Assuming one switch is required for every

25 physical hosts and accounting for interior nodes, the topology would consist of 8,000

switches.

Current network protocols impose significant management overhead at this scale.

For example, an end host’s IP address may be determined by its directly-connected phys-

ical switch and appropriately synchronized with replicated DHCP servers. VLANs may

provide some naming flexibility across switch boundaries but introduce their own con-

figuration and resource allocation overheads. Ideally, data center network architects and

administrators would have “plug-and-play” deployment for switches. Consider some of

the requirements for such a future scenario:

• R1. Any VM may migrate to any physical machine. Migrating VMs should

not have to change their IP addresses as doing so will break pre-existing TCP

connections and application-level state.

• R2. An administrator should not need to configure any switch before deployment.

• R3. Any end host should be able to efficiently communicate with any other end

host in the data center along any of the available physical communication paths.

• R4. There should be no forwarding loops.

• R5. Failures will be common at scale, so failure detection should be rapid and

efficient. Existing unicast and multicast sessions should proceed unaffected to the

extent allowed by underlying physical connectivity.
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Let us now map these requirements to implications for the underlying network proto-

cols. R1 and R2 essentially require supporting a single layer 2 fabric for the entire data

center. A layer 3 fabric would require configuring each switch with its subnet infor-

mation and synchronizing DHCP servers to distribute IP addresses based on the host’s

subnet. Worse, transparent VM migration is not possible at layer 3 (save through tech-

niques designed for IP mobility) because VMs must switch their IP addresses if they

migrate to a host on a different subnet. Unfortunately, layer 2 fabrics face scalability

and efficiency challenges because of the need to support broadcast. Further, R3 at layer

2 requires MAC forwarding tables with potentially hundreds of thousands or even mil-

lions of entries, impractical with today’s switch hardware. R4 is difficult for either layer

2 or layer 3 because forwarding loops are possible during routing convergence. A layer

2 protocol may avoid such loops by employing a single spanning tree (inefficient) or tol-

erate them by introducing an additional header with a TTL (incompatible). R5 requires

efficient routing protocols that can disseminate topology changes quickly to all points

of interest. Unfortunately, existing layer 2 and layer 3 routing protocols, e.g., ISIS and

OSPF, are broadcast based, with every switch update sent to all switches. On the effi-

ciency side, the broadcast overhead of such protocols would likely require configuring

the equivalent of routing areas [cisd], contrary to R2.

Hence, the current assumption is that the vision of a unified plug-and-play large-

scale network fabric is unachievable, leaving data center network architects to adopt ad

hoc partitioning and configuration to support large-scale deployments. Recent work in

SEATTLE [CKR08] makes dramatic advances toward a plug-and-play Ethernet- com-

patible protocol. However, in SEATTLE, switch state grows with the number of hosts in

the data center, forwarding loops remain possible, and routing requires all-to-all broad-

cast, violating R3, R4, and R5. Section 2.3.7 presents a detailed discussion of both

SEATTLE and TRILL [TP09].

In this paper, we present PortLand, a set of Ethernet- compatible routing, for-

warding, and address resolution protocols with the goal of meeting R1-R5 above. The

principal observation behind our work is that data center networks are often physically

inter-connected as a multi-rooted tree [cisa]. Using this observation, PortLand employs

a lightweight protocol to enable switches to discover their position in the topology. Port-
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Land further assigns internal Pseudo MAC (PMAC) addresses to all end hosts to encode

their position in the topology. PMAC addresses enable efficient, provably loop-free

forwarding with small switch state.

We have a complete implementation of PortLand. We provide native fault-

tolerant support for ARP, network-layer multicast, and broadcast. PortLand imposes

little requirements on the underlying switch software and hardware. We hope that Port-

Land enables a move towards more flexible, efficient and fault-tolerant data centers

where applications may flexibly be mapped to different hosts, i.e. where the data center

network may be treated as one unified fabric.

2.2 Background

2.2.1 Data Center Networks

Topology Current data centers consist of thousands to tens of thousands of computers

with emerging mega data centers hosting 100,000+ compute nodes. As one example,

consider our interpretation of current best practices [cisa] for the layout of a 11,520-port

data center network. Machines are organized into racks and rows, with a logical hier-

archical network tree overlaid on top of the machines. In this example, the data center

consists of 24 rows, each with 12 racks. Each rack contains 40 machines interconnected

by a top of rack (ToR) switch that delivers non-blocking bandwidth among directly con-

nected hosts. Today, a standard ToR switch contains 48 GigE ports and up to 4 available

10 GigE uplinks.

ToR switches connect to end of row (EoR) switches via 1-4 of the available 10

GigE uplinks. To tolerate individual switch failures, ToR switches may be connected to

EoR switches in different rows. An EoR switch is typically a modular 10 GigE switch

with a number of ports corresponding to the desired aggregate bandwidth. For maxi-

mum bandwidth, each of the 12 ToR switches would connect all 4 available 10 GigE

uplinks to a modular 10 GigE switch with up to 96 ports. 48 of these ports would face

downward towards the ToR switches and the remainder of the ports would face upward

to a core switch layer. Achieving maximum bandwidth for inter-row communication in

this example requires connecting 48 upward facing ports from each of 24 EoR switches
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to a core switching layer consisting of 12 96-port 10 GigE switches.

Forwarding There are a number of available data forwarding techniques in data center

networks. The high-level dichotomy is between creating a Layer 2 network or a Layer

3 network, each with associated tradeoffs. A Layer 3 approach assigns IP addresses to

hosts hierarchically based on their directly connected switch. In the example topology

above, hosts connected to the same ToR could be assigned the same /26 prefix and hosts

in the same row may have a /22 prefix. Such careful assignment will enable relatively

small forwarding tables across all data center switches.

Standard intra-domain routing protocols such as OSPF [Moy98] may be em-

ployed among switches to find shortest paths among hosts. Failures in large-scale net-

work topologies will be commonplace. OSPF can detect such failures and then broad-

cast the information to all switches to avoid failed links or switches. Transient loops

with layer 3 forwarding is less of an issue because the IP-layer TTL limits per-packet

resource consumption while forwarding tables are being asynchronously updated.

Unfortunately, Layer 3 forwarding does impose administrative burden as dis-

cussed above. In general, the process of adding a new switch requires manual adminis-

trator configuration and oversight, an error prone process. Worse, improperly synchro-

nized state between system components, such as a DHCP server and a configured switch

subnet identifier can lead to unreachable hosts and difficult to diagnose errors. Finally,

the growing importance of end host virtualization makes Layer 3 solutions less desirable

as described below.

For these reasons, certain data centers deploy a layer 2 network where forward-

ing is performed based on flat MAC addresses. A layer 2 fabric imposes less adminis-

trative overhead. Layer 2 fabrics have their own challenges of course. Standard Ethernet

bridging [otICS01] does not scale to networks with tens of thousands of hosts because

of the need to support broadcast across the entire fabric. Worse, the presence of a single

forwarding spanning tree (even if optimally designed) would severely limit performance

in topologies that consist of multiple available equal cost paths.

A middle ground between a Layer 2 and Layer 3 fabric consists of employing

VLANs to allow a single logical Layer 2 fabric to cross multiple switch boundaries.
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While feasible for smaller-scale topologies, VLANs also suffer from a number of draw-

backs. For instance, they require bandwidth resources to be explicitly assigned to each

VLAN at each participating switch, limiting flexibility for dynamically changing com-

munication patterns. Next, each switch must maintain state for all hosts in each VLAN

that they participate in, limiting scalability. Finally, VLANs also use a single forwarding

spanning tree, limiting performance.

End Host Virtualization The increasing popularity of end host virtualization in the

data center imposes a number of requirements on the underlying network. Commercially

available virtual machine monitors allow tens of VMs to run on each physical machine

in the data center1, each with their own fixed IP and MAC addresses. In data centers

with hundreds of thousands of hosts, this translates to the need for scalable addressing

and forwarding for millions of unique end points. While individual applications may not

(yet) run at this scale, application designers and data center administrators alike would

still benefit from the ability to arbitrarily map individual applications to an arbitrary

subset of available physical resources.

Virtualization also allows the entire VM state to be transmitted across the net-

work to migrate a VM from one physical machine to another [CFH+05]. Such migration

might take place for a variety of reasons. A cloud computing hosting service may mi-

grate VMs for statistical multiplexing, packing VMs on the smallest physical footprint

possible while still maintaining performance guarantees. Further, variable bandwidth to

remote nodes in the data center could warrant migration based on dynamically changing

communication patterns to achieve high bandwidth for tightly-coupled hosts. Finally,

variable heat distribution and power availability in the data center (in steady state or as

a result of component cooling or power failure) may necessitate VM migration to avoid

hardware failures.

Such an environment currently presents challenges both for Layer 2 and Layer

3 data center networks. In a Layer 3 setting, the IP address of a virtual machine is

set by its directly-connected switch subnet number. Migrating the VM to a different

1One rule of thumb for the degree of VM-multiplexing allocates one VM per thread in the underlying
processor hardware. x86 machines today have 2 sockets, 4 cores/processor, and 2 threads/core. Quad
socket, eight core machines will be available shortly.



17

switch would require assigning a new IP address based on the subnet number of the

new first-hop switch, an operation that would break all open TCP connections to the

host and invalidate any session state maintained across the data center, etc. A Layer

2 fabric is agnostic to the IP address of a VM. However, scaling ARP and perform-

ing routing/forwarding on millions of flat MAC addresses introduces a separate set of

challenges.

2.2.2 Fat Tree Networks

Recently proposed work [AFLV08,GLM+08,GWT+08] suggest alternate topolo-

gies for scalable data center networks. In this paper, we consider designing a scalable

fault tolerant layer 2 domain over one such topology, a fat tree. As will become evident,

the fat tree is simply an instance of the traditional data center multi-rooted tree topol-

ogy (Section 2.2.1). Hence, the techniques described in this paper generalize to existing

data center topologies. We present the fat tree because our available hardware/software

evaluation platform (Section 2.4) is built as a fat tree.

Aggregation

Pod 0

Core

Pod 3Pod 1 Pod 2

Edge

Figure 2.1: Sample fat tree topology.

Figure 2.1 depicts a 16-port switch built as a multi-stage topology from con-

stituent 4-port switches. In general, a three-stage fat tree built from k-port switches can
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support non-blocking communication among k3/4 end hosts using 5k2/4 individual k-

port switches. We split the fat tree into three layers, labeled edge, aggregation and core

as in Figure 2.1. The fat tree as a whole is split into k individual pods, with each pod

supporting non-blocking operation among k2/4 hosts. Non-blocking operation requires

careful scheduling of packets among all available paths, a challenging problem. While a

number of heuristics are possible, for the purposes of this work we assume ECMP-style

hashing of flows [Hop00] among the k2/4 available paths between a given source and

destination. While current techniques are less than ideal, we consider the flow schedul-

ing problem to be beyond the scope of this paper.

2.2.3 Related Work

Recently, there have been a number of proposals for network architectures specif-

ically targeting the data center. Two recent proposals [GLM+08, AFLV08] suggest

topologies based on fat trees [Lei85]. As discussed earlier, fat trees are a form of multi-

rooted trees that already form the basis for many existing data center topologies. As

such, they are fully compatible with our work and in fact our implementation runs on

top of a small-scale fat tree. DCell [GWT+08] also recently proposed a specialized

topology for the data center environment. While not strictly a multi-rooted tree, there

is implicit hierarchy in the DCell topology, which should make it compatible with our

techniques.

Others have also recently recognized the need for more scalable layer 2 net-

works. SmartBridge [RTA01] extended the original pioneering work on learning bridges

[otICS01] to move beyond single spanning tree networks while maintaining the loop

free property of extended LANs. However, SmartBridge still suffers from the scala-

bility challenges characteristic of Ethernet networks. Contemporaneous to our work,

MOOSE [SC08] also suggests the use of hierarchical Ethernet addresses and header

rewriting to address some of Ethernet’s scalability limitations.

RBridges and TRILL [PED+09], its IETF standardization effort, address some

of the routing challenges in Ethernet. RBridges run a layer 2 routing protocol among

switches. Essentially switches broadcast information about their local connectivity

along with the identity of all directly connected end hosts. Thus, all switches learn
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the switch topology and the location of all hosts. To limit forwarding table size, ingress

switches map destination MAC addresses to the appropriate egress switch (based on

global knowledge) and encapsulate the packet in an outer MAC header with the egress

switch identifier. In addition, RBridges add a secondary header with a TTL field to

protect against loops. We also take inspiration from CMU Ethernet [MNZ04], which

also proposed maintaining a distributed directory of all host information. Relative to

both approaches, PortLand is able to achieve improved fault tolerance and efficiency by

leveraging knowledge about the baseline topology and avoiding broadcast-based routing

protocols altogether.

Failure Carrying Packets (FCP) [LCR+07] shows the benefits of assuming some

knowledge of baseline topology in routing protocols. Packets are marked with the iden-

tity of all failed links encountered between source and destination, enabling routers to

calculate new forwarding paths based on the failures encountered thus far. Similar to

PortLand, FCP shows the benefits of assuming knowledge of baseline topology to im-

prove scalability and fault tolerance. For example, FCP demonstrates improved routing

convergence with fewer network messages and lesser state.

To reduce the state and communication overhead associated with routing in

large-scale networks, recent work [CCN+06, CCK+06, CKR08] explores using DHTs

to perform forwarding on flat labels. We achieve similar benefits in per-switch state

overhead with lower network overhead and the potential for improved fault tolerance

and efficiency, both in forwarding and routing, by once again leveraging knowledge of

the baseline topology.

2.3 Design

The goal of PortLand is to deliver scalable layer 2 routing, forwarding, and ad-

dressing for data center network environments. We leverage the observation that in data

center environments, the baseline multi-rooted network topology is known and rela-

tively fixed. Building and maintaining data centers with tens of thousands of compute

elements requires modularity, advance planning, and minimal human interaction. Thus,

the baseline data center topology is unlikely to evolve quickly. When expansion does
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occur to the network, it typically involves adding more “leaves” (e.g., rows of servers)

to the multi-rooted tree topology described in Section 2.2.1.

2.3.1 Fabric Manager

PortLand employs a logically centralized fabric manager that maintains soft

state about network configuration information such as topology. The fabric manager

is a user process running on a dedicated machine responsible for assisting with ARP

resolution, fault tolerance, and multicast as further described below. The fabric manager

may simply be a redundantly-connected host in the larger topology or it may run on a

separate control network.

There is an inherent trade off between protocol simplicity and system robustness

when considering a distributed versus centralized realization for particular functionality.

In PortLand, we restrict the amount of centralized knowledge and limit it to soft state.

In this manner, we eliminate the need for any administrator configuration of the fabric

manager (e.g., number of switches, their location, their identifier). In deployment, we

expect the fabric manager to be replicated with a primary asynchronously updating state

on one or more backups. Strict consistency among replicas is not necessary as the fabric

manager maintains no hard state.

Our approach takes inspiration from other recent large-scale infrastructure de-

ployments. For example, modern storage [GGL03] and data processing systems [DG04]

employ a centralized controller at the scale of tens of thousands of machines. In another

setting, the Route Control Platform [CCF+05] considers centralized routing in ISP de-

ployments. All the same, the protocols described in this paper are amenable to dis-

tributed realizations if the tradeoffs in a particular deployment environment tip against

a central fabric manager.

2.3.2 Positional Pseudo MAC Addresses

The basis for efficient forwarding and routing as well as VM migration in our de-

sign is hierarchical Pseudo MAC (PMAC) addresses. PortLand assigns a unique PMAC

address to each end host. The PMAC encodes the location of an end host in the topol-
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ogy. For example, all end points in the same pod will have the same prefix in their

assigned PMAC. The end hosts remain unmodified, believing that they maintain their

actual MAC (AMAC) addresses. Hosts performing ARP requests receive the PMAC

of the destination host. All packet forwarding proceeds based on PMAC addresses, en-

abling very small forwarding tables. Egress switches perform PMAC to AMAC header

rewriting to maintain the illusion of unmodified MAC addresses at the destination host.

PortLand edge switches learn a unique pod number and a unique position num-

ber within each pod. We employ the Location Discovery Protocol (Section 2.3.4) to

assign these values. For all directly connected hosts, edge switches assign a 48-bit

PMAC of the form pod.position.port.vmid to all directly connected hosts, where pod

(16 bits) reflects the pod number of the edge switch, position (8 bits) is its position in

the pod, and port (8 bits) is the switch-local view of the port number the host is con-

nected to. We use vmid (16 bits) to multiplex multiple virtual machines on the same

physical machine (or physical hosts on the other side of a bridge). Edge switches assign

monotonically increasing vmid’s to each subsequent new MAC address observed on a

given port. PortLand times out vmid’s without any traffic and reuses them.

When an ingress switch sees a source MAC address never observed before, the

packet is vectored to the switch software. The software creates an entry in a local PMAC

table mapping the host’s AMAC and IP address to its PMAC. The switch constructs the

PMAC as described above and communicates this mapping to the fabric manager as

depicted in Figure 2.2. The fabric manager uses this state to respond to ARP requests

(Section 2.3.3). The switch also creates the appropriate flow table entry to rewrite the

PMAC destination address to the AMAC for any traffic destined to the host.

In essence, we separate host location from host identifier [MN06] in a manner

that is transparent to end hosts and compatible with existing commodity switch hard-

ware. Importantly, we do not introduce additional protocol headers. From the underly-

ing hardware, we require flow table entries to perform deterministic PMAC↔ AMAC

rewriting as directed by the switch software. We also populate switch forwarding entries

based on longest prefix match against a destination PMAC address. OpenFlow [ope]

supports both operations and native hardware support is also available in commodity

switches [cisb].
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Figure 2.2: Actual MAC to Pseudo MAC mapping.

2.3.3 Proxy-based ARP

Ethernet by default broadcasts ARPs to all hosts in the same layer 2 domain.

We leverage the fabric manager to reduce broadcast overhead in the common case, as

depicted in Figure 2.3. In step 1, an edge switch intercepts an ARP request for an IP to

MAC address mapping and forwards the request to the fabric manager in step 2. The

fabric manager consults its PMAC table to see if an entry is available for the target IP

address. If so, it returns the PMAC in step 3 to the edge switch. The edge switch creates

an ARP reply in step 4 and returns it to the original host.

It is possible that the fabric manager does not have the IP to PMAC mapping

available, for example after failure. In this case, the fabric manager will fall back to

broadcast to all end hosts to retrieve the mapping. Efficient broadcast is straightforward

in the failure-free case (fault-tolerance extensions are described below): the ARP is

transmitted to any core switch, which in turn distributes it to all pods and finally all

edge switches. The target host will reply with its AMAC, which will be rewritten by

the ingress switch to the appropriate PMAC before forwarding to both the querying host
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Figure 2.3: Proxy ARP.

and the fabric manager.

Note that end hosts receive PMACs in response to an ARP request and that all

packet forwarding proceeds based on the hierarchical PMAC. The egress switch per-

forms PMAC to AMAC rewriting only on the last hop to the destination host. In the

baseline, forwarding in each switch requires just O(k) state using hierarchical PMAC

addresses. This required state compares favorably to standard layer 2 switches that re-

quire an entry for every flat MAC address in the network, i.e., tens or even hundreds of

thousands in large deployments. Additional forwarding state may be required to perform

per-flow load balancing across multiple paths [AFLV08].

There is one additional detail for supporting VM migration. Upon completing

migration from one physical machine to another, the VM sends a gratuitous ARP with

its new IP to MAC address mapping. This ARP is forwarded to the fabric manager in

the normal manner. Unfortunately, any hosts communicating with the migrated VM will

maintain that host’s previous PMAC in their ARP cache and will be unable to continue

communication until their ARP cache entry times out. To address this limitation, the
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fabric manager forwards an invalidation message to the migrated VM’s previous switch.

This message sets up a flow table entry to trap handling of subsequent packets destined

to the invalidated PMAC to the switch software. The switch software transmits a unicast

gratuitous ARP back to any transmitting host to set the new PMAC address in that host’s

ARP cache. The invalidating switch may optionally transmit the packet to the actual

destination to prevent packet loss.

2.3.4 Distributed Location Discovery

PortLand switches use their position in the global topology to perform more

efficient forwarding and routing using only pairwise communication. Switch position

may be set manually with administrator intervention, violating some of our original

goals. Since position values should be slow to change, this may still be a viable option.

However, to explore the limits to which PortLand switches may be entirely plug-and-

play, we also present a location discovery protocol (LDP) that requires no administrator

configuration. PortLand switches do not begin packet forwarding until their location is

established.

PortLand switches periodically send a Location Discovery Message (LDM) out

all of their ports both, to set their positions and to monitor liveness in steady state. LDMs

contain the following information:

• Switch identifier (switch id): a globally unique identifier for each switch, e.g., the

lowest MAC address of all local ports.

• Pod number (pod): a number shared by all switches in the same pod (see Fig-

ure 2.1). Switches in different pods will have different pod numbers. This value

is never set for core switches.

• Position (pos): a number assigned to each edge switch, unique within each pod.

• Tree level (level): 0, 1, or 2 depending on whether the switch is an edge, aggrega-

tion, or core switch. Our approach generalizes to deeper hierarchies.

• Up/down (dir): Up/down is a bit which indicates whether a switch port is facing

downward or upward in the multi-rooted tree.
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Initially, all values other than the switch identifier and port number are unknown

and we assume the fat tree topology depicted in Figure 2.1. However, LDP also general-

izes to multi-rooted trees as well as partially connected fat trees. We assume all switch

ports are in one of three states: disconnected, connected to an end host, or connected to

another switch.

The key insight behind LDP is that edge switches receive LDMs only on the

ports connected to aggregation switches (end hosts do not generate LDMs). We use

this observation to bootstrap level assignment in LDP. Edge switches learn their level

by determining that some fraction of their ports are host connected. Level assignment

then flows up the tree. Aggregations switches set their level once they learn that some

of their ports are connected to edge switches. Finally, core switches learn their levels

once they confirm that all ports are connected to aggregation switches.

Algorithm 1 presents the processing performed by each switch in response to

LDMs. Lines 2-4 are concerned with position assignment and will be described below.

In line 6, the switch updates the set of switch neighbors that it has heard from. In lines

7-8, if a switch is not connected to more than k/2 neighbor switches for sufficiently

long, it concludes that it is an edge switch. The premise for this conclusion is that edge

switches have at least half of their ports connected to end hosts. Once a switch comes

to this conclusion, on any subsequent LDM it receives, it infers that the corresponding

incoming port is an upward facing one. While not shown for simplicity, a switch can

further confirm its notion of position by sending pings on all ports. Hosts will reply to

such pings but will not transmit LDMs. Other PortLand switches will both reply to the

pings and transmit LDMs.

In lines 10-11, a switch receiving an LDM from an edge switch on an up-

ward facing port concludes that it must be an aggregation switch and that the cor-

responding incoming port is a downward facing port. Lines 12-13 handle the case

where core/aggregation switches transmit LDMs on downward facing ports to aggre-

gation/edge switches that have not yet set the direction of some of their ports.

Determining the level for core switches is somewhat more complex, as addressed

by lines 14-20. A switch that has not yet established its level first verifies that all of its

active ports are connected to other PortLand switches (line 14). It then verifies in lines
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15-18 that all neighbors are aggregation switches that have not yet set the direction of

their links (aggregation switch ports connected to edge switches would have already

been determined to be downward facing). If these conditions hold, the switch can con-

clude that it is a core switch and set all its ports to be downward facing (line 20).

Edge switches must acquire a unique position number in each pod in the range of

0..k
2
−1. This process is depicted in Algorithm 2. Intuitively, each edge switch proposes

a randomly chosen number in the appropriate range to all aggregation switches in the

same pod. If the proposal is verified by a majority of these switches as unused and not

tentatively reserved, the proposal is finalized and this value will be included in future

LDMs from the edge switch. As shown in lines 2-4 and 29 of Algorithm 1, aggregation

switches will hold a proposed position number for some period of time before timing it

out in the case of multiple simultaneous proposals for the same position number.

LDP leverages the fabric manager to assign unique pod numbers to all switches

in the same pod. In lines 8-9 of Algorithm 2, the edge switch that adopts position 0

requests a pod number from the fabric manager. This pod number spreads to the rest of

the pod in lines 21-22 of Algorithm 1.

For space constraints, we leave a description of the entire algorithm accounting

for a variety of failure and partial connectivity conditions to separate work. We do note

one of the interesting failure conditions, miswiring. Even in a data center environment,

it may still be possible that two host facing ports inadvertently become bridged. For

example, someone may inadvertently plug an Ethernet cable between two outward fac-

ing ports, introducing a loop and breaking some of the important PortLand forwarding

properties. LDP protects against this case as follows. If an uninitialized switch begins

receiving LDMs from an edge switch on one of its ports, it must be an aggregation

switch or there is an error condition. It can conclude there is an error condition if it re-

ceives LDMs from aggregation switches on other ports or if most of its active ports are

host-connected (and hence receive no LDMs). In an error condition, the switch disables

the suspicious port and signals an administrator exception.
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2.3.5 Provably Loop Free Forwarding

Once switches establish their local positions using LDP, they employ updates

from their neighbors to populate their forwarding tables. For instance, core switches

learn the pod number of directly-connected aggregation switches. When forwarding a

packet, the core switch simply inspects the bits corresponding to the pod number in the

PMAC destination address to determine the appropriate output port.

Similarly, aggregation switches learn the position number of all directly con-

nected edge switches. Aggregation switches must determine whether a packet is des-

tined for a host in the same or different pod by inspecting the PMAC. If in the same pod,

the packet must be forwarded to an output port corresponding to the position entry in

the PMAC.

If in a different pod, the packet may be forwarded along any of the aggregation

switch’s links to the core layer in the fault-free case. For load balancing, switches may

employ any number of techniques to choose an appropriate output port. The fabric

manager would employ additional flow table entries to override the default forwarding

behavior for individual flows. However, this decision is orthogonal to this work, and so

we assume a standard technique such as flow hashing in ECMP [Hop00].

PortLand maps multicast groups to a core switch using a deterministic hash func-

tion. PortLand switches forward all multicast packets towards this core, e.g., using flow

hashing to pick among available paths. With simple hardware support, the hash function

may be performed in hardware with no additional state in the fault-free case (exceptions

for failures could be encoded in switch SRAM). Without hardware support, there would

be one entry per multicast group. Edge switches forward IGMP join requests to the

fabric manager using the PMAC address of the joining host. The fabric manager then

installs forwarding state in all core and aggregation switches necessary to ensure multi-

cast packet delivery to edge switches with at least one interested host.

Our forwarding protocol is provably loop free by observing up-down seman-

tics [SBB+91] in the forwarding process as explained in Appendix A. Packets will al-

ways be forwarded up to either an aggregation or core switch and then down toward

their ultimate destination. We protect against transient loops and broadcast storms by

ensuring that once a packet begins to travel down, it is not possible for it to travel back
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up the topology. There are certain rare simultaneous failure conditions where packets

may only be delivered by, essentially, detouring back down to an aggregation switch

to get to a core switch capable of reaching a given destination. We err on the side of

safety and prefer to lose connectivity in these failure conditions rather than admit the

possibility of loops.

2.3.6 Fault Tolerant Routing
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Figure 2.4: Unicast: Fault detection and action.

Given a largely fixed baseline topology and the ability to forward based on

PMACs, PortLand’s routing protocol is largely concerned with detecting switch and

link failure/recovery. LDP exchanges (Section 2.3.4) also serve the dual purpose of act-

ing as liveness monitoring sessions. We describe our failure recovery process using an

example, as depicted in Figure 2.4. Upon not receiving an LDM (also referred to as a

keepalive in this context) for some configurable period of time, a switch assumes a link

failure in step 1. The detecting switch informs the fabric manager about the failure in
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step 2. The fabric manager maintains a logical fault matrix with per-link connectivity

information for the entire topology and updates it with the new information in step 3.

Finally, in step 4, the fabric manager informs all affected switches of the failure, which

then individually recalculate their forwarding tables based on the new version of the

topology. Required state for network connectivity is modest, growing with k3/2 for a

fully-configured fat tree built from k-port switches.

Traditional routing protocols require all-to-all communication among n switches

with O(n2) network messages and associated processing overhead. PortLand requires

O(n) communication and processing, one message from the switch detecting failure

to the fabric manager and, in the worst case, n messages from the fabric manager to

affected switches.
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Figure 2.5: Multicast: Fault detection and action.

We now consider fault tolerance for the multicast and broadcast case. Relative

to existing protocols, we consider failure scenarios where there is no single spanning

tree rooted at a core switch able to cover all receivers for a multicast group or broadcast

session. Consider the example in Figure 2.5. Here, we have a multicast group mapped



30

to the left-most core switch. There are three receivers, spread across pods 0 and 1. A

sender forwards packets to the designated core, which in turn distributes the packets

to the receivers. In step 1, two highlighted links in pod 0 simultaneously fail. Two

aggregation switches detect the failure in step 2 and notify the fabric manager, which in

turn updates its fault matrix in step 3. The fabric manager calculates forwarding entries

for all affected multicast groups in step 4.

In this example, recovering from the failure requires forwarding through two

separate aggregation switches in pod 0. However, there is no single core switch with si-

multaneous connectivity to both aggregation switches. Hence, a relatively simple failure

scenario would result in a case where no single core-rooted tree can cover all interested

receivers. The implications are worse for broadcast. We deal with this scenario by cal-

culating a greedy set cover for the set of receivers associated with each multicast group.

This may result in more than one designated core switch associated with a multicast

or broadcast group. The fabric manager inserts the required forwarding state into the

appropriate tables in step 5 of Figure 2.5.
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Figure 2.6: Multicast: After fault recovery.
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Finally, Figure 2.6 depicts the forwarding state for the sender after the failure

recovery actions. The multicast sender’s edge switch now forwards two copies of each

packet to two separate cores that split the responsibility for transmitting the multicast

packet to the receivers.

2.3.7 Discussion

Given an understanding of the PortLand architecture, we now compare our ap-

proach to two previous techniques with similar goals, TRILL [PED+09] and SEAT-

TLE [CKR08]. Table 2.1 summarizes the similarities and differences along a num-

ber of dimensions. The primary difference between the approaches is that TRILL and

SEATTLE are applicable to general topologies. PortLand on the other hand achieves its

simplicity and efficiency gains by assuming a multi-rooted tree topology such as those

typically found in data center settings.

For forwarding, both TRILL and SEATTLE must in the worst case maintain

entries for every host in the data center because they forward on flat MAC addresses.

While in some enterprise deployment scenarios the number of popular destination hosts

is limited, many data center applications perform all-to-all communication (consider

search or MapReduce) where every host talks to virtually all hosts in the data center

over relatively small time periods. PortLand forwards using hierarchical PMACs re-

sulting in small forwarding state. TRILL employs MAC-in-MAC encapsulation to limit

forwarding table size to the total number of switches, but must still maintain a rewriting

table with entries for every global host at ingress switches.

Both TRILL and SEATTLE employ a broadcast-based link state protocol to dis-

cover the network topology. PortLand leverages knowledge of a baseline multi-rooted

tree to allow each switch to establish its topological position based on local message ex-

change. We further leverage a logically centralized fabric manager to distribute failure

information.

TRILL handles ARP locally since all switches maintain global topology knowl-

edge. In TRILL, the link state protocol further broadcasts information about all hosts

connected to each switch. This can add substantial overhead, especially when consid-

ering virtual machine multiplexing. SEATTLE distributes ARP state among switches
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using a one-hop DHT. All switches register the IP address to MAC mapping for their

local hosts to a designated resolver. ARPs for an IP address may then be forwarded to

the resolver rather than broadcast throughout the network.

While decentralized and scalable, this approach does admit unavailability of oth-

erwise reachable hosts during the recovery period (i.e., several seconds) after a resolver

switch fails. Worse, simultaneous loss of soft state in both the resolving switch and a

host’s ingress switch may leave certain hosts unreachable for an extended period of time.

PortLand protects against these failure conditions by falling back to broadcast ARPs in

the case where a mapping is unavailable in the fabric manager and associated state is

lost. We are able to do so because the PortLand broadcast protocol is efficient, fault

tolerant, and provably loop free.

To protect against forwarding loops, TRILL adds a secondary TRILL header

to each packet with a TTL field. Unfortunately, this means that switches must both

decrement the TTL and recalculate the CRC for every frame, adding complexity to

the common case. SEATTLE admits routing loops for unicast traffic. It proposes a new

“group” construct for broadcast/multicast traffic. Groups run over a single spanning tree,

eliminating the possibility of loops for such traffic. PortLand’s forwarding is provably

loop free with no additional headers. It further provides native support for multicast and

network-wide broadcast using an efficient fault-tolerance mechanism.

2.4 Implementation

2.4.1 Testbed Description

Our evaluation platform closely matches the layout in Figure 2.1. Our testbed

consists of 20 4-port NetFPGA PCI card switches [LMW+07]. Each switch contains 4

GigE ports along with Xilinx FPGA for hardware extensions. We house the NetFPGAs

in 1U dual-core 3.2 GHz Intel Xeon machines with 3GB RAM. The network intercon-

nects 16 end hosts, 1U quad-core 2.13GHz Intel Xeon machines with 3GB of RAM. All

machines run Linux 2.6.18-92.1.18el5.

The switches run OpenFlow v0.8.9r2 [ope], which provides the means to control

switch forwarding tables. One benefit of employing OpenFlow is that it has already
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Figure 2.7: System architecture.

been ported to run on a variety of hardware platforms, including switches from Cisco,

Hewlett Packard, and Juniper. This gives us some confidence that our techniques may

be extended to commercial platforms using existing software interfaces and hardware

functionality. Each switch has a 32-entry TCAM and a 32K entry SRAM for flow table

entries. Each incoming packet’s header is matched against 10 fields in the Ethernet, IP

and TCP/UDP headers for a match in the two hardware flow tables. Each TCAM and

SRAM entry is associated with an action, e.g., forward the packet along an output port

or to the switch software. TCAM entries may contain “don’t care” bits while SRAM

matches must be exact.

2.4.2 System Architecture

PortLand intercepts all ARP requests and IGMP join requests at the edge switch

and forwards them to the local switch software module running separately on the PC

hosting each NetFPGA. The local switch module interacts with the OpenFlow fabric

manager to resolve ARP requests and to manage forwarding tables for multicast ses-

sions. The first few packets for new flows will miss in hardware flow tables and will
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be forwarded to the local switch module as a result. The switch module uses ECMP

style hashing to choose among available forwarding paths in the switch and inserts a

new flow table entry matching the flow. On receiving failure and recovery notifications

from the fabric manager, each switch recalculates global connectivity and modifies the

appropriate forwarding entries for the affected flows through the switch.

The OpenFlow fabric manager monitors connectivity with each switch module

and reacts to the liveness information by updating its fault matrix. Switches also send

keepalives to their immediate neighbors every 10ms. If no keepalive is received after

50ms, they assume link failure and update the fabric manager appropriately.

Figure 2.7 shows the system architecture. OpenFlow switch modules run locally

on each switch. The fabric manager transmits control updates using OpenFlow messages

to each switch. In our testbed, a separate control network supports communication

between the fabric manager and local switch modules. It is of course possible to run the

fabric manager simply as a separate host on the data plane and to communicate inband.

The cost and wiring for a separate lower-speed control network will actually be modest.

Consider a control network for a 2,880-switch data center for the k = 48 case. Less than

100 low-cost, low-speed switches should suffice to provide control plane functionality.

The real question is whether the benefits of such a dedicated network will justify the

additional complexity and management overhead.

Table 2.2 summarizes the state maintained locally at each switch as well as the

fabric manager. Here

k = Number of ports on the switches,

m = Number of local multicast groups,

p = Number of multicast groups active in the system.

2.5 Evaluation

In this section, we evaluate the efficiency and scalability of our implementation.

We describe the experiments carried out on our system prototype and present measure-

ments to characterize convergence and control overhead for both multicast and unicast

communication in the presence of link failures. We ran all experiments on our testbed
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described in Section 2.4.
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Figure 2.8: Convergence time with increasing faults.

Convergence Time With Increasing Faults We measured convergence time for a

UDP flow while introducing a varying number of random link failures. A sender trans-

mits packets at 250Mbps to a receiver in a separate pod. In the case where at least one

of the failures falls on the default path between sender and receiver, we measured the

total time required to re-establish communication.

Figure 2.8 plots the average convergence time across 20 runs as a function of

the number of randomly-induced failures. Total convergence time begins at about 65ms

for a single failure and increases slowly with the number of failures as a result of the

additional processing time.

TCP convergence We repeated the same experiment for TCP communication. We

monitored network activity using tcpdump at the sender while injecting a link failure

along the path between sender and receiver. As illustrated in Figure 2.9, convergence
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Figure 2.9: TCP convergence.

for TCP flows takes longer than the baseline for UDP despite the fact that the same

steps are taken in the underlying network. This discrepancy results because TCP loses

an entire window worth of data. Thus, TCP falls back to the retransmission timer, with

TCP’s RTOmin set to 200ms in our system. By the time the first retransmission takes

place, connectivity has already been re-established in the underlying network.

Multicast Convergence We further measured the time required to designate a new

core when one of the subscribers of a multicast group loses connectivity to the current

core. For this experiment, we used the same configuration as in Figure 2.5. In this case,

the sender transmits a multicast flow to a group consisting of 3 subscribers, augment-

ing each packet with a sequence number. As shown in Figure 2.10, 4.5 seconds into

the experiment we inject two failures (as depicted in Figure 2.5), causing one of the

receivers to lose connectivity. After 110ms, connectivity is restored. In the intervening

time, individual switches detect the failures and notify the fabric manager, which in turn

reconfigures appropriate switch forwarding tables.
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Figure 2.10: Multicast convergence.

Scalability One concern regarding PortLand design is scalability of the fabric man-

ager for larger topologies. Since we do not have a prototype at scale, we use mea-

surements from our existing system to project the requirements of larger systems. Fig-

ure 2.11 shows the amount of ARP control traffic the fabric manager would be expected

to handle as a function of overall cluster size. One question is the number of ARPs

transmitted per host. Since we are interested in scalability under extreme conditions, we

considered cases where each host transmitted 25, 50 and 100 ARP requests/sec to the

fabric manager. Note that even 25 ARPs/sec is likely to be extreme in today’s data center

environments, especially considering the presence of a local ARP cache with a typical

60-second timeout. In a data center with each of the 27,648 hosts transmitting 100 ARPs

per second, the fabric manager must handle a manageable 376Mbits/s of control traffic.

More challenging is the CPU time required to handle each request. Our measurements

indicate approximately 25 µs of time per request in our non-optimized implementa-

tion. Fortunately, the work is highly parallelizable, making it amenable to deployment

on multiple cores and multiple hardware thread contexts per core. Figure 2.12 shows
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Figure 2.11: Fabric manager control traffic.

the CPU requirements for the fabric manager as a function of the number of hosts in

the data center generating different numbers of ARPs/sec. For the highest levels of

ARPs/sec and large data centers, the required level of parallelism to keep up with the

ARP workload will be approximately 70 independent cores. This is beyond the capac-

ity of a single modern machine, but this also represents a relatively significant number

of ARP misses/second. Further, it should be possible to move the fabric manager to

a small-scale cluster (e.g., four machines) if absolutely necessary when very high fre-

quency of ARP requests is anticipated.

VM Migration Finally, we evaluate PortLand’s ability to support virtual machine mi-

gration. In this experiment, a sender transmits data at 150 Mbps to a virtual machine

(hosted on Xen) running on a physical machine in one pod. We then migrate the vir-

tual machine to a physical machine in another pod. On migration, the host transmits

a gratuitous ARP with its new MAC address, which is in turn forwarded to all hosts

communicating with that VM by the previous egress switch. The communication is not
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Figure 2.12: CPU requirements for ARP requests.

at line-rate (1 Gbps) since we use software MAC layer rewriting capability provided by

OpenFlow to support PMAC and AMAC translation at edge switches. This introduces

additional per packet processing latency. Existing commercial switches have MAC layer

rewriting support directly in hardware [cisb].

Figure 2.13 plots the results of the experiment with measured TCP rate for both

state transfer and flow transfer (measured at the sender) on the y-axis as a function of

time progressing on the x-axis. We see that 5+ seconds into the experiment, throughput

of the tcp flow drops below the peak rate as the state of the VM begins to migrate to

a new physical machine. During migration there are short time periods (200-600ms)

during which the throughput of the flow drops to near zero (not visible in the graph due

to the scale). Communication resumes with the VM at full speed after approximately 32

seconds (dominated by the time to complete VM state transfer).
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2.6 Summary

The goal of PortLand is to explore the extent to which entire data center net-

works may be treated as a single plug-and-play fabric. Modern data centers may con-

tain 100,000 hosts and employ virtual machine multiplexing that results in millions of

unique addressable end hosts. Efficiency, fault tolerance, flexibility and manageabil-

ity are all significant concerns with general-purpose Ethernet and IP-based protocols.

In this chapter, we present PortLand, a set of Ethernet-compatible routing, forwarding,

and address resolution protocols specifically tailored for data center deployments. It is

our hope that through protocols like PortLand, data center networks can become more

flexible, efficient, and fault tolerant.
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Algorithm 2.1: LDP listener thread()
1: While (true)

2: For each tp in tentative pos

3: If (curr time− tp.time) > timeout

4: tentative pos← tentative pos− {tp};
5: B Case 1: On receipt of LDM P

6: Neighbors← Neighbors
⋃
{switch that sent P}

7: If (curr time− start time > T and |Neighbors| ≤ k
2 )

8: my level← 0; incoming port← up;

9: Acquire position thread();

10: If (P.level = 0 and P.dir = up)

11: my level← 1; incoming port← down;

12: Else If (P.dir = down)

13: incoming port← up;

14: If (my level = −1 and |Neighbors| = k)

15: is core← true;

16: For each switch in Neighbors

17: If (switch.level 6= 1 or switch.dir 6= −1)

18: is core← false; break;

19: If (is core = true)

20: my level← 2; Set dir of all ports to down;

21: If (P.pos 6= −1 and P.pos * Pos used)

22: Pos used← Pos used
⋃
{P.pos};

23: If (P.pod 6= −1 and my level 6= 2)

24: my pod← P.pod;

25:

26: B Case 2: On receipt of position proposal P

27: If (P.proposal * (Pos used
⋃
tentative pos))

28: reply← {“Yes”};
29: tentative pos← tentative pos

⋃
{P.proposal};

30: Else

31: reply← {“No”, Pos used, tentative pos};
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Algorithm 2.2: Acquire position thread()
1: taken pos = {};
2: While (my pos = −1)

3: proposal← random()%k
2 , s.t. proposal * taken pos

4: Send proposal on all upward facing ports

5: Sleep(T );

6: If (more than k
4 + 1 switches confirm proposal)

7: my pos = proposal;

8: If(my pos = 0)

9: my pod = Request from Fabric Manager;

10: Update taken pos according to replies;
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Table 2.1: System comparison

System Topology
Forwarding

Routing ARP Loops MulticastSwitch-

State

Address-

ing
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MAC-

in-MAC

encapsu-
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Switch
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cast
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map

MAC

address
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remote

switch
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with

TTL
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of global

hosts)
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Switch
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cast

One-hop
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possible
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routing;
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Table 2.2: State requirements.

State Switch Fabric Manager

Connectivity Matrix O(k3/2) O(k3/2)

Multicast Flows O(m) O(p)

IP → PMAC mappings O(k/2) O(k3/4)



Chapter 3

FasTrak: Enabling Express Express

Lanes in Multi-Tenant Data Centers

This chapter focuses on a scalable policy enforcement mechanism that max-

imises network performance that applications resident on multi-tenant clouds observe.

The shared nature of multi-tenant cloud networks requires providing tenant isolation and

quality of service, which in turn requires enforcing thousands of network-level rules,

policies, and traffic rate limits. Enforcing these rules in virtual machine hypervisors im-

poses significant computational overhead, as well as increased latency. In FasTrak, we

seek to exploit temporal locality in flows and flow sizes to offload a subset of network

virtualization functionality from the hypervisor into switch hardware freeing up the hy-

pervisor. FasTrak manages the required hardware and hypervisor rules as a unified set,

moving rules back and forth to minimize the overhead of network virtualization, and

focusing on flows (or flow aggregates) that are either most latency sensitive or exhibit

the highest packets-per-second rates.

3.1 Introduction

‘Infrastructure as a Service’ offerings such as Amazon EC2 [ec2], Microsoft

Azure [azu], and Google Compute Engine [gce] host an increasing fraction of network

services. These platforms are attractive to application developers because they transpar-

ently scale with user demands. However, the shared nature of cloud networks requires

45
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enforcing tenant isolation and quality of service, which in turn requires a large number

of network-level rules, policies, and traffic rate limiting to manage network traffic ap-

propriately. Enforcing these policies comes at some cost today, which will only grow as

demand for these offerings increase.

Today, many multi-tenant offerings provide tens of thousands of customers with

virtual network slices that can have hundreds of security and QoS rules per VM [VPC].

Such networks must provide isolation for thousands of flows per virtual machine, or tens

of thousands of flows per physical server, and up to hundreds of thousands of flows per

Top of Rack (ToR) switch. This enormous set of rules must be accessed on a per-packet

basis to enable communication and isolation between tenants. The virtual machine hy-

pervisor typically enforces these rules on every packet going in and out of the host.

This results in problems for both the provider and the customer: for the provider,

resources that could be used to support more users must instead be diverted to implement

these network-level rules; for the customer, the myriad rules implemented within the

hypervisor are a source of increased latency and decreased throughput.

In FasTrak, we seek to reduce the cost of rule processing recognizing that the as-

sociated functionality is required. We exploit temporal locality in flows and flow sizes to

offload a subset of network virtualization functionality from the hypervisor into switch

hardware in the network itself to free hypervisor resources. FasTrak manages the re-

quired hardware and hypervisor rules as a unified set, moving rules back and forth to

minimize the overhead of network virtualization, and focusing on flows (or flow aggre-

gates) that are either most latency sensitive or exhibit the highest packets-per-second

rates.

Due to hardware space limitations, only a limited number of rules can be sup-

ported in hardware relative to what is required by a server. We argue that this gap is

inherent and hence the key challenge we address in this work is identifying the subset

of flows that benefit the most from hardware/network offload, and coordinating between

applications, VMs, hypervisors, and switches to migrate these rules despite changes in

traffic, application behavior, and VM placement.

FasTrak seeks to achieve the following three objectives:

1. Hardware network virtualization: The flows that bypass the hypervisor should still



47

be subject to all associated isolation rules. This include tunnel mappings, security

and QoS rules associated with the flow.

2. Performance isolation: Regardless of whether traffic is subject to rule processing

in the hypervisor or in hardware, the aggregate traffic rate of each tenant’s VM

should not exceed its limits. Likewise, traffic from one tenant VM should not af-

fect another’s, even if non-overlapping subset of flows are offloaded to hardware.

3. Performance: We seek to improve both available application bandwidth and to

reduce both average and tail communication latency.

Based on these goals, we design, prototype and evaluate FasTrak. We rely on

pre-existing technology trends. Hardware with significant levels of network virtualiza-

tion support, such as tunneling offloads for NICs [emu] and switches [ari] are becoming

commodity. The core of our design consists of an SDN controller that decides which

subset of active traffic should be offloaded, and a per-VM flow placement module that

directs selected flows through either the hypervisor, or through an SR-IOV [sri]-based

“FasTrak” path. The flow placement module integrates with an OpenFlow interface,

allowing the FasTrak controller to program it. In our design, the network fabric core

remains unchanged.

The primary contribution of this work is a demonstration that offloading a sub-

set of flows to an in-network hardware fast path can result in substantial performance

gains while minimizing rule processing overhead in servers. We motivate our work with

a microbenchmark study that gives us insights into where network latencies and CPU

overhead in existing virtualized systems. Further, we examine which types of flows are

most subject to this rule processing overhead. We then describe FasTrak design and

evaluate it on a testbed. In this evaluation, we find that applications see a∼ 2x improve-

ment in finish times and latencies while server load is decreased by 21%. While the

actual benefits of FasTrak will be workload dependent, services that benefit the most are

those with substantial communication requirements and some communication locality.
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3.2 Background

We first consider some of the characteristics and requirements of multi-tenant

virtualized data centers, then briefly summarize host and NIC support for network vir-

tualization.

3.2.1 Requirements of multi-tenant data centers

Multi-tenant data centers employing network virtualization seek an abstraction

of a logical private network controlled and isolated in the same way as a dedicated

physical infrastructure. The properties typically sought out in such networks are:

• Control (C1). A tenant must be able to assign any IP address to their VMs,

independent of the IP addresses used by other tenants, or the IP addresses assigned

by provider to physical servers. The network must support overlapping tenant IP

addresses, e.g., in separate private RFC 1918 [rfc] address spaces.

• Control (C2). Security and QoS rules that tenants would apply to traffic in their

private deployment should be enforceable in the multi-tenant setting.

• Isolation (I3). The provider of a multi-tenant data center must be able to dis-

tinguish tenant traffic, enforce tenant-specified rules, and rate limit incoming and

outgoing bandwidth allocated to tenant VMs. No single tenant should be able to

monopolize network resources.

• Seamlessness (S4). VM migration should be transparent to the customer and

should not require change in the IP address or connectivity. Security and QoS

rules pertaining to the VM should move automatically along with the VM.

These requirements impact the design of the network. To enable C1, tenant IP

addresses must be decoupled from provider IP addresses. Tenant IP addresses should

encode the identities of VMs, while the provider IP addresses should indicate their loca-

tion and aid in forwarding across the network fabric. Tunneling packets carrying tenant

IP addresses across the provider network helps achieve this separation. Further, to dis-

tinguish tenant traffic from one another despite overlapping IP addresses, every packet

must be tagged with a tenant ID. This tenant ID also helps achieve I3, by informing

the network of which rules to apply to the packet. For C1, the network must maintain
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mappings between the tenant VM’s IP address and the tenant ID, as well as to the tunnel

provider’s IP address for every destination VM that a source VM wants to communicate

with.

To support C2, the network must store and enforce all relevant security and QoS

rules associated with a tenant VM. For example, Amazon Virtual Private Cloud(VPC)

[amab] allows up to 250 security rules to be configured per VM [VPC]. These rules

are typically maintained close to the communicating VMs and applied on a per-packet

basis.

The network must support tenant-specific rate limits that can be applied to net-

work interfaces to support I3. Finally, to ensure S4, the network should migrate all the

above rules pertaining to every VM along with the VM. Further, the tunnel mappings

should be updated both at source and destination of every traffic flow.

A multi-tenant data center with tens of thousands of tenants must store and or-

chestrate a considerable amount of network state, and must consult much of this state

on a per-packet basis. In terms of manageability, this high volume of state encourages a

software approach to network virtualization, where the network state corresponding to

every VM is held in the hypervisor of the server on which it is resident.

3.2.2 Virtualized Host Networking

Hypervisor-based

A virtual switch in the hypervisor, called the vswitch, manages traffic transiting

between VMs on a single host, and between those VMs and the network at large. In a

multi-tenant setting the vswitch is typically configured to isolate traffic of VMs belong-

ing to different tenants. Such a vswitch can tag traffic with tenant IDs, maintain and

enforce tunnel mappings, security, QoS rules and interface rate limits.

A widely-deployed vswitch implementation is Open vSwitch(OVS) [ovs]. Apart

from invoking the kernel for per-packet processing, OVS provides a user-space compo-

nent for configuration. In this work, we subject OVS to a series of microbenchmark tests

to understand the effect of configuration settings (described in Section 3.3) on software

network virtualization overheads. We now describe these configurations.
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In its simplest configuration, OVS is a simple L2 software switch (herein referred

to as ‘Baseline OVS’). Security rules can be configured using the user-space component.

When OVS detects traffic that it has not seen before, it forwards these packets to user-

space, where the packets are checked against the configured security rules. Then a

fast path rule corresponding to this traffic is installed in the kernel component, so that

subsequent packets can be handled entirely by the kernel component. This component

maintains the rules in an O(1) lookup hash table to speed up per packet processing. We

refer to this configuration as ‘OVS+Security rules’.

OVS also supports configuration of rate limits using tc [tc] on VM interfaces

that connect to it. These interfaces are called virtual interfaces (VIF) because they are

purely software interfaces. Outgoing traffic from the VM exit these interfaces and are

first handled by the vswitch, which imposes the rate limit. The vswitch can then forward

this VM traffic on a physical NIC if it is destined to a remote host. Interface limits can

be specified for incoming traffic as well. We refer to configuration including this rate

limit specification as ‘OVS+Rate limiting’.

It is also possible to configure OVS to tunnel packets in and out of the physical

servers using VXLAN [vxl] tunneling. VXLAN is a proposed tunneling standard for

multi-tenant data centers that also specifies the tunneling encapsulation format. In this

configuration, an encapsulation with a destination server IP address is added to VM

traffic exiting the server. This address is stripped from incoming packets destined to

local VMs. We refer to this configuration as ’OVS+Tunneling’.

Hypervisor Bypass

Due to the overhead of transiting the hypervisor, VMs also have the option of by-

passing the vswitch and hypervisor to send traffic in and out of a physical NIC directly.

It is necessary that the physical NIC interface is administratively configured to support

this configuration for a given VM. Packets are DMAed directly between the NIC and the

VM, and thus packets need not be copied to the vswitch. There are two key drawbacks

to this configuration, however. First, the NIC port automatically becomes unavailable

for use by other VMs; in contrast, the vswitch can help share a physical port across

multiple VMs using VIFs. As such this technique is not scalable. Second, the traffic
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from the VM is no longer virtualized at the physical server, and thus network policies

are no longer properly enforced.

To overcome the first problem, Single Root IO Virtualization (SR-IOV) [sri] al-

lows a single PCIe device to appear as multiple separate physical PCIe devices. With

SR-IOV, the NIC partitions hardware resources to support a number of virtual functions

(VFs) that can be separately allocated to VMs. These VFs can share a physical port on

a NIC up to some limit (e.g., 64). Packets are DMAed to and from the VM directly to

the NIC using the VF, avoiding the hypervisor copy and associated context switches.

However, the processor and BIOS must support SR-IOV and provide IOMMU [iom]

functionality so that the NIC can access VM memory, and deliver received packets di-

rectly without hypervisor intervention. VF Interrupts on the other hand are first delivered

to the hypervisor. This allows the hypervisor to isolate interrupts securely.

The second issue raised is a key motivation for FasTrak, as supporting flexible

offload of network rules to the network is necessary to fully realize the benefits of lower

latency and lower CPU involvement in virtualized multi-tenant data centers.

3.3 Potential FasTrak Benefits

Supporting the myriad rules and network policies underpinning multi-tenant data

centers has largely become the responsibility of the hypervisor. However, the raw CPU

cost on a per-packet basis for supporting network virtualization can be substantial. As

virtualized workloads become more communication intensive, and required line rates

increase, we expect this overhead to grow. In this section, we examine these overheads,

measuring the impact of software processing on application throughput and latency. We

then examine the effect of bypassing the hypervisor using SR-IOV. In this way, we can

estimate an upper-bound on the potential benefit that FasTrak can deliver, as well as

better understand which types of network flows will benefit the most from FasTrak.

3.3.1 Microbenchmark setup

We have setup a small testbed consisting of a pair of HP DL380G6 servers, each

with two Intel E5520 CPUs and 24 GB of memory. The servers run Linux 3.5.0-17,
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Figure 3.1: Relative network performance measurement setup

the hypervisor is kvm, and guest VMs run Linux 3.5.0. Each VM is equipped with

a software virtual interface (VIF) connected to the vswitch (which is OVS), and each

NIC also supports an SR-IOV VF. The vswitch can be configured in any of the above

mentioned configurations. The network interfaces belonging to VMs and servers used in

our tests have TSO and LRO enabled, and the MTU is set to 1500 bytes. The workload

we evaluate is netperf [net], measured with four different application data sizes: 64, 600,

1448, 32000 bytes. We first describe how we measure the network overheads of OVS as

compared to SR-IOV, and then we describe how we measure CPU overheads.

Measuring network overhead:

Figure 3.1 depicts our experimental setup to quantify the network overhead of

virtualization. The three network characteristics we measure and the corresponding

experimental setups are:

1. Throughput: To measure throughput we attempt to saturate the interface being

tested using three netperf threads. These three threads are pinned to three out of

four logical CPUs available to the VM, leaving the last CPU for the VM kernel.

We use the netperf test TCP STREAM, and use TCP NODELAY to ensure that
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Figure 3.2: Relative CPU overhead measurement setup

netperf sends out data to the interface using the configured application data size.

Since we do not limit the amount of CPU available to the VM, we ensure that the

throughput measured is the highest achieved with the interface and that the netperf

client is not limited by CPU.

2. Closed-loop latency: We use a single netperf thread running TCP RR to measure

latency. In this test, netperf sends out one request at a time and measures the round

trip latency to receive the response. Only one request is in transit at a time. We

measure both average and 99th percentile latency observed via each interface with

this test.

3. Pipelined latency: We simulate bursty traffic using three netperf threads running

TCP RR with burst enabled, sending up to 32 requests at a time. Again in this test

we try to ensure that the netperf threads utilize maximum possible CPU to achieve

high throughput. We measure throughput for this test in terms of transactions per

second (TPS) and average latency.

Measuring CPU overhead:

To quantify the CPU required to drive each interface, we rely on the experiment

shown in Figure 3.2. Four test VMs on a single physical server each run a single threaded

netperf TCP STREAM test with the TCP NODELAY option enabled. We measure the

total level of CPU utilization during the test.
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(a) Throughput (b) Average Latency

(c) 99th %ile Latency (d) Burst TPS

(e) Burst Latency

Figure 3.3: Baseline Network performance
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(a) Baseline CPU overhead

(b) Combined CPU overhead

Figure 3.4: CPU Overheads

3.3.2 Microbenchmark Results

Figure 3.3 shows the results for network performance measurements obtained

through the VIF on the hypervisor with three OVS configurations: Baseline, OVS+-
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(a) Throughput (b) Average Latency

(c) 99th %ile Latency (d) Burst TPS

(e) Burst Latency

Figure 3.5: Combined Network performance

Tunneling and OVS+Rate limiting in comparison with that obtained by bypassing the
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hypervisor with SR-IOV. Figure 3.4(a) shows the CPU overhead with the same configu-

rations.

Figures 3.3(a), 3.3(b), 3.3(c) show that SR-IOV delivers significantly higher

throughput and lower average and 99th percentile latency. Figure 3.3(d) shows that

when pipelining requests, SR-IOV delivers up to twice the transactions per second as

compared to baseline OVS. Figure 3.4(a) shows that the CPU required to drive the SR-

IOV interface is 0.4-0.7x lower than baseline OVS. With SR-IOV, the hypervisor only

isolates interrupts from the VM and leaves the remaining work to the guest VM.

We next traced the system stack (not shown) on those CPU cores dedicated to

the host kernel when running the CPU test with baseline OVS. This trace showed that

the host CPU spent 96% of time in network I/O (inclusive of servicing interrupts), and

up to 55% of time copying data. This is in marked contrast with SR-IOV, where the

host CPU was idle 59% of the time and spent 23% of the time servicing interrupts.

Thus the OVS overheads are intrinsic to hypervisor packet handling. In fact due to an

efficientO(1) implementation for accessing security rules, the same tests measured with

an OVS instance populated with 10, 000 security rules showed no measurable difference

in overhead compared with baseline OVS.

Overhead of VXLAN tunneling:

The current OVS tunneling implementation was not able to support throughputs

beyond 2 Gbps for our target application data sizes. A component of this limitation

is that UDP VXLAN packets do not benefit from NIC offload capabilities. Figures

3.3(b) and 3.3(c) show that software tunneling does indeed add to latency. Supporting

a link with software tunneling at 1.96 Gbps with TCP requires 2.9 logical CPUs with

1448-byte application data units (shown in Figure 3.4(a)). A stack trace during TCP -

STREAM tests showed that tunneling adds 23% overhead relative to baseline OVS.

Some of the overhead stems from the fact that the network stack has to additionally

decapsulate the packet before it can be processed. We suspect that there are some in-

efficiencies in current code that causes lookups on VXLAN packets to be much slower

than for regular packets. As such the poor performance with tunneling is likely not fun-

damental, and further engineering should improve the tunneling implementation. Pro-
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posals such as STT [stt] also aim to make NIC offloads available to VXLAN packets,

and this will further improve throughputs seen with tunneling.

Overhead of rate limiting:

We configured a rate limit of 10 Gbps on the hypervisor VIF while measuring

the overhead of queuing and dequeuing packets in htb. We found that the latency

is somewhat higher (shown in Figures 3.3(b) and 3.3(c)) than baseline OVS, while the

throughput (shown in Figure 3.3(a)) is similar. The effect on pipelined latency (shown in

Figure 3.3(e)) and transactions per second (shown in Figure 3.3(d)) is more pronounced,

with rate limiting reducing the TPS up to 85-88% of baseline.

To measure CPU overhead of rate limiting, we configure a rate limit of 5Gbps

for each of three VMs, oversubscribing the 10Gbps physical interface by a factor of

1.5x. As seen in Figure 3.4(a), we cannot achieve line rate with four netperf threads,

which we are otherwise able to do with baseline OVS. Furthermore, it requires the same

number of logical CPUs as baseline to drive the link, even though we are achieving

lower throughput.

Overhead of combined tunneling and rate limiting:

Having observed each software network virtualization functionality in isolation,

we now focus on examining the composition of these functions. Because of the ineffi-

ciencies in tunneling implementation, we are limited to rates below 1.44 Gbps for these

experiments, and so we apply a rate limit of 1 Gbps. We also configure the same rate

limit on the SR-IOV interface, and we note that this limit is enforced in the NIC hard-

ware. Figure 3.5 shows the results of the comparison. The average and 99th percentile

of latency, the TPS, and pipelined latency of the composed functionality (OVS, tunnel-

ing, and rate limiting) are closer to the performance seen with OVS+Tunneling. The

pipelined latency is between 1.8-2.1x larger than SR-IOV, as shown in Figure 3.5(e).

The CPU overhead of this combination is still 1.6-3x that seen with SR-IOV, as shown

in Figure 3.4(b). SR-IOV delivers consistently better throughput overall, as shown in

Figure 3.5(a).
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Summary:

The above results, and Figure 3.4 show that smaller application data sizes result

in higher overall CPU overhead. This is a consequence of virtualization rules being

applied on a per-packet basis. As link rates increase, handling each of these per-packet

processing steps is increasingly infeasible. Already NICs provide considerable hardware

assist to servers to deliver high link rates at lower CPU utilization, including TCP TSO

and LRO. By having the hypervisor responsible for enforcing policy on a per-packet

basis, we potentially lose the ability to scale with hardware assist in the future.

Baseline OVS without any security rules, without tunneling, and without rate

limiting support adds considerable overhead simply due to required kernel crossings.

A more subtle effect is that the percentage of improvement in latency increases when

a flow is moved from the hypervisor to the SR-IOV interface, based on size. As the

application data size decreases, latency improvement increases with hardware offload.

For example, when moving flows from baseline OVS to SR-IOV, the pipelined latency

improvement increases from 30% for 32000 byte application data sizes to 49% for 64

byte sizes. With OVS and rate limiting, the improvement increases from 32% for 32000

byte application data units to 56% for 64 byte application data units (we omit comparing

to tunneling due to the performance issues we observed).

In summary, offloading flows with the highest packet per second rates is going to

provide the largest improvements both in terms of CPU overhead and latency overhead.

Based on these results, we now consider how FasTrak might benefit both multi-tenant

data center customers and providers.

Figure 3.3(d) shows that a bursty application with 64-1448 application data sizes

achieves an average TPS of 60K with SR-IOV, and 34K with baseline OVS (or 25K with

OVS and tunneling, and 30K with OVS and rate limiting). As an example, achieving a

target TPS of 120K requires two VMs with SR-IOV, but four VMs with baseline OVS.

Thus, for communication-intensive applications, customers can cut their costs when

they use VMs with SR-IOV interfaces.

Looking at this example from the provider’s point of view, Figure 3.4(b) shows

that, on average, a VIF consumes 1.6-3x the CPU as compared to SR-IOV. If we con-

sider that two logical CPUs are approximately as powerful as an Amazon EC2 medium
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instance [ecu12], we can compute an estimate of the potential cost savings. The pricing

for this instance type is approximately $821 per year [amaa]. If the provider can save a

total of two logical CPUs by avoiding network processing, they can save $821 per server

per year.

Given that commodity NICs today support hypervisor bypass through SR-IOV,

we now propose a way to leverage that support to lower overall network virtualization

costs while improving application performance.

3.4 FasTrak Architecture

Software network virtualization allows for the massive scale required of multi-

tenant data centers; but the CPU overheads come at non-zero cost to the provider, and

the additional latency can have negative effect on application performance. Commodity

network hardware on the other hand can handle a subset of network virtualization func-

tions such as Generic Routing Encapsulation (GRE) [gre] tunnel encap, rate limiting and

Access control list (ACL) [acl] or security rule checking, at line rate and lower latency.

However, it is fundamentally limited by the number of flows for which it can provide

this functionality due to fast path memory limitations. It is also limited in flexibility. For

example, it cannot trivially do VXLAN encapsulation until new hardware is built and

deployed. FasTrak exploits temporal locality in flows and flow sizes to split network

virtualization functionality between hardware and software. It manages the required

hardware and vswitch rules as a unified set and moves rules back and forth to minimize

the overhead of network virtualization, focusing on flows (or flow aggregates) that are

either most latency sensitive or the highest packets-per-second rates.

In this section, we first provide a brief overview of the FasTrak control and

data plane functionality. The goal is to provide a comprehensive view of how FasTrak

fits in and leverages existing kernel and hardware support to create “express lanes,” or

hypervisor bypass paths. We then describe the detailed design of FasTrak that focuses

solely on how FasTrak decides which flows to migrate, and how it chooses their path.
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Figure 3.6: FasTrak: Control Plane Overview

Figure 3.7: FasTrak: Data Plane Overview
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3.4.1 Control Plane

Figure 3.6 shows the FasTrak control plane. FasTrak makes two paths available

for VM traffic: one through the vswitch, and a second one through the SR-IOV bypass

mechanism. The FasTrak rule manager offloads network virtualization rules to and from

hardware in response to traffic patterns and VM migration events. These rules not only

include tenant security ACLs and QoS rules, but also tunnel mappings required to isolate

tenant traffic. We rate limit VM traffic on both the software and hardware paths to a

target aggregate, e.g., the total amount of bandwidth available to a tenant/VM.

Enabling hardware ‘express lanes’

In FasTrak, each guest VM running on a FasTrak-enabled hypervisor is given

two paths to the network: one based on bypassing the hypervisor via SR-IOV, and one

based on transiting the default VIF interface through the hypervisor. These are managed

transparently to the guest VM by using a bonding driver [bon] for link aggregation.

Bonding drivers are able to balance traffic between interfaces. We modify the bonding

driver to house a flow placer that places traffic on the VIF or SR-IOV VF path. The

flow placer module exposes an OpenFlow interface, allowing the FasTrak rule manager

to direct a subset of flows via to the SR-IOV interface. It is configured to place flows

onto the VIF path by default.

Our design of the flow placer is informed by the design of Open vSwitch. Specif-

ically, the FasTrak rule manager installs wildcard rules in the control plane directing a

group of flows matching the wildcard range out of the SR-IOV VF. The flow placer

maintains a hash table of exact match rules for active flows in its data plane to allow an

O(1) look up when processing packets. When packets from a new flow are not found

in this hash table, the packet is passed to the control plane, which then installs a corre-

sponding exact match rule in the hash table. All subsequent packets match this entry in

the hash table and are forwarded to the SR-IOV VF. Because the control plane and the

data plane of the flow placer exist in the same kernel context, the latency added to the

first packet is minimal.
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Migrating flows from the network

With express lanes, FasTrak can now choose specific application traffic to of-

fload. Initially, the system uses the policy of migrating flows with high packets-per-

second rates to hardware at the switch. FasTrak can also respect customer preferences

for performance-sensitive applications as well. A key event in the life-cycle of a VM is

its migration. In this case, any offloaded flows must be returned back to the VM’s hy-

pervisor before the migration can occur. After VM migration, these flows can again be

offloaded at the new destination. By default, FasTrak will migrate flows that no longer

have high packet-per-second rates from the network back to the hypervisor.

Hardware-based network virtualization

FasTrak depends on existing hardware functionality in L3 TOR switches to

isolate traffic using express lanes. We use Virtual routing and Forwarding (VRF) ta-

bles [vrf] available in L3 switches to hold tenant rules. The types of network virtualza-

tion rules offloaded include tunnel mappings, security rules, and QoS rules including

rate limits.

Tunneling: We use GRE tunnel capabilities typically available in L3 switches

for tunneling offloaded flows. These switches hold GRE tunnel mappings in VRF tables

and we leverage this in FasTrak. The GRE tunnel destination IP points to the destination

TOR. We reuse the GRE tunnel key to hold the Tenant Id and configure each tunnel

belonging to tenant traffic with this key. The GRE key field is 32 bits in size and can

accommodate 232 tenants. Without any changes to hardware or router software we can

achieve tenant traffic isolation.

Security rules: VRF tables can also be used to hold ACL rules. ACL rules

installed in the TOR are explicit ‘allow’ rules that permit the offloaded traffic to be sent

across the network. By default, all other traffic is denied. If a malicious VM sends

disallowed traffic via an SR-IOV interface by modifying flow placer rules, the traffic

will hit the default rule and be dropped at the TOR.

QoS rules: L3 routers typically provide a set of QoS queues that can be config-

ured and enabled. Rules in the VRF can direct VM traffic to use these specific queues.
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Rate limits Enforcement

Usually a rate limit is enforced on each VM interface to only allow as much

traffic into and out of the VM as the tenant has paid for. This prevents any single tenant

from unfairly depleting available bandwidth on the access link. Since FasTrak exposes

two interfaces to each VM by default, it enforces separate rate limits on them such that

the aggregate is close to the allowed limit for the VM. These rate limits are calculated

using the Flow Proportional Share (FPS) algorithm [RVR+07] applied to periodic traffic

demand measurements. As demands change, the rate limits imposed also are changed.

3.4.2 Data Plane

Next we consider the life of packets as they enter and exit VMs. Figure 3.7

shows how the FasTrak data plane functions. All network virtualization functions are

taken care of at the vswitch or the first hop TOR. Beyond the TOR, packets are routed

through the multi-tenant data center network core as usual.

Packet Transmission

When an application sends traffic using a VM’s bonded interface, the packets are

looked up in a hash table maintained by the flow placer, and are directed out of the VIF

or the SR-IOV VF. Packets that go out via the VIF are virtualized by the vswitch. Such

packets tunnel through the NIC and are routed normally at the TOR. All policy checks,

tunnel encap and rate limits are enforced by vswitch.

When a packet exits via the SR-IOV VF, the NIC tags it with a VLAN ID (con-

figured by FasTrak) that assists the directly-attached TOR identify the tenant it belongs

to. The TOR uses this VLAN tag to find the VRF table corresponding to the tenant (this

functionality is typically present in L3 TORs and not unique to FasTrak [cisc]). The

TOR then removes the VLAN tag and checks the packet against ACLs installed in that

VRF table. The TOR also adds a GRE tunnel encap to the packet based on the tunnel

mappings offloaded. The GRE tunnel encap encodes the GRE tunnel destination (TOR),

and the GRE tunnel key (tenant ID). At that point, the packet is routed as per the fabric

rules based on the GRE tunnel destination.
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Packet Reception

When the TOR receives a tunneled packet, it checks the destination IP to see if

the packet is destined for it. If the TOR receives a tunneled packet that is not destined

for it, it forwards it as per its forwarding tables. Otherwise, it uses the GRE tunnel key

(tenant ID) on the packet to identify the VRF table to consult and then decapsulates

it. Packets are then checked against the ACL rules in the table, tagged with the tenant

VLAN ID and are sent to the destination server. The destination NIC uses the VLAN

tag and MAC address on the packet to direct the packet to the right SR-IOV VF after

stripping out the VLAN tag, configured by FasTrak.

3.4.3 FasTrak Rule Manager

We now focus on the design of FasTrak rule manager. The rule manager is built

as a distributed system of controllers as shown in 3.9. There is a local controller on every

physical server, and a TOR controller for every TOR switch. The local controllers on

the physical servers coordinate with the TOR controller managing the connected TOR

to selectively offload resident VM flows.

Figure 3.8 shows the controller architecture. Both the local and TOR controllers

have two components: 1) a measurement engine (ME) and 2) a decision engine (DE).

The ME on the local controller periodically measures VM network demand by querying

the vswitch for active flows. It conveys this network demand to the TOR controller. The

local controller DE installs flow redirection rules in flow placers of co-located VMs. It

also decides the rate limits to be configured for each VM interface.

The TOR controller DE receives network demand measurements from attached

local controllers. Its ME periodically measures active offloaded flows in the TOR. Based

on local and TOR measurements it decides which flows have highest packet-per-second

rate and selects them to be offloaded. In the process, offloaded flows that do not have

high enough rate can be demoted back to software. The TOR ME also keeps track of

amount of fast path memory available in the TOR, so the DE offloads only as many

flows as can be accommodated.

We focus next on the ME and DE design.
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Figure 3.8: FasTrak Controller Architecture

Measurement Engine (ME)

The job of the ME is simple: it collects statistics on packets (p) and bytes (b)

observed for every active flow, twice within an interval of t time units. A flow is spec-

ified by a 6 tuple: Source and destination IPs, L4 ports, L4 protocol and a Tenant ID.
∆(p)
t

and ∆(b)
t

gives packets per second (pps) and bytes per second (bps) measures for

each flow. Pps and bps measurement for active flows is repeated every T time units for

N epochs. Every N epochs constitutes a control interval C.

The local controller ME sends a network demand report of the form

< flow, pps, bps, epoch# > to the TOR controller every control interval. The report

also contains historical information about the median pps and bps seen for flows for the

last M control intervals. The TOR controller ME maintains a similar record of active

offloaded flows at the TOR for every control interval. At the end of each control interval,

these measurements are sent to the TOR DE.

Since the variety of flows seen over time may be large, the ME aggregates flow

data periodically. One rule of thumb we use is to aggregate incoming and outgoing flows

per VM per application. For example, instead of collecting statistics for every unique 6
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tuple, we collect statistics on unique <Source VM IP, Source L4 port, Tenant ID> and

<Destination VM IP, Destination L4 port, Tenant ID> flows. Over time, flow statistics

are maintained for these aggregates.

The per-VM aggregated flow data collected by the ME forms its network demand

profile. The network demand profile of a VM contains a history of all flows that either

had the VM as a source or as the destination. This network demand profile can be

maintained over the lifetime of the VM and is migrated along with the VM. This network

demand profile informs FasTrak of the network characteristics of any new VM that is

cloned from existing VMs, and allows it to make offload decisions for such VMs on

instantiation.

Decision Engine(DE)

The TOR DE receives active flow statistics from local MEs and TOR MEs each

control interval. It selects the most frequently used flows having the highest pps rates for

offload. Most frequently used flows can be expected to have the highest hit rates. Once

the subset of flows has been decided, the TOR DE sends this decision to all connected

local controllers. The local DEs in turn configure flow placers on co-resident VMs

to redirect the selected flows. They also readjust the rate limits configured on VM

interfaces.

Flow placement: The TOR DE uses a simple ranking function to determine the

subset of flows to offload. This function ranks flows by giving them a score S. S is

calculated using n, the number of epochs the flow was active (i.e., had non-zero pps

and bps), and m pps, the median pps measured over the last N epochs and M control

intervals. S = n × m pps ensures that S ∝ n, the frequency with which the flow is

accessed, and S ∝ m pps, the median pps. Flows active both in vswitch and hardware

are scored in this fashion.

Certain all-to-all applications may require that all corresponding flows be han-

dled in hardware, or none at all. Such preferences can be given as input to FasTrak.

FasTrak encodes these preferences as a number c (indicating tenant priority), and uses

S = n×m pps× c so that higher priority flows get higher scores.

Active flows with highest scores are offloaded, while already offloaded flows
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that have lower scores are demoted back to the corresponding vswitch. This decision is

conveyed back to the local controllers so they can configure flow placers of co-located

VMs.

Rate limiting: By creating alternate express lanes for VM application traffic,

we no longer have an aggregation point on which a single rate limit can be enforced. We

have to now split up bandwidth in a distributed manner between the VIF and SR-IOV

VF.

The local controller DEs decide the ingress and egress rate limit split up for

each VM once the TOR DE decides the subset of flows to be offloaded. We use

FPS [RVR+07] to calculate the limits Ls and Lh for each VM’s VIF and SR-IOV VF.

To each of these we add an overflow rate O and install rate limiting rules that allow

Rs = Ls + O through the VIF and Rh = Lh + O through SR-IOV VF. Rs and Rh are

calculated separately for ingress and egress traffic.

By allowing for O overflow, it is easy to determine when the rate limit on each

of these interfaces is overly restrictive. When the capacity required on the interface is

higher than the rate limit, the flows will max out the rate limit imposed. FPS uses this

information to re-adjust the rates.

3.5 Implementation

3.5.1 Testbed

Our testbed consists of six HP Proliant DL360G6 servers with Intel Xeon E5520

2.26GHz processor and 24 GB RAM. Four of these servers have Intel 520-DA2 10Gbps

dual-port NIC that is SR-IOV capable. The other two have Myricom 10 Gbps 10G-

PCIE2-8B2-2S+E dual-port NICs. These servers are connected to a Cisco Nexus 5596U-

P 96-port 10 Gbps switch running NX-OS 5.0(3)N1(1a). All servers run Linux 3.5.0-17.

The hypervisor is kvm, and guest VMs run Linux 3.5.0. On the four servers with the

Intel NIC, we configure Open vSwitch(OVS) 1.9.0 with one 10Gbps port. The other 10

Gbps port is configured to support four SR-IOV VFs. We expose a VIF and an SR-IOV

VF to each VM.
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Figure 3.9: Implementation setup

3.5.2 System Architecture

Figure 3.9 shows our implementation set up. The local controller is a python

script that queries the OVS datapath for active flow statistics twice within a period of

t = 100ms (this period is configurable). This enables measurement of pps and bps for

all active flows. This measurement is repeated once every T seconds (we use T = 5, 0.5

in different experiments). The flow data is aggregated for N epochs (we use N = 2 in

our experiments). These measurements are then used to guide the DE.

The TOR Controller is a custom Floodlight controller [flo] that issues OpenFlow

table and flow stats requests. Since the Cisco switch is not OpenFlow enabled, we use

Open vSwitch to instantiate the TOR switch.

We modify the linux bonding driver [bon] to implement the flow placer. Specif-

ically, we bond the VIF and VF exposed to the VM in bonding-xor mode. We have

modified the existing layer 3 and 4 hashing policy to instead direct flows based on the

local controller’s directive. For this we use a flow hash table which stores an index to

the desired outgoing interface (VIF or VF) for every entry.
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3.6 Evaluation

We now evaluate the benefits of FasTrak. We choose memcached [mem] as a

representative example of a communication intensive application that is network bound.

We seek to understand how FasTrak automatically transfers flows onto the hardware

path, and to show the resulting benefits as well as costs. While we also evaluated disk-

bound applications such as file transfer and Hadoop MapReduce, and found that FasTrak

improved their overall throughput and reduced their finishing times, in this evaluation

we focus specifically on latency-sensitive applications. In each of the following experi-

ments, we compare to baseline OVS, with no tunneling or rate limiting on the hardware

path.

3.6.1 Benefits of hardware offload

We now examine the benefits of offloading flows to the hardware path.

Transaction Throughput

We start by measuring the maximum transaction load in terms of transactions

per second(TPS) when accessing the memcached server via the SRIOV interface. The

test setup is as described in Figure 3.10. We have three VMs pinned to four CPUs. Each

VM is equivalent to an Amazon EC2 large instance [amaa, ecu12] in terms of compute

capacity, and has 5GB of memory. The Memcached servers run in two VMs. We use

the rest of the five servers as clients to run the memslap benchmark for 90 seconds (only

three are shown in the figure for space). The application traffic is routed either via the

VIF or via the SR-IOV VF.

Table 3.1: Memcached performance(TPS) w/o background applications

Interface Used TPS Mean Latency(us) # of CPUs for test

VIF 106574 373 3.3

SR-IOV VF 215288 192 3.2

Baseline: With only 2 VMs running memcached servers, Table 3.1 shows the

results of the transaction throughput, latency and CPU load seen when using the VIF in
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Figure 3.10: Evaluation setup to measure transaction throughput.

comparison to SR-IOV. The same two memcached servers are able to serve twice the

number of requests when using the SR-IOV VF with half the latency.

Table 3.2: Memcached performance(TPS) w/ background applications

Interface Used TPS Mean Latency(us) # of CPUs for test

VIF 96093 414 4.1

SR-IOV VF 177559 231 4.1

With background traffic: We repeat the baseline experiment, but this time with

the third VM running the IOzone Filesystem Benchmark [ioz]. Table 3.2 shows that the

presence of background applications does not alter the overall performance. We also

introduced background noise into the VM using the stress tool [str], and in this case also

the application achieved higher throughput and lower latency when using the SR-IOV

VF, while using the same amount of CPU.

Application finish times

In this set of experiments we evaluate the finish times of the application as seen

by the clients, both through the hypervisor and through the SR-IOV interface. The test
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Figure 3.11: Evaluation setup to measure application finish times

setup is described in Figure 3.11. We run four VMs on the test server. Two of these

VMs run with 4 CPUs and 5 GB of memory. The other two run with 2 CPUs and 2.5

GB of memory. The latter are equivalent to Amazon EC2 medium instance in terms of

compute. All the VMs run a memcached server instance. Again we use the rest of the

five servers as clients to run the memslap benchmark, this time each issuing a total of

2M requests to the four memcached servers.

Table 3.3: Memcached performance(Finish times) as the servers are shifted to use the

SR-IOV VF

Percentage traffic

through VIF

Mean Finish

Times(s)
Mean TPS

Mean

Latency(us)
# of CPUs for

test
100% 86.6 23089 331 3.5

75% 82.2 24333 306 3.2

50% 82.3 24335 297 3.2

25% 82.1 23976 275 2.9

0% 54.9 37456 190 2.2

Finish times during flow migration: Table 3.3 shows the the average finishing

times at the clients, the average TPS achieved, and the average latency and number of
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CPUs used when all the memcached servers are accessed using the software VIF. In

this case, the percentage of traffic forwarded through VIF is 100%. We then repeat the

experiment, routing traffic from one memcached server via the SR-IOV VF, while using

the VIF for the others. In this case, the percentage of traffic through the VIF is 75%.

We repeat this exercise, routing traffic from two, three and finally all four memcached

servers via SR-IOV so the percentage of traffic forwarded through the hypervisor is zero.

Our results show that the average finish time reduces by 37% when we move all

the memcached traffic to SR-IOV VFs. Before that, when some memcached traffic uses

the VIF and some use the SR-IOV VFs, the finish times at the client are dominated by

the slower memcached traffic. This result confirms the observation that the performance

of an application is often dominated by the speed of the slowest flow.

Table 3.4: Memcached performance(Finish times) w/ background applications

Interface Used
Mean Finish

Times(s)
Mean TPS

Mean

Latency(us)
# of CPUs for

test
VIF 118.4 16896.2 455.6 7.6

SR-IOV VF 69 29334.6 249 6.3

Finish times with background traffic: We next test the finish times observed at

clients when we additionally have a 4GB file transfer which is disk bound ongoing at

each of the VMs hosting the memcached servers. This transfer uses the VIF. This exper-

iment is a precursor to our next one where we show how FasTrak shifts flows selectively

to SR-IOV VF. Table 3.4 shows that finish times almost double when the memcached

traffic uses the VIF, and latency reduces by half.

3.6.2 Flow migration with FasTrak

A key responsibility of FasTrak is managing the migration of flow rules to and

from the hypervisor and switch. In this section, we evaluate the impact that migration

has on applications.
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Application finish times

We now examine the effect of flow migration on the finishing time of an ap-

plication. We retain the same test set up as the previous experiment, but we now use

FasTrak to monitor and measure the throughputs of a file transfer application (scp) and

Memcached traffic. The flow placer in the bonding driver directs all traffic via the VIF

by default. Within 10 seconds the local controller detects that scp flows are averaging at

135 pps per VM for outgoing traffic, and 115.5 pps per VM for incoming traffic (consist-

ing primarily of acks). In contrast, the memcached flows are averaging at 5618 pps per

VM for outgoing traffic (replies) and 5616 pps per VM for incoming traffic (requests).

While in this particular example we could offload both applications, we have modified

FasTrak to offload only one. As such, FasTrak chooses the memcached flows, and these

are shifted to use the SR-IOV VF after 10 seconds.

Table 3.5: Memcached performance(Finish times) w/ background applications using

FasTrak

Interface Used
Mean Finish

Times(s)
Mean TPS

Mean

Latency(us)
# of CPUs for

test
VIF only 110.9 18044.2 440.2 7.6
VIF(10s) +

SR-IOV(rest)
57.34 35339.8 225.6 6.0

Table 3.5 shows the results of this experiments. With FasTrak, Memcached fin-

ishes about twice as fast with about half the average latency.

FasTrak costs

FasTrak controllers use negligible CPU once during each measurement and deci-

sion period. More importantly, there is a potential impact on existing TCP flows during

periods of reconfiguration. To examine this, we offload a single iperf TCP flow one

second after it begins, and capture a packet trace at the receiver. We also used netstat at

the sender and receiver to collect transport-level metrics. We found that as a result of

this offload operation, one delayed ack was sent, TCP recovered twice from packet loss,

and there were 30 fast retransmits. When the shift happens, some packets that return
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Figure 3.12: TCP progression

via the VIF were lost. A packet capture at the receiver, shown in Figure 3.12, shows the

progression of the connection.

3.7 Related Work

Recently there have been several proposals for achieving network virtualization

in multi-tenant settings [MYM+11, PYK+10, SKG+11, CKRS10, ovs, hyp, mid]. These

suggest that the vswitch is the best place to achieve scalable tenant network commu-

nication, security, and resource isolation. NIC tunnel offloads are being proposed and

standardized [emu,stt] to reduce some of the network processing burden from software.

Tunnel termination network switches [ari] are being introduced at the boundary of virtu-

alized environments and non-virtualized environments, typically configured with static

tunnels. However, security rule checking and rate limiting are still largely retained in

the vswitch and L4 software or hardware middleboxes.

More broadly, there is a large body of work related to network rule management

that we take inspiration from [YRFW10, CMT+11, PKC+12, KCG+10, CFP+07]. Our

work concentrates on the specific problem of rule management in multi-tenant networks,
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to improve application performance and reduce server load.

The work that closest shares our goals is vCRIB [MYSG13], which proposes a

unified rule management system that splits network rules between hypervisors and net-

work hardware. The primary difference between these works is their criteria for migrat-

ing flows. FasTrak aims to offload flows with the highest overheads at the hypervisor to

maximize the benefits of reducing CPU overhead and latency. FasTrak also differs from

vCRIB in that FasTrak does not rely on the vswitch to handle all of the flows (which

vCRIB does, if only to redirect a subset of them to other points in the network for se-

curity and QoS processing). Finally, unlike vCRIB, FasTrak completely avoids traffic

redirection, allowing flows to take the paths prescribed by the network. We note that

FasTrak is complementary to vCRIB, and is able to work in tandem with it to manage

flows based on a large range of criteria.

The effect of processor context switches, copies, and interrupt overhead on I/O-

intensive virtualized environments is well known [AA06,RS07,Liu10]. Several [DYR08,

DYL+10, GAH+12] have explored the use of SR-IOV in virtualized environments to

overcome these overheads. We build upon these efforts to forward flows over both SR-

IOV and hypervisor-based paths.

3.8 Summary

Multi-tenant data centers hosting tens of thousands of customers rely on virtual

machine hypervisors to provide network isolation. The latency and CPU costs of pro-

cessing packets in the hypervisor in this way is significant, increasing costs for both

providers and tenants alike.

FasTrak seeks to reduce the cost of rule processing, while maintaining the as-

sociated functionality. It exploits temporal locality in flows and flow sizes to offload a

subset of network virtualization functionality from the hypervisor into switch hardware

in the network itself to free hypervisor resources. FasTrak manages the required hard-

ware and hypervisor rules as a unified set, moving rules back and forth to minimize the

overhead of network virtualization, and focusing on flows (or flow aggregates) that are

either most latency sensitive or exhibit the highest packets-per-second rates. We find
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that applications see a ∼ 2x improvement in finish times and latencies while server load

is decreased by 21%. While the actual benefits of FasTrak are workload dependent,

services that should benefit the most are those with substantial communication require-

ments and some communication locality.
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Chapter 4

Gestalt: Unifying Fault Localization

for Networked Systems

This chapter focuses on developing a fault localization algorithm for large net-

worked systems, including data center networks from first principles. Researchers have

proposed many algorithms for localizing faults in networked systems, but it is unclear

which algorithm is best suited for a given network; the performance of these algorithms

differs markedly for different networks. We develop a framework that can explain these

differences by anatomizing the algorithms into their basic choices and analyzing these

choices with respect to six defining characteristics of real networks. Our analysis also

reveals that no existing algorithm simultaneously provides good localization accuracy

and low computational overhead. Based on our insights, we develop a new algorithm

called Gestalt. To perform well across a range of networks, it combines the good choices

of existing algorithms and includes a new method to explore the space of possible faults

in a way that is both low overhead and robust to noise. We apply it to three real, diverse

networks, an email network, a peer-to-peer messaging system hosted in a data center,

and an ISP network. In each case, Gestalt has either significantly higher localization

accuracy or an order of magnitude faster running time.

78
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4.1 Introduction
Gestalt is a general description for concepts that make unity and variety in
design. — Jim Saw

Consider a large system of routers and servers interconnected by network paths.

Such a system could be for integrated audio, video, and text messaging (e.g., Microsoft

Lync [lyn12]), for email (e.g., Microsoft Exchange), or even for simple packet delivery

(e.g., Abilene). When transactions such as connection requests fail, network operators

find it helpful to have a fault-localization tool that identifies components likely to have

failed. An effective tool allows operators to quickly replace faulty components or im-

plement work-arounds, this increasing the availability of mission-critical networks.

As an example, we conducted a survey of call failures in the Lync messaging

system deployed inside data centers belonging to a large corporation. We found that the

median time for diagnosis, which was largely manual, was around 8 hours because the

operators had to carefully identify the failed components from a large number of possi-

bilities. This time-consuming process is frustrating for operators and leads to significant

productivity loss for other employees. A good fault localization tool that can identify a

short list of potential suspects in a short amount of time would greatly reduce diagnosis

time. Later in this paper, we will show how our fault localization tool, Gestalt, accom-

plishes this task. With a median running time of under 30 seconds, Gestalt reduces by

60x the number of components that an operator must consider for diagnosis.

Of course, we are not the first to realize the importance of fault localization;

many researchers have developed a range of algorithms (e.g., [KYY+95, BCG+07]

[KYGCS05, CKFF02, KMV+09, KKV05, KYGCS07, DTDD07, ALMP10]). We con-

tend, however, that existing work has two significant drawbacks: lack of understanding

and inadequate performance.

First, we have consistently heard from operators (e.g., at both Google and Mi-

crosoft) that the efectiveness of existing fault localization algorithms depends on the

network, and that this dependence is mysterious. There are no studies that connect net-

work characteristics to the choice of algorithm; thus, determining an appropriate fault

localization approach for a given network is difficult.
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(a) Lync (real failures) (b) Exchange (simulated failures)

Figure 4.1: Applying different algorithms to two systems. Legend shows median time

to completion.

Figure 4.1 illustrates this difficulty by running three prior algorithms on two

different networks. We picked these algorithms because they use disparate techniques.

In the graphs, the y-axis is the diagnostic rank, which is the percentage of network

components deemed more likely culprits than the components that actually failed; thus,

lower values are better. The failures are sorted by diagnostic rank. We will provide more

experimental details in §4.9,

The left graph shows the results for the Lync deployment mentioned above.

We see that the algorithms perform differently. Sherlock [BCG+07] does best, and

SCORE [KYGCS05] does worst. The right graph shows the results for simulated fail-

ures in an Exchange deployment [CZMB08]. We see that the algorithms exhibit differ-

ent relative performance. SCORE matches Sherlock, and Pinpoint does worst. Further,

the appropriate approach for the two networks differs—Sherlock for Lync, and SCORE

for Exchange as it combines high localization accuracy and fast running time.

Second, existing algorithms either have poor localization accuracy in the pres-

ence of impairments such as noise or have large computational costs for large networks.

This tradeoff can be seen in Figure 4.1. While SCORE runs in a few microseconds, it

localizes faults poorly for Lync. On the other hand, while Sherlock [BCG+07] has good

performance for both networks, it can take a long while to run. In large networks, this

time can be days. Running time matters because recovery cannot begin till the algorithm
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completes. Our results consistently reveal a tradeoff between localization accuracy and

run time in prior work.

Rather than develop yet another localization algorithm with its own poorly un-

derstood tradeoffs, we first develop a framework to understand the design space and

answer the basic question: When is a given fault localization approach better and why?

We observe that existing fault localization algorithms can be anatomized into three parts

that correspond to how they model the system, how they compute the likelihood of a

component failure, and how they explore the state space of potential failures. Delin-

eating the choices made by an algorithm for each part paves the way for systematically

analyzing the algorithm’s behavior.

Our anatomization also explains pheonemena found empirically (but not fully

explained) in existing work. For example, [KYGCS07] discovers that noise leads the

SCORE [KYGCS05] inference algorithm to produce many false positives; the authors

suggest mitigation through an additional step of candidate selection using adhoc thresh-

olds. By contrast, we show that the design choices that SCORE makes are inherently

sensitive to noise, and changing these would lead to more robust fault localization than

the suggested heuristics. As a second example, the Pinpoint algorithm is shown by the

authors [CKFF02] to have poor accuracy for even two simultaneous failures. We later

show that this problem is fundamentally caused by how Pinpoint explores the state space

of failures.

We use our understanding to devise a new fault localization algorithm, called

Gestalt. Gestalt combines the best features of existing algorithms to work well in all

networks and conditions. While Gestalt benefits from reusing existing components, it

also introduces a new method for exploring the space of potential failures that may be

of independent interest. This methods represents a continuum between the extremes

of greedy failure hypothesis exploration (e.g., SCORE) and combinatorial exploration

(e.g., Sherlock). The result is a fault localization algorithm that has both good localiza-

tion accuracy and low computational cost.

The contributions and a rough outline of this paper are:

1. Anatomization: We show how existing fault localization algorithms can be

broken down into a common framework with three parts in Sections 3 and 4. Table 4.3
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shows how nine different algorithms map to this framework.

2. Characterization: Section 5 defines six salient network characteristics that

pose a challenge to fault localization: noise, uncertainty, covering relationships, simul-

taneous failures, collective failures, and scale. Section 6 describes our analysis method-

ology and three disparate real networks (Lync, Exchange, and Abilene) that we use.

This is used in Section 7 to discover the relationship between network characteristics

and fault localization choices. Table 4.4 summarizes our findings.

3. Design: Our findings lead us to our new algorithm, Gestalt described in

Section 8. In Section 9, we show that Gestalt has better diagnostic accuracy or lower

overhead than each existing algorithm on all three networks we study. For real Lync

failure data, Gestalt improves localization time by an order of magnitude.

4.2 Related Work

Network diagnosis can be thought of as having two phases. The first consumes

available information (e.g., log files, passive or active measurements) to estimate system

operation and is often used to detect faults. Several system-specific techniques exist for

this phase [CZMB08, AMW+03, RWM+06, LCD04, MSWA03, DTDD07, KBMJ+08,

MGS+09, OA11, NKN12, CTFD09, MGS+09]. Its output is often fed to a second phase

that localizes faults. Localization identifies which system components are likely to

blame for failing transactions.

Fault localization techniques are extremely valuable because information on

component health may not be easily available in large networks and manual local-

ization can lead to several hours of downtime. Even where component health infor-

mation is available, it may be incorrect (as in the case of ”gray failures” in which a

failed component appears functional to liveness probes) or insufficient towards iden-

tifying culprits for failing transactions [BCG+07]. Fault localization has also been

studied widely [KYGCS05,CKFF02,BCG+07,KMV+09,DTDD07,ALMP10,KKV05,

KYGCS07, KYY+95, Ris05, SS04a]. We focus on this second phase and ask: given in-

formation from the first phase, which fault localization algorithm gives the best accuracy

with the lowest overhead, and why?.
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Some diagnostic tools like [MGS+09, NKN12, OA11] leave fault localization

to a knowledgeable network operator and aim to provide the operator with a reduced

dependency graph for a particular failure. While this is different from what we call fault

localization in this paper, the automated fault-localization techniques we discuss can be

used in those tools as well to narrow down the list of suspects.

The only survey of fault localization we know is by Steinder and Sethi [SS04b],

which considers each approach separately. To the best of our knowledge ours is the first

work to analyze the design space for fault localization, and to use this insight to propose

a better fault localization tool Gestalt.

4.3 Fault Localization Anatomy

We consider the following common fault localization scenario. The network is

composed of many components such as routers and servers. The success of a transaction

in the network depends on the health of the components it exercises. The goal of fault

localization is to identify components that are likely responsible for failing transactions.

While we use the term transaction for simplicity in this paper, it can be any indicator of

network health (e.g., link load) for which we want to find the culprit component.

More formally, the state of the network is represented by a vector I with one el-

ement I[j] per network component that represents the health of component j. Let O be

a vector of observation data such that O[k] represents whether transaction k succeeded.

For example, O could represent the results of pings between different sources and des-

tinations. The broad goal is to infer likely values of I that explain the observations O.

Specifically, the fault localization algorithm outputs a sequence of possible state vectors

I1, I2, .. ordered in terms of likelihood.

We measure the goodness of an algorithm by its diagnostic rank: given ground

truth about the actual components that failed denoted by Itrue, the diagnostic rank is j if

Itrue = Ij for some j in the output sequence, and n otherwise. For example, a network

with two routersR and S and one linkE between them will have a 3 element state vector

denoting the states of R, S, and E respectively. Let us say that only router R has failed

so Itrue = (F,U, U) where F denotes failed and U denotes up. If the output of the fault
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localization algorithm is (U, F, U), (F,U, U), (U,U, F ) then the diagnostic rank on this

instance of running fault localization is 2 because one other component failure (router

S) has been considered more likely. Lower diagnostic rank implies fewer ”false leads”

that an operator must investigate. A second metric for an algorithm is the computation

time required to produce the ranked list given the observation vector O.

We find that practical fault localization algorithms can be anatomized into three

parts: a system model, a scoring function, and a state-space explorer. First, any fault

localization algorithm needs information such as which components are exercised by

each transaction, and possible failure correlations between component failures (e.g., a

group of links in a load-balancing relationship). Thus, localization algorithms start with

a system model S that predicts the observations produced when the system is in state I .

System models in past work are often cast in the form of a dependency graph between

transactions and components but there is considerable variety in the dependency graphs

used.

Second, in theory fault localization can be cast as a Bayesian inference problem.

Given observationO, rank system states I based on PS(I|O), the probability that I led to

O when passed through the system model S. However, even approximate Bayesian in-

ference [MWJ99,Hec89] can seldom handle the complexity of large networks [KKV05].

So practical algorithms use a heuristic scoring function Score that maps each compo-

nent to a metric that represents the likelihood of that component failing. The underlying

assumption is that for two system states Ii and Ij and respective observations Oi and Oj

predicted by S: PS(Ii|O)≥PS(Ij|O) when Score(Oi, O) ≥ Score(Oj, O), where O is

the actual observation vector. This scoring function is the second part of the pattern.

Finally, given the system model and scoring function the final job of a fault

localization algorithm is to list and evaluate states that more likely to produce the given

observation vector. But system states can be exponential in the number of components

since any combination of components can fail. Thus, localization algorithms have a

third part that we call state space exploration in which heuristic algorithms are used to

explore system states, balancing computation time with accuracy.

We do not claim that this pattern fits all possible fault localization algorithms.

It does not fit algorithms based on belief propagation [Ris05, SS04a]; such algorithms
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(a) Network (b) DTL: C2→S2 (c) PTL: C2→S2 (d) PML: C2→S2 (e) C1→S1

Figure 4.2: An example network and models for two transactions.

are computationally expensive and have not been shown to work with real systems. As

shown in Table 3, this pattern does capture algorithms that have been evaluated for real

networks, despite considerable diversity in this set.

4.4 Design Space for Localization

We map existing algorithms into the three-part pattern by describing the choices

they make for each part. §4.4.1-4.4.3 describes the choices, and §4.4.4 provides the

mapping.

Prior algorithms also use different representations such as binary [KYGCS05,

CKFF02,KYGCS07] or probabilities [KMV+09]) for transaction and component states.

We use the 3-value representation from Sherlock [BCG+07] as it can model all prior

representations. Specifically, the state of a component or transaction is a 3-tuple,

(pup, ptroubled, pdown), where pup is the probability of being healthy, pdown that of having

failed, and ptroubled that of experiencing partial failure; pup+ptroubled+pdown=1. The state

of a completely successful or failed transaction or component is (1,0,0) or (0,0,1); other

tuples represent intermediate degrees of health. A monitoring engine determines the

state of an transaction in a system specific way; for example, a transaction that completes

but takes a long time may be assigned ptroubled > 0.
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Table 4.1: Transaction state (pup) predicted by different models for transaction C2→S2

in Figure 4.2

4.4.1 System Model

A system model encodes how network components impact transactions. It can

be viewed as a directed graph where an edge from A to B says that A impacts B, or

B depends on A. We find three system models used by localization algorithms in th

literature:

1. Deterministic Two Level (DTL) is a two-level model in which the top-level corre-

sponds to system components and the bottom level to transactions. Components connect

to dependent transactions whose success or failure they impact. The model assumes

components independently impact dependent transactions. A transaction fails if any of

its parent components fails.

2. Probabilistic Two Level (PTL) is similar to DTL except that the impact is modeled

as probabilistic. Component failure leads to transaction failure with some probability.

3. Probabilistic Multi Level (PML) can have more than two levels; intermediate

levels help encode more complex relationships between components and transactions

such as load balancing and failover.

We use the example network in Figure 4.2(a) to illustrate the three models. The

network has two clients ( C1, C2), two servers (S1, S2), two routers (R1, R2), and several

links. Transactions are requests from a client to a server (Ci→Sj). Each request uses

the shortest path, based on hop count, between the client and server. Where multiple

shortest paths are present, as for C2→S2, requests are load balanced across those paths.

Assume that the components of interest for diagnosis are the two routers and

the two servers. Then, Figures 4.2(b)-(d) show the models for the transaction C2→S2.
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Different models predict different relationships between the failures of components and

that of the transaction. These predictions are shown in Table 4.1. For ease of expo-

sition, the table shows the value of pup; pdown = 1 − pup and ptroubled = 0 in this

example. DTL predicts that the transaction fails when any of the components upon

which it relies fails. Thus, the transaction is (incorrectly) predicted as always failing

even when only one of the routers fails. PTL provides a better approximation in that

the transaction is not deemed to completely fail when only one of the router fails. How-

ever, it still does not correctly model the impact of both routers failing simultaneously.

PML is able to correctly encode complex relationships. While this example shows how

PML correctly captures load balancing, it can also model other relationships such as

failover [BCG+07]. However, this higher modeling fidelity does not come for free; as

we discuss later, PML models have higher computational overhead.

In this network, the three models for the other three types of transactions

(C1→S{1,2}, C2→S1 are equivalent. The model for C1→S1 is shown in Figure 4.2(e)

4.4.2 Scoring function

Scoring functions evaluate how well the observation vector predicted by the sys-

tem model for a system state matches the actual observation vector. Let

(pup, ptroubled, pdown) be the state of a transaction in the predicted observation vector,

and let (qup, qtroubled, qdown) be the actual state determined by the monitoring engine.

Then, the computation of various scoring functions can be compactly explained using

the following quantities:

Explained failure eF = pdownqdown

Unexplained failure nF = (1− pdown)qdown

Explained success eS = pupqup + ptroubledqtroubled

Unexplained success nS = (1− pup)qup +

(1− ptroubled)qtroubled

eF is the extent to which the prediction explains the actual failure of the transaction, and

nF measures the extent to which it does not. eS and nS have similar interpretations for

successful transactions. We also define another quantity TF= Σ(eF + nF ), where the
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Table 4.2: Score computed by different scoring functions for three possible failures.

summation is over all elements of observation vectors. Because eF + nF = qdown, TF

is the total number of failures in the actual observation vector.

Different scoring functions aggregate these basic quantities across observation

elements in different ways. We find three classes of scoring functions:

1. FailureOnly (eF, TF ): Such scoring functions only measure the extent to which a

hypothesis explains actual failures. It thus uses only eF and TF to construct the measure.

2. InBetween (eF, nS, TF ): Such scoring functions only measure the extent to which

a hypothesis explains failures and unexplained successes.

3. FailureSuccess (eF, eS): Such scoring functions measure both the extent to which

a hypothesis explains failures and how well it explains successes.

Concrete instances of these classes are shown in Table 4.3. As expected, the

score increases as eF and eS increase, and decreases when nF and nS increase. Given

the large number of elements, each aggregates across elements in a way that is practical

for high-dimensional spaces [Agg01, BGRS99].

Instead of analyzing every instance, in this paper we use a representative for each

of the three classes. We have verified that the performance of different functions in a

class is qualitatively similar. Our experiments use as representatives the functions used

by SCORE (FailureOnly), Pinpoint (InBetween), and Sherlock (FailureSuccess).
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To understand how different scoring functions can lead to different diagnoses,

consider again the example in Figure 4.2. Assume that R1 has failed and the actual

state of four transactions is available to us. Two of these are C1→S1, both of which

have failed (since they depend on R1); and the other two are C2→S2, one of which has

failed (because it used R1, while the other used R2). Table 4.2 shows how the three

scoring functions evaluate three system states in which exactly one of R1, R2, and S1

has failed. The computation uses DTL for the system model. The top four rows show

the values of the basic quantities. As an example, ΣeF is 3 in Column 1 because R1’s

failure correctly explains the three failed transactions; it is 1 in Column 2 because R2’s

failure explains the failure of only one transaction (C2→S2) and not of the two C1→S1

transactions.

The bottom three rows of the table show the scores of the three scoring functions

for each failure. Even in this simple example, different scoring functions deem different

failures as more or less likely. FailureOnly and InBetween deem R1 as the most likely

failure that explains the observed data, FailureSuccess deems (incorrectly) that the data

can be just as well be explained by the failure of S1. While it may appear that Failure-

Success is a poor choice, we show later that FailureSuccess actually works reasonably

well in a variety of real networks.

4.4.3 State space exploration

State space exploration determines how the potentially large space of possible

system states (combinations of failed components) is explored. We find four types of

explorers used in prior localization algorithms.

1. Independent only explores system states with exactly one component failure.

2. Jointk explores system states with at most k failures. It is a generalization of

Independent (which is Joint1.

3. Greedy set cover (Gsc) is an iterative method. In each iteration, a single component

failure that explains the most failed transactions is chosen, and all explained observa-

tions are removed. Iterations repeat until all failed transactions are explained. Thus, it

greedily computes the set of component failures that cover all failed transactions.

4. Hierarchical is also an iterative method. As in Gsc, in each iteration the component
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C that best explains the actual observations is chosen. However, a major difference is

that if there additional observations that C impacts, then these are added to the list of

unexplained failures even if they were originally not marked as having failed in the

input. Thus unlike Gsc, the set of unexplained failures need not decrease monotonically.

4.4.4 Mapping fault localization algorithms

Table 4.3 maps the fault localization portion of nine prior fault localization al-

gorithms to our framework. Readers familiar with a tool may not immediately see how

its computation maps to the choices shown because the original description uses dif-

ferent terminology. But in each case we have analytically and empirically verified the

correctness of the mapping: composing the choices shown for the three parts leads to a

matching computation (except for aspects mentioned below). Due to space constraints,

we omit the results that verify these mappings.

The last column lists fault localization aspects not captured in our framework.

Many of these relate to pre- or post-processing data. For example, candidate preselection

removes irrelevant components at the start. The table does not list other suggestions by

tool authors such as using priors that capture baseline component failure probabilities.

While the mechanisms we do not model are useful enhancements, they are com-

plementary to the core localization algorithm. Our goal is to understand the behavior

of fundamental choices made in the core algorithm. By employing these choices, tools

inherit their implications (§4.7) even when they use additional enhancements. Our pa-

per abuses notation for simplicity; when we refer to a particular tool by name, we are

referring to the computation that results from combining its three-part choices.

4.5 Network Characteristics

Fault localization would be simple if modern networks were simple — in which,

for instance, the knowledge of dependencies between components and transactions were

perfect, the logged status of transactions were always accurate, and multiple failures

were rare. But modern networks are anything but simple, and localization algorithms

must handle network characteristics that confound inference. Selecting a localization
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approach requires understanding which characteristics are dominant for a given network.

The six characteristics we study are:

1. Uncertainty Most networks have significant non-determinism that makes the im-

pact of a component failure on a transaction uncertain. For example, if a DNS translation

is cached, a Ping need not consult the DNS server: thus if the entry is cached, the DNS

server failure does not impact the Ping transaction, but otherwise it does. Note that the

localization algorithm is not privy to the state of the DNS caches. Load balancing is

another common source of non-determinism as is the case for C2→S2 transaction in

Figure 4.2.

More precisely, if a component potentially (but not always) impacts a transac-

tion failure, we say that the dependency is uncertain. A network whose system model

contains uncertain edges is said to exhibit uncertainty. The degree of uncertainty is

measured by the number of uncertain dependencies and the uncertainty of each depen-

dency. Probabilistic models like PTL and PML can naturally encode uncertainty while

deterministic models cannot.

2. Observation noise So far, we assumed that observations are measured correctly.

However, in practice, pings could be received correctly but lost during transmission to

the stored log: thus an ”up” transaction can be incorrectly marked as ”down”. Errors can

also occur in reverse. In Lync, for example, the monitoring system measures properties

of received voice call data to determine that a voice call is working; however, the voice

call may still have been unacceptable to the humans involved. Both problems have been

encountered in real networks [KYGCS07,KYGCS05,ALMP10,DTDD07]. They can be

viewed as introducing noise in the observation data that can lead sensitive localization

algorithms astray. A network with 10% noise can be thought of as flipping 10% of the

transaction states before presentation to the localization algorithm.

3. Covering relationships In some systems, when a particular component is used by

an transaction, other components are used as well. For example, when a link participates

in an end-to-end path, so do the two routers on either end. More precisely, component

C covers component D if the set of transactions that C impacts is a superset of the

transactions that D impacts.

Covering relationships confuse fault localization because any failed transaction
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Figure 4.3: Lync architecture.

Figure 4.4: Exchange architecture.

explained by the covered component (link) can also be explained by the covering com-

ponent (router). Other observations can be used to differentiate such failures; when a

router fails, there may be path failures that do not involve the covered link. But some

fault localization methods are better than others at making this distinction.

4. Simultaneous failures Diagnosing multiple, simultaneous failures is a well-known

hurdle. Investigating k simultaneous failures among n components potentially requires

examining O(nk) combinations of components. For example, in Lync, even if we limit

localization to components that are actively involved in current transactions, the num-

ber of components can be around 600; naively considering 3 simultaneous failures as

in Joint3 can take days to run. The key characteristic is the maximum number s of

simultaneous failures; the operator must feel that more than s simultaneous failures are

extremely unlikely in practice.
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5. Collective impact So far, we assumed that a single component failure affects an

transaction in possibly uncertain fashion. However, many networks exhibit a more com-

plex dependency between an transaction and a set of components; the transaction’s suc-

cess depends on the collective health of the components in the set. For instance, when

two servers are in a failover arrangement, the transaction succeeds as long as any server

is functional, and fails only when they both fail. Collective impact is not limited to

failover and load-balancing servers. Routers or links on the primary and backup paths

in an IP network also have collective impact on message delivery. Multi-level models

such as PML use additional logical nodes to model collective impact, but other models

such as DTL and PTL may work badly if the network has a number of components that

exhibit collective impact.1

6. Scale The scale of the network impacts the speed of fault localization. Faster local-

ization means faster recovery and increased availability. Scale can be captured using the

total number of components in the network and/or the typical number of observations

fed to the localization algorithm. For Lync, the two numbers are 8000 and 2500.

4.6 Analysis methodology

In this section, we study the relative merits of the choices made by various local-

ization algorithms in the face of the six network characteristics listed above. We do this

by combining first principles reasoning and simulations of three diverse, real networks.

We first describe our simulation method and the networks we study; the next subsection

presents our findings.

4.6.1 Simulation harness

In each simulation, we first select which system components fail. We then

generate enough transactions (some of which fail due to the simulated failures) such

that diagnosis is not limited by a lack of observations, as is true of large, busy net-

1Our notion of collective impact differs from so called “correlated failures” in the literature which
refers to components likely to fail together such as two servers are connected to the same power source.
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works [KYGCS07, MGS+09]. Finally, we feed these observations to the fault localiza-

tion algorithm under consideration and obtain its output as a ranked list of likely failures.

The set of failures is constant during each run.

Unless otherwise specified, the components to fail and the transaction endpoints

are selected randomly. In practice, failures may not be random; we have verified that

results are qualitatively similar for skewed failure distributions. In §4.8, we show that

our findings agree with diagnosing real failures in Lync.

As is common, we quantify localization performance using diagnostic rank and

computation time. Diagnostic rank is the rank of components that have actually failed.2

This measure reflects the overhead of identifying and resolving real failures, assum-

ing that operators investigate component failures in the order listed by the localization

algorithm.

Our simulation harness takes as input any network, any failure model, and any

combination of localization methods and produces results. We will make this harness

public to aid the development of future localization algorithms.

4.6.2 Networks considered

To ensure that our findings are general, we study three real networks that are

highly diverse in terms of their size, services offered, and network characteristics. The

first network (Lync) supports interactive, peer-to-peer communication between users,

the second (Exchange) uses a client-server communication model, and the third (Abi-

lene) is an IP-based backbone. Each network has one or more challenging characteris-

tics. For instance, Lync has significant noise and simultaneous failures while Exchange

has significant uncertainty. While networks similar to Exchange and Abilene have been

studied before, to our knowledge we are the first to study diagnosis in a network similar

to Lync.

1. Lync Lync is an enterprise communication system. that supports several commu-

nication modes, including instant messages, voice, video and conferencing. We focus

on the peer-to-peer communication aspects of Lync. The main components of a Lync
2In information retrieval terms, diagnostic rank includes the impact of both precision and recall. It

will be high if components deemed more likely are not actual failures (poor precision) or if actual failures
are deemed unlikely (poor recall).
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network are shown in Figure 4.3. Internal users are registered with registrars and au-

thenticated with AD (active directory). Audio calls connect via mediation servers, and

out of the enterprise into a PSTN (public switched telephone network) using gateways.

Edge servers handle external calls. Branch offices are connected by a WAN and the

PSTN to the main sites.

The deployment of Lync that we study spans many offices worldwide of a large

enterprise. It has over 8K components and serves 22K users. We have information on

the network topology and locations of users. For a two-month period, we also have

information on failures from the network’s trouble ticket database and on transactions

(observations) from its monitoring engine.

2. Exchange Exchange is a popular email system. Transactions in this network include

sending and receiving email, and are based on client-server communication. Important

components of an Exchange network deployment are shown in Figure 4.4 and include

mail servers, DNS, and AD servers.

We study the Exchange deployment used in [CZMB08]. It has 530 users distributed

across 5 regions. The network has 118 components. The number of hubs, mailboxes,

DNS and AD servers in a region are proportional to the number of users. AD servers

are in a load balancing cluster; hubs, DNS and mailbox servers are in a failover config-

uration.

3. Abilene Abilene is an IP-based backbone that connects many academic institutions

in the USA. The topology [abi05] that we use has 12 routers and 15 links, for a total

of 27 network components. The workload used for Abilene consists of paths between

randomly selected ingress and egress routers selected.
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4.7 Analysis results

Table 4.4: Effectiveness of diagnostic methods with respect to factors of interest. ∗

depends on the network.

Observa-

tion

Covering Simulta-

neous

Collective

Uncertainty Noise relationship failures Impact Scale

DTL Good w/

Failure-

Only.

Poor Good

Poor w/

other

scoring

funcs.

PTL Good Poor OK

PML
Good

Good w/

Jointk.

OK

Poor

other-

wise.

FailureOnly

(FO)

Good Poor Poor Good

InBetween Good w/

PTL, PML
Ok Good OK

Poor with

DTL

FailureSuccess

(FS)

Good w/

PTL, PML.
Good Good OK

Poor with

DTL

Independent

(Ind)

Good Poor Poor Good

Continued on next page
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Table 4.4 – Continued from previous page

Observa-

tion

Covering Simulta-

neous

Collective

Uncertainty Noise relationship failures Impact Scale

Jointk(Jt k)
Good

Good

(s≤k).

Good

(c≤k).

Poor

Poor

(s>k)

Poor

(c>k)

Gsc Poor Good∗ Poor Good

Hierarchical Poor Poor Poor OK

Table 4.4 summarizes our analysis of the design space by qualitatively rating

models, scoring functions and explorers based on how well they handle the six network

characteristics from §4.5. For each network characteristic (columns), the Table rates

each method as being good, OK, or poor. An empty (shaded) subcolumn for a character-

istic implies that each row is qualitatively equivalent with respect to that characteristic.

For instance, the choice of state space explorer has little impact on the ability to handle

uncertainty. We have empirically verified such equivalence, but we omit these exper-

iments from this paper and focus on parts of the table where different options behave

differently. Each such finding highlights the relative merits of choices given a network

characteristic3, and we use it later to guide the design of Gestalt. We have verified each

finding on all three networks but present experimental results from only one network

since others are in agreement.

4.7.1 Uncertainty

Uncertainty arises when the impact of a component on an transaction is not cer-

tain — such as when a DNS server may impact a ping, depending on whether the name

translation is cached. Probabilistic models (PTL, PML) naturally handle uncertainty;

3We a given network may have more than one of these characteristics, we can study each characteristic
in isolation because we control the conditions in simulations.
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Figure 4.5: DTL can handle uncertainty when used with FailureOnly.

Figure 4.6: FailureOnly performs poorly for covering relationships.

thus researchers advise [KKV05, BCG+07] against using simpler deterministic models

such as DTL. But we find, perhaps surprisingly, that despite being deterministic, DTL

can handle uncertainty if it uses the right scoring function.

Finding 1 In the presence of uncertainty, DTL suffices if the scoring function is Fail-

ureOnly. Consider a component such as a DNS server whose impact on a specific trans-

action such as Ping 1 is uncertain. In DTL, this uncertainty must be resolved (since the

model is binary) in favor of assuming impact; for instance, we must assume that Ping 1

depends on the DNS server even if Ping 1 used a locally cached DNS translation. (If we

err in the opposite direction and assume that Pings do not depend on the DNS server,

we would never be able to implicate the DNS server if the cache is empty and the DNS

server fails.)

If this assumption happens to be true, no harm is done. But if false (i.e., the
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transaction does not depend on the component), there are two concerns. First, consider

the case when the the real failure was a different component; for example, Ping 1 failed

because some router R in the path failed and not because the DNS server D failed. In

that case, D may be considered a more likely cause of the failure of Ping 1 than R; but

this can increase the diagnostic rank of R by at most 1, which is insignificant.

The second, more important, concern is that the ability to diagnose the failure of

the falsely connected component itself may be significantly diminished. For example,

when the DNS failure D fails, other Pings (say Ping 2 and Ping 3) may succeed because

they use cached entries. This can confuse the fault localization algorithm because it

increases the number of unexplained successes nS attributed to D, and decreases eS,

potentially increasing significantly the diagnostic rank of D.

But since FailureOnly functions use only eF and nF in computing their score,

they are not hindered by the false connection. On the other hand, FailureSuccess and

InBetween are negatively impacted because they do use eS and nS.

Figure 4.5 provides empirical confirmation for this finding using Exchange which

has significant uncertainty because of the use of DNS servers whose results can be

cached. It plots the diagnostic rank for 1000 trials; in each trial, a single random failure

is injected. Observe that DTL with FailureOnly handles uncertainty just as well as PML

and PTL. By contrast, DTL with FailureSuccess has much worse diagnostic rank (50

versus 5 in some trials). An implication of Finding 1 is that if the network has only

uncertainty, it can be best handled (with small computation time and comparable di-

agnostic rank) using DTL and FailureOnly without using probabilistic models such as

PTL.

4.7.2 Observation noise

Different scoring functions and state space explorers have different sensitivities

to observation noise as we detail below.

Scoring functions

Finding 2 FailureSuccess is most robust to observation noise, followed by In-

Between, and then by FailureOnly. To understand this finding, note that noise turns
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(a) Scoring functions (b) State space explorers

Figure 4.7: Sensitivity to observation noise.

successful transactions into apparent failures or vice versa. This perturbs the scoring

function elements such that eF ′=eF±∆eF , and so on for nF, eS and nS. Because noise

perturbs all basic elements, it impacts all scoring functions.

But the extent of perturbation differs because each scoring function combines

these elements differently (Table 4.3). FailureOnly is the most impacted because it uses

only failure elements (eF and nF ). These elements can change significantly as noise

turns successful transactions, which are more common, into apparent failures. Failure-

Success is the least impacted as it uses both failure and success information (eF+eS),

which is perturbed less. InBetween falls between these extremes. In general, using more

evidence and all available elements reduces sensitivity to noise.

For example, suppose in the ground truth before noise, there are 5 failed trans-

actions and 100 successful transactions. Due to 5% noise, say 5 of the successful trans-

actions are turned to failures and 1 of the failures is turned into a success. Now there are

5 incorrectly observed failures to add to 4 true failures. A component C that explained

a single failure before noise could easily explain 3 failures (1 real plus 2 noise-induced)

failures after noise. This could triple C’s score if FailureOnly is used, incorrectly boost-

ing C’s diagnostic rank. On the other hand, suppose the same component explained 20

successes before noise and 22 after noise. Then measures like FailureSuccess will be

less affected because they equally weight explained failures and successes; the (typi-

cally) larger number number of successes will be less sensitive to noise than the (typi-
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cally) smaller number of failures.

Figure 4.7(a) confirms this behavior. We inject single failures in Abilene and

introduce 0-50% noise. We run 100 trials for each noise level and plot the median

diagnostic rank for each level. This graph uses DTL and Independent as the system

model and state space explorer; the relative trends are similar with other combinations.

State space exploration

Finding 3 Iterative state space explorers, Gsc and Hierarchical, are highly sensitive

to noise. This sensitivity stems directly from the iterative nature of these methods. An

erroneous inference (due to noise) made in an early iteration can cause future inferences

to falter. Independent and Jointk, which are not iterative, do not have this shortcoming.

Figure 4.7(b) confirms this behavior. In this experiment, we introduced two

independent failures in Abilene and 0-50% observation noise. The experiment uses DTL

and FailureSuccess while varying the state space explorer; other combinations of model

and scoring function produce similar trends. Figure 4.7(b) plots the median diagnostic

rank across 100 trials. We see that Gsc and Hierarchical deteriorate with even small

amounts of noise.

Finding 3 helps explain the extreme sensitivity of SCORE, which uses Failure-

Only and Gsc, to noise, that prior work [KYGCS07] empirically observed but did not

fully explain. The earlier paper [KYGCS07] tried to alleviate the impact of noise by

running multiple instances of fault localization on different topologies (which has high

overhead) while retaining FailureOnly and Gsc, methods inherently sensitive to noise.

4.7.3 Covering relationships

Recall that a component C covers a component D if the set of transactions that

D impacts is a subset of the set of transactions that C impacts. In other words, when an

transaction that D impacts fails, it is impossible to distinguish a failure of C from that

of D by looking only at failures.

Finding 4 For covering relationships, FailureOnly scoring functions should not be

used. Other scoring functions (FailureSuccess and InBetween) can better disambiguate
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the failures of the covering and covered component because they use successful trans-

actions (eS, nS) as well, and not only failed ones. For instance, consider a failed link.

All failed transactions due to the link can also be explained by the failure of the attached

routers. However, by using successful transactions that include the routers but not the

failed link, the scoring function can assign a higher likelihood to link failure than router

failure.

Figure 4.6 provides empirical evidence for Finding 4 by showing the results of an

experiment using Abilene, which has many covering relationships. We randomly intro-

duced a single failure in the network and diagnosed it using different scoring functions

(combined with DTL and Independent). We see that FailureOnly has the worst perfor-

mance with non-zero diagnostic rank in 60% of the trials while the other two methods

have rank 0 most of the time.

We note that FailureOnly has been used by several tools to diagnose ISP back-

bones [KYGCS05,KYGCS07,DTDD07], which have many covering relationships. Find-

ing 4 suggests that the localization accuracy of these tools can be improved by changing

their scoring function.

4.7.4 Simultaneous failures

We now discuss simultaneous failures of components that have independent im-

pact on transactions. The next section discusses collective impact.

Finding 5 For a small number of simultaneous failures (s≤k), Jointk is best and Hi-

erarchical is worst. The effectiveness of Jointk follows because it directly examines

all system states with k or fewer failures. Hierarchical does poorly because its cluster-

ing approach forces it to explain more failures than needed. Suppose three transactions

O1, O2, O3 have failed and component C explains the first two failures and no other

component explains more failures. Suppose, however, that C also impacts transaction

O4. Then Hierarchical will add C to the cluster but will also add transaction O4 as a

new failed transaction to be explained by subsequent iterations. Intuitively, the onus

of explaining more failures than those observed can lead Hierarchical astray in later

iterations. Independent is less susceptible because it evaluates each component inde-

pendently.
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(a) 2 simultaneous failures (b) 3-4 simultaneous failures

Figure 4.8: Ability of state space explorers to handle simultaneous failures.

Gsc presents an interesting case study. As long as the failed components are

diverse, it is more effective than Independent because it chooses the smallest set of

failed components that explain the failures. However, Gsc can fail badly if multiple

sets of component failures can explain the failed transactions.; this can happen, for

instance, when the network has many covering relationships. (The analysis of covering

relationships in §4.7.3 considered single failures, which Gsc can handle well.)

For example, consider a network with two routers R1 and R2 with a link L be-

tween them. If both R1 and R2 fail, Gsc will prefer the more parsimonious explanation

that L failed. Worse, Gsc (unlike Joint2) will never consider the joint failure of R1 and

R2, making the diagnostic rank of the actual failure extremely high. On the other hand,

if two other routers R3 and R4 fail simultaneously but do not have a link between them,

Gsc will do very well.

Figure 4.8(a) shows the performance of different state space explorers when di-

agnosing two (randomly picked) simultaneous failures in Abilene. The graph uses PML

and FailureSuccess; other combinations produce similar trends. We see that Jointk is

highly effective (rank 2 or less), and Hierarchical is poor (rank > 20 in 25% of trials).

Gsc has bimodal behavior with a rank > 25 in a small fraction of trials. Closer inves-

tigation confirms that these trials involve the simultaneous failures of two components

who together cover a third component.

Finding 5 explains why Pinpoint [CKFF02], which uses Hierarchical, has poor
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performance (see Figure 4 in [CKFF02]) for even two simultaneous failures, despite

the handling of simultaneous failures being an explicit goal of Pinpoint. It suggests

that replacing Hierarchical state space exploration in Pinpoint (with, say, Joint2) while

keeping the same system model and scoring function would improve Pinpoint’s diagno-

sis of simultaneous failures.

More broadly, Table 4.4 shows that the performance of Hierarchical is similar or

worse than Independent and Gsc in all cases. We thus recommend that future algorithms

not consider this method.

Finding 6 Jointk handles simultaneous failures poorly in large networks. First,

Jointk’s computation scales poorly with network size because considering every subset

of k components among n components takes O(nk) time. As we demonstrate later

(Figure 4.12(c)), running Joint3 with k = 3 takes 21 minutes even when run on a small

67 component network. In practice, our Lync network has 8000 components but other

considerations allow limiting the number of components to be considered in a failure

to be around 600. Scaling to this size would require three orders of magnitudes more

time (which is many days) to run Joint3 in which case a manager may as well conduct

manual localization.

Then, we also find that if the number of simultaneous failures s is greater than

k, Jointk is in fact no better than Independent or another scoring function. That is, the

high cost of Jointk is not worthwhile unless one can afford to use a k ≥ s. Figure 4.8(b)

shows an example experiment over Abilene, in which k < s. Joint2 is no more effective

than Independent.

Thus, while Jointk does better than Independent and GSC in handling noise and

collective impact, it cannot handle simultaneous failures well in large networks.

4.7.5 Collective impact

We now study simultaneous failures of components that have a collective impact

on transactions by being, for instance, in a load balancing or failover relationship. We

find that in such cases, the choice of system model and state space explorer should be

jointly made. We explore two cases: when the number s of failed components in a

collection is small (s≤k), and when it is large (s > k).
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(a) 2 collective failures (b) 3 collective failures

Figure 4.9: Ability of a model, state space explorer combination to handle failures

with collective impact.

Finding 7 For diagnosing a small number of simultaneous failures in a collection

(s ≤ k), combining PML and Jointk is most effective; any other system model or state

space explorer leads to poor diagnosis. This is because, among existing models, only

PML can encode collective impact relationships. Other models represent approxima-

tions that can be far from reality. However, picking the right model is not enough. The

state explorer must also consider simultaneous failure of these components. Among ex-

isting state space explorers, only Jointk has this property. Independent does not consider

simultaneous failures, and Gsc and Hierarchical assume that components have indepen-

dent impact.

Figure 4.9(a) demonstrates this behavior. We modeled failures among compo-

nents with collective impact in Abilene as follows. Each trial randomly selects a pair of

nodes that has two vertex-disjoint disjoint paths between them. For messages between

these nodes, the two paths can be considered to be in a failover relationship with collec-

tive impact. We then introduced a randomly selected failure along each path. Thus, all

messages sent between the pair of nodes will now fail. For 1000 such trials, the graph

plots the diagnostic ranks of several combinations of system model and state space ex-

plorer. It uses the FailureSuccess scoring function, but other functions yield similar

results. We omit results for Gsc and Hierarchical; they had worse performance than

Independent. As we can see, only PML+Joint2 is effective.
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This result implies that half-way measures are insufficient for diagnosing col-

lective impact failures. We must both model relationships (PML) and explore joint

failures (Jointk). Localization suffers severely if either choice is wrong. For example,

Shrink [KKV05] uses PTL with Jointk even though it targets IP networks which may

have potentially many failover paths. Finding 7 suggests that Shrink would do better to

replace PTL with PML.

Large number of failures

Finding 8 For s simultaneous failures with collective impact, PML+Jointk, k < s

provides no advantage. Finding 7 may seem to imply that Joint2 suffices for failures

with collective impact. However, intuitively Joint2 works well in Figure 4.9(a) because

there are only two simultaneous failures with collective impact. How well does Joint2
do when there are 3 simulataneous failures with collective impact?

Figure 4.9(b) answers this question. We articially introduced a few additional

links in the Abilene topology to allow three (one primary plus two backups) disjoint

backup paths for some source-destination pairs. We then failed a (randomly selected)

component along each of the three paths and diagnosed the failure by combining PML

with Independent and Joint2. As we can see, PML+Joint2 is as poor at diagnosing these

failures as PML+Independent.

As with independent, simultaneous failures this result implies that with current

methods there are no half-way measures in diagnosing simultaneous failures with col-

lective impact. To be able to diagnose s failures, we must either use Joints or some other

lower overhead method that considers combinations of k faults.

4.8 Gestalt

The insights from the analysis above led us to develop Gestalt. It combines ideas

from existing algorithms and also includes a new state space exploration method.

For the system model, Gestalt uses a hybrid between DTL and PML that com-

bines the simplicity of DTL (fixed number of levels, deterministic edges) with the ex-

pressiveness of PML (ability to capture complex component relationships). Our model
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has three levels, where the top level corresponds to system components that can fail inde-

pendently and the bottom level to transactions. An intermediate level captures collective

impact of system components. Instead of encoding probabilistic impact on the edges,

the intermediate node encodes the function that captures the nature of the collective im-

pact. The domain of this function is the combinations of states of the parent nodes, and

the range is the impact of each combination on the transaction. Figure 4.10(a) shows

how Gestalt models the example in Figure 4.2a. The intermediate node I encodes the

collective impact of R1 and R2. The function represented by I is shown in the figure,

which shows values only for pup (pdown=1–pup).

While for this example, PML too has only three levels, Figure 4.10(b) illustrates

the difference between PML and Gestalt. Here, to reach S, C spreads packets across R1

and R2, and R2 spreads across R3 and R4. Figures 4.10(c) and 4.10(d) show PML and

Gestalt models for this network.

Another difference between PML and our model is how we capture single com-

ponents with uncertain impact on a transaction (e.g., a DNS server whose responses may

be cached). Gestalt models these with 3 levels too. An intermediate node captures the

uncertainty from the component’s state to its impact on the transaction. It may deem, for

instance, that the transaction will succeed with some probability even if the component

fails.

As scoring function, we use FailureSuccess because of its robustness to noise

and covering relationships (Findings 2 and 4). Further, because we explicitly models

uncertainty (unlike DTL), the combination of our model and FailureSucess will be ro-

bust to uncertainty as well (Finding 1).

For state space exploration, we develop a method that has the localization accu-

racy of Jointk and the low computational overhead of Gsc. It is based on the following

observations. Gsc is susceptible to covering relationships because many failure com-

binations can explain the observations and Gsc explores only a subset, ignoring others

(Finding 5). Gsc is susceptible to noise because noise can make it pick a poor candidate

and rule out other possibilities (Finding 3). The diagnostic accuracy of Jointk for collec-

tive impact failures stems from the fact that it explore combinations of at most k failures;

exploring a smaller number does not help (Finding 7, 8). But because its exploration is
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(a) Gestalt model for Figure 4.2a (b) Another example net-

work

(c) PML model for Fig-

ure 4.10(b)

(d) Gestalt model for Figure 4.10(b)

Figure 4.10: Gestalt Model

fully combinatorial, it has a high computational overhead.

Our new exploration method is shown in Algorithm 4.1. It takes two param-

eters as input. The first is Noisethresh, the percentage of observation noise expected

in the network, which can be estimated from historical data. Given ground truth (post

resolution) about a failure and the transaction logs, the percentage of transactions that

cannot be explained by the ground truth reflects the level of observation noise. In Lync,

we found this to be around 10%. The second parameter is k, the maximum number of

simultaneous failures expected in the network. It can also be gleaned from historical

failure data.
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The candidate failures that we explore are single component failures and com-

binations of up to k components with collective impact. This candidate pool explicitly

accounts for collective impact failures (making them diagnosable, unlike in Gsc). It is

also much smaller than the pool considered by Jointk which includes all possible com-

binations of up to k failures. The output of the exploration is a ranked list of hypotheses,

where each hypothesis is a set of at most k candidates from the pool.

These sets are computed separately for different thresholds of hit ratio

[KYGCS05]. The hit ratio of a candidate is the ratio of number of failed versus to-

tal transactions in which the component(s) participated. Iterating over candidates in

decreasing order of hit ratios gives us a systematic way of exploring failures while fo-

cusing on more likely failures first because actual failures are likely to have larger hit

ratios. Hit ratios are not used in the scoring function.

For a given hit ratio threshold, the hypothesis sets are built iteratively (i.e., not

all possible sets are considered) in k steps. We start with the empty set. At each step,

each set is forked into a number of child sets, where each child set has one additional

candidate than the parent set.

The child candidates are computed as follows. Let Ounexp be the set of observa-

tions whose status cannot be explained by the parent set (i.e., the status does not match

what would be predicted by the system model). Initially, when the parent set is empty,

this set equals Oall, the set of all observations. Then, we first compute the score of each

candidate in the entire pool with hit ratio higher than the current threshold. This com-

putation uses the scoring function (FailureSuccess) and is done with respect to Ounexp.

Candidates more likely to explain the as yet unexplained observations will have higher

scores.

If there were no observation noise, candidates with the maximum score can be

used as child candidates because they best explain the remaining unexplained observa-

tions. But it is not robust to noise. Due to noisy observations, the score of actual failures

may go down and the score of some other candidates may go up. By focusing only on

candidates with the maximum score, we run the risk of excluding actual failures from

the set. In fact, this is a key reason why Gsc is not robust to noise.

We thus cast a wider net, with the width of the net proportional to expected noise.
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Figure 4.11: Comparison of diagnostic efficacy of different algorithms for real failures

in a Lync deployment.

The quantity by which the score of the actual culprit can reduce due to observation noise

scorenoise = Noisethresh×|Ounexp| . The selected child candidates are those with scores

higher than scoremax − scorenoise, where scoremax is the maximum score across all

candidates. This guarantees that we will not miss actual failures in our iterations. We

will, however, pick more candidates, but the eventual cost of that is significantly lower.

4.9 Gestalt Evaluation

We now evaluate Gestalt and compare it to three existing algorithms that use

very different techniques. We start with the Lync network and use the algorithms to

diagnose real failures using real transactions available in the system logs. Based on

information from days prior to the failures we diagnose, we set Noisethresh=10% and

k=2 for Gestalt.

Figure 4.11 shows the results for a number of failures seen in a two month period

(the actual failure count is hidden for confidentiality). The legend shows the median

running time for the algorithms on a 3 GHz dual-core PC. We see that SCORE and

Pinpoint perform poorly. Gestalt and Sherlock perform similarly, but the running time

of Gestalt is lower by more than an order of magnitude. This is despite the fact that we

ran Sherlock with Joint2. Using Joint3, which was the recommendation in the original
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Sherlock paper [BCG+07], would have taken around 20 hours per failure.

Figure 4.5 provides more details for ten sample failures in the logs. We see that

the time it took for the operators to manually diagnose these failures (original recovery

delay) was very high. The median time was around 8 hours, though it took more than

a day for two failures. The primary reason for slow manual diagnosis time is the large

number of network components that must be manually inspected. The table lists the

number of components involved in failing transactions as an estimate of the number of

possible components that might need to be checked. Of course, using domain knowl-

edge and expertise, an operator will only check a subset of these components; but the

estimate underscores the challenge faced by operators today. We see that using Gestalt,

the operator will have to check only 3-13 components before identifying the real culprits

compared to 196-655 components for manual diganosis, significantly reducing diagno-

sis time. Note that the run time for Gestalt to whittle down the list of suspects by 1-2

orders of magnitude is at most a few minutes.

We next consider failures in the Exchange network. Figures 4.12(a) and 4.12(b)

show results for diagnosing one and two component simulated failures. We again used

Joint2 for Sherlock and k=2 and Noisethresh=0 for Gestalt. As expected based on our

earlier analysis, Score does very well for single failure scenarios, but suffers in two-

failure scenarios due to covering relationships. Sherlock and Gestalt do well for both

cases, but Sherlock takes two orders of magnitude more time.

In order to experiment with more simultaneous failures and Joint3, we reduced

the size of the Exchange network by half (to 67 components). Figures 4.12(c) and 4.12(d)

show the results for three failures and for four failures with 1% observation noise. In the

latter case, we run Gestalt withNoisethresh=1%. We see that Gestalt matches Sherlock’s

diagnostic accuracy for three failures, with running time that is two orders of magnitude

faster. For four failures, Gestalt has better diagnostic accuracy than Sherlock because it

accounts for noise. Its running time is still better by 20x, even though noise makes it

explore more combinations of component failures.

Due to space constraints, we omit results for the Abilene, but we found those

results to be qualitatively similar to those above. Gestalt had better diagnostic efficacy

than SCORE and Pinpoint for all cases. Gestalt matched Sherlock’s accuracy for most
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(a) Single Failure (b) Two Failures

(c) Three Failures (d) Four Failures, 1% Noise

Figure 4.12: Diagnostic efficacy of different algorithms with Exchange network with

different number of failures.

cases and exceeded it in the presence of noise and more than three simultaneous failures.

Its running time was 1-2 orders of magnitude lower than Sherlock.

4.10 Summary and Future Work

In this chapter, we presented a framework that helps understand the design space

of practical fault localization algorithms. Using this framework, we analyzed the effec-

tiveness of different algorithms at handling six characteristics of large, complex net-

works that pose a challenge to fault localization. We also found that no existing algo-
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rithm simultaneously provides high diagnostic accuracy and low computational cost for

a range of networks.

Based on the insights from our analysis, we designed Gestalt, a new fault local-

ization algorithm that borrows ideas from existing algorithms but also includes a new

state space exploration method. This method represents a continuum between greedy,

low-accuracy exploration and combinatorial, high-overhead exploration. For three very

different networks (messaging, email, ISP), Gestalt has higher diagnostic accuracy or

lower overhead than existing algorithms.

We believe even better performance can be obtained by exploiting more refined

fault models; for example, there should be locality among simultaneous failures in a

global network. But beyond the specific algorithm, we hope Gestalt takes a modest step

towards understanding the gestalt of fault localization.
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Table 4.3: Different fault localization algorithms mapped to our framework.

Tool Target system
System

Model

Scoring

Function

State

Space Ex-

ploration

Aspects not

captured

Codebook

[KYY+95]

Satellite comm.

network

DTL,

PTL

FailureSuccess

(Σ(eF + eS))
Independent

Codebook

selection

MaxCoverage

[KYGCS07]
ISP backbone DTL

FailureOnly

(ΣeF
TF )

Gsc

Candidate

post-selection,

Hypothesis

selection

NetDiagnoser

[DTDD07]

Intra-AS,

multi-AS

internetwork

DTL
FailureOnly

(ΣeF
TF )

Gsc
Candidate

pre-selection

NetMedic

[KMV+09]

Small enterprise

network
PTL

FailureOnly

(ΣeF )
Independent Re-ranking

Pinpoint

[CKFF02]
Internet services DTL

InBetween

( ΣeF
TF+ΣnS )

Hierarchical

SCORE

[KYGCS05]
ISP backbone DTL

FailureOnly

(ΣeF
TF )

Gsc

Threshold

based

hypothesis

selection

Sherlock

[BCG+07]

Large enterprise

network
PML

FailureSuccess

(
∏

(eF + eS))
Joint3

Statistical

significance

test
Shrink

[KKV05]
IP network PTL

FailureSuccess

(
∏

(eF + eS))
Joint3

WebProfiler

[ALMP10]

Web

applications
DTL

InBetween

( ΣeF
ΣnS+ΣeF )

Joint2 Re-ranking
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Algorithm 4.1: Pseudocode for Gestalt

1: Hall = {}
2: For each hitRatio in 1, 0.95, · · · 0 do

3: Hcurr = (); //current hypothesis

4: Ounexp = Oall; //unexplained observations

5: Hall += GenHyp(1, Ounexp, hitRatio, Hcurr)

6: Return Hall

GenHyp(i, Ounexp, hitRatio, Hcurr)

1: Hreturn = {Hcurr }
2: Cnew = NewCandidates(hitRatio, Ounexp)

3: For each c in Cnew

4: hypnew = (hyp, c)

5: If (i == k)

6: Hreturn += hypnew

7: Else

8: Oexp = ExpObs(hypnew,Ounexp)

9: Hreturn += GenHyp(i+1, Ounexp − Oexp, hitRatio, hypnew)

10: Return Hreturn

NewCandidates(hitRatio, Ounexp)

1: Cnew = {}
2: For each c in CandidatePool

3: If (HitRatio(c) ≥ hitRatio)

4: Cnew += c

5: scoremax = MaxScore(Cnew, Ounexp)

6: scorenoise = Noisethresh ×—Ounexp —

7: For each c in Cnew

8: If (Score(c) ≥ scoremax − scorenoise)

9: Cnew −= c

10: Return Cnew
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Table 4.5: Statistics for a sample of real failures in Lync.



Chapter 5

Conclusion

In conclusion, we propose new automated management techniques tailored for

data center requirements namely: PortLand, FasTrak and Gestalt. In this chapter we first

summarize our contributions. This dissertation ends with a discussion of open issues and

future work.

5.1 Summary of contributions

The goal of this dissertation is to build a management system that is tailored to

meet specific data center requirements. Most of the challenges we encountered through

this work trivially arose from challenges of scale.

The first challenge we tackled was that plug-and-play fabrics though desirable

for data center networks do not scale. To address this challenge we built PortLand, a

self-configuring network fabric. PortLand leverages underlying structure of data cen-

ter networks, the key insight being that data centers are usually built as multi-rooted

trees. Using this, PortLand switches determine their location in the network with some

help from the Portland fabric manager. This enables PortLand switches to give out

location based MAC addresses to all VMs in the network. PortLand also leverages net-

work structure to re-define how broadcast works in the system. Flooding and loops are

completely eliminated in PortLand; as such frequently encountered network problems

such as broadcast storms, spanning tree misconfigurations, blackholes are completely

avoided with PortLand. As a layer 2 network, PortLand can support workload mobility.

117
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By adopting hierarchical addressing and forwarding from Layer 3 networks, PortLand

traffic can take advantage of path diversity within data center fabrics.

Second, we examined the trade-off between scale and performance, under prac-

tical hardware constraints. Today, multi-tenant networks give up network performance

by introducing slow software queues at source and destination while ensuring tenant

isolation. With FasTrak we show that this trade-off is not fundamental. FasTrak moves

isolation rules between hypervisors and switch hardware. The application traffic that is

migrated to hardware sees near bare-metal performance. Such offloading comes with

additional benefits; Due to the offload, the hypervisors are less loaded, and average la-

tency perceived by traffic that is not offloaded also reduces. More importantly, CPU

cycles used for network processing are freed up, allowing more multiplexing. FasTrak

shows that multi-tenant data centers can both support large scale and performance sen-

sitive applications.

Finally, we examined the trade-off between exhaustive state space exploration

for accurate diagnosis and localization time. With Gestalt, we go beyond just solving

for this challenge. We first focus on distilling the connection between network prop-

erties and localization design choices, which gives us a framework that can be used to

compare existing algorithms. This framework then helps build Gestalt, a fault local-

ization algorithm that adapts to monitoring noise, dependency uncertainty. Gestalt is

also significantly faster than existing algorithms that are known to be most accurate,

and more accurate than existing algorithms that are known to be fast. With Gestalt we

hope that the time-to-recovery reduces, allowing for higher availability. Gestalt is not

restricted to diagnosis performance or control problems. It can be applied at any level

of granularity, from lower level system failures, to application failures. We have used

Gestalt on a corporate deployment of Lync at Microsoft.

We have prototyped, evaluated Portland, FasTrak and Gestalt extensively, and

the results verify our claims.



119

5.2 Concluding remarks

Data center networks are revolutionizing the network world in many ways. The

fact that the entire network stack, from hardware to the software stack on servers is

under the control of one operator, has led to new ways in designing networks. Net-

work management and control is being revisited at multiple levels. Undoubtedly, data

centers enable very powerful applications; search, social networks, ability to anayze

huge amounts of data, providing users with uniform experience with mobility. From

the networking perspective, a lot can be done to make data center networks faster, more

efficient, less expensive to enable more such applications at lower costs. We are at the

beginning of this revolution.

This dissertation explores three specific aspects of management and control of

networks: the network fabric, policy enforcement in multi-tenant environments and fault

localization. For future work we aim to combine insights from PortLand and Gestalt to

understand how network fabrics can be made more diagnosable. FasTrak makes a first

step toward utilizing hardware partially for isolating a subset of network flows in the

data center. Ideas in this work show promise in exploring hybrid hardware-software

techniques to achieve network performance isolation for data center workloads, an area

of active research.
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