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1. Introduction

In many industries, retail prices do not adjust quickly to changes in costs or market conditions.

Restaurants keep stable menu prices on most dishes even when ingredient prices fluctuate.1 Service

providers, from barbers to veterinarians, regulate fluctuating demand with non-price mechanisms

(usually queuing) rather than by adjusting price to clear the market in times of excess demand.

Perhaps nowhere is the disconnect between retail pricing and wholesale costs so great as

in restructured electricity markets. In the last decade, it has become apparent that wholesale

electricity price fluctuations can be extreme, but retail prices have in nearly all cases been adjusted

only very gradually. Typically, wholesale electricity prices vary hour by hour, while retail prices

are adjusted two or three times per year. Because electricity is not economically storable and

fixed retail prices create price-inelastic wholesale demand, it is not uncommon for wholesale prices

within one day to vary by 100% or more while retail prices do not adjust at all.

Economists, recognizing the potential inefficiencies when prices do not reflect incremental

production or wholesale acquisition costs, have been among the most vocal proponents of real-time

pricing (RTP) of electricity, under which retail prices can change very frequently, usually hourly.

With the 2000-01 California electricity crisis, many market participants also expressed support for

more responsive retail prices. RTP has been explored in economics in what is commonly referred

to as the peak-load pricing literature.2 That literature, however, has focused almost entirely on

time-varying pricing in a regulated market. Much of what is known from that literature carries

over immediately to a deregulated market if all customers are on RTP, but that situation is unlikely

to occur in any electricity system in the near future.

While many deregulated (and some regulated) electricity markets are considering implement-

ing RTP for some customers, nowhere is RTP likely to encompass all, or even most, of the retail

demand. In all cases, the outcome is likely to be a hybrid in which some customers see real-time

prices and others see time-invariant prices, more commonly called flat-rate service. In this paper,

we examine such a structure under deregulation, where competitive generation markets develop

1 For items with highly volatile ingredient costs, however, some restaurants list only “market price” on the menu
indicating that the benefits of time-invariant pricing are outweighed in those cases by the ability to quickly
change price. We return to this endogeneity of variable pricing later in the paper.

2 See Steiner,1957; Boiteaux, 1960; Wenders, 1976; Panzar, 1976; Williamson, 1966; Williamson, 1974; and
Bergstrom and MacKie-Mason, 1991. For a survey of the literature on peak-load pricing see Crew, Chitru and
Kleindorfer, 1995.
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time-varying wholesale prices, but competitive retail sellers still charge some customers flat retail

rates.3,4

Closely tied to time-invariant retail pricing is the issue of investment adequacy.5 Many partic-

ipants in the electricity industry have argued, generally without much economic explanation, that

deregulated electricity markets will result in inadequate investment in production capacity. While

this clearly is not the case with peak-load pricing under regulation–as explained by the earlier

literature–and similarly does not result from a model of competitive electricity markets in which

all customers are on RTP, we show that capacity investment is not efficient in competitive markets

when some customers are on flat retail rates. Not only is the level of investment not the first-best

level that results when all customers are on RTP, it is not even the second-best optimal level of

capacity investment given the constraint that some customers cannot be charged real-time prices.

Those who have argued that capacity investment will be suboptimal under deregulation have

generally then advocated for capacity subsidies in order to support greater capacity investment.

We analyze a number of possible proposals for capacity subsidies and demonstrate that commonly

proposed policies cannot overcome the inefficiency caused by suboptimal investment.

We then analyze the impact of expanding the use of RTP. We show that if customers have

homogenous demand patterns, expansion of RTP actually harms customers who are already on

RTP, but benefits customers who remain on flat rates. We demonstrate that incremental changes in

the use of RTP have impacts on the efficiency of the market that are not captured by those changing

to RTP, an externality that implies the incentive to switch to RTP will not in general be optimal.

We also show, surprisingly, that increasing use of RTP will not necessarily reduce the equilibrium

amount of installed generation capacity. In the following section, we present preliminary estimates

of the magnitude of the distortion resulting from flat-rate pricing in electricity. Using realistic

parameters for costs and demand, we find that a lower-bound estimate of the inefficiency is probably

5-10% of wholesale energy costs.

3 Numerous studies have analyzed market power and market design issues in restructured electricity markets,
such as Joskow and Kahn, 2002, and Borenstein, Bushnell and Wolak, 2002. We analyze the efficiency of
competitive markets in the absence of these other potential distortions.

4 We analyze inefficiencies resulting from prices being fixed over time. Pricing distortions also occur because
wholesale prices vary by location, due to transmission constraints, but retail prices frequently do not reflect
that variation. Analysis of prices that are fixed across locations is beyond the scope of this paper.

5 Concerns about investment adequacy also stem from regulatory inefficiencies such as price caps, regulatory
credibility, and restrictions in siting power plants. These regulatory inefficiencies would not be relevant in
deregulated, competitive markets.
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We focus in this paper on the electricity industry, but the results have implications well

beyond electricity. Due to technologies or institutions, retail prices in many markets are smoothed

representations of underlying wholesale costs. Our results demonstrate that this sort of pricing

has significant implications for capital investment and long-run efficiency, particularly in service

industries and others markets with little or no ability to carry inventories.6

We begin in section 2 by presenting a model of competitive wholesale and retail electricity

markets in which some share of customers is able to be charged real-time electricity prices. We

demonstrate the short-run pricing and long-run investment inefficiency that results from the in-

ability to charge all customers real-time prices. We also show that subsidies or taxes that have

been suggested to overcome these inefficiencies cannot generally correct the problem. In section 3,

we examine the welfare effects of changing the proportion of customers on RTP and the customer’s

incentives to switch to RTP. In section 4, we describe the basic simulations we have carried out

to evaluate the magnitude of these inefficiencies and show that they are likely to be significant

compared to the total costs of operating the system. We conclude in section 5.

2. Competition in wholesale and retail electricity markets

In deregulated electricity markets, wholesale prices are envisioned to result from competition

among generators, and retail prices would result from competition among retail service providers

serving the final customers. To understand these competitive interactions, consider the following

model of electricity markets.

Since electricity cannot be stored economically, demand must equal supply at all times. As-

sume there are T periods per day with retail demand in period t given by Dt(p) where D
0
t < 0.

7

A fraction, α, of the customers pay real-time prices, i.e., retail prices that vary hour to hour. The

remaining fraction of customers, 1 − α, pay a flat retail price p̄. We assume that α ∈ (0, 1]
is exogenous and that customers on real-time pricing do not differ systematically from those

6 An important attribute of electricity that is not present in most other industries is the potentially extremely
high costs of using non-price methods to accommodate a shortage of the product.

7 Following the literature on peak-load pricing, we assume that cross price elasticities between demands in
different periods are zero, but discuss extending the analysis to non-zero cross elasticities. Bergstrom and
MacKie-Mason, 1991, allow non-zero cross elasticities, but assume homothetic preferences across hours.
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on flat-rate pricing.8,9 Aggregate (wholesale) demand from the customers is then D̃t(p, p̄) =

αDt(p)+ (1−α)Dt(p̄) which implies that D̃t is decreasing in p̄ and p. Note that D̃t(p̄, p̄) = Dt(p̄).
For p > p̄, the flat-rate customers do not decrease consumption in response to the higher real-time

price so D̃t(p, p̄) > Dt(p), and for p < p̄, the flat-rate customers do not increase consumption in

response to the lower real-time price so D̃t(p, p̄) < Dt(p). Finally, D̃t(p, p̄) is decreasing in α for

p > p̄, and D̃t(p, p̄) is increasing in α for p < p̄. That is, increasing alpha increases the elasticity

of wholesale demand by rotating D̃t around the point (Dt(p̄), p̄).

Figure 1 illustrates the wholesale demand curves if everyone were on RTP, Dt (solid lines),

and if 1 − α share of customers were on flat-rate service, D̃t (dashed lines), where there are only

two periods: the high peak period , H, and the low off-peak period, L. Note that the less elastic

curves are the aggregate wholesale demand when some customers are on flat-rate service. For

prices above p̄, wholesale quantity demanded is greater than the quantity demanded if everyone

were on real-time prices since the flat-rate customers do not decrease consumption in response to

the higher real-time price. Similarly, for prices below p̄, wholesale quantity demanded is less than

the quantity demanded if everyone were on real-time prices since the flat-rate customers do not

increase consumption in response to the lower real-time price.

Generators install capacity and sell electricity in the wholesale market. Assume that each

generator is small relative to the market and has access to identical technology. Assume marginal

costs of each generator are continuous and increasing in output.10 Since marginal costs are increas-

ing and each generator has the identical technology, industry costs are minimized when production

from each generator is identical. Let C(q,K) be the short-run industry variable cost of generating

q units of electricity given that K units of capacity are installed. Assume that the partial deriva-

tives, Cq and Ck, are continuous and that

(a) Cq > 0, for a given K, increasing generation output increases variable costs;

(b) Ck < 0, variable costs of generating a given quantity of electricity is lower with more installed

capacity;

8 Although some of the results, including Theorems 1a and 1b, hold for α = 0, we assume α > 0 for expositional
ease. We do not consider peak-load pricing with stochastic demand (see Carlton, 1977; Panzar and Sibley,
1978; and Chao, 1983.), but we note here that with α = 0, demand may not be met at all times.

9 Throughout, we assume that customers on RTP are risk-neutral with respect to the price of electricity. We
discuss hedging of price risk later.

10 We show similar results for reverse-L-shaped marginal cost curves (constant MC up to a capacity constraint)
in Borenstein and Holland, 2003a. We assume continuity and non-zero derivatives here for ease of exposition.
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(c) Cqq > 0, short-run marginal costs are increasing in quantity;

(d) Ckk > 0, the reduction in short-run generation costs from installing additional capacity is

smaller at higher levels of installed capacity, i.e., −Ck is downward sloping in K; and
(e) Cqk < 0, additional investment reduces the marginal cost of generating.

Profit maximization implies that each firm would equate its short-run marginal cost of gen-

eration with the wholesale price so that, since all firms are identical, wt = Cq(q,K) where wt is

the wholesale price in period t. Thus, the short-run industry supply curve is upward sloping.11

Figure 2 illustrates demand curves for six different time periods and two short-run industry supply

curves for capacities K and K0 where K < K0. Market clearing prices for each time period are

given by the intersection of the demand curves with the relevant short-run supply curve. In the

long-run, investment that increases capacity from K to K0 lowers the marginal cost of generation

and lowers the market clearing price in each period.

In the long run, generators can add or retire capacity. Assume that the cost per unit of

capacity is r per day. If qt MW of electricity is generated in period t, industry profits for the

generators are
PT
t=1[wtqt −C(qt,K)]− rK per day. Since each firm has identical technology and

generates the same amount per unit of capacity, firm profit is simply a fraction of industry profit.

The retail sector purchases electricity from generators in the wholesale market and distributes

it to the final customers. Firms in the retail sector are assumed to have no costs other than

the wholesale cost of the electricity that they buy for their retail customers.12 The retail firms

choose real-time retail prices, pt, and the flat retail rate, p̄, engaging in Bertrand competition over

these prices. Bertrand competition represents accurately the competition among retail electricity

providers, because they would be price takers in the wholesale market, would be selling a nearly

homogeneous product in the retail market, and would face no real capacity constraints.13 Profit of

the retail sector is given by
PT

t=1(p̄−wt)(1−α)Dt(p̄)+ (pt−wt)αDt(pt) per day. Since electricity
cannot be stored economically, demand greater than capacity in any period would require non-price

11 The assumption of identical technologies implies that the industry supply curve, found by inverting wt =
Cq(q,K), is proportional to the supply from a single unit, i.e., industry supply can be written KS(w) where

S(w) is the unit supply curve.

12 Extending the analysis to include retailer costs of billing or distribution does not alter the analysis in any
significant way.

13 We assume that the system operator is able to bill the retailer correctly for electricity delivered to its customers.
See Joskow and Tirole, 2004, for further analysis of retailer billing issues.
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rationing. The flat retail price, p̄, is feasible if there exists some pt such that Cq(D̃t(pt, p̄),K) <∞
for all t, i.e., if the marginal cost of producing the quantity demanded is finite. In other words, p̄

is feasible if enough customers are on RTP to allow the wholesale market to clear at some finite

price.14

Competitive equilibrium in wholesale and retail markets

Equilibrium prices in the retail sector are determined by competition among retailers. First,

consider the customers on RTP. If a real-time price, pt, were greater than the wholesale price, a

competing retailer could make profits by undercutting pt and attracting more customers. Since

charging a price less than wt would imply losses, the equilibrium short-run retail real-time price

is petSR = wt for every t. In other words, competition among retailers drives retail prices for RTP

customers to be equal to wholesale prices in each period.

Similarly, competition forces the flat retail rate to be set to cover exactly the cost of providing

electricity to the flat-rate customers. Since this implies zero profits for the retail sector, the condi-

tion
PT

t=1(p̄
e
SR−wt)(1−α)Dt(p̄eSR) = 0 determines the short-run equilibrium flat retail price p̄eSR.

Note that this zero profit condition can be written p̄eSR =
£PT

t=1wtDt(p̄
e
SR)

¤
/
£PT

t=1Dt(p̄
e
SR)

¤
.

In other words, the equilibrium flat retail price is a weighted average of the real-time wholesale

prices where the weights are the relative quantities demanded by the customers facing a flat retail

price. Thus, competition among retailers drives p̄eSR to be equal to the demand-weighted average

wholesale price.15

In the short run, equilibrium prices in the wholesale market are determined by the intersection

of the demand curve and the short-run supply curve in each period. Since generators equate the

marginal cost of generation with the wholesale price in every period, supply equals demand when

wt = Cq(D̃t(pt, p̄),K).
16 We then have:

Characterization of Short-run Competitive Equilibrium – For a given capacity, K, and a given

14 We have assumed here that retailers charge linear tariffs. Joskow and Tirole, 2004, analyze a similar model
and show that the equilibrium two-part tariff under load profiling, i.e., without real-time meters, has no fixed
charge.

15 Existence of the equilibrium can be shown since (i) retail profits are continuous in p̄, (ii) retail profits are
negative for p̄ = 0, and (iii) retail profits are positive if p̄ is equal to the highest wholesale price that occurs
during the time period.

16 This condition can alternately be written: D̃t(pt, p̄) = KS(wt).
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share of customers on real-time pricing, α, the short-run competitive equilibrium is characterized

by real-time retail prices pet = w
e
t and flat-rate retail price p̄

e =
£PT

t=1 w
e
tDt(p̄

e)
¤
/
£PT

t=1Dt(p̄
e)
¤
.

The equilibrium wholesale (real-time) prices are determined by wet = Cq(D̃t(p
e
t , p̄),K) for every t.

In the long-run, generation capacity will enter (exit) the wholesale market as long as profits

are positive (negative). Thus, competitive investment drives long-run profits to zero. Due to

symmetry, this can be written as a zero-profit condition on the wholesale sector, i.e.,
PT

t=1[wtqt−
C(qt,K)]− rK = 0. Thus,

Characterization of Long-run Competitive Equilibrium – For a given share of customers on RTP,

α, the long-run competitive equilibrium wholesale prices are characterized by the conditions char-

acterizing a short-run competitive equilibrium plus the additional condition
PT

t=1[w
e
t D̃t(p

e
t , p̄) −

C(D̃t(p
e
t , p̄),K)] = rK.

17

(In)efficiency of competitive equilibrium

The First Welfare Theorem ensures efficiency of the competitive equilibrium under certain

conditions.18 However, the requirements of the welfare theorems are not met if α < 1, since there

is a missing market. Customers on flat retail prices cannot trade with customers on real-time prices

or with producers, because all electricity transactions must occur at the same price for flat-rate

customers. This missing market implies that the competitive equilibrium discussed above may not

be efficient.

However, if all customers face the real-time prices, i.e., α = 1, then the competitive equilibrium

is Pareto efficient. Pareto efficiency follows immediately once α = 1 because there is no missing

market and all of the conditions of the First Welfare Theorem are satisfied. This implies that there

is short-run allocative efficiency and long-run efficiency of capacity investments.

To see this in our particular application, consider first the short-run equilibrium. Since α = 1,

D̃t = Dt for every t. The equilibrium condition w
e
t = Cq(Dt(p

e
t ),K) implies that the marginal cost

17 In Borenstein and Holland, 2003b, we show that the equilibrium flat rate is always feasible in the short and
long run.

18 These conditions include market completeness, and the absence of externalities, market power, and asymmetric
information.
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of production is equal to the wholesale price in every period. Since all customers are on real-time

pricing, wt is equal to the marginal utility of consumption for each customer. Since the marginal

cost of generation equals the marginal utility of each customer in each time period, the short-run

equilibrium is Pareto efficient.

For the long run, the marginal social value of capacity is given by the decrease in costs

resulting from an increment to installed capacity. In period t, this decrease in costs is given by

−Ck(Dt(pt),K). Since installing capacity decreases costs in all periods, the social optimum would

dictate installing additional capacity as long as
PT

t=1−Ck(Dt(pt),K) > r and stopping investment
when

PT
t=1−Ck(Dt(pt),K) = r.19 Recall that competition will lead to more investment as long

as profits are positive, i.e.,
PT

t=1[wtDt(pt) − C(Dt(pt),K)] > rK, and investment ceases whenPT
t=1[wtDt(pt) − C(Dt(pt),K)] = rK. By differentiating the zero profit condition with respect

to K, we see that competition leads to additional investment if and only if it is efficient. Thus,

private incentives for investment accurately reflect social incentives and the long-run competitive

equilibrium is efficient when all customers are on real-time pricing.

If some customers do not face the real-time prices, α < 1, the competitive equilibrium is not

Pareto efficient, i.e., does not attain the first-best electricity allocation and capacity investment.

To see this, consider the short run in which K is fixed. Recall that competition among retailers

drives retail prices for RTP customers to be equal to wholesale prices in each period and drives

p̄ to be equal to the demand-weighted average wholesale price. Equilibrium wholesale prices are

determined by supply and demand (D̃t) in every period. This short-run equilibrium is clearly

not first best because in almost all hours flat-rate customers are not charged a price equal to the

industry marginal cost.

While it is clear that flat-rate retail pricing will not yield the first-best resource allocation,

there is still a question of what flat rate minimizes the resulting deadweight loss. In particular,

does the competitive equilibrium flat rate, p̄eSR, attain a second best by minimizing the deadweight

loss associated with having flat-rate customers? To answer this question, consider the flat retail

rate, p̄∗SR, and real-time prices p
∗
tSR that minimize deadweight loss in the short run. p̄

∗
SR and p

∗
tSR

can be found from the optimization:

19 This condition can be derived by solving the social planner’s problem for the long run.

9



max
pt,p̄

TX
t=1

[Ũt(pt, p̄)−C(D̃t(pt, p̄),K)]− rK (1)

where the consumer surplus measure Ũt is defined by Ũt(p, p̄) ≡ αUt(Dt(p)) + (1 − α)Ut(Dt(p̄))

and Ut maps quantities into the usual consumer surplus.

We refer to the result of this optimization as the second-best optimal allocation.20 The opti-

mization can be described by two first-order conditions.

For the optimal real-time price in period t, the first-order condition is

α{U 0t(Dt(pt)) ·D0
t(pt)−Cq(D̃t(pt, p̄),K) ·D0

t(pt)} = 0, (2)

which, since U 0t(Dt(pt)) = pt, implies that pt = Cq(D̃t(pt, p̄),K).

For the optimal flat rate, the first-order condition is

TX
t=1

[p̄∗SR −Cq(D̃t(pt, p̄),K)](1− α)D0
t(p̄
∗
SR) = 0. (3)

Substituting p∗tSR for Cq(D̃t(pt, p̄),K) for all t in (3) yields

TX
t=1

[p̄∗SR − p∗tSR ]D0
t(p̄
∗
SR) = 0 (4)

which implies

p̄∗SR =
£ TX
t=1

p∗tSRD
0
t(p̄
∗
SR)

¤
/
£ TX
t=1

D0
t(p̄
∗
SR)

¤
. (5)

Thus, the flat retail price that minimizes the deadweight loss is a weighted average of the real-

time prices where the weights are the relative slopes of the demand curves.21 Since p̄eSR is also a

20 This optimization is the sum of consumer surplus,
P

Ũt(pt, p̄) − αptDt(pt) − (1 − α)p̄Dt(p̄), retail profits,P
αptDt(pt) + (1 − α)p̄Dt(p̄) − wtD̃t(pt, p̄), and generator profits,

P
[wtD̃t(pt, p̄) − C(D̃t(pt, p̄), K)] − rK.

Note that wt is simply a transfer and does not affect deadweight loss.

21 For example, if the demands all have the same slope, p̄∗SR is simply the arithmetic mean of the wholesale

prices.
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weighted average of the real-time prices but with different weights, we have:

Theorem 1a: Non-attainment of the Second Best in the Short Run – The short-run competitive

equilibrium does not in general attain the second-best optimal electricity allocation. Furthermore,

the equilibrium flat rate, p̄eSR, can be either higher or lower than optimal.

Proof: Since both p̄eSR and p̄
∗
SR are weighted averages of the pt but their weights are not necessarily

equal, comparison of the two weighted averages implies that p̄eSR does not necessarily equal p̄
∗
SR.

We can construct an example where p̄eSR is higher (lower) than optimal by making the D0
t(p̄)

arbitrarily large (small) for all t such that Dt(p̄) > KS(p̄) and the D
0
t(p̄) arbitrarily small (large)

for all t such that Dt(p̄) < KS(p̄). Q.E.D.

To illustrate that the equilibrium flat retail price may be either too high or too low, consider

a simple example with two time periods: high-demand peak, H, and low-demand off-peak, L.

Clearly, the competitive equilibrium flat rate is less than the peak real-time price and greater than

the off-peak price. If peak demand were perfectly inelastic, i.e., if D0
H = 0, and if off-peak demand

exhibited some elasticity, then the optimal flat rate would place no weight on the peak period

price and all weight on the off-peak price. The competitive equilibrium flat rate is then higher

than optimal since decreasing the flat rate does not change consumption on peak, but reduces the

consumption distortion off peak. Conversely, if D0
L = 0 and D0

H < 0, then the optimal flat rate

places no weight on the off-peak price and the competitive flat rate is too low. Now increasing the

flat rate does not change consumption off peak, but reduces the consumption distortion on peak.

Interestingly, if all demands have the same elasticity at p̄e, then the p̄e = p̄∗. To see this, note

that if demands in two periods, i and j, have the same elasticity at p̄, then

p̄

Di(p̄)
D0
i(p̄) =

p̄

Dj(p̄)
D0
j(p̄) ⇐⇒ D0

i(p̄)

Di(p̄)
=
D0
j(p̄)

Dj(p̄)
⇐⇒ D0

i(p̄)

D0
j(p̄)

=
Di(p̄)

Dj(p̄)
. (6)

Thus, a weighted average of wholesale prices using as weights the flat-rate quantities will be the

same as a weighted average using as weights the demand slopes at those flat-rate quantities, i.e.,

p̄e = p̄∗. Furthermore, this shows that if the elasticity at p̄ in period i is greater than the elasticity

in period j then
D0
i(p̄)

D0
j
(p̄) >

Di(p̄)
Dj(p̄)

. Therefore, the weighted average, using slopes as weights, puts more

relative weight on the more elastic periods. Thus, if the high demand periods are relatively more

(less) elastic, then the equilibrium flat rate is lower (higher) than optimal.
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Inefficiency in the long run

In the long run, supply and demand are equated by the real-time wholesale prices; retail

competition forces pt = wt for every t; the equilibrium flat retail price, p̄
e
LR, is determined by retail

competition; and equilibrium capacity, Ke
LR is determined by wholesale competition. Because

of the flat retail price, the first-best outcome is not achieved in either capacity investment or

production.

To determine the second-best optimum in the long run, consider the flat retail rate, p̄∗LR, real-

time prices, p∗tLR , and capacity, K
∗
LR, that minimize deadweight loss. The optimum can be found

from the maximization in equation (1) where now optimization is also with respect to capacity.

The first-order conditions for pt and p̄ are given by (2) and (3) and the first-order condition for K

is

TX
t=1

−Ck(D̃t(pt, p̄),K) = r (7)

As in the short run, the second-best price, p̄∗LR, is a weighted average of the real-time prices

where the weights are the relative slopes of the demand curves. The optimal real-time prices are

determined by wt = Cq(D̃t(pt, p̄),K) for every t. Note that equation (7) implies that at the second-

best optimal capacity, the marginal cost reduction from an additional unit of investment is exactly

equal to the daily cost of capital, so that each firm is investing to the point that it’s earnings

zero profits net of capital costs. This implies that, given the second-best flat rate, competition in

investment would lead to the second-best optimal capacity investment.

As in the short run, p̄eLR and p̄∗LR, are different weighted averages of the real-time prices.

Therefore, p̄eLR is not generally equal to p̄
∗
LR, and the equilibrium flat price can be either too high

or too low relative to the second best. This implies that the competitive equilibrium may lead to

suboptimal installation of capacity as well. Therefore,

Theorem 1b: Non-attainment of the Second Best in the Long Run – The long-run competitive

equilibrium does not in general attain the second-best optimal electricity allocation and capacity

investment. Furthermore, the equilibrium flat rate, p̄eLR, is higher than optimal, if and only if the

equilibrium capacity investment, Ke
LR, is smaller than optimal.

Proof: To see that Ke
LR, can be either larger or smaller than K

∗
LR, suppose that slopes of the
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demand curves are such that p̄∗LR > p̄eLR, i.e., the equilibrium flat price is too low. Further

suppose that the market is in long-run equilibrium, and the planner tries to improve efficiency

in the short run by increasing the flat retail price to p̄∗LR. In the short run, this would decrease

demand D̃t in every period so prices and consumption would fall. Since consumption has fallen,

this implies that the cost reduction from an additional unit of capacity has decreased, i.e., −Ck
has decreased since Cqk < 0. But this implies that

P−Ck is now less than r, so to improve

investment efficiency the planner would have to reduce capacity. This implies that the equilibrium

long-run capacity was too large relative to the second-best optimal long-run capacity. A symmetric

argument shows that K∗LR > K
e
LR iff p̄

∗
LR < p̄

e
LR (See Borenstein and Holland, 2003b). Q.E.D.

Although competition distorts the consumption of the flat-rate customers relative to the sec-

ond best, competition does not introduce additional distortions into the real-time market or in-

vestment for a given flat rate. For a given p̄, the optimal real-time prices are determined by the

first-order conditions from the planner’s problem, which imply that pt = Cq(D̃t(pt, p̄),K) for every

t. Note that these optimal prices are exactly the real-time prices that would result from compe-

tition, given a p̄, namely, the prices such that supply equals demand. In addition, the conditionPT
t=1−Ck(D̃t(pt, p̄),K) = r implies that there are no profits in investment.

Although we have assumed that demand in each period depends only on the price in that

period, Theorems 1a and 1b can be extended to incorporate nonzero cross-price elasticities. To

see this, first note that the characterization of the competitive equilibrium (namely as a quan-

tity weighted average of the wholesale prices) does not depend on the elasticities (slopes) of the

demands, but rather on the quantities demanded at p̄e. This characterization would not change

fundamentally if we assumed instead that demand in each period depended on the entire vector of

(flat) prices. In other words, the equilibrium flat price would still depend only on the quantities

demanded and not on own or cross-price elasticities of demand.

The second best optimal flat price, derived by maximizing (1) would, however, depend on

the own- and cross-price elasticities of demand. The planner would recognize that raising the flat

price would affect the quantity demanded in each period not only since the price in that period

would be higher, but also because the price in all other periods would be higher. Thus p̄∗ would

depend on the own and cross elasticities of demand.22 Since p̄e does not depend on the own- or

22 Clearly, the characterization of p̄∗ in (5) would be less intuitive and much more complex with nonzero cross-
elasticities.
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cross-elasticities of demand, the second best optimum would still not be attained by competition

even when cross-price elasticities are nonzero.

Finally, it is useful to distinguish Theorem 1 from the contestable markets theory of the

classic natural monopoly. First, that literature deals with the market failure due to non-existence

of a Walrasian competitive equilibrium. We analyze the market failure that results from flat-

rate pricing when customers on flat-rate pricing cannot trade with customers on real-time pricing.

Second, contestable equilibria, characterized by average cost pricing, do not attain the first best,

but attain the second best where the planner is constrained to choose a price that achieves at

least normal profit. If we were to define the profit-constrained second best as the flat price which

maximized welfare subject to achieving normal profit, the competitive equilibrium still would not

generally attain the profit-constrained second best. In particular, if p̄∗ > p̄e, then p̄∗ yields the

retailers more than normal profit and competition still would not achieve the profit-constrained

second best. On the other hand, if p̄∗ < p̄e, then p̄∗ does not yield a normal profit. In this case,

p̄e would be the profit-constrained second best and would be attained by competition.

Subsidies/Taxes on capacity or electricity

In restructured wholesale electricity markets, many parties have suggested that in order to

assure sufficient investment in generation, “capacity payments” to producers are necessary. These

payments directly subsidize the holding of capacity, generally without a commitment on the pro-

ducer’s part to offer any certain quantity of energy or any certain price.23 Such payments can

be seen as part of a general category of market interventions designed to move the equilibrium

outcome closer to the constrained social optimum. In this subsection, we analyze such policies.

Among such interventions, there are three characteristics that are central to the economic

analysis of the policy. First, the subsidy/tax can be directed at the retail price of electricity or

it can be directed at capacity. Second, the revenues from a subsidy/tax can flow to or from an

external source (such as the government’s general fund) or the scheme can operate on a balanced-

budget basis with all revenues flowing to or from electricity customers. Finally, for any adjustment

to retail rates, RTP and flat-rate customers may be treated symmetrically or the tax/subsidy can

apply to only one group.

23 In some markets, capacity payments are contingent on a minimum level of capacity availability.
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To see whether these policies can attain the second best optimum, we characterize a long-run

competitive equilibrium with a tax/subsidy on the RTP customers, τrtp; a tax/subsidy on the flat-

rate customers, τflat; and a tax/subsidy on capacity, σ.
24 As above, the equilibrium is characterized

by the conditions on equilibrium in the product market and in the wholesale and retail sectors.

First, the tax on RTP customers implies a tax wedge between the wholesale prices received by the

generators and the price paid by the customers, so pt = wt + τrtp. Second, there is a tax wedge

between the flat-rate price paid by the customers p̄ and the flat rate received by the retail sector,

p̄−τflat. Thus, the equilibrium flat rate is determined by p̄−τflat =
£PT

t=1 wtDt(p̄)
¤
/
£PT

t=1Dt(p̄)
¤
.

Third, the capacity tax raises the cost of capital to r + σ. The long-run equilibrium condition on

generator profits is then
PT
t=1wtD̃t(pt, p̄) − C(D̃t(pt, p̄),K) = (r + σ)K. The final condition

equates supply and demand in every period: wt = Cq(D̃t(pt, p̄),K).

Given this characterization of the equilibrium, it is straightforward to show that the second-

best optimum will be attained in equilibrium by a policy with a tax/subsidy to the flat-rate

customers of τ∗flat = p̄∗LR −
£PT

t=1 p
∗
tDt(p̄

∗
LR)

¤
/
£PT

t=1Dt(p̄
∗
LR)

¤
and no taxes or subsidies to the

real-time customers or to capacity, i.e., τrtp = 0 and σ = 0. The second term of τ∗flat is the

quantity-weighted average price of buying wholesale power for flat-rate customers when the flat

rate is p̄∗LR. Thus, τ
∗
flat is the tax or subsidy that allows the retailer to break even while charging

p̄∗LR.
25 Therefore, we have:

Theorem 2: Achieving Second-best Optimality with Taxes/Subsidies – With external financing,

a policy with a tax/subsidy on the flat-rate customers of τ∗flat = p̄∗LR −
PT

t=1
p∗tDt(p̄

∗
LR)PT

t=1
Dt(p̄∗LR)

and no

taxes or subsidies on the real-time customers or on capacity, i.e., τrtp = 0 and σ = 0, achieves the

second-best optimal allocation and capacity investment. The optimal policy, τ∗flat, may be a tax

or a subsidy. Any policy that taxes or subsidizes real-time customers or capacity cannot attain the

second-best optimum.

Proof: If τflat = τ∗flat and τrtp = σ = 0, the retailers break even when charging p̄∗LR and paying the

retail tax. Therefore, p̄∗LR is the equilibrium flat rate and equilibrium consumption of the flat-rate

customers is at the second-best optimal level. The competitive equilibrium for a given p̄ does not

24 Note that the description of these policy instruments is quite general and each can be either positive, negative,
or zero.

25 The optimal flat-rate tax/subsidy is not, in general, equal to the difference between the second-best optimal
flat rate and the equilibrium flat rate, p̄eLR − p̄∗LR. The tax/subsidy, τ∗, is like a Pigouvian tax/subsidy on an
externality, but does not attain the first best.
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introduce any additional distortions in consumption of the real-time customers or in investment

since real-time prices and investment costs are not distorted and thus the second-best optimum is

attained.

Any policy with τrtp 6= 0 or σ 6= 0 cannot attain the second-best optimum. First, if p̄∗LR is not
the equilibrium flat rate, then the consumption of the flat-rate customers is distorted. Alternately,

if p̄∗LR is the equilibrium flat rate, then the second best is attained when τrtp = σ = 0 and any

other policy would distort either consumption of real-time customers or investment. Q.E.D.

Most of the public policy debates regarding investment in electricity markets have not actually

considered taxes or capacity subsidies from outside the industry. Instead, the recommended policy

tool has usually been capacity subsidies financed by fees collected from retail electricity providers.

In most cases, the collection mechanism suggested has been a time-invariant retail electricity tax

that applies to all retail customers. It is a straightforward implication of Theorem 2, discussed in

more depth in Borenstein and Holland (2003b), that such policies do not attain the second-best

optimum consumption or investment.

3. Changing proportion of customers on real-time pricing

While it is clear that, absent metering costs, charging real-time prices to all customers would be

Pareto efficient, in reality any changes towards RTP are likely to be incremental, with an increasing

share of customers moving to RTP over time. This section examines the effect of changing the

proportion of customers on RTP. Following the assumptions of the previous sections, we first

examine effects when all customers have the same demand patterns and α is set exogenously. Even

in this relatively uncomplicated case, we reach some surprising conclusions. In the final subsection,

we examine the outcomes when customers choose whether or not to switch to RTP in a market

context, recognizing both the costs of metering and the fact that customers are heterogeneous.

The effect on prices of increasing RTP customers

Increasing the proportion of customers on RTP increases the elasticity of demand by rotating

D̃t around p̄. This has two effects on wholesale prices. For periods in which the wholesale price is

above the flat rate, increasing α decreases quantity demanded since more customers face the higher

real-time price. This decrease in demand drives down the wholesale price in these periods. Con-

versely, for periods in which the wholesale price is below the flat rate, quantity demanded increases
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with α since more customers face the lower real-time price. This drives up the wholesale prices in

these periods. Thus, some wholesale prices increase and some decrease when more customers are

put on real-time pricing.

The effect on the flat retail rate in the long run, however, is not ambiguous.

Theorem 3: Effect of Increasing RTP Customers on Flat Retail Rate – In the long run, an

increase in the proportion of customers on RTP reduces p̄eLR.

Proof: See the Appendix.

The key to this result is recognizing that retailers breakeven on the flat-rate customers by

covering losses when the retail margin is negative (peak periods) with gains when the margin is

positive (off-peak periods). Because flat-rate customers demand more in peak periods, the retailer

cares more about price changes in the peak periods. Because increasing α will rotate the wholesale

demand, increasing the proportion of customers on RTP decreases the peak wholesale prices and

increases off-peak wholesale prices. This can be beneficial for the retailers if the peak prices decrease

sufficiently relative to the increases in the off-peak prices. However, these price changes also affect

wholesale profits and investment. In the appendix, we show that holding p̄ constant, the decreased

retail losses in the peak periods are greater than the decreased retail gains in off-peak periods

if capacity adjusts such that wholesale profits are unchanged. Thus, if customers were moved

to RTP and p̄ did not decline, retailers would be earning positive profits on flat-rate customers.

Competition in the retail market would then force down retail prices.

The effect on capacity of increasing RTP customers

Under regulation, investment in the electricity industry was determined primarily by projec-

tions of annual peak loads. Additional generation was deemed necessary if reserve margins during

peak hours were insufficient. Since putting additional customers on RTP would reduce peak loads,

this could reduce the need for investment.26

In competitive markets, investment in generation capacity is driven by profit opportunities

rather than by a planning process. Since putting more customers on RTP leads to decreased

26 Bergstrom and MacKie-Mason, 1991, argue against the conventional wisdom by showing that peak-load pricing
could increase investment under regulation. We analyze competitive markets and do not assume homothetic
preferences. In a related model of airline competition, Dana, 1999, shows that stochastic peak-load pricing can
lead to lower capacity costs.
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real-time prices in peak periods, this effect implies decreased wholesale profits in peak periods and

reduced incentives for investment. However, in periods when the marginal cost is below the flat

rate, increasing α would lead to increased demand. If the industry marginal cost has positive slope,

this would increase prices and profits in these periods. New investment occurs if the additional

wholesale profit off-peak is greater than the decline in profit during the peak periods.

To see this in our model, recall that equilibrium wholesale profits in the short-run are given

by πwSR =
P
t ptD̃(pt, p̄) − C(D̃(pt, p̄),K). Since pt = Cq in equilibrium, it follows that

∂πwSR
∂α =P

t pt
∂D̃(pt,p̄)

∂α −Cq ∂D̃(pt,p̄)∂α =
P

t(pt−Cq)∂D̃(pt,p̄)∂α = 0. By similar reasoning,
∂πwSR
∂p̄ = 0 and

∂πwSR
∂pt

=

D̃t, so

dπwSR
dα

=
∂πwSR
∂α

+
∂πwSR
∂p̄

dp̄

dα
+
X
t

∂πwSR
∂pt

dpt
dα

=
X
t

D̃t(pt, p̄)
dpt
dα
. (8)

Since (8) is a weighted average of the dpt
dα , which may be positive or negative, the short-run wholesale

profits may increase or decrease. This implies that investment may increase or decrease:

Theorem 4: Indeterminant Effect of Increasing RTP Customers on Capacity – An increase in

the proportion of customers on RTP can increase or decrease long-run equilibrium capacity Ke
LR.

Proof: See the Appendix.

The proof of Theorem 4 highlights the importance of the convexity of the marginal costs

across the relevant range. If the marginal cost curve is relatively flat at off-peak demand levels,

then putting additional customers on RTP will not increase the off-peak prices very much. If

the marginal cost curve is relatively steep at peak demand levels, then increasing α will cause

relatively large decreases in the peak prices. These relatively large price decreases on peak imply

that wholesale profits decrease in the short run and equilibrium capacity decreases when α increases.

In the simulations we have run with realistic parameters, presented in section 4, increases in α cause

capacity to decline in the long run in all cases.

Conversely, if the marginal cost curve is relatively steep at off-peak demand levels and relatively

flat at peak demand levels, e.g., if Cq were concave, then the off-peak price increase would be greater

than the peak price decrease, and wholesale profits and capacity would increase. Since this is the

surprising case, we present in the appendix a simple example where putting more customers on

RTP leads to increased investment. Note that in this example, the marginal cost curve is not
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concave.

The effect on efficiency of increasing RTP customers

As shown above, if all customers are on RTP, allocation and investment are efficient. When

some customers are not on RTP, electricity is allocated inefficiently between the flat-rate and RTP

markets. The question remains about the welfare effects of a marginal increase in the proportion

of customers on RTP when α < 1. This question is more subtle than it may appear at first glance:

Since the competitive equilibrium is not efficient, we cannot rely on comparative statics results

from a constrained optimization problem.

To analyze the long-run welfare effects of increasing the proportion of customers on RTP, we

analyze the surplus accruing to different groups: the generators, the retail service providers, the

customers on RTP, the customers on flat-rate pricing, and the customers who switch from flat

rates to RTP. First, the generators and retail service providers receive no surplus in the long run,

so their surplus is unaffected by increasing α. Second, Theorem 3 shows that p̄eLR decreases in α.

Therefore, the customers on flat-rate pricing consume more at a lower price. Thus, the flat-rate

customers are better off with an increase in α.

Third, the customer who switches from the flat rate to RTP receives higher surplus. This can

be shown by a revealed preferences argument. Since
PT

t=1 ptDt(p̄) =
PT

t=1 p̄Dt(p̄), the switcher

could consume exactly the same electricity quantities as the flat-rate customers choose at the exact

same total bill. Since the switcher chooses to consume different quantities, it must be better off.27

Finally, the surplus to the customers who are already on RTP decreases in α. To see this, first

note that the envelope theorem implies that the change in consumer surplus to an RTP customer

in period t is given by −dptdαDt(pt). Thus, the change in surplus to RTP customers is

α
dCSRTP
dα

=

TX
t=1

−dpt
dα

αDt(pt) =
TX
t=1

dpt
dα
(1− α)Dt(p̄). (9)

where the second equality follows from (8), recognizing dπw

dα = 0 in the long run (because πw = 0

in the long run) and recalling that D̃(pt, p̄) = αD(pt) + (1− α)D(p̄).

27 Samuelson, 1972, uses a similar revealed preferences argument to argue that consumers always benefit from
price stabilization that leaves producers equally well off.
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We can show that (9) is negative by differentiating the zero-profit retail condition: πr =

(1− α)PT
t=1(p̄− pt)D(p̄) = 0. Differentiation implies that

0 =
∂πr

∂p̄

dp̄

dα
+

TX
t=1

∂πr

∂pt

dpt
dα

=
∂πr

∂p̄

dp̄

dα
−

TX
t=1

dpt
dα
(1− α)Dt(p̄). (10)

Since the competitive equilibrium p̄ results from Bertrand competition over the flat rates, the

derivative ∂πr

∂p̄ must be greater than or equal to zero. Since dp̄
dα < 0 by Theorem 3,

PT
t=1

dpt
dα (1−

α)Dt(p̄) must be less than zero. Combining this with (9) shows that the consumer surplus to the

incumbent RTP customers is decreasing in α.

A bit of intuition for this result comes from thinking about a single small customer who is the

only customer on RTP. That RTP customer is better off than a customer on a flat rate because it

can reoptimize against the volatile real-time prices (the revealed preference argument above). As

more customers move to RTP, that real-time price volatility is muted, reducing the benefits from

responding to the volatility. On the other hand, as more customers move to RTP, the weighted

average wholesale price is lower, benefiting all customers. Our result shows that the first effect

outweighs the second effect for the existing RTP customers making them worse off.

We have shown the long-run impact of increasing α on the four affected groups–incumbent

RTP customers, “switchers,” remaining flat-rate customers, and sellers. Since each group, except

the incumbent RTP customers, is no worse off, the overall welfare impact depends on the ability

of these groups to compensate the potential losses of the incumbent RTP customers.

Define W from (1) as the welfare attained in competitive equilibrium. The change in welfare

from increasing customers on RTP is then given by

dW (K, pt, p̄,α)

dα
=
∂W

∂K

dK

dα
+

TX
t=1

∂W

∂pt

dpt
dα

+
∂W

∂p̄

dp̄

dα
+
∂W

∂α
. (11)

We have shown that in the competitive equilibrium, ∂W
∂K = 0, i.e., capacity is set efficiently given

the equilibrium prices. Likewise, ∂W∂pt = 0 for all t, since we have explained earlier that real-time

prices are set efficiently given the equilibrium p̄. Thus (11) reduces to: dWdα = ∂W
∂p̄

dp̄
dα +

∂W
∂α .

The last term, ∂W∂α , is the direct welfare gain from customers switching from flat-rate to RTP

and can be written as
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∂W

∂α
=

TX
t=1

[Ut(D(pt))− ptDt(pt)]− [Ut(D(p̄))− ptDt(p̄)], (12)

which is positive by the revealed preference argument made above. Theorem 3 shows that dp̄
dα < 0,

and in section 2, we showed that ∂W
∂p̄ can be positive or negative depending on whether p̄e is

greater or less than p̄∗.28 Thus if decreasing p̄ improves welfare, then increasing α improves

efficiency. However, if decreasing p̄ decreases efficiency, then the welfare effects depend on whether

or not the gains to the switchers are greater than the losses from decreasing p̄. To summarize,

Theorem 5: Welfare Effects of Increasing RTP Customers – In the long run, an increase in

the proportion of customers on RTP (i) increases consumer surplus of customers remaining on

flat-rate service, (ii) increases consumer surplus of customers switching from flat rate to RTP, (iii)

decreases consumer surplus of incumbent RTP customers, and (iv) has no effect on generator or

retailer profits. Total welfare increases with an increase in the proportion of customers on RTP if

p̄e > p̄∗, but welfare may decrease if p̄e < p̄∗, the case in which lowering the equilibrium flat rate

reduces efficiency. Welfare always increases (and is maximized) by putting all customers on RTP.

Proof: i-iv are proved in the text. Since dW
dα = ∂W

∂p̄
dp̄
dα +

∂W
∂α and ∂W

∂α > 0, if p̄e > p̄∗, so that
∂W
∂p̄ < 0, then

∂W
∂p̄

dp̄
dα > 0 and increasing α increases total welfare. If p̄

e < p̄∗, then ∂W
∂p̄

dp̄
dα < 0. Since

∂W
∂α > 0, the net impact on welfare in this case is ambiguous. In the appendix, we demonstrate

how examples with dW
dα < 0 can be constructed. Q.E.D.

In the appendix, we construct an example in which increasing α lowers welfare. We know,

however, from section 2 that increasing α to 1 from any lower value increases welfare. Moreover,

we know that the welfare attained in competitive equilibrium is continuous in α even at α = 1. So,

the example in the appendix demonstrates the increase in welfare need not always be monotonic

as it moves to the maximum welfare at α = 1.29

RTP adoption in competitive markets

Thus far, we have assumed that α is set exogenously, ignoring the incentives customers would

28 This assumes that the profit function is single-peaked.

29 Simulations with linear demands (in which ∂W
∂p̄

À 0) and simulations presented in Borenstein, 2004, which use

actual California system load profiles and assume constant elasticity demand with higher elasticities during
peak periods, showed no cases in which welfare declined with an increase in α.
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have to adopt RTP if such programs were voluntary. In a voluntary system, each customer would

balance the potential gains from RTP against the metering costs. We now consider the incentives

of customers to adopt RTP under competition.

We assume that customers adopting RTP must pay, directly or indirectly, for the additional

metering and billing costs and that these costs are independent of quantity consumed.30 LetM be

the additional daily cost (variable plus amortized fixed cost) of metering and billing one customer

when that customer adopts RTP.

Assume, for now, that each customer constitutes a share γ of the total demand, where γ is very

small. Since customers can avoid this additional metering cost by choosing the flat-rate service,

customers will adopt RTP until in equilibrium we have:

γ
TX
t=1

[Ut(D(pt))− ptDt(pt)]− [Ut(D(p̄))− p̄Dt(p̄)] =M. (13)

(13) determines the equilibrium share of customers on RTP, α. The benefit to adopting RTP is

positive by the revealed preference argument and bounded. IfM is large enough, then no customers

will adopt RTP. Conversely, if M is small, but still positive, then all customers adopt RTP. Even

the last customer left on RTP when all others have switched will have strictly positive benefits from

switching that will outweigh a sufficiently small M . Since the left-hand side of (13) is decreasing

in α — an implication of Theorem 5 — if M is positive, but not too large, there will be a solution

with 0 < α ≤ 1.31 The long-run competitive equilibrium with customer choice over rate structure

is then fully described by (13) plus the conditions described in the characterization of the long-run

equilibrium above.

First note that, as in section 2, the competitive equilibrium with competitive RTP selection

does not attain the second-best optimum since the equilibrium flat rate will be suboptimal. To

analyze the efficiency of competitive RTP adoption, we define W as the welfare attained in the

competitive equilibrium where now W incorporates the metering cost α
γM , i.e., the costs of me-

tering the RTP customers. From a long-run competitive equilibrium, differentiating W as in (11)

yields the following result:

30 Though costs do vary slightly with the size of customer demand, this is a reasonable approximation. See Jaske,
2002.

31 In what follows, we ignore the corner solutions.
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Theorem 6: Non-optimality of Competitive RTP Selection – If metering costs are positive and

customers choose between flat rates or real-time prices, the long-run competitive equilibrium does

not in general attain the second-best optimal electricity allocation, capacity investment, and RTP

metering. Competition leads to excessive adoption of RTP if p̄e < p̄∗. If p̄e > p̄∗, RTP is adopted

less than is optimal.

Proof: Nonoptimality of the electricity allocation and capacity investment follow directly from The-

orem 1b. Next, consider dW/dα evaluated at the competitive equilibrium. The partial derivative

of W with respect to α is now:

∂W

∂α
=

TX
t=1

{[Ut(D(pt))− ptDt(pt)]− [Ut(D(p̄))− ptDt(p̄)]}− M
γ

=
TX
t=1

{[Ut(D(pt))− ptDt(pt)]− [Ut(D(p̄))− p̄Dt(p̄)]}−
TX
t=1

(p̄− pt)Dt(p̄)− M
γ
= 0. (14)

The first equality follows from differentiation of W as in (12), the second equality is algebra, and

the third equality follows from (13) and the condition on retail profit. Since ∂W
∂α = 0, it follows

from (11) that dW
dα = ∂W

∂p̄
dp̄
dα . Since

dp̄
dα < 0 from Theorem 3, increasing metering beyond the

competitive level increases welfare if and only if ∂W∂p̄ < 0. Q.E.D.

Theorem 6 obtains because customers do not recognize that by adopting RTP they drive down

the flat rate for the remaining customers. If the flat rate is higher than optimal, this externality is

beneficial, and too few customers adopt RTP. On the other hand, if the flat rate is too low, then

the externality is harmful, and too many customers adopt RTP.32

If customers differ in size but have identical demands up to a scale parameter, we can represent

each customer i as constituting γi of total demand. Since metering costs are independent of the

scale parameter, (13) implies that the customers with the largest γi would be the first to adopt

RTP. However, the marginal customer still would not consider the effect on p̄ of its decision to

adopt, and adoption could be excessive or insufficient.

We leave for future research an in-depth analysis of outcomes when customers have different

demand profiles, but it seems clear that the incentive to adopt is further complicated in two ways.

32 Brennan, 2002, and Doucet and Kleit, 2003, do not recognize this externality in their analyses of competitive
adoption of real-time pricing.
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First, an elasticity effect will cause customers with more elastic demand to be more inclined to

adopt RTP. For instance, if two customers on flat-rate service demand the same quantities in

each period, but one has much more elastic demand in all periods, then that customer has a

much stronger incentive to adopt RTP. This welfare effect, however, seems to be fully captured by

the adopter. Second, the adverse-selection effect will cause customers who have relatively lower

demands at peak times and relatively higher demands at off-peak times to be more inclined to

adopt. For these customers, even if they made no change to their purchasing, they would pay less

on RTP. The adverse-selection effect, however, is just a transfer from customers with “peakier”

demands who are subsidized under flat-rate pricing. This transfer, which does not by itself change

total surplus, gives some customers inefficiently large incentives to payM in order to adopt RTP.33

The adverse-selection effect will tend to cause p̄ to rise as these customers adopt RTP, which may

or may not outweigh the tendency for p̄ to fall with adoption when customers are identical. If p̄

were to rise, this likely could raise or lower welfare, depending on whether p̄e is greater or less than

p̄∗.

Finally, we again address the extension of the model to incorporate nonzero cross-price elas-

ticities. With nonzero cross-partial derivatives, the proof of Theorem 3 holds under the additional

assumption on the cross-partials:
PT

j=1
∂Dt

∂pj

dpj/dα
dpt/dα

< 0 for every t. This condition clearly holds

if all cross partials are zero, as we’ve assumed above, since demand is downward sloping. Note

that it also holds, for example, if electricity consumption in each peak period is complementary to

consumption in all other peak periods but a substitute for consumption in off-peak periods and

vice versa.

Under nonzero cross-price elasticities, Theorem 4 is still valid since it describes the ambiguity

of the effect on capacity. Parts (i) and (iii) of Theorem 5 relied on Theorem 3 and thus obtain

under the above condition on the cross-partials. Part (ii) remains valid by the revealed preference

argument and part (iv) and the remainder of the theorem remain valid by the arguments presented

above. Theorem 6 also remains valid. Thus the main theoretical results of this section obtain if

the model allows nonzero price elasticities.

Throughout the analysis, we have ignored the potential for price volatility to lower the welfare

of RTP customers due to risk aversion. In reality, these risks can be nearly entirely eliminated

33 Borenstein, 1989, develops a similar argument for why competitive insurance markets will use some costly
risk-screening tests whose net effect is to lower total welfare.
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through forward contracting for fixed quantities of power for each hour of the year. Such fixed-

quantity contracts, similar to standard futures contracts that are used for hedging risk, can elimi-

nate most of the wealth risk caused by fluctuating electricity prices while still giving the customer

the full incentive effect of time-varying prices on the margin. They would have no effect on our

analysis.34 Such contracts are quite different from the “requirements contracts” that nearly all

retail customers currently face, in which the customer has a right to buy any quantity it chooses at

a price specified months in advance through a regulatory process or long-term contract. Customers

under requirements contracts correspond to flat-rate customers in our analysis.

4. How much difference would RTP make?

While the analysis thus far demonstrates that RTP is likely to improve welfare, such a change

would also involve costs, so it is important to evaluate the magnitude of the effect that RTP would

have. Full estimation of the expected effect is beyond the scope of this paper, but in this section

we offer some preliminary analysis that suggests that the welfare gain is likely to be significant and

to vastly outweigh the costs of implementing RTP for at least the largest customers.

To accomplish this, we simulate long-run competitive equilibria under a set of realistic assump-

tions about the system demand profile and the production technologies available. We simulate the

system first using a flat-rate retail pricing scheme and then putting some share of the customers on

RTP. No such simulation can include all factors that would affect the welfare change due to RTP,

but we believe that we capture the primary effects. We conclude this section with a discussion of

omitted factors and how they would likely alter the analysis.

Since we have assumed competitive generation markets and no cross-subsidy between RTP

and flat-rate customers, the simulations could also be interpreted as applying to multiple retail

providers that participate in the same wholesale market. For instance, the customers of one utility,

constituting perhaps two-thirds of the total wholesale market, might remain on flat rates, while

the customers of a competing retail provider that participates in the same wholesale market and

comprises the remainder of demand, might be on RTP.35 The analysis thus far shows that the RTP

customers would produce positive spillovers for the utility customers. The simulations suggest how

34 Borenstein (forthcoming) explains in more detail how forward contracts can be used to mitigate these risks.

35 Such a system would not require real-time meters for the flat-rate customers, since the demand of the flat-rate
customers in aggregate could be calculated by the grid operator as system demand minus the real-time demand
of RTP customers.
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large that effect might be.

Assumptions

We depart somewhat from the simple theoretical model in the previous sections by assuming

that there are multiple technologies of production that range from high-capital/low-variable cost

to low-capital/high-variable cost. Each technology has a simple cost function: a unit of capacity

has an annual capital cost (independent of usage) and a constant per-megawatt-hour marginal

cost up to the unit’s capacity of one megawatt.36 There are no economies of scale in any of the

technologies, or equivalently, over the relevant range of usage, each technology can be scaled up or

down at constant long-run average cost.

To be concrete, we assume that there are three technologies: a baseload technology (highest

capital, lowest marginal cost) for which we set the parameters to roughly reflect coal-fired gener-

ation, a midmerit technology, which is set to reflect combined-cycle gas turbine generation, and

a peaker technology, which is meant to reflect combustion turbine generation. The cost assump-

tions are shown in Table 1. We assume that in the long run there is free entry and exit of any of

these technologies. We also assume that no company owns a sufficient amount of production to

be able to exercise market power. The retail price charged to customers reflects production costs

plus $40/MWh to cover transmission and distribution, a figure that we assume is not subject to

temporal variation.

On the demand side, we start from a basic distribution of demand levels that we have taken

from the actual reported demand levels in the California Independent System Operator’s control

area over the two-year period November 1998 through October 2000. This period includes periods

of record high consumption and very low consumption, a mild summer in 1999 and an unusually

hot summer in 2000. To get from these demand quantities to a set of demand curves, we assume

that each quantity occurred at the same flat-rate retail price.37 Further, we assume that the flat

retail rate that resulted in these demand quantities is the one that we calculate below to be the

36 Borenstein and Holland, 2003a, proves the equivalent of theorems 1 through 5 for production with such inverted
L-shaped cost curves.

37 Incorporating the fact that some customers were charged somewhat higher prices during pre-set peak periods
than during off-peak periods (“time-of-use” rates) would have little effect on the results due in part to the
inelasticity of demand.
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break-even rate.38 We assume that retail customer demand goes through the actual quantity at the

equilibrium flat retail rate, and that it takes a constant elasticity form with the assumed elasticity,

which we discuss next.39

In order for the switch to RTP to have any effect, demand must be price-elastic. Estimates

of price elasticity of electricity demand vary widely, but the very short-run price elasticity is

commonly argued to be in the range of -0.1. In the longer run, we would expect greater elasticities,

as customers adapt to price variability and response technologies — e.g., thermostats that change

settings in response to price — improve and come down in cost. Therefore, we also evaluate the

effect for assumed demand elasticities of -0.3 and -0.5.40 We assume that all customers have the

same demand elasticity and the same “load profile,” i.e., all customers are identical up to a scale

factor.

These cost and demand specifications, along with assumptions of price-taking behavior by all

market participants and free entry/exit of producers, are sufficient to determine a unique long-

run competitive equilibrium for any α > 0.41 The algorithm for determining the competitive

equilibrium and its uniqueness are discussed in greater detail in Borenstein (2004).

To determine the base case in which all customers are on flat-rate service requires a somewhat

different approach. Any given flat rate, p̄, determines the quantity demanded in each hour. Given

the quantity to be produced in each hour, straightforward algebra determines the cost minimizing

amount of each type of capacity that should be installed and the number of hours each would be

used. This determines the total cost of production. The p̄ is then adjusted iteratively until the

total revenue generated with that flat rate is equal to the total (minimized) cost of production,

which is the competitive equilibrium flat rate.

38 Also due to inelastic demand, adjusting for the fact that the prevailing flat rate wasn’t exactly equal to the
level that we calculate would break even given the production technologies, makes very little difference in the
analysis.

39 During the observed period, the utilities had real-time pricing for only very few customers that were part of
pilot programs. Many customers — constituting about 15% of total demand — had switched to non-utility retail
providers, but virtually none of these customers were on RTP either.

40 We do not consider cross-elasticities between hours, though we do discuss the effect of substitutability across
hours, i.e., “load shifting,” below.

41 Throughout the simulations, we continue assuming that the customers on RTP in aggregate do not differ in
their demand profile from those that remain on flat-rate service.
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Results

The results of these simulations are presented in Tables 2 and 3. Table 2 indicates the capacity,

price and quantity outcomes while Table 3 shows the changes in consumer surplus, which approx-

imately equals total surplus because all sellers earn zero profit in equilibrium (up to the integer

constraint on capacity). In Table 2, the results with all customers on flat-rate service are shown

at the top. The rows below show the outcomes under varying assumptions about the demand

elasticity and shares of customers on RTP.

Table 2 is consistent with our theoretical finding that as more customers switch to RTP, the

equilibrium flat rate falls. It also indicates that RTP would have large effects on the equilibrium

installed capacity. Even with an elasticity of only -0.1, putting just a third of customers on RTP

would cut the number of peakers by about 44% and the total installed capacity by more than 10%.

Though we showed that theoretically RTP would not necessarily lower the total installed capacity,

that is the effect we find in all simulations using realistic parameters. With enough elasticity, or

most customers on RTP, baseload (high capital-cost, low variable-cost) capacity becomes relatively

more cost-effective, eventually eliminating peakers entirely as the quantity volatility is greatly

reduced due to retail price volatility.

Retail price volatility would be a significant feature of the RTP market, though much less so

if there were more elasticity or a large share of customers on RTP. With an elasticity of -0.1 and

only one-third of customers on RTP, the peak price would be more than 100 times the average

price. In only 113 hours of the year, about 1.3% of the time, would all of the capacity be used;

in all other hours price would be no higher than the marginal production cost of the peaker units

(plus T&D). With greater elasticity, the capacity is used more intensively, with a great number of

hours in which all capacity is used. An elasticity of -0.3 yields a peak price that is 79% lower than

results with an elasticity of -0.1, with one-third of customers on RTP. Our theoretical model does

not predict the direction of change in either total consumption or the total energy bill, but these

simulations indicate that total energy consumption could increase, while total energy bills could

fall.

Table 3 presents the welfare effects of introducing RTP. All of the “change” columns are in

comparison to the equilibrium with all customers on flat rate. The “Total Surplus Change” column

indicates that the gains would be in the hundreds of millions of dollars per year for the California

system, which would be between 3% and 11% of the total energy bill that obtained under flat

28



rates.

In comparison to the cost of implementing RTP, these gains are likely to be large for at least

some customers. In 2001, in the midst of the California electricity crisis, the state legislature passed

a bill mandating real-time meters for all large customers, those with peak demand above 200 kilo-

Watts. The cost of installing and operating meters for these 20,000 customers, which constituted

about one-third of California demand, was about $35 million. Though other administrative costs

would also accompany RTP, these other costs are unlikely to be larger than the original meter

installation costs. Thus, it appears that the gains would almost certainly outweigh the costs.42

Implementing RTP for the remaining customers might not be such a clear net gain. Table 3

indicates that the marginal surplus gains to RTP are declining in the share of customers on RTP.

At all the elasticities in Table 3, putting the first one-third of the customers on RTP produces more

than half the gains that result from putting all on RTP. Furthermore, the cost of switching the

remaining customers would be greater due to the small size of individual customers: switching the

first one-third of customers in California required replacing about 20,000 meters while switching

the remaining two-thirds would require replacing over 10 million meters.43

The aggregate measures of surplus are affected by the change in the share of customers on RTP,

so may obscure the effect on individual customers. Comparing the rows in Table 3 with different

shares of customers on RTP combines the effect on “switchers” with the effect on incumbent RTP

and flat-rate customers who do not switch. To illustrate the effect on individual customers who

do not switch, Table 3 also presents consumer surplus changes for a hypothetical customer that

constitutes 0.001% of the total demand curve in any hour and remains on either RTP or a flat-rate

tariff in all simulations.44 The columns showing the surplus of these hypothetical customers on flat

rate and RTP are consistent with the theoretical finding that switching customers to RTP benefits

remaining flat-rate customers (which follows immediately from the decline in the flat rate shown

in Table 2) and harms incumbent RTP customers.

42 Installation of these meters was not completed until 2004. As of this writing, there is no generally available
RTP tariff in California. The meters are being used for RTP in only a few small pilot programs.

43 Some vendors, however, have suggested that use of cellular technology for communicating with the meters
creates large density economies and rollout in densely populated areas can actually pay for itself by reducing
labor costs in meter reading.

44 This 0.001% would represent a customer with a peak demand of about 450kW. In California, there are ap-
proximately 8,000 customers of at least this size.
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The two right-hand columns of Table 3 decompose the surplus change that results from in-

creasing the share of customers on RTP into the change captured by the switchers and the external

effect on non-switchers (both remaining flat-rate customers and incumbent RTP customers). The

changes in each row are the result of increasing the share on RTP from the level in the previous

row (from zero in the case of a 0.333 share on RTP). As expected, putting the first third of demand

on RTP not only benefits the switchers, it also benefits the non-switchers in aggregate, because all

non-switchers are flat-rate customers who benefit from the decline in the flat rate. Moving the next

third of customers to RTP, however, creates both positive (on flat-rate customers) and negative

(on incumbent RTP customers) externalities. The net effect, found by properly weighting these

positive and negative changes in consumer surplus, is a small negative externality. Putting nearly

all of the remaining customers on RTP creates a larger net negative externality, because it harms

incumbent RTP customers while there are almost no flat-rate customers left to benefit from the

declining flat rate.

Finally, it is worth pointing out that while demand elasticity is necessary for RTP to create

social benefits, it may not take very much elasticity. There seems to be a declining marginal gain

from increased elasticity. In the simulations, the gain from putting a given share of customers

on RTP when the elasticity is -0.1 is about 45% of the gain when the elasticity is -0.5, five times

greater.

Omitted factors

As we stated at the beginning of this section, these simulations omit a number of factors that

one would want to address in a complete simulation of RTP. In this subsection, we discuss some

of these factors and their likely impact.

Reserves: Demand and supply must balance exactly at all times in an electricity grid, so grid

operators keep capacity on stand-by to respond as demand fluctuates stochastically. Holding such

supply reserves is costly. The need for reserves would almost certainly be reduced with greater use

of RTP, because price variation would substitute to some extent for quantity fluctuations. Thus,

RTP would also reduce reserve costs. The potential for savings is bounded above by the size of

reserve costs, which are 7-10% of total operating costs in a typical system. A significant proportion

of this cost would remain if few customers would be willing to let the grid operator control their

second-to-second consumption in order to balance the system.
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Stochastic Supply Outages: The simulations assume that all generators are perfectly reliable. In

fact, generators go out of service stochastically. If all units were very small and outages were

uncorrelated, then the law of large numbers would imply that this requires simply a rescaling of

effective capacity per unit. In fact, some generation units are large, and outages are not completely

uncorrelated, so the grid operator must hold reserves also to respond to these outages. As above,

however, RTP would reduce the need to hold reserves to respond to unforeseen supply/demand

imbalances.

Non-convexities in Production: As discussed in detail by Mansur (2003), generation units do not

costlessly or instantly switch from off to full production. There are start-up costs and “ramping”

constraints (on the speed with which output can be adjusted). These constraints make it more

costly to adjust supply to meet demand fluctuations. As with reserves, RTP would allow some of

this adjustment to occur on the demand side in a way that would enhance efficiency.

Pricing of Transmission and Distribution: The simulations take a constant $40/MWh charge for

transmission and distribution. This is based on the historical recovery of the costs of these services,

which are provided by a regulated monopoly. To the extent that minimum efficient capacity scale

for T&D implies that they are never capacity constrained, introducing time-varying prices of these

services would not improve efficiency. That may be the case with most local distribution, but

transmission lines frequently face capacity constraints. By ignoring these constraints and holding

the T&D cost per MWh constant, the simulations understate the potential gains for RTP that

could also reflect time-varying (opportunity) cost of transmission.

Market Power: In the simulations, we assume that sellers never exercise market power. As has

been discussed elsewhere (see Borenstein and Bushnell, 1999, and Bushnell, forthcoming), demand

elasticity introduced by implementing RTP reduces the incentive of sellers to exercise market

power. However, it is unclear how much incremental inefficiency the exercise of market power itself

introduces in a flat-rate system, since it simply changes the flat retail rate that is charged in all

time periods. In fact, if p̄e < p̄∗, seller market power could increase efficiency if all customers were

on flat rates. In a full RTP system, market power could not reduce deadweight loss. Thus, it is

difficult to analyze the bias from excluding seller market power.

Non-zero Cross-Elasticities of Demand Across Hours: In the demand structure that we have an-

alyzed, own-price elasticities are non-zero and all cross-elasticities are zero. Simulation with a

complete matrix of own- and cross-elasticities would increase the complexity substantially. Still,
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if demands are generally substitutes across hour, it seems very likely that incorporation of cross-

elasticities would increase the gains from RTP. Essentially, RTP increases efficiency by reducing the

volatility of quantity consumed and increasing the utilization rate of installed capacity. Holding

constant own-price elasticities, increasing cross-price elasticities from zero to positive (substitutes)

will tend to further reduce quantity volatility by increasing off-peak quantity when peak prices rise

and reducing peak quantity when off-peak prices fall.

5. Conclusion

Electricity deregulation has proceeded with support from many economists on the belief that

competitive electricity markets will produce more efficient outcomes than regulation. That still

may turn out to be true, though in many locations, most notably California, there is significant

evidence that the markets have not been sufficiently competitive. Even if market changes succeed

in making the markets competitive, however, we have shown that flat-rate pricing of a significant

share of retail customers will remain a barrier to achieving efficient outcomes. Not only does flat-

rate retail pricing have the obvious problem of preventing hour-by-hour prices that reflect wholesale

costs, flat-rate pricing in a competitive market fails to achieve even the second-best optimum of

the welfare-maximizing flat-rate price. As a result, we have shown that capacity investment will in

general differ from the second-best optimal level. In order to assure adequate capacity investment,

many market participants and advisors have argued for “capacity payments,” which are effectively

subsidies that reduce the cost of owning capacity and, thus, increase equilibrium investment. We

have demonstrated that capacity subsidies (or taxes) cannot achieve the second-best optimum,

because they create other distortions as they address the distortion caused by flat-rate customers.

Many economists and some industry participants have argued strongly for increasing the

proportion of customers on RTP. We have shown that while increasing the proportion of customers

on RTP is likely to increase market efficiency, exceptions are possible at least for some locally

extreme shapes of demand functions. We have also demonstrated that increases in the share of

customers on RTP can harm customers who are already on RTP, while benefitting those who

remain on flat rates. The net effect of such a change on the level of equilibrium capacity, we

demonstrate, is ambiguous.45

45 Like much of the peak-load pricing literature, we have made simplifying assumptions. We have extended the
model to non-zero cross elasticities above. Relaxing other assumptions, as we intend to do in future work, is
unlikely to alter the basic insights of this analysis.
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To analyze these effects and assess their relevance for policy analysis, we developed a simulation

model using three types of generation technology and realistic load profiles information. The

simulation indicated that increasing the share of customers on RTP would decrease capacity and

monotonically increase welfare. The effects on peaking capacity were particularly notable; we

estimate that putting a third of customers on RTP would reduce peaking capacity requirements by

44%. The welfare gains were also substantial with gains from 3% to 11% of the total energy bill.

We found that the incremental gains from putting additional customers on RTP declined with the

share that were already on RTP.

We’ve modeled the flat-rate retail price problem in the context and institutions of deregulated

electricity markets, but the application is much broader.46 In many markets, retail prices cannot,

or at least do not, fluctuate to reflect changes in market and cost conditions. This is broadly

recognized, but there seems to be a view that competitive determination of some sort of smoothed

or average retail price allows the welfare analysis of competitive markets to go through at least

approximately. Our results suggest that this isn’t the case, that competitive determination of

retail prices that are constrained not to adjust as frequently as costs will not achieve a second-best

optimum.

In the general context of sticky prices, we have presented a different view of how markets may

operate than presented by Carlton (1986) and others who examine non-price rationing. In those

models, all prices are sticky and therefore non-price rationing is used to distribute the product.

In our approach, prices are sticky to some customers and the remaining customers face a residual

supply for which price is very volatile. Which model is more appropriate will depend on the specific

institutions of a market.

46 The flat rate we’ve studied is not specific to electricity markets and can represent any requirements contract,
i.e., a contract where a firm agrees to supply any quantity demanded at a specified price. Our results suggest
that requirements contracts may have greater adverse efficiency effects than is generally recognized.
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Appendix

This Appendix provides the proofs of Theorems 3 and 4, and examples demonstrating that in-

creasing the share of customers on RTP can reduce equilibrium capacity and can reduce equilibrium

welfare.

Theorem 3: Effect of Increasing RTP Customers on Flat Retail Rate – In the long run, an

increase in the proportion of customers on RTP (α) reduces p̄eLR.

Proof: We demonstrate this proposition by evaluating the long-run change in retail profits, πr,

caused by a change in α, holding p̄ constant. We show that retailer profits would increase, i.e.,

become positive, if p̄ did not change. Since any higher flat rate would also have positive profit, the

new equilibrium flat rate must be lower, i.e., competition in the retail sector reduces p̄.

We wish to evaluate dπr

dα holding p̄ constant. Since p̄ is constant, dπ
r

dα = (1−α)Pt−Dt(p̄)dwtdα

is a weighted average of dwtdα .

First note that competitive investment implies that in the long run

0 =
dπw

dα
=
X
t

D̃(pt, p̄)
dwt
dα

= K
X
t

S(wt)
dwt
dα

=⇒
X
t

S(wt)
dwt
dα

= 0 (A1)

where S(wt) is the unit supply curve.

Next note that

αDt(wt) + (1− α)Dt(p̄) = KS(wt) ⇐⇒ Dt(wt)−Dt(p̄) = KS(wt)−Dt(p̄)
α

. (A2)

Differentiating the left-hand equation in (A2) with respect to α gives:

Dt(wt)−Dt(p̄) + αD0
t(wt)

dwt
dα

+ (1− α)D0
t(p̄)

dp̄

dα
= KS0(wt)

dwt
dα

+ S(wt)
dK

dα
. (A3)

Recognizing that dp̄
dα = 0 by assumption and substituting using the right-hand equation in

(A2), (A3) can be rearranged as:

α[KS0(wt)− αD0
t(wt)]

dwt
dα

= [K − αdK
dα
]S(wt)−Dt(p̄). (A4)
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Since [KS0(wt)−αD0
t(wt)] > 0, it follows that

dwt
dα

> 0 if and only if [K−αdK
dα
]S(wt)−Dt(p̄) >

0, and that the product {[K −αdKdα ]S(wt)−Dt(p̄)}dwtdα
is positive for all t. This implies that their

sum over t is also positive. But this implies that

0 <
X
t

{[K − αdK
dα
]S(wt)−Dt(p̄)}dwt

dα
=
X
t

−Dt(p̄)dwt
dα

(A5)

where the equality holds because [K − αdK
dα ]

P
t S(wt)

dwt
dα = 0 from (A1). Q.E.D.

Theorem 4: Indeterminant Effect of Increasing RTP Customers on Capacity – An increase in

the proportion of customers on RTP can increase or decrease long-run equilibrium capacity Ke
LR.

Proof: Consider a long-run competitive equilibrium with two time periods: peak, H, and off-peak,

L. Note that the short-run equilibrium does not depend on the shape of the marginal cost curve

Cq but only on the equilibrium marginal costs. Similarly, the long-run equilibrium would not

change if we perturbed Cq without changing the equilibrium marginal costs or the sum of the total

costs. Thus, if we increased the convexity of Cq such that Cq(D̃L(pL, p̄),K), Cq(D̃H(pH , p̄),K),

and C(D̃L(pL, p̄),K) +C(D̃H(pH , p̄),K) did not change, then the long-run equilibrium would not

change.

Note that dpt
dα = Cqq

dD̃t

dα in the short run, which implies that dpL
dα > 0 and dpH

dα < 0. Starting

from a long-run equilibrium, we can increase the convexity of Cq without changing the long-run

equilibrium if Cqq(D̃L(pL, p̄),K) > 0. By increasing the convexity of Cq without changing the

long-run equilibrium, we can make Cqq(D̃L(pL, p̄),K) smaller and Cqq(D̃H(pH , p̄),K) larger. But

this implies that dpL
dα is less positive and that dpH

dα is more negative. Thus (8) can be negative.

Similarly, an example can be constructed where (8) is positive by increasing the concavity of Cq.

An example of a capacity increase follows. Q.E.D.

Example of an increase in RTP customers that increases capacity

To show that increasing the proportion of customers on RTP can lead to increased investment,

35



consider a parallel linear demand model with linear marginal costs. Let Dt(p) = At − Bp and
Cq = q/K. Since supply equals demand in every period, pt = [At −B(1− α)p̄]/(K +Bα), which

implies that

p̄− pt = [(K +B)p̄−At]/(K +Bα) = Yt/(K +Bα) (A6)

where Yt ≡ (K +B)p̄−At. This implies retail profits can be written πr = f(α)
P
YtDt(p̄) where

f(α) = (1−α)
K+Bα . Since f(α) 6= 0, in short-run equilibrium,

P
YtDt(p̄) must equal zero. But sinceP

YtDt(p̄) does not depend on α, it is also zero when α increases, i.e., putting more customers on

RTP does not change the short-run equilibrium flat rate.

Now consider how the short-run wholesale profits change with changes in α. Differentiating

(A4) and noting that the short-run flat rate and Yt do not depend on α implies that dpt/dα =

BYt/(K +Bα)
2. By the envelope theorem, the change in wholesale profits is

P
(dpt/dα)D̃t which

implies that wholesale profits increase or decrease depending on whether
P
YtD̃t is positive or

negative. From (A4), Yt is positive iff p̄ > pt which occurs if and only if D̃t(pt, p̄) > Dt(p̄).

Therefore
P
YtD̃t >

P
YtDt(p̄) since the first weighted average of the Yt puts more weight on each

positive Yt and less weight on each negative Yt. Since
P
YtDt(p̄) = 0, the first weighted average is

positive and the short-run wholesale profits increase with α.

Example of an increase in RTP customers that decreases welfare

We have shown that dW
dα = ∂W

∂p̄
dp̄
dα +

∂W
∂α . We construct an example in which

dW
dα can be

negative by showing that the second term, which is positive, can be made arbitrarily small while

holding the first term, which can be negative, constant.

First, recall that the competitive equilibrium is characterized completely by pt, p̄, α, r, K, the

unit supply function S, and the demand functions Dt. Note, however, that the equilibrium does

not depend on the entire demand functions, but rather only on two points, Dt(pt) and Dt(p̄), of

each demand function. Thus, any system of demand equations which does not change these 2T

points (nor α, S, or r) will have an equilibrium with the same prices and capacity.

Next, consider dp̄
dα ,

dpt
dα , and

dK
dα . By the Implicit Function Theorem, these derivatives can be

found by totally differentiating the system of equations that characterize the competitive equilib-

rium. This implies that dp̄
dα can be written as a function of the 7T + 4 parameters: pt, Dt(pt),
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D0
t(pt), Dt(p̄), D

0
t(p̄), p̄, α, S(pt), S

0(pt), r, and K. Since ∂W
∂p̄

can also be written in terms of these

7T +4 parameters, the product ∂W
∂p̄

dp̄
dα
would not change if we were to perturb the demand curves

such that the demands and slopes at pt and p̄ were unchanged.

Now consider ∂W
∂α
. [12] can be written

∂W

∂α
=

TX
t=1

[Ut(D(pt))− Ut(D(p̄))]− pt[Dt(pt)−Dt(p̄)]. (A7)

Note that the summands in (A7) are always positive. For example, if pt > p̄, the difference

Ut(D(pt))−Ut(D(p̄)) is negative but it is smaller in absolute value than −pt[Dt(pt)−Dt(p̄)] > 0.
Conversely, if pt < p̄, the difference Ut(D(pt))−Ut(D(p̄)) is positive and larger (in absolute value)
than −pt[Dt(pt) −Dt(p̄)] < 0. Note, however, that these summands depend on the shape of the
demand curve between Dt(pt) and Dt(p̄). This implies that the summands can be made arbitrarily

small by making the demands more concave (convex) for pt above (below) p̄ while holding constant

the Dt(pt), D
0
t(pt), Dt(p̄), D

0
t(p̄). For example, in the case of pt > p̄, the welfare gain from switchers

would be arbitrarily small–without changing slopes or demands at pt and p̄–if demand were a

concave right angle between pt and p̄, i.e., if demand were identical to Dt(p) for p > pt− ² and for
p < p̄+ ² but were constant at Dt(p̄+ ²) for p ∈ [p̄+ ², pt − ²]. Although this demand curve would
be discontinuous at D(pt − ²), continuous examples could be similarly constructed.

Finally, consider any equilibrium where ∂W
∂p̄ > 0. By perturbing the demand curves between

Dt(pt) and Dt(p̄) without changing Dt(pt), D
0
t(pt), Dt(p̄), or D

0
t(p̄), the term

∂W
∂α can be made

arbitrarily small without changing ∂W
∂p̄

dp̄
dα .

This example is obviously an extreme case since it relies on making the gains to switchers

arbitrarily small by making peak demand curves concave and off-peak demand curves convex. Our

simulations and empirical work have failed to generate this situation, but further work is required

to understand the policy relevance of this example.
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Table and Figure Titles

Table 1: Generation Costs Assumed in Long-Run RTP Simulations

Table 2: Capacity, Price and Quantity Effects of RTP

Table 3: Welfare Effects of RTP

Figure 1: Wholesale demand curves with and without some customers on flat rates

Figure 2: Short-run industry supply curves with different generation capacities

41



Borenstein/Holland
RJE

Table 1 of 3

Generation Annual Variable
Type Capital Cost Cost

Baseload $155,000/MW $15/MWh
Mid-merit $75,000/MW $35/MWh
Peaker $50,000/MW $60/MWh
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