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Abstract

Initial Production Capacity Investments for Commercializing Pharmaceutical Products

by

Ming Kwan Yuen

Doctor of Philosophy in Engineering – Industrial Engineering and Operations Research

University of California, Berkeley

Professor Philip M. Kaminsky, Co-chair
Professor Xin Guo, Co-chair

This thesis is motivated by the investment problems pharmaceutical manufacturing firms
face when introducing new drug products. We consider two different types of resources that
play a role in determining the initial production capacity in pharmaceutical manufacturing:
generic production resources, and specialized facilities and equipment. Due to the differences
in availability of each resources type and the dynamics of information the firm receives with
respect to the underlying uncertainties, the investment problems posed by these two resource
types are very different. We build two separate dynamic optimization models to analyze the
respective investment strategies.

For procurement of generic resources, we consider the firm facing random demand while
the drug approval arrives at a random time. The firm can either increase or decrease inven-
tory of the resources by buying or selling on a spot market where price fluctuates randomly
over time. The firm’s goal on this operation is to maximize expected discounted profit
over the procurement process. We first show that this optimization problem is equivalent
to a two-dimensional singular control problem. We then show that the optimal policy is
completely characterized by a simple price-dependent two-threshold policy.

For specialized equipment, we consider a model where the firm must balance two con-
flicting objectives: on one hand, the delay in scaling-up production once the product is
approved must be minimized, and on the other hand, the risk of investing in ultimately
unused capacity must be minimized. We develop a stylized model of this type of capacity
investment problem, where the firm re-evaluates its capacity investment strategy as infor-
mation about the potential success of the product is continually updated (for example, via
clinical trial results). We identify settings in which by continually reviewing the building
strategy, the firm can substantially reduce both the delay of the commercial launch of the
new product, and the risk of lost investment.

Although, our focus here is on the investment decisions in introducing a new drug prod-
uct in the pharmaceutical industry, the models described in the following subsections can be
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applied to the introduction of products which require specialized equipment to manufacture
and have a long research and development phase.
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Chapter 1

Introduction

In the pharmaceutical industry, introducing a new drug is a complex and time consuming
process. Research and development alone is risky, expensive, and time consuming. The
discovery of a new drug is only the beginning. The firm has to demonstrate safety and
efficacy of the new drug for a particular disease or set of symptoms to regulatory agencies
via a series of clinical trials in order to gain the approval to put the new drug on the market.
Specifically, the drug is tested in three phases of trials: the first involves testing for safety
on a relatively small group (typically 10 to 100 healthy individuals) patients; the second
involves testing for effectiveness (typically on groups of 20-300 patients); and Phase III
involves comparisons of existing treatments with the new drug (typically on 300 to 3000
patients).1 On average, it takes eight years for all of the clinical trials to be completed and
a drug to be approved.

The construction or acquisition and licensing of physical production capacity for a new
drug can also be an expensive and time consuming project. Although firms acquire some
production capacity to support clinical testing, this capacity is typically not sufficient to meet
demand once a drug is approved. The firms have to secure sufficient production capacity to
manufacture promptly to meet market demand upon the approval of the new drug, recover
from investments in research and development, and meet regulatory requirements if any. It
is of importance for firms to optimize the investments in acquiring production capacities on
time while keeping costs as low as possible. There are multiple sources of randomness at each
of the decision points in acquiring production capacity such as the outcome of the clinical
trial (hence, the new drug application), the approval date, demand quantity at product
launch, and the fluctuation of the prices of raw materials.

Traditionally, firms commit to building or acquiring production capacity early enough
in the trial process that they can ensure that capacity will be ready at the time that the
drug receives final approval. While firms do consult with their R&D group to assess the
likelihood of the drug receiving regulatory approval, these estimates are usually made when
the data from the on-going trial and the laboratory findings is limited, and are most often
not updated to improve their accuracy as more information is obtained.

1For a detailed and comprehensive reference on clinical trials see (Friedman et al. 2010).
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Of course, there is no guarantee that a new drug will pass all of the required phases
of clinical trials, and in fact most drugs fail to show effectiveness at Phase II and Phase
III of clinical studies. By committing to building or investing in a facility without the
appropriate level of evidence that a drug will pass the required clinical trials, and by not
updating this decision as information becomes available, the firm may be taking on excessive
capital investment risk.2 On the other hand, a firm has a limited window of exclusive sales
rights for any drug before generic drug-makers enter the market and drive down prices,
and this is typically the firm’s primary opportunity to recover enormous initial investment
costs. Under US patent law, for example, a firm has 20 years of exclusive rights to market
a new drug in the United States, where the 20 years starts at the beginning of Phase I
of the clinical studies. Thus, if the firm underestimates the likelihood of approval, it may
act too conservatively when making production capacity investment decisions, and thus be
unable to take full advantage of its limited window of exclusivity. Perhaps more importantly,
patients will suffer if the availability of safe and approved drugs is delayed. Indeed, for the
extreme case of life-saving orphan drugs, which are developed to treat diseases affecting
less than 200,000 people in the United States, the FDA can choose to prematurely allow
competition if the manufacturer is unable to provide a sufficient reliable supply of the drug
(see www.fda.gov for more details).

1.1 Investing in Production Capacity

Production capacity is the measure of the abilities and limitations of a network of pro-
duction resources. This include building manufacturing sites and equipment, and procuring
the necessary raw materials and supplies in order to produce the first batch of commercial
drug. We consider two different types of resources in determining the production capacity in
pharmaceutical manufacturing: generic production resources, and specialized facilities and
equipment. Due to the differences in availabilities of each resources types and the dynamics
of information the firm receives with respect to the underlying uncertainties, the investment
problems posted by these two resources type are very different from one another. We build
two separate dynamic optimization models to analyze the respective investment strategies.
Although, our focus here is on the investment decisions in introducing a new drug product
in the pharmaceutical industry, the models described in the following subsections can be
applied to the introduction of products which require specialized equipment to manufacture
and have a long research and development phase.

2In practice, firms usually have multiple pipeline products on clinical trials to hedge against this risk,
such that the new capacity built can be used by the next product in the pipeline in case their first drug fails.
However, in that case, the excess capacity may stay idle for a few years, and the manufacturing facilities
may need to be abandoned or require expensive retrofitting if the primary product for which they are being
built is not approved.
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1.1.1 Generic Production Resources

In biopharmaceutical manufacturing for example, due to the economies of scale in the
fermentation process, it is a common practice to use production campaigns when manu-
facturing active pharmaceutical ingredients (API). Firms produce in a single campaign to
satisfy the “yet-to-be-certain” annual or semi-annual demand of the drug. Therefore, the
procurement process for raw materials and supplies such as fetal bovine serum (widely used
as the growth medium in mammalian cell cultures), filters for purification (to harvest of
raw active drug ingredient), buffer solutions for filtration columns, etc. is of importance for
the launching of the new drug product to the market. Since they are widely available, the
leadtimes for acquiring these generic materials are generally short. Thus, drug makers can
wait until later in the on going clinical trial to achieve a higher confidence level in a suc-
cessful commercial launch of the new drug before committing to the purchase. However,
the spot prices of such materials fluctuate according to the market dynamics, so the firm
faces supply uncertainties on material costs. Together with the perishable nature and high
storage costs of the generic production resources, the procurement of such items resembles
the classical “newsvendor” problem, except that the firm can buy and sell the raw materials
at the respective spot markets before the launch date.

Spot market supply purchases are increasingly considered an important operational tool
for the firm facing the risk of higher than anticipated demand for goods (see, e.g., (Simchi-
Levi and Simchi-Levi 2008) and the references therein). For example, Hewlett-Packard
manages the risks associated with electronic component procurement by utilizing a portfolio
of long term and option contracts and the spot market (Billington 2002). Indeed, there
has been a recent stream of research focusing on determining an optimal mix of long term
fixed commitment and options/procurement contracts. In these models, the spot market
is typically employed if supply requirements exceed the contracted amount of the fixed
commitment contract, or if the spot price happens to be lower than the exercise price of the
procurement options.

We argue that if effectively utilized, the spot market can be used to hedge against much
more than just excess demand which is typically suggested in the literature. In many cases,
the spot market can be a powerful tool for hedging against both supply cost uncertainty
and demand price uncertainty in the supply chain, especially for pharmaceutical production
where raw materials are often expensive. To explore this concept, we develop a stylized
model of a firm that has a random period of random time3 to increase or decrease inventory
by purchasing or selling on the spot market before facing a single annual demand 4 of random
magnitude, the revenue of which is a function of the spot market price when the demand is
realized. We demonstrate that in many cases, the firm can use purchases and sales on the
supply spot market to increase expected profits(savings), and thus to guard against both
low prices for its products and high prices for its product components.

3The approval time of the new drug is a function of patients enrollment of the clinical trial and the
performance of the new drug at the clinical stage which is exogenous to the firm.

4We assume the manufacturer use the common batch production method in fermentation campaigns in
pharmaceutical manufacturing to take advantage of the economies of scale in terms of material yield.
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1.1.2 Specialized Facilities and Equipment

Production facilities and equipment are often tailored to a particular production tech-
nology; for instance, the fermentation tanks, filtration columns, storage bins, refrigerators,
pipelines and infrastructure of biopharmaceutical production facilities. Building and licens-
ing traditional commercial-scale production facilities and equipment can take 4-5 years and
cost up to $US 1 Billion. Due to the long lead times in acquiring the facility and equipment,
the firm has to make investment commitments early enough to ensure that capacity will be
ready at the time of commercial launch.

Recently, novel approaches to capacity expansion have become viable options – these
options typically take less time to ramp up, but are more expensive to build and/or to oper-
ate. For example, there is growing interest in one-time-use disposable tanks and mixers for
pharmaceutical production. These are typically pre-validated, pre-sterilized, and stocked by
vendors, which significantly reduces the lead time associated with acquiring usable capacity.
On the other hand, much of this equipment requires an expensive infrastructure, and has to,
by definition, be replaced each time it is used, significantly increasing operating costs.

We propose a more sophisticated approach to production capacity investments on facil-
ities and equipment, in which regular information updates are explicitly considered, might
be worthwhile. To do this, we consider a stylized model of a firm that potentially takes such
an atypically sophisticated approach. This firm frequently reviews the progress of ongoing
trials to update an estimate of the ultimate likelihood of the product being approved. As
additional results are observed, the quality of the estimate increases, and the firm can then
adjust investment decisions to minimize penalties and investment costs. In addition to deci-
sions related to whether or not to invest at specific times, the firm may consider alternative
production technologies for a given drug, some of which are more expensive but require less
time to build (thus improving information quality at higher cost), and some which are less
expensive but require more time to build (thus sacrificing information for cost).

Given this model, we explore a variety questions associated with the appropriate timing
and course of action when building or acquiring production capacity (for a new drug or
something similar). For example, when is the approach we model (with regular reevaluation
of capacity investment decisions as information is updated) worthwhile? If a firm has the
opportunity to start building a production facility at any time as clinical data is gathered,
when is the best time to build? If the firm can pause or abandon the project as additional
data is received, under what conditions should it do so? What are the circumstances under
which it makes sense to build more expensive capacity with a shorter lead time? Should a
firm ever start building one type of capacity, and then switch to building an alternative type
of capacity?

We characterize the optimal strategy under a variety of conditions, and then complete
a computational study to develop additional insights. We see, for example, that continual
adjustment of investment strategies is generally valuable, but particularly so when the quality
of preliminary data is relatively poor or when the planning horizon is relatively long. Given
the parameters of our computational study, for example, we see that regular reevaluation of
investment decisions as information is updates the reevaluation approach can save the firm
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up to 40% in expected construction cost and penalty costs. We also develop insights into
the impact of increasing construction cost, and into the value of the types of alternative
production technologies mentioned above.
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Chapter 2

Literature Review

2.1 Inventory Control with Market Price Risk

There is a long history of research focusing on inventory strategies when the cost of the
inventory is random, typically with the objective of minimizing inventory cost. (Kalymon
1971; Sethi and Cheng 1997; Cheng and Sethi 1999; Chen and Song 2001), for example,
considered versions of periodic review models where component costs (and sometimes other
problem parameters) are Markov-modulated, usually demonstrating the optimality of state
dependent base-stock or (s, S) policies. Under these policies, there exist inventory thresholds
such that it is optimal for manager to order up-to a preset inventory level S at every review
periods (base-stock policy), or when the current inventory level falls below a lower inventory
threshold s ((s, S) policy). Another stream of literature modeled deterministic demand and
characterized optimal policies, either in a periodic model with random raw material prices
(Golabi 1985; Berling 2008), increasing (Gavirneni and Morton 1999), or decreasing (Wang
2001) prices, or with one or two different levels of constant continuous time demand and
occasional supply price discounts (Moinzadeh 1997; Goh and Sharafali 2002; Chaouc 2006).

There are two major streams of research that consider the impact of a spot market on
supply chain operations; one of these focuses on contract valuation (see references in (Hak-
soz and Seshadri 2007)), and another considers optimal procurement from the spot market.
This latter category of work can be further subdivided into single and multi-period models.
(Seifert and Hausman 2004) considered a single period model where a supply contract is
signed at the start of the period, demand is realized, and then the buyer can either make
purchases on the spot market to meet demand, or salvage excess inventory. Optimal purchas-
ing quantities were determined for this setting. (Akella and Kleinknecht 2001) considered
a similar setting, and focused on reserving an appropriate capacity level to meet demand.
(Wu D. J. and Zhang 2002) studied a single period optimal procurement contract model
in the presence of a spot market, and (Golovachkina and Bradley 2003) considered a single
period model designed to determine how the spot market impacts supply chain coordination.
(Fu and Teo 2006) investigated a single period model in which the firm must first select from
a set of supply contracts, and then random demand is realized and the firm must meet that
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demand by utilizing either supply contracts or the spot market. Optimal contract selection
and utilization policies were characterized. In (Li and Kouvelis 1999), deterministic demand
must be met after a deterministic time period, but the firm has a contract to procure supply
on the spot market at some point before demand is realized, where spot market price is a
continuous random process. The optimal purchase time was derived numerically. (Yi and
Scheller-Wolf 2003) considered a discrete time multi-period model in which the firm can
either buy at a fixed price from a long-term supplier or buy from a spot market incurring
variable purchasing cost and a fixed cost of using the spot market, and characterized the
optimal purchasing policy. In (Cohen and Agrawal 1999), an optimal long term contract was
compared to utilizing the spot market for a series of periods, where each period was essen-
tially an independent news-vendor problem. (Martinez-de Albeniz and Simchi-Levi 2005)
proposed a multi-period model in which a portfolio of supply contracts must be selected
at the start of the horizon, and then in each period after demand is realized and the spot
market price is observed, the decision to utilized contracts or buy on the spot market to
meet demand must be made.

Other than the few exceptions noted above, these papers modeled the spot market with
a single spot market price or a discretely realized series of spot market prices, and typically
allowed one opportunity to buy or sell on the spot market following each demand realization.

2.2 Capacity Expansion

Models intended to determine when, how much and what kind of production capacity
to build can be found in the literature as early as the 1960’s. (Luss 1982; Van Mieghem
2003) provide comprehensive surveys of the capacity expansion literature. By assuming a
deterministic growth rate of product demand, early work by (Sinden 1960; Erlenkotter 1977;
Smith 1979), models production capacity as a type of inventory and approach the problem
with Economic Order Quantity-like techniques in an infinite horizon setting.

Stochastic demand was introduced to the capacity expansion literature by (Manne 1961).
By assuming steady state demand growth and no lead time for building capacity, this paper
(as well as those by subsequent authors such as (Bean et al. 1992)) develops determinis-
tic equivalents to the stochastic models. Explicit consideration of lead times significantly
increases complexity of these models. (Elsanosi et al. 2000) and (Ryan 2004) use optimal
stopping time models with appropriate adjustments to model the setting in which there is
a lead time between when a capacity expansion decision is made and when the capacity is
available in a stochastic setting. (Davis et al. 1987) utilize a stochastic control model, where
the firm continuously controls the amount to invest in building capacity to meet stochastic
demand with random lead time.

In contrast to most of the traditional stochastic capacity expansion literature, our goal
is to model the likelihood of a successful clinical trial, rather than demand, as the primary
source of randomness, as we discuss in Chapter 4. In addition, since the quality of the
estimate of the likelihood of approval increases over time, a stationary model does not capture
the salient features of our problem. Indeed, this is also the key difference between our model
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and traditional real options analysis, a class of models that analyze and evaluate capital
investment projects. Real options analysis often uses stochastic control techniques developed
in the financial options literature, which also assume stationary stochastic processes. (Dixit
and Pindyck 2004; Trigeorgis 1996) offer extensive outlines of this topic.

The multi-armed bandit problem originally introduced by (Robbins 1952) is often used
to model the choice among the bets with unknown odds to maximize profits or among
R&D projects with known success rates to maximize potential returns. In this setting,
the firm must sequentially select among several experiment types, each with an unknown
probability of success, with the long run goal of maximizing the number of successes. After
each experiment, the firm updates its estimate of the success rate of that experiment type.
Although the Bayesian update of the unknown parameters of the multi-armed bandit models
captures the notion of updating key estimates used to select investments, these bandit models
generally do not capture the complexities inherent in ensuring that capacity is ready for
commercial launch of the product.

The inventory models described in (Scarf 1959; Azoury 1985; Lariviere and Porteus
1999) also use Bayesian learning to model the progressive improvement over time of the
decision maker’s knowledge of the underlying stochastic demand. In these discrete time
models, the demand in each period is modeled by an independent and identically distributed
random variable with unknown parameters. By assuming a class of continuous distributions
with known conjugate prior, such as the “newsvendor distributions” described in (Braden
and Freimer 1991), the decision maker in these models progressively updates the posterior
distribution of the unknown parameters using the observed demand in each period, and then
uses this information to optimize the inventory strategy to maximize profit over the planning
horizon. Although we are also concerned with updating an estimate over time in order to
ensure that demand can be met, the nature of the investment risk described in our capacity
investment problem is very different than that of the inventory models. In contrast to the
setting in those papers, our goal is to build a model which explicitly considers the multiple
investments over time necessary to acquire production capacity, and “all-or-nothing” demand
depending on the success of the clinical trial.

In Chapter 4, we develop a stochastic process which models change in the firm’s estimate
of the likelihood of a successful commercial launch of the new drug as the clinical trial
progresses. We also model the decision process of building the initial production capacity.
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Chapter 3

Investing in Generic Production
Resources – Optimal Spot Market
Inventory Strategies in the Presence
of Cost and Price Risk

3.1 Introduction

We consider a continuous time model of spot market price evolution, and determine
how the firm can buy and sell in the spot market repeatedly in order to guard against both
supply cost uncertainty of raw materials. Specifically, we model the inventory level of the
firm at time t, Yt, with a pair of controls (ξ+

t , ξ
−
t ) so that Yt = Y0 + ξ+

t − ξ−t . Here ξ+
t

and ξ−t are non-decreasing processes and they represent the cumulative buying and selling
quantities at the spot market up to time t respectively. In case of a shortage of any of the
required generic production resources at the start of production, time τ , the firm will make
additional purchases at the spot market price. We further assume the firm uses an internal
cost accounting method, such that it is equivalent to consider the revenue maximization
problem where the procurement department is maximizing the profit from selling the raw
materials to the manufacturing division of the firm at market price at time τ . We assume
that the price of each unit of inventory is stochastic and modeled by a Brownian motion.
We assume that the approval time of the new drug, and the demand starting at that time,
are random. The revenue associated with the demand is assumed to be a function of the
amount of that demand and the spot market price at the time when the demand arrives. In
addition to the running holding cost, there are costs whenever inventory level is increased
or decreased by selling or buying at the spot market: this adjustment cost is a function of
the spot price and the amount of the adjustment, plus a proportional transaction cost. Note
that this cost can be negative when selling inventory. Given this cost structure, the goal
is to maximize expected discounted profit over an infinite time horizon. To facilitate our
analysis, we assume no fixed cost and focus on explicitly characterizing the optimal policy.
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In particular, we show that the optimal inventory policy depends on both the spot price
and inventory level, and that it is in principle a simple and not necessarily continuous (F,G)
policy. Given a spot price p and inventory level z, if (p, z) falls between (F (z), G(z)), no
action is taken; if (p, z) falls above F (z) (below G(z)), the inventory level is reduced to F (z)
(raised to G(z)).

Our model is closely related to a stream of research (Bather 1966; Archibald 1981;
Constantinides and Richard 1978; Harrison and Taksar 1983; Harrison et al. 1983; Taksar
1985; Sulem 1986; Ormeci and Vate 2008) focusing on continuous time inventory models
via impulse controls (i.e. with a fixed cost) or singular controls (i.e. without a fixed cost)
formulation. Most of these papers (with the exception of (Archibald 1981) where the demand
process is Poisson) considered a one product inventory model where the inventory level is a
controlled Brownian motion. That is, the inventory level without intervention was modeled
by a Brownian motion, and the continuous adjustment of the inventory level was assumed
additive to the Brownian motion and with a linear cost plus a possibly fixed cost. Subject
to an additional holding cost and shortage penalty, the objective in these papers was to
minimize either the expected discounted cost or the average cost (Bather 1966; Ormeci and
Vate 2008) over an infinite time horizon. Except for (Taksar 1985; Ormeci and Vate 2008),
most of the models assumed no constraints on the inventory level besides restricting it to
the positive real line. Assuming a fixed cost, (Constantinides and Richard 1978) proved the
existence of an optimal (d,D, U, u) policy for this system: do nothing when inventory is in
the region of (d, u), and adjust the inventory level to D (or U) whenever the inventory level
falls to d (or rises to u). This optimal policy and the solution structure were more explicitly
characterized under various scenarios in (Harrison and Taksar 1983; Harrison et al. 1983;
Taksar 1985; Sulem 1986; Ormeci and Vate 2008).

The main contribution of our model is best discussed in light of several crucial elements
underlying all previous control-theoretic inventory analysis. First, the price of the inventory
was typically assumed to be constant so that the cost of the inventory control was linear.
Secondly, the inventory control was usually additive to a Brownian motion, and as a result
the inventory level was either unconstrained on the positive real line, or an infinite penalty
cost was needed to ensure an upper bound on the inventory level (Taksar 1985; Ormeci and
Vate 2008). These two characteristics ensured the control problem to be one-dimensional, to
facilitate the analysis of the value function. The solution approach was to apply the Dynamic
Programming Principle and to solve some form of Hamilton-Jacobi-Bellman equations or
Quasi-Variational-Inequalities, with a priori assumptions on the regularity conditions.

In contrast, in our model, the adjustment cost is no longer linear and depends on the
spot price, the transaction cost, and the amount of adjustment, and the inventory control
variable is modeled directly, and is no longer necessarily additive to the underlying Brownian
motion process. Thus, lower and upper bounds on the inventory level (that is, capacity
constraints) are modeled directly. This approach to modeling capacity constraints has an
additional advantage – it can be easily extended to more complex constraints on inventory
levels without further technical difficulty. In essence, the introduction of price dynamics
leads to a higher dimensional singular control problem for which previous analysis cannot be
directly generalized. The derivation in this model is thus based on a new solution approach,
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which allows us to bypass the possible non-regularity of the value functions. The key idea
is to break down the two-dimensional control problem by “slicing” it into pieces of one-
dimensional problem, which is an explicitly solvable two-state switching problem, and to
show that this re-parametrization is valid by the notion of “consistency” established in (Guo
and Tomecek 2008). (For more details, see the discussion section 3.5).

In the next section, we formally introduce our model. In Section 3.4, we translate
the problem into an equivalent singular control problem and develop explicit analytical
expressions for the optimal policy for this model. In Section 3.6, we computationally explore
some of the implications of our results.

3.2 The Model

We consider a firm that purchases supply from a spot market in which the price of
the supply component fluctuates over time. At a random time τ , the firm faces a random
customer demand D. The firm meets demand if possible (we assume one supply component
meets one unit of demand), charging an exogenously determined price that is a function
of the spot market component price, and then salvages any excess inventory. At any time
t ∈ [0, τ), the firm can instantaneously increase inventory of the component up to some
upper bound on capacity b ≤ ∞ or instantaneously decrease inventory down to some lower
bound on inventory a ≥ 0. However, the firm cannot buy inventory of the component to
satisfy demand at time τ , and the firm can only buy inventory a finite number of times in a
finite interval. Net gain at time τ is from selling to arriving customers and liquidating excess
inventory minus penalty associated with not meeting demand, and thus is a function of the
selling price and the inventory level at time τ , and the demand distribution. Moreover, at
any time t ∈ [0, τ), inventory increase is associated with the purchase price of per unit at
the supply spot market price Pt, plus possibly additional proportional transaction cost K+.
Similarly, inventory reduction is associated with the spot market price Pt, minus possibly
additional proportional transaction cost K−. Finally, there is a running holding cost for each
unit of inventory Ch.

To capture this scenario in mathematical terms, we start with a complete and filtered
probability space (Ω,F ,P), and assume that the arrival time of the request, τ , is exponen-
tially distribution with rate λ (so that the average arrival time is 1/λ). D, the random
variable representing the demand at time τ is described by distribution function FD. Mean-
while, the component spot market price (Pt)t≥0 is stochastic and its dynamics are governed
by a geometric Brownian motion such that 1

dPt = Pt(µdt+
√

2σdWt), P0 = p. (3.1)

Here Wt is the standard Brownian motion on the probability space (Ω,F ,P), and µ and σ
represent respectively the expected spot market price appreciation and the potential price
risk. We express the net gain at request time τ by H(Yτ , D)Pτ , where H(Yτ , D) represents

1The extra term
√

2 is for notational convenience in the main text.
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the revenue multiplier associated with selling each unit of the inventory, as well as a penalty
associated with each unit of unmet demand and salvage associated with each unit of excess
inventory. Specifically,

H(y,D) = αmin(D, y) + αo(y −D)+ − αu(D − y)+, (3.2)

where α ≥ 1 is the mark-up multiplier for each unit of met demand, αu ≥ 0 is the penalty
price multiplier for each unit the firm is short, and 0 ≤ αo ≤ 1 is the fraction of price the
firm is able to get by salvaging excess inventory.

To define admissible inventory policies, we specify the filtration F representing the in-
formation on which inventory decisions are based. Given λ and the distribution of D, it
is clear that F = (Ft)t≥0 is the filtration generated by Pt. Given F, we define a pair of
left-continuous with right limit, adapted, and non-decreasing processes ξ+

t and ξ−t to be the
cumulative increases and decreases in supply inventory (purchases and sales, respectively)
up to time t. Therefore, Yt, the inventory level at time t ∈ [0, τ), is given by

Yt = y + ξ+
t − ξ−t , (3.3)

where y is the initial inventory amount.

To be consistent with the restriction that the firm can only purchase supply inventory
on the spot market a finite number of times in a finite interval, Yt is assumed to be a finite
variation process. Meanwhile, for uniqueness of expression (3.3), (ξ+, ξ−) are supported
on disjoint sets. Furthermore, ξ+ and ξ− are adapted to F implying that the firm is not
clairvoyant. Y is left-continuous, capturing the restriction that the commodity cannot be
purchased at time τ to satisfy demand. Also, note that given the upper and lower bounds
on capacity discussed above, there exists 0 ≤ a < b ≤ ∞ 2 such that an admissible control
policy must satisfy Yt ∈ [a, b] for all t ≤ τ . Finally, for well-posedness of the problem, we
assume E

[∫∞
0
e−ρtdξ+

t +
∫∞

0
e−ρtdξ−t

]
<∞.

To account for the time value between [0, τ ], we define r ≥ 0 to be a discount rate.
Thus, at time t ∈ [0, τ), increases in the inventory incur a cost −e−rt(Pt +K+)dξ+

t per unit,
and decreases in the inventory generate revenue e−rt(Pt − K−)dξ−t per unit. In addition,
assuming a running holding cost Ch for each unit of inventory, the holding cost between
(t, t+ dt) ⊂ [0, τ) is e−rtChYtdt.

Given this setting and any admissible control policy (ξ+, ξ−), the expected return to the
firm is:

J(p, y; ξ+, ξ−) = payoff at transaction time τ − running holding cost between [0, τ ]

− cost of inventory control (via buying and selling) between [0, τ ]

= E
[
e−rτH(Yτ , D)Pτ −

∫ τ

0

e−rtChYtdt

−
∫ τ

0

e−rt(Pt +K+)dξ+
t +

∫ τ

0

e−rt(Pt −K−)dξ−t

]
.

2Although the general result applies to the, here, we can indeed consider a = 0 and b <∞, where b is the
physical constraint on the storage space of the production facility which we will consider in the next chapter.
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Assuming that τ is independent of F and D is independent of both τ and F, a simple and
standard conditioning argument gives an equivalent form of this expected return:

J(p, y; ξ+, ξ−) =E
[
e−rτH(Yτ , D)Pτ −

∫ τ

0

e−rtChYtdt

−
∫ τ

0

e−rt(Pt +K+)dξ+
t +

∫ τ

0

e−rt(Pt −K−)dξ−t

]
=E

[∫ ∞
0

λe−(r+λ)tH(Yt, D)Ptdt−
∫ ∞

0

e−(r+λ)tChYtdt

−
∫ ∞

0

e−(r+λ)t(Pt +K+)dξ+
t +

∫ τ

0

e−(r+λ)t(Pt −K−)dξ−t

]
. (3.4)

3.3 The Optimization Problem

The firm’s goal is to manage inventory in order to maximize the expected discounted
value over all possible admissible control policies (ξ+, ξ−). In other words, the firm must
solve the following optimization problem:

W (p, y) = sup
(ξ+,ξ−)∈A′y

J(p, y; ξ+, ξ−), (3.5)

subject to

Yt := y + ξ+
t − ξ−t ∈ [a, b], y ∈ [a, b],

dPt := µPtdt+
√

2σPtdWt, P0 := p > 0,

Ch ∈ R, K+ +K− > 0; (3.6)

A′y :=
{

(ξ+, ξ−) : ξ± are left continuous, non-decreasing processes,

y + ξ+
t − ξ−t ∈ [a, b], ξ±0 = 0;

E
[∫ ∞

0

e−ρtdξ+
t +

∫ ∞
0

e−ρtdξ−t

]
<∞;

E
[∫ ∞

0

e−ρtPtdξ
+
t +

∫ ∞
0

e−ρtPtdξ
−
t

]
<∞.} (3.7)

A few remarks about this formulation: First, we assume that r + λ > µ to ensure the
finiteness of the value function. Secondly, to avoid an arbitrage opportunity in the market,
we assume that K+ + K− > 0. In addition, we assume without loss of generality that
K+ > 0, and consider only a bounded inventory level. Finally, for ease of exposition, we fix
without loss of generality a = 0, thus H(0, D)=0.

Summarizing, we impose the following standing assumptions:

Assumption 3.3.1 ρ := r + λ > µ.
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Assumption 3.3.2 K+ > 0.

Assumption 3.3.3 a = 0 and [0, b] is bounded.

To simplify subsequent notation, we define m < 0 < 1 < n to be the roots of σ2x2 + (µ −
σ2)x− ρ = 0, so that

m,n =
−(µ− σ2)±

√
(µ− σ2)2 + 4σ2ρ

2σ2
. (3.8)

Finally, from the identity ρ = −σ2mn, we define a useful quantity η such that

η :=
1

ρ− µ
=

−mn
(n− 1)(1−m)ρ

=
1

σ2(n− 1)(1−m)
> 0. (3.9)

3.4 Solutions

3.4.1 An Equivalent Problem V (p, y)

Assuming that τ is independent of F and that D is independent of both τ and F, the
one period optimization problem in the previous section is in fact equivalent to the following
singular control problem over an infinite time horizon.

Theorem 3.4.1 Assume that τ is independent of (Wt)t≥0, and D is independent of both τ
and (Wt)t≥0. The value function W (·, ·) in Eq. (3.5) satisfies

W (p, y) = (−Ch
ρ

+ p)y + V (p, y). (3.10)

where V (·, ·) is the value function for the following optimization problem

V (p, y) = sup
(ξ+,ξ−)∈Ay

E
[∫ ∞

0

e−ρtH̃(Yt)Ptdt− (K+ +
Ch
ρ

)

∫ ∞
0

e−ρtdξ+
t

−(K− − Ch
ρ

)

∫ ∞
0

e−ρtdξ−t

]
, (3.11)

with

H̃(y) = λE[H(y,D)]− (ρ− µ)y

= λ(α + αu − αo)
[
y(1− FD(y))−

∫ ∞
y

zfD(z)dz

]
+λ(α− αo)E[D] + (λα0 + µ− r − λ)y; (3.12)

Yt = y + ξ+
t − ξ−t ∈ [0, b], y ∈ [0, b]; (3.13)
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dPt = µPtdt+
√

2σPtdWt, P0 = p > 0; (3.14)

Ch ∈ R, K+ +K− > 0; (3.15)

Ay =
{

(ξ+, ξ−) : ξ± are left continuous, non-decreasing processes,

y + ξ+
t − ξ−t ∈ [0, b], ξ±0 = 0;

E
[∫ ∞

0

e−ρtdξ+
t +

∫ ∞
0

e−ρtdξ−t

]
<∞.} (3.16)

This equivalence statement suggests that the incorporation of the dynamics of the price
process leads to a two-dimension singular control problem formulation with a state space
(p, y), and generalizes the one-dimensional singular control problem studied extensively in
(Harrison and Taksar 1983).

3.4.2 Preliminary Analysis

Proposition 3.4.2 (Finiteness of Value Function) V (p, y) ≤ ηMp + Ch
ρ
b, where M =

supy∈[0,b] |H̃(y)| <∞.

Lemma 3.4.3 H̃(y) is concave y for ANY distribution of FD with finite expectation. In
particular,

H̃(y2)− H̃(y1) =

∫ y2

y1

h̃(z)dz

with h̃(y) decreasing in y, and

h̃(y) := λ[(α + αu − αo)[1− FD(y)] + λαo + µ− ρ. (3.17)

Furthermore,

E
[∫ ∞

0

|e−ρtH̃(Yt)Pt|dt
]
<∞, E

[∫ ∞
0

|e−ρth̃(Yt)|dt
]
<∞.

It is worth mentioning that intuitively, function H̃(·) captures the ultimate potential
benefit of carrying inventory over time and its derivative h̃(y) represents the impact on
business of increasing or decreasing inventory levels. We shall see that this h̃(·) is a key
quantity for characterizing optimal policies.

3.4.3 Solving V (p, y)

Now, we solve V (p, y) explicitly. Our solution approach relies on the following critical
lemma connecting the value function of the singular control problem and that of a switching
control problem ((Guo and Tomecek 2008) [Theorem 3.7]). (For related background, see the
Appendix).
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Step 1: Singular control → switching control

Lemma 3.4.4 The value function in problem (3.11) is given by

V (p, y) =

∫ y

0

v1(p, z)dz +

∫ b

y

v0(p, z)dz, (3.18)

where v0 and v1 are solutions to the following optimal switching problems

vk(p, z) := sup
α∈B
κ0=k

E

[∫ ∞
0

e−ρt
[
h̃(z)Pt

]
Itdt−

∞∑
n=1

e−ρτnKκn

]
, (3.19)

provided that the corresponding optimal switching controls are consistent (per definition in
the Appendix) and the resulting singular control is integrable. Here, α = (τn, κn)n≥0 is
an admissible two-state switching control, B is the subset of admissible switching controls
α = (τn, κn)n≥0 such that E [

∑∞
n=1 e

−ρτn ] < ∞}, with κ0 = K− − Ch
ρ
, κ1 = K+ + Ch

ρ
, and It

the regime indicator function for any given α ∈ B. A singular control (ξ+, ξ−) is integrable
if

E
[∫ ∞

0

e−ρt|H̃(Yt)Pt|dt+

∫
[0,∞)

e−ρt|K+|dξ+
t +

∫
[0,∞)

e−ρt|K−|dξ−t
]
<∞. (3.20)

The detailed proof of this lemma can be found in (Guo and Tomecek 2008). Meanwhile, this
lemma enables us to translate our original control problem to a two-state switching control
problem between two regimes 0 and 1: for a given inventory level z, switching from state 0 to
1 corresponds to inventory increase and switching from state 1 to 0 corresponds to inventory
decrease. The cost for inventory increase and decrease is given by K+ + Ch

ρ
and −K− + Ch

ρ

respectively, and the benefit of being at state 1 is accumulated at rate h̃(y). Furthermore, if
there exists a consistent collection of switching controls so that the resulting singular control
is integrable, then we have

V (p, y) =

∫ b

y

v0(p, z)dz +

∫ y

0

v1(p, z)dz.

where v0 and v1 are the corresponding value functions for switching controls. Moreover,
explcit solution to v0 and v1 can be described analytically according to (Ly Vath and Pham
2007).

Step 2: Solving switching controls and v0, v1

Proposition 3.4.5 v0 and v1 are the unique C1 viscosity solutions with linear growth con-
dition to the following system of variational inequalities:

min

{
−Lv0(p, z), v0(p, z)− v1(p, z) +K+ +

Ch
ρ

}
= 0, (3.21)
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min

{
−Lv1(p, z)− h̃(z)p, v1(p, z)− v0(p, z) +K− − Ch

ρ

}
= 0, (3.22)

with boundary conditions v0(0+, z) = 0 and v1(0+, z) = max{−K−+ Ch
ρ
, 0}. Here Lu(p, z) =

σ2upp(p, z) + µup(p, z)− ρu(p, z).

To solve for v0, v1, we see by modifying the argument in (Ly Vath and Pham 2007,
Theorem 3.1) that for any given z ∈ [0, b] and k ∈ {0, 1}, an optimal switching control exists
and can be described in terms of switching regions: there exist 0 < F (z) < G(z) <∞ such
that it is optimal to switch from regime 0 to regime 1 (to increase the inventory at level z)
when Pt ∈ [G(z),∞), and to switch from regime 1 to regime 0 (decrease the inventory at
level z) when Pt ∈ [0, F (z)]. Furthermore, based on (Ly Vath and Pham 2007, Theorem
4.2), we see that for each z ∈ [0, b], the switching regions are described in terms of F (z) and
G(z), which take values in (0,∞] and can be explicitly derived as follows.

Case I: K− − Ch
ρ
≥ 0. First, for each z ∈ [0, b] such that h̃(z) = 0, it is never optimal

to do anything, so we take F (z) =∞ = G(z), and v0(p, z) = 0 = v1(p, z).

Secondly, for z such that h̃(z) > 0, G(z) <∞ and it is optimal to switch from regime 0
to regime 1 (to increase the inventory at level z) when Pt ∈ [G(z),∞). Since K− − Ch

ρ
≥ 0,

it is never optimal to switch from regime 1 to regime 0 (i.e. F (z) = ∞). Furthermore, we
have

v0(p, z) =

{
A(z)pn, p < G(z),

ηh̃(z)p− (K+ + Ch
ρ

), p ≥ G(z),

v1(p, z) = ηh̃(z)p.

Since v0 is C1 at G(z), we get{
A(z)G(z)n = ηh̃(z)G(z)− (K+ + Ch

ρ
),

nA(z)G(z)n−1 = ηh̃(z).

That is,  G(z) = ν
h̃(z)

,

A(z) =
K++

Ch
ρ

(n−1)
G(z)−n =

K++
Ch
ρ

(n−1)
ν−nh̃(z)n,

where ν = (K+ + Ch
ρ

)σ2n(1−m).

Finally, when h̃(z) < 0, it is optimal to switch from regime 1 to regime 0 (reduce
inventory at level z) when Pt ∈ [F (z),∞). Since K+ + Ch

ρ
> 0, it is never optimal to switch

from regime 0 to regime 1 (i.e. G(z) = ∞). The derivation of the value function proceeds
analogously to the derivation for the case of h̃(z) > 0.

Case II: K− − Ch
ρ
< 0.
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First of all, for each z ∈ [0, b] such that h̃(z) ≤ 0, it is always optimal to reduce the
inventory because K−− Ch

ρ
< 0. That is, F (z) =∞ = G(z). In this case, clearly v0(p, z) = 0

and v1(p, z) = −K− + Ch
ρ

.

Next, for each z ∈ [0, b] such that h̃(z) > 0, it is optimal to switch from regime 0 to
regime 1 (i.e. to increase in the inventory at level z) when Pt ∈ [G(z),∞), and to switch
from regime 1 to regime 0 (i.e. to decrease in the inventory at level z) when Pt ∈ (0, F (z)],
where 0 < F (z) < G(z) <∞.

Moreover, v0 and v1 are given by

v0(p, z) =

{
A(z)pn, p < G(z),

B(z)pm + ηxh̃(z)− (K+ + Ch
ρ

), p ≥ G(z),

v1(p, z) =

{
A(z)pn − (K− − Ch

ρ
), p ≤ F (z),

B(z)pm + ηph̃(z), p > F (z).

Smoothness of V (p, z) at p = G(z) and p = F (z) leads to
A(z)G(z)n = B(z)G(z)m + ηG(z)h̃(z)− (K+ + Ch

ρ
),

nA(z)G(z)n−1 = mB(z)G(z)m−1 + ηh̃(z),

A(z)F (z)n = B(z)F (z)m + ηF (z)h̃(z) + (K− − Ch
ρ

),

nA(z)F (z)n−1 = mB(z)F (z)m−1 + ηh̃(z).

(3.23)

Eliminating A(z) and B(z) from (3.23) yields{
(K+ + Ch

ρ
)G(z)−m + (K− − Ch

ρ
)F (z)−m = −m

(1−m)ρ
h̃(z)(G(z)1−m − F (z)1−m),

(K+ + Ch
ρ

)G(z)−n + (K− − Ch
ρ

)F (z)−n = n
(n−1)ρ

h̃(z)(G(z)1−n − F (z)1−n).
(3.24)

Since the viscosity solutions to the variational inequalities are unique and C1, for every
z there is a unique solution F (z) < G(z) to (3.24). Let κ(z) = F (z)h̃(z), ν(z) = G(z)h̃(z),
then the following system of equations for κ(z) and ν(z) is guaranteed to have a unique
solution for each z:{

(K+ + Ch
ρ

)ν(z)−m + (K− − Ch
ρ

)κ(z)−m = −m
(1−m)ρ

(ν(z)1−m − κ(z)1−m),

(K+ + Ch
ρ

)ν(z)−n + (K− − Ch
ρ

)κ(z)−n = n
(n−1)ρ

(ν(z)1−n − κ(z)1−n).

Moreover, these equations depend on z only through ν(z) and κ(z), implying that there
exist unique constants κ, ν such that κ(z) ≡ κ and ν(z) ≡ ν for all z. Hence F (z) =
κh̃(z)−1, G(z) = νh̃(z)−1, with κ < ν being the unique solutions to

1
1−m [ν1−m − κ1−m] = − ρ

m

[
(K+ + Ch

ρ
)ν−m + (K− − Ch

ρ
)κ−m

]
,

1
n−1

[ν1−n − κ1−n] = ρ
n

[
(K+ + Ch

ρ
)ν−n + (K− − Ch

ρ
)κ−n

]
.

Given F (z) and G(z), A(z) and B(z) are solved from Eq. (3.23), B(z) = −G(z)−m

n−m

(
G(z)h̃(z)
σ2(1−m)

− n(K+ + Ch
ρ

)
)

= −F (z)−m

n−m

(
F (z)h̃(z)
σ2(1−m)

+ n(K− − Ch
ρ

)
)
,

A(z) = G(z)−n

n−m

(
G(z)h̃(z)
σ2(n−1)

+m(K+ + Ch
ρ

)
)

= F (z)−n

n−m

(
F (z)h̃(z)
σ2(n−1)

−m(K− − Ch
ρ

)
)
.
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Step 3: Establishing the optimal control

According to Lemma 3.4.4, it suffices to check the consistency of the switching control
and the integrability of the corresponding singular control.

First, given the solution to the switching problems, clearly the optimal switching control
for any level z ∈ (0, b) is given by the following:

Case I: For z ∈ (0, b) and p > 0, let F and G be as given in for Case I. The switching control
α̂k(p, z) = (τ̂n(p, z), κ̂n(z))n≥0, starting from τ̂0(p, z) = 0 and κ̂0(z) = k is given by, for
n ≥ 1

– If k = 0, τ̂1(p, z) = inf{t > 0 : Pt ∈ [G(z),∞)} and for n ≥ 2, τ̂n(z) =∞,

– If k = 1, τ̂1(p, z) = inf{t > 0 : Pt ∈ [F (z),∞)} and for n ≥ 2, τ̂n(z) =∞.

Case II: For z ∈ (0, b) and p > 0, F and G as given for case II. The switching control α̂k(p, z) =
(τ̂n(p, z), κ̂n(z))n≥0, starting from τ̂0(p, z) = 0 and κ̂0(z) = k is given by, for n ≥ 1

– If κ̂n−1(z) = 0, τ̂n(p, z) = inf{t > τn−1 : Xx
t ∈ [G(z),∞)}, κ̂n(z) = 1.

– If κ̂n−1(z) = 1, τ̂n(p, z) = inf{t > τn−1 : Xx
t ∈ (0, F (z)]}, κ̂n(z) = 0,

Now, define the collection of admissible switching controls (α̂(p, z))z∈(0,b) so that α̂(p, z) =
α̂0(p, z) for z > y and α̂(p, z) = α̂1(p, z) for z ≤ y. Then,

Proposition 3.4.6 The collection of switching controls (α̂(p, z))z∈(0,b) is consistent.

Next, this consistent collection of optimal switching control corresponds to an admissible
singular control (ξ̂+, ξ̂−) ∈ Ay in the following way according to (Guo and Tomecek 2008).

Lemma 3.4.7 (From Switching Controls to Singular Controls) Given y ∈ (0, b) and
a consistent collection of switching controls (α̂(z))z∈I, define two processes ξ̂+ and ξ̂− by
setting ξ̂+

0 = 0, ξ̂−0 = 0, and for t > 0: ξ̂+
t :=

∫
I I

+
t (z)dz, ξ̂−t :=

∫
I I
−
t (z)dz. Then

1. The pair (ξ̂+, ξ̂−) ∈ Ay is an admissible singular control,

2. For all t, we almost surely have

Ŷt = ess sup{z ∈ I : It(z) = 1} = ess inf{z ∈ I : It(z) = 0},

where ess sup ∅ := inf I and ess inf ∅ := sup I.

Moreover,

Proposition 3.4.8 The corresponding admissible singular control (ξ̂+, ξ̂−) ∈ Ay is inte-
grable.
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Step 4. Solution

Combining these results, we see that the ordering region is given by {(p, z) : p ≥ G(z)}
and the downsizing region by {(p, z) : p ≤ F (z)}. It is optimal to take no action in the
continuation region, given by {(p, z) : F (z) < x < G(z)}. If (p, y) is in the ordering
(or downsizing) region, then a jump is exerted at time zero to make Ŷ0+ = G−1(p) (or
Ŷ0+ = F−1(p)).

Finally, by (Guo and Tomecek 2008, Theorem 3.10), we have

V (p, y) =

∫ b

y

v0(p, z)dz +

∫ y

0

v1(p, z)dz,

with

v0(p, z) =

{
A(z)pn, p < G(z),

B(z)pm + ηh̃(z)p−K+ − Ch
ρ
, p ≥ G(z),

v1(p, z) =

{
A(z)pn −K− + Ch

ρ
, p ≤ F (z),

B(z)pm + ηh̃(z)p, p > F (z).

3.4.4 Main Result

In summary, we see that the optimal value function is characterized below for two
distinct cases. In the first, K− − Ch

ρ
≥ 0, implying that the proportional loss incurred upon

selling inventory is greater than the gain from reduced future holding cost. In the second,
K− − Ch

ρ
< 0, implying that reducing holding cost dominates the transaction cost.

Theorem 3.4.9 [Optimal value function for K− − Ch
ρ
≥ 0]

V (p, y) =

∫ y

0

v1(p, z)dz +

∫ b

y

v0(p, z)dz, (3.25)

where v0 and v1 are given by

1. For each z ∈ [0, b] such that h̃(z) = 0 : v0(p, z) = v1(p, z) = 0.

2. For each z ∈ [0, b] such that h̃(z) > 0: v0(p, z) =

{
A(z)pn, p < G(z),

ηh̃(z)p−K+ − Ch
ρ
, p ≥ G(z),

v1(p, z) = ηh̃(z)p,

where G(z) = ν
h̃(z)

, and A(z) =
K++

Ch
ρ

(n−1)
G−n(z), with ν = (K+ + Ch

ρ
)σ2n(1−m).
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3. For each z ∈ [0, b] such that h̃(z) < 0:
v0(p, z) = 0,

v1(p, z) =

{
B(z)pn + ηh̃(z)p, p < F (z),
−K− + Ch

ρ
, p ≥ F (z),

where F (z) = − κ
h̃(z)

, and B(z) =
K−−Ch

ρ

(n−1)
κ−nF−n(z), with κ = (K− − Ch

ρ
)σ2n(1−m).

0

z

p

F(z)

G(z)

b

h(z) < 0

h(z) = 0

h(z) > 0

Figure 3.1 Policy when K− − Ch
ρ
≥ 0, with F (z) = − κ

h̃(z)
and G(z) = ν

h̃(z)
.

a b
z

G  (p) F  (p)
−1 −1

Optimal Policy

Figure 3.2 Illustration of the two-threshold order policy for fixed price p when K−− Ch
ρ
≥ 0.

Theorem 3.4.10 [Optimal value function for K− − Ch
ρ
< 0]

V (p, y) =

∫ y

0

v1(p, z)dz +

∫ b

y

v0(p, z)dz, (3.26)

where v0 and v1 are given by

1. For each z ∈ [0, b] such that h̃(z) ≤ 0: v0(p, z) = 0, v1(p, z) = −K− + Ch
ρ

.
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G(z)

b

a

h(z) <=0

h(z) > 0

0 p

z

F(z)

Figure 3.3 Policy when K− − Ch
ρ
< 0.

a b
zOptimal Policy

F  (p)
−1

Figure 3.4 Illustration of the one-threshold order policy for fixed (low) price p and when
K− − Ch

ρ
< 0.

2. For each z ∈ [0, b] such that h̃(z) > 0 :

v0(p, z) =

{
A(z)pn, p < G(z),

B(z)pm + ηh̃(z)p−K+ − Ch
ρ
, p ≥ G(z),

(3.27)

v1(p, z) =

{
A(z)pn −K− + Ch

ρ
, p ≤ F (z),

B(z)pm + ηh̃(z)p, p > F (z).
(3.28)

Here

A(z) =
h̃(z)n

(n−m)νn

(
ν

σ2(n− 1)
+m(K+ +

Ch
ρ

)

)
(3.29)

B(z) =
−h̃(z)m

(n−m)νm

(
ν

σ2(1−m)
− n(K+ +

Ch
ρ

)

)
. (3.30)

The functions F and G are non-decreasing with

F (z) =
κ

h̃(z)
and G(z) =

ν

h̃(z)
, (3.31)

where κ < ν are the unique solutions to

1

1−m
[
ν1−m − κ1−m] = − ρ

m

[
(K+ +

Ch
ρ

)ν−m + (K− − Ch
ρ

)κ−m
]
, (3.32)

1

n− 1

[
ν1−n − κ1−n] =

ρ

n

[
(K+ +

Ch
ρ

)ν−n + (K− − Ch
ρ

)κ−n
]
. (3.33)
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Theorem 3.4.11 [Optimal control for K− − Ch
ρ
≥ 0] For each z ∈ [0, b], the optimal

control is described in terms of F (z) and G(z) from Theorem 3.4.9 such that

• For z such that h̃(z) > 0, it is optimal to increase inventory past level z when Pt ∈
[G(z),∞), and never decreases.

• When h̃(z) < 0, it is optimal to decrease below inventory level z when Pt ∈ [F (z),∞),
and it is never optimal to increase. When h̃(z) = 0, it is optimal to do nothing (i.e.
F (z) =∞ = G(z)).

Theorem 3.4.12 [Optimal control for K− − Ch
ρ
< 0] For each z ∈ [0, b], the optimal

control is described in terms of F (z) and G(z) from Theorem 3.4.10 such that

• For z such that h̃(z) > 0, it is optimal to increase inventory past level z when Pt ∈
[G(z),∞), and to decrease inventory below level z when Pt ∈ (0, F (z)].

• For z such that h̃(z) ≤ 0, it is always optimal to decrease inventory level.

The optimal policy is illustrated in Figure 3.1 and Figure 3.2 for the K− ≥ Ch
ρ

case, and

Figure 3.3 and Figure 3.4 for the case of K− < Ch
ρ

. When K− < Ch
ρ

, implying a relatively

high holding cost, for low prices inventory is decreased regardless of the value of h̃(z); for
high prices inventory is increased or decreased as necessary; for intermediate prices, no action
is taken in general if inventory is low enough, but otherwise it is decreased (where Figure
3.4 illustrates this last case). In contrast, when K− ≥ Ch

ρ
, the relatively low holding cost

introduces a different policy: above a certain threshold price, except around the h̃(z) = 0
region, inventory is typically decreased for negative h(z) values, and increased for positive
h(z) values, as illustrated in Figure 3.2. In general, depending on the holding cost Ch and
the cost of selling K−, reducing holding cost is a key driver, so conditions must be more
favorable before inventory is increased, and it is more likely that inventory will be decreased.

Remark 3.4.13 We emphasize that these results are quite general, and indeed hold for
any H̃(·) function that is concave. Thus, F (z) and G(z) are not necessarily continuous.
Nevertheless, when H̃ is continuously differentiable, strictly increasing, and strictly concave,
we will have the regularity condition for F and G and for the value function, as postulated
in the current literature.

i

3.5 Discussion

As mentioned earlier, our solution approach is different from traditional approaches in
which variational inequalities are solved directly.
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To see this more closely, we first review the traditional dynamic programming approach
and related variational inequalities. Clearly the optimization problem (3.11) for V has the
state space {p, z}. Given any price p and the inventory level z at time 0, there are three
options: do nothing, increase the inventory by purchasing on the spot market, or reduce the
inventory by selling on the spot market.

If a quantity is purchased on the spot market, the inventory level jumps from z to
z+ ∆z, thus the value function is at least as good as choosing over all possible jumps of size
∆z with proportional cost (K+ + Ch

ρ
)∆z. That is,

V (p, z) ≥ sup
∆z

(−(K+ +
Ch
ρ

)∆z + V (p, z + ∆z)),

which, by simple Ito’s calculus, leads to Vy(p, y) ≤ K+ + Ch
ρ

, withVy(·, ·) the derivative of

the value function V with respect to y. Similarly we see Vy(p, y) ≥ −K− + Ch
ρ

if choosing
the option of reducing the inventory. Meanwhile, if no action is taken between time 0 and
an infinitesimal amount of time dt, then expressing the value function at time 0 in terms
of the value function at time dt though dynamic programming and Ito’s calculus (as in
(Constantinides and Richard 1978)) yields σ2p2Vpp(p, y) + µpVp(p, y)− rV (p, y) + H̃(y) ≤ 0.
Combining these observations, we get the following (quasi)-Variational Inequalities

max{σ2p2Vpp(p, y) + µpVp(p, y)− rV (p, y) + H̃(y)p,

Vy(p, y)−K+ − Ch
ρ
,−Vy(p, y)−K− +

Ch
ρ
} = 0. (3.34)

Moreover, the optimal policy (if it exists) can be characterized by explicitly finding the action
and continuation regions where

(Inventory increase region) = {(p, y) : Vy(p, y) = −K− + Ch
ρ
},

(Inventory decresse region) = {(p, y) : Vy(p, y) = K+ + Ch
ρ
},

(No action region) = {(p, y) : Vy−(p, y) > −K− + Ch
ρ
, Vy+(p, y) < K+ + Ch

ρ
,

σ2p2Vpp(p, y) + µpVp(p, y)− rV (p, y) + H̃(y)p = 0}.

A typical explicitly solvable optimal policy is a two-threshold bang-bang type policy or
some degenerate form. (For more detailed derivation and background, interested readers are
referred to e.g., (Constantinides and Richard 1978) or (Harrison and Taksar 1983)).

Taking this analysis one step further, one would expect, due to the stochastic nature
of the Pt, a state-dependent threshold policy, where inventory is lowered if it is above the
upper threshold, and increased if it is below the lower threshold (see, e.g, (Constantinides
and Richard 1978)). That is, we would expect a downsizing region for inventory: {(p, z) :
p ≥ G(z)}, an ordering region: {(p, z) : p ≤ F (z)}, and a (continuation) no-action region:
{(p, z) : F (z) < p < G(z)}.

However, there is a serious issue in this straightforward extension. In order to derive a
complete characterization of the optimal policy and the value function, one in general would
assume a priori enough smoothness for the value function and the boundary to solve the
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QVI. Unfortunately, the regularity conditions for this two-dimensional control problem do
not hold in general. (See counter-examples in (Guo and Tomecek 2008)). Indeed, the value
function may not be C1 in p (although it is C1 in y) and F,G may not be continuous. This
possible irregularity especially in F and G makes explicit solution or “guessing” of F and G
particularly difficult.

This is where we depart from the traditional approach: instead of solving variational
inequalities directly, we translate the singular control problem (3.11) into a switching control
problem, following (Guo and Tomecek 2008). The key idea is that by fixing each level z0, we
effectively will be solving for a one-dimensional two-state switching control problem, where
switching from 0 to 1 corresponds to inventory increases and switching from 1 to 0 represents
inventory reduction. In order for this approach to work for all z, meaning we can break down
the two-dimensional control problem by slicing it into pieces of one-dimensional problem, we
need to make sure the resulting control policies at different levels of z are “consistent”.
Intuitively, this consistency requires that for a given price p at level z0, if it is optimal to
reduce the inventory level, then it is also optimal to reduce the inventory level given the
same p and a higher level z(> z0). This is the essence of Lemma 3.4.4 and our solution
approach.

3.6 Computational Experiments and Observations

We have characterized the optimal solution for the material procurement problem of
a pharmaceutical production firm facing random demand at the end of a single period of
random length which models the new drug approval time, when the firm has the opportunity
to trade on the spot market while waiting for demand. Of course, the opportunity to actively
utilize the spot market to guard against cost and price risks must be balanced against the
increasing complexities of actively trading inventory prior to experiencing demand. Below,
we describe computational experiments that explore this trade-off.

3.6.1 Modified Newsvendor

To that end, we compare the expected results from the optimal policy as described here
to those based on the use of a modified newsvendor solution to this model. We elected to use
this modified newsvendor approach as a reasonable proxy for how a procurement manager
who is not interested in repeatedly buying and selling on the spot market might manage the
system.

In this modified newsvendor model, the manager purchases the inventory at the be-
ginning of the investment, using a version of the well-known newsvendor solution adapted
for the specifics of this setting. In particular, the newsvendor decision is based on the ex-
pected time until demand arrival, E[τ ], the expected discounted sales price, αE[e−rτpτ ], and
the expected discounted penalty cost and salvage value, αuE[e−rτpτ ] and αoE[e−rτpτ ]. The
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modified newsvendor inventory level, y∗, is given as follows:

y∗ = min

{
b,max

{
0, F−1

D

(
(α + αu)E[e−rτpτ ]− (p0 +K+ + ChE[τ ])

(α− α0 + αu)E[e−rτpτ ]

)}}
,

where 0 and b are the lower and upper bounds on the inventory level, p0 + K+ + ChE[τ ] is
the expected cost per unit of acquiring (and holding) inventory, and FD is the cumulative
distribution of the random demand, D.

Recall τ is an exponential random variable with parameter λ, and pt is a geometric
Brownian motion with drift µ and volatility σ. Thus, E[τ ] = 1

λ
and E[e−rτpτ ] = λp0

λ+r−µ .
Substituting, we get

y∗ = min

{
b,max

{
0, F−1

D

(
(α + αu)λP0 − (p0 +K+ + Ch/λ)(λ+ r − µ)

(α− α0 + αu)λP0

)}}
.

Finally, the expected value of implementing this modified newsvendor policy is

E[αe−rτPτ min(y∗, D)−(p0+K++Chτ)y∗+αoe
−rτPτ max(y∗−D, 0)−αue−rτPτ max(D−y∗, 0)].

3.6.2 Scenarios

Recall that we have two different cases when characterizing the optimal value function:
K− ≥ Ch/ρ, where the proportional loss incurred on selling inventory is greater than the gain
from reduced future holding cost, and K− < Ch/ρ, where reducing holding cost dominates
transaction costs. Based on solution structures in Section 3.4.4, we consider three scenarios
in these experiments:

Scenario 1 K− ≥ Ch/ρ, and y0 = 0 (h(y0) > 0), so that in the optimal solution the
manager may buy more inventory before time τ .

Scenario 2 K− ≥ Ch/ρ, and y0 = b (h(y0) < 0), so that in the optimal solution the manager
may sell off excessive inventory before time τ

Scenario 3 K− < Ch/ρ (and y0 = 0), so that in the optimal solution may buy more
inventory or sell off excessive inventory before time τ .

3.6.3 Parameters

For simplicity, we set the discount rate r = 0, the demand arrival rate λ = 1, the
salvage multiplier α0 = 0, and the penalty cost multiplier αu = 0. To create the three
scenarios described above, we set the mark-up multiplier α = 1.3, the holding cost Ch = 1,
the transaction cost for buying K+ = 1, for Scenarios 1 and 2 the transaction cost of selling
K− = 1.5, and for Scenario 3 the transaction cost of selling K− = 0.5. We set the inventory
upper bound b = 200. To model the random demand, D, we assume log(D) follows a normal
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distribution with parameters µd = 5, and σd = 0.7. Hence, the mean and the variance of D
are:

E[D] = eµd+
σ2d
2 = 189.61,

var[D] = (eσ
2
d − 1)e2µd+σ2

d = 22734.40.

For the price process pt, we set the initial price p0 = 5, and the drift rate µ = 0.3. We vary
the volatility σ from 0.05/

√
2 to 140/

√
2 to assess the impact of volatility.

3.6.4 Results and Observations

We use Theorems 3.4.1, 3.4.9 and 3.4.10 and the parameters listed above to calculate
the optimal expected value for Scenarios 1, 2, and 3, and in figures 3.5, 3.6, and 3.7, we
graph the relative gain from using the optimal policy rather than the modified newsvendor
policy (that is, the difference between the optimal expected value and the newsvendor value
divided by the optimal expected value) for different price volatilities.

Figure 3.5 Scenario 1, percentage difference versus change in price volatility.
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Figure 3.6 Scenario 2, percentage difference versus change in price volatility.

For all three scenarios, the advantage of the optimal policy over the modified newsvendor
policy increases rapidly then slowly saturates at around 55-60% as σ increases. To better
understand the policy leading to these results, we redraw figures 3.1 and 3.3 for different
price volatilities.

In figure 3.8, we observe that both F−1 and G−1 shift to the right as σ increases. This
suggests that as price volatility increases, the spot market price at which the manager should
take action increases, enabling the manager to take advantage of this increased volatility. In
addition, as volatility increases, F−1 shifts upwards and G−1 shifts downwards so that the
“no action” region increases in size, suggesting more conservative behavior on the part of the
manager. Similarly, in figure 3.9, G−1 shifts in a similar way as the volatility increases, again
suggesting more “conservative” purchasing as volatility increases (that is, smaller amounts
bought for a given price). However, F−1 shifts up and to the left as volatility increases,
implying that as volatility increases, the manager in this case should wait until the price
process drops further down and make fewer adjustments as volatility increases.

3.7 Summary

We have completely characterized the optimal material procurement policy for a phar-
maceutical firm facing a random demand after the new drug approval, the manager is able
to buy and sell on the spot market. In computational tests, we observed that this policy



29

Figure 3.7 Scenario 3, percentage difference versus change in price volatility.

Figure 3.8 Figure 3.1 redrawn for different price volatilities.
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Figure 3.9 Figure 3.3 redrawn for different price volatilities.

performs significantly better than a version of the traditional newsboy policy (utilized as a
proxy for a reasonable inventory management policy for firms not interested in trading on
the spot market), most notably when price volatility is relatively high.

Although the results presented provide insight into the value to a firm of effectively
utilizing the spot market, and contribute to the state of the art in continuous time inven-
tory control, there are significant extensions possible to this work from both technical and
modeling perspectives.

For example, the addition of a fixed inventory ordering cost changes the singular control
to a more difficult impulse control problem. It will be interesting to see if the analogous
state dependent version of (d,D, U, u) policy still holds for this two-dimensional problem,
and whether the regularity property holds as well. Additionally, the price process could be
modeled by stochastic processes other than a Brownian motion. For instance, it would be
interesting to explore whether or not the two-threshold policy holds for the case of a mean-
reverting process. More sophisticated constraints on the inventory, such as a requirement
that the inventory either be 0 or above some minimum level, are in theory not more difficult
by our solution approach, but it would be interesting to complete this analysis. Finally,
multi-period models, with multiple demand opportunities and inventory carried between
periods will be significantly more difficult to analyze, but may yield interesting insights on
effective inventory management in the presence of a spot market.
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Chapter 4

Investing in Specialized Equipment –
Production Facility Investment with
Trial Result Updates

4.1 Introduction

We consider a stylized model of a firm that receives a stream of information updates
while making a series of capacity investment decisions. The model applies to any firm that
completes a series of experiments to determine if a new product should be introduced, but in
light of our motivating problem we refer to these tests as experiments or test cases that make
up clinical trials, and the product as a drug. Although the actual clinical trial processes in
this industry are quite complex –with multiple phases, multiple endpoints as performance
measures, etc.– for analytical tractability, and to develop insight, we specifically focus on a
simplified version of a firm receiving clinical trial information and making pharmaceutical
production capacity investment decisions.

We assume that there is essentially one (or one remaining) type or phase of trial, made
up of a series of independent tests or experiments with the same unknown success rate. A
firm must complete this series of tests over a time horizon with T discrete periods in order
to determine the effectiveness of a product. At the start of period T + 1, if the clinical trial
sufficiently demonstrates the efficacy of the drug, the firm has to produce to satisfy demand,
which we assume to be a known constant rate D per unit time since our goal here is to
focus on the pre-approval capacity acquisition process. The firm’s goal is to build sufficient
production capacity to support this demand rate D if the drug is proven effective. If the
clinical trial is not successful, the product will not be produced and the production capacity
is not needed. We assume building sufficient capacity takes an exogenously determined
number of periods, that the firm can revisit its capacity building decision at the start of each
period, and that the result of a single case or experiment is revealed at the end of each of
the first T periods.
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We model the outcome of clinical cases or experiments as independent identical Bernoulli
random variables. We motivate this by observing that before a new drug can be marketed,
its manufacturer must demonstrate that its safety and efficacy via clinical trials or tests
on individual patients. We let p be the probability that the drug successfully treats an
individual patient in the trial, so that each result represents the outcome of testing on a
specific patient. We assume that the Bernoulli rate p is unknown to the firm. This differs
from typical assumptions in the real options and capacity investment literature, but better
captures the nature of uncertainty in clinical trials. In our model, instead of using a fixed
estimate of the unknown p throughout the capacity planning process, the firm updates the
estimate of p as the trial progresses.

Regulatory agencies typically require a conventional frequentist approach to assessing the
safety and efficacy of new drugs. Nevertheless, the firm typically has access to a large amount
of preliminary data (from lab results, early trial phases, expert opinions, etc.), which it has
the freedom to incorporate into its decision-making process when it makes other decisions
that depend on clinical trial results. In particular, to make capacity-related decisions, the
firm is free to use a Bayesian approach that utilizes this preliminary data to estimate a prior
distribution of the success rate, and then in each period updates this estimate in the form
of a posterior distribution that incorporates new results. Specifically, in our model we make
use of the fact that the Beta distribution is the conjugate prior of the Bernoulli distribution
(that is, if the prior distribution of the success rate p is a Beta, then the posterior distribution
of p is also Beta), and specify the underlying stochastic process of our model as follows:

4.2 The Model

?? A pair of parameters (γ0, ζ0) model any preliminary data about the potential success
of the trial (or more specifically, about the success rate p). The prior distribution of the
success rate p is thus Beta(γ0, ζ0), where γ0 = ζ0 = 1 means the firm does not use preliminary
data, so that the prior distribution of p is Uniform(0, 1), a special case of the Beta distribution
with γ0 = ζ0 = 1. The pair (γ0, ζ0) determines the shape of density function Beta(γ0, ζ0) over
the (0, 1) interval, where the density function has a negative (positive) skew if γ0 > (<)ζ0

and the variance of the density function decreases in γ0 + ζ0.

At the end of each of the first T periods (after the investment decision is already made
for that period), the firm observes an experimental result, represented by the binary random
variable δt, where 1 means a successful experiment, and 0 an unsuccessful one. Thus, the
stochastic process

γt−1 := γ0 +
t−1∑
i=1

δi,

records the number of successful cases observed up to period t ∈ {1, 2, . . . , T} (but not
including the result, δt) adjusted for preliminary data by γ0. The observation γt−1 is then
the most up-to-date information the firm has when the decision is made for period t. We



33

also define ζt:

ζt−1 := ζ0 +
t−1∑
i=1

(1− δi),

to count the total number of failed experiments observed (adjusted for preliminary data by
adding ζ0), such that

ζt−1 := γ0 + ζ0 + (t− 1)− γt−1.

Therefore, the posterior distribution of the success rate p at the beginning of period t is
Beta(γt−1, ζt−1). Since the posterior estimate of p is given by:

γ0 +
∑t−1

i=1 δ
i

γ0 + ζ0 + t− 1

the larger the magnitude of the pair (γ0, ζ0), the stronger the influence of the preliminary
data on the estimate of the success rate, p, in each future period t. In our model, we
specifically assume that a large (γ0, ζ0) implies more, and thus higher quality, initial data.

After T periods, the product is considered sufficiently effective if the total number
of successful experiments, γT , meets the exogenously specified minimum requirement on
the total number of successful experiments, γ′c (so that {

∑T
i=1 ≥ γ′c}). To simplify the

exposition, since γ0 is known, we define γc := γ′c + γ0 so that the event

{γT ≥ γc}

implies the drug has successfully demonstrated safety and efficacy.

When building its capacity, the firm (in our most general model) has I possible types of
facilities to select among in each period, and each facility type i ∈ I requires s0

i (not necessar-
ily consecutive) time periods to complete construction. The vector st−1, t = 1, 2, . . . , T +1 is
an I component vector, where the ith component represents the remaining number of periods
required to complete facility type i at the start of period t. Note that sT contains information
about how much if any additional time is required to complete capacity at the time when
this capacity might be needed. 1 Therefore, s0

i represents the total required construction
time for building facility type i. Note that we assume each project can be built within the
planning horizon T so that s0

i ≤ T for each i ∈ I.

The cost for one period of construction of a facility type i ∈ I in period t is ci for each
i ∈ I. For some of what follows, we consider the impact of a setup cost – an additional cost
paid when construction of a facility takes place during period t, but didn’t take place during
period t− 1. If this is the case, the setup cost for facility type i is Ki ≥ 0, i ∈ I.

At the start of each period, a capacity investment decision (that is, the type of capacity
to invest in for the next period, if any) must be made for that period. Once an investment
decision is made, the corresponding investment cost is incurred, and one period’s worth of
construction is completed. At the end of the horizon, in period T + 1, if the total number

1We use boldface to denote vectors, and subscript to denote the components of vectors, so that, for
example, sti is the ith component of vector st.
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of successes γT is less than γc, the product is not produced and sold. Otherwise, if the
production capacity is not yet ready, the firm pays to complete construction, and in addition
pays a positive penalty cost Π(s) (intended to model the delay in receiving revenue from
the product, loss of patent life, loss of revenue, loss of goodwill, etc.) which is a function
of the number of periods s required to complete construction. The objective is to develop
a capacity investment strategy that minimizes the total sum of discounted expected cost of
building the necessary capacity and expected penalty cost.

To model this as a stochastic dynamic program, we number periods forward from 1
to T + 1. At the start of each period t, t = 1, 2, ..., T , the firm observes the remaining
construction time for each of the potential projects st−1 (where if a project has not been
started, the remaining construction time is equal to the full construction time), the number
of successful experiments up to and including the result that arrived at the end of the
previous period γt−1, and the construction completed in the previous period. To represent
the firm’s investment decision in period t− 1, we define an I component vector at−1 where
if the firm elects to build facility type i, i ∈ I at time t − 1, the ith component of at−1 will
equal 1; all other vector components will be 0. If the firm is potentially selecting between
multiple project types, we assume that the firm can invest in only one project type in any
period, so that at ∈ {0, 1}I and

∑
i a

t
i ≤ 1 for t = 1, 2, . . . , T . We assume that the firm has

no ongoing capacity investments before period t = 1, so that a0 is a zero vector. We let
Ωt, t = 1, 2, . . . , T denote all admissible investment strategies at time t. At the end of the
period, after completing construction, the firm observes the next experimental result δt.

We formulate the dynamic program for periods t = 1, 2, . . . , T below:

Vt(γ
t−1, st−1, at−1)

= min
at∈Ωt

{
I∑
i=1

[
atici +Ki · (ati − at−1

i )+
]

+ αE
[
Vt+1(γt−1 + δt, st−1 − at, at)

∣∣ γt−1
]}

, (4.1)

where α ∈ [0, 1] is the discount factor. In period T+1, the firm observes the final experimental
result, and thus one of two possible outcomes: either the product is approved and goes into
production so the firm pays a penalty if production capacity is not yet ready, or the product is
not approved and is not produced. This is captured in the following terminal value function:

VT+1(γT , sT, aT) =

{
F (sT, aT) if γT ≥ γc

0 otherwise
(4.2)

where
F (sT, aT) = min

1≤i≤I

{
sTi ci + Π(sTi ) +Ki · (1− aTi )+

}
. (4.3)

Unless specified, we assume a constant per period penalty so that Π(s) := πs where π is a
positive constant.

We explore the implications of the firm’s capacity investment problem. We begin in
the next section with a preliminary analysis of the evolution of the stochastic process γt−1.
In Section 4.4, we characterize the optimal investment strategy in a variety of settings of
increasing complexity. We initially consider a single capacity type with constant per period
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penalty, and then settings with setup costs, settings where penalty cost is an increasing
convex function of sT , and settings with alternative technology options. In Section 4.6,
we utilize a computational study to develop additional insights into appropriate capacity
investment strategies for firms in these setting.

4.3 Preliminaries

The stochastic process γt−1 is the key to developing the investment strategy for building
the appropriate capacity in this model. It yields the posterior distribution of the unknown
success rate of the Bernoulli experiments, and its terminal value γT indicates whether or not
the firm experiences demand at rate D at the conclusion of the clinical trial. We consider
the transition probability given in the following lemma.

Lemma 4.3.1 γt−1 is a Markov process and its transition probability is given as follow:

Pr
(
δ1 = 1

∣∣ γ0
)

=
γ0

γ0 + ζ0
, (4.4)

for t ∈ 2, 3, . . . , T :

Pr

(
m∑
j=1

δt−1+j = k

∣∣∣∣∣ γt−1

)
=

(
m
k

) k−1∏
j=0

(γt−1 + j)
m−k−1∏
j=0

(ζt−1 + j)

m−1∏
j=0

(γt−1 + ζt−1 + j)

, (4.5)

for k ∈ {0, 1, . . . ,m}.

The Markov property results from the assumptions that the clinical experiments are
independent and identical. Thus, the order in which the experiments are revealed does
not matter and each result has equal weight in the posterior distribution of p, so γt−1 is the
sufficient statistic for the upcoming transitions. Observe in equation (4.5) that the impact of
marginal results on the transition probability decreases over time. This is not surprising – as
the end of the horizon approaches, it is natural for the firm to have a better sense of whether
or not the experiment will be a success. Thus, in contrast to the typical assumptions of
dynamic programming models, our process γt is time non-homogeneous, with a state space
increasing in time. However, the planning horizon in our model is finite, and the overall
success of the clinical trial, which in turn give raise to the demand D, is revealed at a
predetermined period T . The firm’s strategy in building the capacity depends heavily on its
estimate of the likelihood of the event {γT ≥ γc}. The following lemma is the key to our
subsequent analysis:

Lemma 4.3.2 Pr(γT ≥ γc|γt−1 = γ) is an increasing function of γ.



36

This is intuitive for two reasons. First, more successes observed up to time t implies
that the firm’s estimate of p is higher, which implies a higher expected likelihood of more
successes in the remaining test cases. Second, a large γt means fewer successful observations
are required in the remaining T − t cases in order to meet the exogenous requirement γc.
The following lemma is an immediate consequence of Lemma 4.3.2.

Lemma 4.3.3 Pr(γT ≥ γc|γt = γ + 1) ≥ Pr(γT ≥ γc|γt−1 = γ).

In other words, a successful result improves the chance of meeting γc. Similarly, we
have:

Lemma 4.3.4 Pr(γT ≥ γc|γt = γ) ≤ Pr(γT ≥ γc|γt−1 = γ).

Thus, an unsuccessful trial decreases the chance of meeting γc.

4.4 Investment Strategies

Next, we characterize the optimal investment strategies in various settings. Recall that
we assume it takes longer to complete the clinical trial than it does to build each type of
production facility, so that T ≥ s0

i for all i ∈ I. Nevertheless, given the increasing quality of
information, the firm should intuitively delay production as long as there is no risk of delaying
production. Indeed, by employing the appropriate coupling technique, this intuition can be
proven:

Lemma 4.4.1 Define s0
max = max{s0

i |i ∈ I}. Suppose T > s0
max, then

V1(γ0, s0, a0) = αT−s
0
maxE

[
VT−s0max+1(γT−s

0
max , s0, a0)

∣∣∣ γ0
]
.

Hence, it is optimal for the firm to delay production until period t = T − s0
max.

Thus, for any starting period t − s0
max, the firm can write an equivalent problem with a

planning horizon of s0
max periods by setting (γ′0, ζ ′0) = (γT−s

0
max , ζT−s

0
max). Hence, without

loss of generality, we assume s0
max = T in our subsequence analysis.

In the following subsections, we characterize the firm’s optimal investment strategies un-
der various settings of the dynamic program (that is, of equations (4.1) and (4.2)). We begin
with a relatively straightforward setting, and then progressively consider more complicated
settings.
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4.4.1 One Capacity Type/Stationary Cost/No Fixed Cost

We first model the case where the firm is considering one production facility type, with
per period construction cost, c > 0. The firm can start, pause and restart construction
in each of the first T periods without incurring additional setup costs, so that K = 0. If
at the end of the horizon the new drug is approved but the production facility is not yet
ready, the firm is then charged a fixed per-period-delayed penalty cost, Π(s) = πs for each
of the periods needed to complete construction. Note that without any setup cost, the firm’s
decision at period t is independent of its investment history at t− 1. In this setting, we do
not have to consider the decision in the previous period, so:

Vt(γ
t−1, st−1, at−1) = Vt(γ

t−1, st−1).

Thus:

Vt(γ
t−1, st−1) = min{c+ αE[Vt+1(γt, st−1 − 1)|γt−1], αE[Vt+1(γt, st−1)|γt−1]},

with
Vt(γ

t−1, 0) = 0,

VT+1(γT , sT ) =

{
sT · (c+ π) if γT ≥ γc,
0 otherwise

(4.6)

for t = 1, 2, . . . , T . Since the penalty cost incurred at T +1 is linear to the number of periods
that production will be delayed sT (or in other words, the number of periods required to
complete production):

Vt(γ
t−1, st−1) = min{c+ αE[Vt+1(γt, st−1 − 1)|γt−1], αE[Vt+1(γt, st−1)|γt−1]}

= min{c, αT−t+1(c+ π)Pr(γT ≥ γc|γt−1)}+ αE[Vt+1(γt, st−1 − 1)|γt−1].

Hence, it is optimal for firm to invest in construction in period t if

c ≤ αT−t+1(c+ π)Pr(γT ≥ γc|γt−1). (4.7)

In other words, the firm’s decision involves choosing between the cost of investing at the
current period t and the expected marginal penalty incurred by delaying the investment.

Observation 1 Observe in (4.7) that the time to-build-parameter, st, is not a factor in the
investment decision. By Lemma 4.4.1, we can assume without loss of generality that s0 = T ,
so st ≥ T − t. Therefore, the decision is monotonic in st; that is, if it is optimal for the
firm to invest when the time-to-build st = s, it is also optimal for the firm to invest at any
time-to-build st ≥ s.

Observation 2 We are able to compute the optimal investment strategy without explicitly
solving the dynamic program. This is a consequence of the fact that the penalty term sT (c+π)
is linear in the time-to-build term sT .
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We use inequality (4.7) to characterize the optimal policy in this case.

Theorem 4.4.2 Given a facility to build with constant per unit penalty costs and no setup
cost, at each period t ∈ {1, 2, . . . , T}, there exists a γt−1

∗ ∈ {γ0, γ0 + 1, . . . , γ0 + t− 1} ∪ {∞}
such that the optimal construction strategy is given by:

at∗ =

{
1, if γt−1 ≥ γt−1

∗
0, otherwise

where

γt−1
∗ := inf

{
γ ∈ {γ0, . . . , γ0 + t− 1}

∣∣∣∣Pr(γT ≥ γc|γt−1 = γ) ≥ c

αT−t+1(c+ π)

}
.

2This result is a direct consequence of Lemma 4.3.2. This threshold policy indicates that
in this setting and given the problem parameters, the optimal investment strategy depends
only on t and γt−1 , is monotonic in γt−1, and is independent of the current progress st−1.
Because of the linearity of the penalty function, the firm can compare the construction cost
and the discounted expected marginal penalty directly. Moreover, Lemma 4.3.2 implies that
a higher γt−1 implies a higher likelihood that the new drug will be sold in the market, so
that the firm is more likely to be penalized if the production capacity is not ready by time
T + 1. Thus, if is optimal for the firm to invest if γt−1 = γ for some γ, it is also optimal to
invest if γt−1 = γ + 1. Thus,

Corollary 4.4.3 Suppose γt−1 ≥ γt−1
∗ and γt = γt−1 + 1, then γt ≥ γt∗ for each t ∈

{1, 2, . . . , T}.

In other words, if it is optimal for firm to invest in construction in period t and the firm
sees a success from latest test result at the end of period t, then it is also optimal for the
firm to invest in period t+ 1. Moreover:

Corollary 4.4.4 For α = 1 and t ∈ {2, . . . , T}, if γt−1
∗ <∞, then γt∗ ≥ γt−1

∗

However, this may not be true when the discount rate α is less than 1. Consider the
following counterexample:

Example 1 Consider the setting in which the firm has preliminary data γ0 = ζ0 = 5, the
adjusted threshold, γc = 24, there are 48 periods in the planning horizon, the per period
building cost c = $10 Million, the per period penalty cost π = $100 Million, and the per
period discount rate α = 0.9. In this case, the threshold is decreasing in periods 26, 27 and
28 (see Figure 4.1).

There is no monotonicity in this case because the firm is comparing the investment cost
and the discounted expected marginal penalty, and for a long enough planning horizon, the
discount factor, which is exponential in time, makes the investment in the current period
less attractive than in subsequent ones.

2Here, we use t− 1 as the time index to match the realization of the stochastic process, γt−1 at period t.
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Figure 4.1 Non-monotonic investment threshold with α < 0.

4.4.2 Positive Setup Cost, K > 0

It can often be expensive to start or restart a construction project due to hiring, resource
procurement, etc. To explore the implications of these additional costs, we extend the model
from the previous subsection by adding a positive setup cost K > 0 that is incurred when a
project is started or restarted after construction has not taken place in the previous period.

In this setting, the optimal investment strategy in period t is characterized by a pair
of thresholds depending on whether or not the construction project was underway in the
previous period:

Theorem 4.4.5 In the setting described above, with linear terminal penalty function and a
single capacity type with positive setup cost K > 0 charged when construction is started or
restarted after an idle period, for each t ∈ {1, . . . , T} there exists a pair of threshold values
γt−1
∗0 , γt−1

∗1 ∈ {γ
0, γ0 + 1, . . . , γ0 + t− 1} ∪ {∞}:

γt−1
∗0 :=

inf

{
γ ∈ {γ0, . . . , γ0 + t− 1}

∣∣∣∣Pr(γT ≥ γc|γt−1 = γ) ≥ c+K + αE[Wt+1(γt, st−1 − 1)|γt−1]

αT−t+1(c+ π)

}
,

γt−1
∗1 :=

inf

{
γ ∈ {γ0, . . . , γ0 + t− 1}

∣∣∣∣Pr(γT ≥ γc|γt−1 = γ) ≥ c+ αE[Wt+1(γt, st−1 − 1)|γt−1]

αT−t+1(c+ π)

}
,

where
Wt+1(γ, s) := Vt+1(γ, s, 1)− Vt+1(γ, s, 0). (4.8)

such that

• γt−1
∗0 ≥ γt−1

∗1 ,
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• If at−1 = 0, at∗ = 1 if γt−1 ≥ γt−1
∗0 otherwise at∗ = 0, and

• If at−1 = 1, at∗ = 1 if γt−1 ≥ γt−1
∗1 otherwise at∗ = 0.

In other words, there are two thresholds γt−1
∗0 and γt−1

∗1 governing the firm’s investment
strategy, depending on action in the previous period. If the firm invested in construction
project in the previous period so that at−1 = 1, then the firm should invest in period t if
and only if γt−1 ≥ γt−1

∗1 . Likewise, if the firm did not invest in the previous period, at−1 = 0,
then the firm should invest in period t if and only if γt−1 ≥ γt−1

∗0 .

The relationship between the two thresholds γt−1
∗0 ≥ γt−1

∗1 reflects that fact that the
setup cost introduces an entrance fee to the investment, and thus the firm needs to have
more confidence in the event γT ≥ γc before investing if it didn’t in the previous period.
To compare the solution to the no setup cost case from Subsection 4.4.1 , we observe the
following:

Corollary 4.4.6 Given the same set of parameters as the model characterized in Theorem
4.4.2 with an optimal threshold in period t of γt−1

∗ , then

γt−1
∗1 ≤ γt−1

∗ ≤ γt−1
0∗ .

In other words, the decision threshold level from the no setup cost model is sandwiched
between the pair of threshold levels for the model with setup cost.

4.4.3 Increasing Marginal Penalty Cost

Up to now, we have implicitly assumed the penalty cost function models lost sales during
the time periods that the commercial production of the new drug is delayed due to lack of
production capacity. We therefore modeled it as a constant per unit cost, Π(s) = πs. In
some cases, however, we need to account for loss of goodwill, patent life, patients’ health,
etc. In general, we can consider a penalty cost function F (sT = s, aT = a), where the
amount penalized is a function of the number of periods s production is delayed. Indeed,
in many cases, the longer the production delay, the more damage the firm suffers, so that
the marginal penalty cost is an increasing function of the number of periods s required to
complete construction after time T , and thus:

F (s+ 1, a)− F (s, a) ≥ F (s, a)− F (s− 1, a). (4.9)

Note that we are considering a discrete time model so s ≥ 0 takes integer values.
Inequality (4.9) implies that F (s, a) is a convex function on the discrete set s.

Theorem 4.4.7 In the setting described above with a non-negative, increasing, convex penalty
function satisfying condition (4.9), zero setup cost, and a single type of construction project,
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then for each s ≥ T − t + 1 and t ∈ {1, 2, . . . , T}, there exists a threshold value γt−1
∗ (s) ∈

{γ0, γ0 + 1, . . . , γ0 + t− 1} ∪ {∞}, such that:

at∗(s) =

{
1, if γt−1 ≥ γt−1

∗ (s)
0, otherwise.

Moreover,

• γt−1
∗ (s) ≥ γt−1

∗ (s+ 1),

• Vt(γt−1, s)− Vt(γt−1, s− 1) ≥ 0 and increases in γt−1, and

• Vt(γt−1, s) ≥ 0 is convex in s for all t ∈ {1, 2, . . . , T}.

Observe that γt−1
∗ (s) is decreasing in s, which is due to the increasing marginal penalty

cost. This suggests that when there is still much to be built and the end of the horizon
is approaching, the firm employs an increasingly aggressive investment strategy in order to
reduce the duration of the potential delay in production. The expected total cost in an
increasing function of s and the differences increases in γt−1 because the expected penalty
cost increases in both the remaining time-to-build and the probability of a successful trial.

We prove Theorem 4.4.7 using the fact that our dynamic program (4.1) preserves con-
vexity and positivity of Vt(·, ·), which ensure the existence of the decision boundary γt−1

∗ (s)
at each period t and time-to-build s, and the monotonicity of γt−1

∗ (s) in s. However, the
monotonicity of γt−1

∗ (s) in s does not hold if the penalty function is not convex. For example,
consider the following counterexample where F (s, a) is concave in s.

Example 2 Consider an example with the same parameters setting as in Figure 4.1 but
with a penalty cost function

F (s, a) = $100 Million× s0.5,

which is increasing but concave in the discrete set s. At period t = T , the firm should only
build if γ47 ≥ 35 when 1 ≤ s ≤ 10, only build if γ47 ≥ 36 for 11 ≤ s ≤ 20, and not build at
all if s > 20.

4.4.4 Two Investment Projects

Up to this point, our models have reflected one key trade-off faced by the firm – the
trade-off between investing early on to ensure that sufficient production capacity will be
available at product launch, and waiting until additional information is collected to avoid
unnecessary investment. Increasingly, however, firms are considering alternative types of
production capacity that are faster to build, and thus allow firms to delay capacity projects
without impacting the availability of the product if it is approved, such as the use of dispos-
able (one-time-use) technologies, or the outsourcing of part of all of the production process.
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For example, in bio-pharmaceutical production, disposable tanks and mixers can be utilized
that are pre-sterilized, pre-validated and self-contained, significantly reducing capacity ac-
quisition lead time. Clearly, if this capacity is also less expensive than traditional capacity,
it dominates the traditional capacity. Typically, however, it costs more than its long-lead
time counterpart.

To capture this dynamic, we consider a setting in which our stylized firm has two capac-
ity investment projects to select from, both of which produce the same amount production
capacity, but at different costs and with different lead times. Project 1 takes longer to build
(s0

1 periods), but at a lower total cost, while Project 2 can be built in fewer periods (s0
2 < s0

1

periods) but at a higher total cost. Here, we assume no setup cost. As in Section 4.4.1, the
firm faces a fixed per period penalty cost Π(s) = π > 0, and is penalized for the number of
periods until production can start after the approval of the new drug:

F (sT) = min{sT1 · (π + c1), sT2 · (π + c2)}. (4.10)

From Lemma 4.4.1, we know that the firm will not consider investing in Project 2 until
period t = T−s0

2. The problem can be reduced to a two-stage problem, where at each period
in Stage 1, t ∈ {1, . . . , T − s0

2 − 1}, it is feasible to either investment in Project 1, or to not
invest, while for each period in Stage 2, t ∈ {T − s0

2, . . . , T}, it is feasible to invest in either
project, or neither project. Although the firm will not invest in Project 2 until the start of
Stage 2, the availability of this more expensive alternative may impact the firm’s decision
making in Stage 1. To characterize the optimal strategy, we will first approach the Stage 2
problem.

The Stage 2 Problem

For each period in the Stage 2 problem, we partially characterize the optimal policy as
follows:

Lemma 4.4.8 For each period t in Stage 2, there exists two boundaries

φt1(x) =
π + c1

π + c2

x+ kt1,

φt2(x) =
π + c1

π + c2

x+ kt2,

kt1 ≥ k2
t , kt1 increase in t, and kt2 decreasing in t, such that.

Vt(γ
t−1, st−1

1 , st−1
2 ) = Vt(γ

t−1, st−1
1 )

if st−1
2 ≥ φt1(st−1

1 ), and
Vt(γ

t−1, st−1
1 , st−1

2 ) = Vt(γ
t−1, st−1

2 )

if st−1
2 < φt2(st−1

1 ).
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In other words, for each period t in Stage 2, we can identify regions in the (st−1
1 , st−1

2 )–space
where we can reduce the 2 Project model to an equivalent 1 Project model. At each period
t in Stage 2, these regions are defined by two parallel lines with slope (π + c1)/(π + c2) as
illustrated in Figure 4.2. Above the upper boundary, the firm will not consider building
Project 2; below the lower boundary, the firm will not consider building Project 1. In the
intermediate region, both projects must be considered. Figure 4.2 illustrates these regions
for t = {T − 4, T − 3, . . . , T + 1}.

Clearly, the firm’s decision depends on the remaining time to complete each of the
projects, and the larger the difference, the clearer the decision. If the firm has been pro-
gressing on Project 1, it may be able to drop Project 2 from consideration relatively early.
Conversely, if the firm has been delaying construction of Project 1, it may reach the point
relatively early where there is not value to considering Project 1. In addition, although the
“gray area” (where both of the projects are still under consideration) expands as we move
further from the terminal period, in our computational experiments (in the next section) the
firm rarely switches project in Stage 2. Intuitively, this “gray area” is the region that comes
into play if the current data suggests the trial is on the borderline between passing and not
passing, but in most of our experiments it was extremely rare for the problem to remain
within this region for an extended period of time.

The Stage 1 Problem

In Stage 1, the firm decides whether or not to build Project 1 in each period. The
corresponding dynamic program for periods t ∈ {1, . . . , T − s0

2 − 1} can be written as:

Vt(γ
t−1, st−1

1 , s0
2) = min

at1∈{0,1}

{
at1c1 + αE

[
Vt+1(γt−1 + δt, st−1

1 − at1, s0
2)
∣∣ γt−1

]}
, (4.11)

with terminal value function,

VT−s02(γ
T−s02−1, s

T−s02−1
1 , s0

2). (4.12)

Although this dynamic programming formulation resembles the problem in Section 4.4.1,
it turns out that in general the optimal building decision of the dynamic program (4.11,4.12)
is dependent on the time-to-build st−1

1 and is not monotonic in st−1
1 .

Example 3 Consider an example with preliminary data γ0 = ζ0 = 5, adjusted threshold
γc = 24, 48 periods in the planning horizon, and per period building costs for Project 1 and
Project 2 of c1 = $10 Million and c2 = $20 Million respectively. The per period penalty cost
is π = $100 Million, and the per period discount rate is α = 0.99. The lead time of Project
2 is 36 periods. At period t = 11, with s10

1 = 41 the firm should build at period t if γ10 ≥ 3
and with s10

1 = 42 the firm should only build when 3 ≤ γ10 ≤ 7.

In this case, if the firm does not build for more than 4 periods by t = 11 and γ10 ≥ 7
implying a good chance of passing the trial, the potential penalty of delaying for more than
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Figure 4.2 The pair of decision boundaries where the 2 project problems can be reduced to
a single project problem.
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4 periods is too high, so the firm will abandon Project 1, and focus on Project 2 in Stage
2 instead. However, if the firm misses only 3 periods by period t = 11, the savings from
building the more economical option, Project 1, may compensate for the lost in delaying
production, and the firm will build Project 1 for period t = 11.

4.5 Multiple Trial Results per Review Period

In previous subsections 4.4.1, 4.4.2 ,4.4.3, and 4.4.4, we assume that the firm makes one
observation from the clinical trial in each review period; however, in practice, patients arrive
at the treatment centers at random. In this section, we consider the single product, no setup
cost and linear penalty cost case, as in section 4.4.1 with one difference: the firm receives
multiple individual trial results (modeled by discrete random variables) in each period. The
firm has to see at least γcrit number of successes in the first N clinical cases to claim overall
success of the clinical trial and file the new drug application.

We let nt be the number clinical cases revealed at the end of period t, which is unknown
to the firm prior to the review at period t. We assume nt are i.i.d. with discrete distribution
φ(·), and we also assume γt−1 ⊥ nj for all j ≥ t. We also let mt =

∑t
i=0 ni such that:

τ := inf{t ≥ 0|mt ≥ N}

is the first time there are enough clinical cases seen to ensure the significant level of the
clinical trial. For simplicity, we assume the firm only sees the first N results of the trial.

With τ defined, we can rewrite our dynamic program as, for t = 1, 2, . . . , τ :

Vt(γ
t−1,mt−1, s

t−1) = min
at∈{0,1}

{
cat + αE

[
Vt+1(γt,mt, s

t−1 − at)|γt−1,mt

]
, (4.13)

αE
[
Vt+1(γt,mt, s

t−1)|γt−1,mt

]}

Vτ+1(γτ , sτ ) = π(sτ )+1{γτ≥γcrit}. (4.14)

Since for each sample path of the trial result updates, the penalty cost is linear, we can
rewrite (4.13) as before:

Vt(γ
t−1,mt−1, s

t−1) = min{c, (π + c)E
[
ατ−t+11{γτ≥γcrit,st−1−1>τ−t}|γt−1,mt−1

]
}

+αE [Vt+1(γt,mt, s
t−1 − 1)|γt−1,mt−1] .

Note:

E
[
ατ−t+11{γτ≥γcrit,st−1−1>τ−t}|γt−1,mt−1

]
(4.15)

=
∑st−1+t−1

j=t αj−t+1Pr(γj ≥ γcrit|τ = j, γt−1,mt−1)Pr(τ = j|γt−1,mt−1) (4.16)
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=

N−mt−1∑
k=(γcrit−γt−1)

(
N −mt−1

k

) k−1∏
i=0

(γt−1 + i)

N−mt−1−k−1∏
i=0

(ζt−1 + i)

N−mt−1−1∏
i=0

(mt−1 + i)

(4.17)

·
st−1−1∑
j=0

αj+1Pr(τ − t = j|mt−1),

where by Lemma 4.3.2 for each fixed mt−1, E
[
ατ−t+11{γτ≥γcrit,st−1−1>τ−t}|γt−1,mt−1

]
is in-

creasing with γt−1. Therefore, we have the following lemma.

Lemma 4.5.1 For each mt−1 and st−1 there exists a threshold γ∗(mt−1, s
t−1) ∈ {0, . . . ,mt−1}

such that when γt−1 ≥ γ∗(mt−1, s
t−1) the firm should invest for period t.

4.6 Computational Study

In the previous sections, we developed a stylized model to characterize decision-making
about capacity building decisions as information is updated during a clinical trial. Building
on our characterization of optimal facility construction strategies, we present the results of
a series of computational experiments to give insight into the following questions:

• How does an approach in which building decisions are regularly re-evaluated as avail-
able information changes compare to more traditional approaches? Under what con-
ditions is re-evaluation necessary and beneficial?

• Given that it decides to do so, how frequently should a firm pause and restart building
projects?

• How does the quality of preliminary data affect the performance of each approach?
What if the firm ignores the preliminary data altogether?

• How do the construction and penalty costs impact these observations?

• Under what condition should the firm choose to build expensive alternative production
capacity (such as facilities utilizing disposable technologies)?

• How does the random arrivals of patients at the the treatment centers affect the firm’s
building decisions and investment performance?

4.6.1 Experimental Design

In our experiments, we compare a variety of strategies to make capacity building de-
cisions. In addition to the Optimal approach described, we model several other strategies
that a firm might use.
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Traditionally, firms decide to build in time to ensure that new production capacity
will be ready when the product is approved, estimating the probability of success using
initially available data. For our experiments, we model this Traditional approach as follows:
preliminary data, prior lab results, and expert opinions are collectively modeled by the
preliminary data (γ0, ζ0) analogous to the preliminary data in our model, and as in our
model, we assume that the firm uses Beta(γ0, ζ0) to describe the distribution of the true
success rate p given the preliminary data. In contrast to the Optimal approach, in our
model of the Traditional approach, the firm simply uses this distribution of p, Beta(γ0, ζ0),
to calculate the probability of a successful trial γT ≥ γc at the terminal period T + 1, in
order to decide whether or not to commit to building the production capacity. Once the
decision is made, the firm does not change its strategy throughout the planning horizon.

In addition to the Optimal and Traditional approaches, we model several other ap-
proaches that a firm might use to make capacity investment decisions. For example, a firm
might track successful and failed experiments and use this information without updating its
assessment of the underlying probability of a successful experiment p. We call this approach
the Intermediate I approach. In this case, the firm uses γ0/(γ0 + ζ0) as the point estimate
of p at each review period, so that the change in probability of passing the clinical trial is
based solely on the change in the number of successes necessary for a clinical trial as the
firm sees successful experiments over the horizon. Similarly, a firm may ignore preliminary
data (as is typically required by regulatory agencies to assess drug efficacy), and base deci-
sions solely on the results observed in the clinical trial. We call this the Intermediate II
approach.

For each of our experiments, we consider three performance measures: the expected
value of total cost over the horizon, which includes building cost (regardless of whether or
not the product is approved) and penalty cost if capacity is not ready in time; conditional
expected penalty cost if the product is approved; and conditional expected building cost if
the product is not approved. These last two measures in some sense capture the cost of
wrong decisions.

For single patient arrival per period, in each set of experimental parameters, we compute
the optimal decisions in all relevant states (as well as the decisions using each of our other
policies), simulate 100, 000 sample paths of γt, and calculate our performance measures for
each of our policies. In each of the subsequent subsections, we assess the impact of changing
a subset of the problem parameters (such as costs, data quality, etc.) on the performance of
each of our approaches. To facilitate our analysis, we employ a reference set of parameters
as a starting point, and then vary them as appropriate. These reference problem parameters
include a problem horizon (that is, both trial length and construction project length) of 48
months (periods) with a discount rate of α = 0.99 per month. The new drug is approved if
the number of successful clinical cases exceeds γc−γ0 = 40. It costs the firm $10 million per
month for 48 months to build the production capacity, and upon approval of the new drug,
if the production capacity is not yet complete, the firm faces a penalty of π = $100 million
for each month of delay.

For random patient arrival, we compute the optimal decision in all relevant states (mt,
γt and s), and simulate 50, 000 sample paths of the firms observation of the clinical trial
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and calculate the expected costs of the optimal policy. In order to observe the impact of
the randomness of the random clinical trial conclusion time toward the firm’s investment
performance, we use i.i.d. binomial random variables to model the patient arrivals. Such
that at each review period, there are a maximum n number of patients the treatment center
can receive and each patient will enter the trial and give a result independently with a
common probability ρ ∈ (0.1]. Note that the deterministic arrival is a special case of this
setting with ρ = 1. To ensure the firm will have enough time build the production capacity,
we select N = 48 and s = 15, such that N > nρ ∗ s with γ0 = ζ0 = 1. We select four arrival
distributions: Binomial(n = 2, ρ = 1), Binomial(n = 4, ρ = 1/2), Binomial(n = 6, ρ = 1/3),
and Binomial(n = 8, ρ = 1/4), to observe the impact the volatility of the number of results
revealed at each period on the firms decision. The building cost c = $10 million, the penalty
cost π = $100 million, and the discount rate α = 0.99 are used for the case of random arrival.

4.6.2 Single Project Type Experiments

We have completed a variety of experiments to help answer the questions raised above.
For a single project type, we start with the base case described above, and then vary the
amount (and thus implicitly, the quality) of preliminary data (Table 4.1), construction costs
(Table 4.2), and penalty costs (Table 4.3). Below, we discuss the insights we’ve developed
based on our experiments.

n0 = 4 Traditional Intermediate I Intermediate II Optimal
E[Total Cost] 192.02 177.69 125.47 113.73
E[Penalty|γT ≥ γc] 217.74 570.06 74.39 71.07
E[Bldg. Cost|γT < γc] 106.82 20.87 53.86 39.12
n0 = 12 Traditional Intermediate I Intermediate II Optimal
E[Total Cost] 154.97 126.53 125.47 107.16
E[Penalty|γT ≥ γc] 210.38 235.40 74.39 61.62
E[Bldg. Cost|γT < γc] 63.25 21.24 53.86 33.23
n0 = 20 Traditional Intermediate I Intermediate II Optimal
E[Total Cost] 140.11 115.76 125.47 104.54
E[Penalty|γT ≥ γc] 164.09 164.45 74.39 59.41
E[Bldg. Cost|γT < γc] 53.26 21.80 53.86 30.81

Table 4.1 The change in expected cost with respect to the change in preliminary data quality
(in million of dollars).
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4.6.3 How does an approach in which building decisions are regu-
larly re-evaluated as available information changes compare
to more traditional approaches? Under what conditions is
re-evaluation necessary and beneficial?

We see that the firm benefits significantly from re-evaluating capacity construction de-
cisions as additional experimental results are obtained. Depending on problem parameters,
we see that on average the Optimal approach costs the firm from 25% to 40% less than the
Traditional approach. Clearly, effectively utilizing up-to-date information to make decisions
about delaying or expediting construction can have significant benefits. The firm is also
penalized significantly less on average when using the Optimal approach. Depending on
parameter settings, the firm pays between 34% and 71% less in penalty costs when there
is production delay (given a successful trial), and the firm also spends 42% to 63% less in
construction cost given that the new drug fails the trial and the facility is not used. In other
words, the Optimal approach significantly reduce the risk that the firm faces.

While the Traditional approach is significantly inferior to the Optimal approach, it is also
dominated by approaches that use partial information, the Intermediate I and Intermediate II
approaches. In general, the Intermediate II approach dominates the Intermediate I approach
for most parameter settings, and the firm pays substantially more in penalty cost on average
when using the Intermediate I approach. One possible explanation for this behavior is
that in the Intermediate I approach the estimate of p is fixed over the planning horizon,
and therefore in particular doesn’t change in response to an upward trend in the number of
successful individual experiments. As a result, the firm is prone to longer delays in completing
the production capacity. Although the firm also only partially utilizes information in the
Intermediate II approach, it does adapt its estimates based on incoming data.

4.6.4 Given that it decides to do so, how frequently should a firm
pause and restart building projects?

One key feature of our proposed Optimal approach is that the firm may decide to
pause and restart construction as information is updated. Overall, with our selected set of
parameters the firm pauses and restarts construction in about 16% of the samples. When the
firm does pause and restart construction, it does so on average 1.8 times over the planning
horizon. This tendency to pause and restart is impacted by the quality of preliminary data as
we detail in the next subsection (and indeed, the firm tends to change its building decisions
more frequently when the quality of preliminary data is low). However, the impact of
construction and penalty costs on the gains from stopping and restarting projects is unclear.
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4.6.5 How does the quality of preliminary data affect the per-
formance of each approach? What if the firm ignores the
preliminary data altogether?

In our model, the magnitude of n0 := γ0 + ζ0 represents the quality of the preliminary
data, where as n0 increases, the firm is able to use preliminary data (such as prior lab data,
experts opinions, etc) to better estimating the success rate p. This allows us to explore the
impact of the quality of this preliminary data on decision-making under various strategies.
As the key to our Optimal approach is the updating of estimates of success as additional
information is acquired, we would expect to particularly see the advantages of updating these
estimates if we have limited preliminary data.

We consider three levels of preliminary data quality, n0 = 4, 12, 20, and summarize
performance measures in Table 4.1. As expected, the Optimal approach significantly out-
perform the other approaches, and the performance differences between our approaches are
most prominent when the quality of preliminary data is low.

For instance, when n0 changes from 20 to 12, the total costs incurred in the Optimal
approach are 25% and 31% less than that of the Traditional approach respectively. For the
case when the quality of the preliminary data is low, n0 = 4, the Optimal approach saves
the firm 40% in total cost over the Traditional approach. The Optimal approach also greatly
reduces the risk of delaying the launch of the new drug and the risk of wasting construction
cost in case the drug fails. Here, when n0 = 4, the firm pays 67% less in penalty and 63%
less in wasted building cost on average relative to the Traditional approach.

Observe that even with limited preliminary data, the Optimal approach still signif-
icantly outperforms the Intermediate II approach, in which the firm ignores preliminary
data. This suggests that even when preliminary data is limited or of relatively poor quality,
it is still valuable for the firm to utilize it in the decision-making process. In the subsequent
subsections, we discuss cost and information settings in which re-evaluation is particularly
beneficial.

As mentioned above, the firm is more likely to pause and restart construction when the
quality of the preliminary data is low. In this case, the firm has only a rough estimate of
the success rate p early in the planning horizon, and thus its investment decision is more
sensitive to changes in the overall prospect of the drug as marginal individual result are
revealed. Specifically, the percentage of runs in which projects are paused and restarted
decreases from 21.8% to 15.6% to 13.4% as n0 increases from 4 to 12 to 20. When the
quality of the preliminary data is low, we expect to see the firm change its building decision
more frequently. However, given that the firm pauses and restarts construction at least once,
the expected frequency of such switches increases from 1.71 times to 1.80 times to 1.83, as n0

increases from 4 to 12 to 20. This counterintuitive behavior is likely due to the significantly
smaller number of times that the firm pauses projects as n0 increases, as can be seen from the
overall unconditioned frequency of switching, which decreases from 0.376, 0.281 and 0.246
as n0 increases from 4 to 12 to 20. We suspect that as the quality of preliminary information
increases, switches only occur in scenarios where switching is more valuable, and thus more
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likely.

4.6.6 How do the construction and penalty costs impact these
observations?

Ultimately, in this setting the firm is trading off building cost on one hand, and penalty
due to production delay on the other. Thus, we explore how the relationship between these
costs impacts our policy performance. In our experiments, we consider per period building
costs of c = $5 million, $10 million, and $15 million; and per period penalty costs of π = $50
million, $100 million, and $150 million.

The expected total cost increases sub-linearly in the incremental building cost c for each
of the approaches. In each of the 4 approaches, the firm balances the expected building cost
over the horizon and the expected penalty in case if the production capacity is not ready
for the approved drug. As the incremental building cost c increases, the firm becomes more
conservative in building capacity. This can also be observed from the change in performance
of the firm in the Optimal approach, where the expected construction cost in case of a failed
trial is 57% and 97% more as c increases from $5 million to $10 million to $15 million.

The expected total cost also increases sub-linearly in π. As the incremental penalty cost
π increases, the firm becomes more liberal in building the capacity across the 4 approaches
in general, although the net effect of increasing π on the change in expected penalty cost
is unclear. For example, when the Traditional approach is employed, the total expected
penalty first increases and then decreases. In the Optimal approach, however, it is clear that
the total expected penalty cost indeed decreases in π, and the expected “wasted” building
cost increases in π as expected.

Note that while increasing either the building cost or the penalty cost when holding
the other constant, the firm adjusts the decision to balance the costs and penalties. For
example, when building cost increases and penalty cost is held constant, the firm will be
more conservative in its building decision, and thus more willing to risk shortage penalties,
and vice-versa, thus explaining the sub-linear increase in expected total cost as these costs
increase.

The impact of changing construction and penalty costs on the likelihood of pausing and
restarting construction is unclear. When the per period construction cost c decreases from
$15 million to $10 million to $5 million, the firm pauses and restarts the project 14.4%,
15.6% and 15.4% of the time, respectively, and the expected switching frequencies are 0.26,
0.28 and 0.27. Similarly, as penalty costs change from $50 million to $100 million to $150
million, firm pause and restarts 16.8%, 15.6% and 17.2% of the time, with expected switching
frequencies 0.32, 0.28 and 0.31, so no significant difference or trends are apparent.
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c = 5 Traditional Intermediate I Intermediate II Optimal
E[Total Cost] 84.42 74.61 67.09 57.22
E[Penalty|γT ≥ γc] 57.65 170.50 37.12 28.52
E[Bldg. Cost|γT < γc] 48.24 13.01 31.93 21.13
c = 10 Traditional Intermediate I Intermediate II Optimal
E[Total Cost] 154.97 126.53 125.47 107.16
E[Penalty|γT ≥ γc] 210.38 235.40 74.39 61.62
E[Bldg. Cost|γT < γc] 63.25 21.24 53.86 33.23
c = 15 Traditional Intermediate I Intermediate II Optimal
E[Total Cost] 213.86 173.39 177.33 155.05
E[Penalty|γT ≥ γc] 210.14 302.57 191.36 100.16
E[Bldg. Cost|γT < γc] 94.75 27.52 54.21 41.71

Table 4.2 The change in expected costs with respect to the change in construction cost (in
million of dollars).

π = 50 Traditional Intermediate I Intermediate II Optimal
E[Total Cost] 138.55 109.67 111.87 99.84
E[Penalty|γT ≥ γc] 113.93 183.96 128.65 72.11
E[Bldg. Cost|γT < γc] 63.50 16.35 30.27 23.44
π = 100 Traditional Intermediate I Intermediate II Optimal
E[Total Cost] 154.97 126.53 125.47 107.16
E[Penalty|γT ≥ γc] 210.38 235.40 74.39 61.62
E[Bldg. Cost|γT < γc] 63.25 21.24 53.86 33.23
π = 150 Traditional Intermediate I Intermediate II Optimal
E[Total Cost] 164.26 137.28 131.00 112.41
E[Penalty|γT ≥ γc] 92.16 290.76 79.74 60.85
E[Bldg. Cost|γT < γc] 96.29 24.04 58.27 39.07

Table 4.3 The change in expected costs with respect to the change in penalty cost (in million
of dollars).

4.6.7 Alternative Technologies/Capacity Types

To explore the impact of using novel technologies that are more expensive but have
reduced capacity availability lead times, we completed a series of experiments considering a
variety of low lead time, expensive alternatives to the base case described above:

• 36 month lead time, $15 million or $20 million per month to build,

• 24 month lead time, $30 million or $40 million per month to build,

• 12 month lead time, $60 million, $80 million or $100 million per month to build.
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(s0
2, c2) (36, 15) (36, 20) (24, 30) (24, 40) (12, 60) (12, 80) (12, 100)

E[Total Cost] 102.47 124.5 110.42 121.47 96.94 113.45 121.64
E[Bldg. Cost] 92.92 111.5 102.25 109.78 91.14 98.45 111.62
E[Penalty|γT ≥ γc] 51.82 71.13 45.13 64.23 31.32 82.6 54.51
% 1 only & Success 0.00% 16.16% 0.00% 16.86% 0.00% 13.36% 16.65%
% 1 only & Failure 0.00% 78.35% 0.00% 80.35% 0.00% 32.21% 80.91%
% 2 only & Success 18.43% 0.00% 18.11% 0.00% 18.52% 1.46% 0.00%
% 2 only & Failure 13.23% 0.00% 6.26% 0.00% 2.63% 0.41% 0.00%
% 1 → 2 & Success 0.00% 2.13% 0.00% 1.36% 0.00% 3.35% 1.73%
% 1 → 2 & Failure 0.00% 3.36% 0.00% 1.44% 0.00% 0.91% 0.71%
% Not Building & Failure 68.34% 0.00% 75.63% 0.00% 78.84% 48.31% 0.00%

Table 4.4 The change in expected costs and building strategy with respected to the change in
construction cost and build time of the expensive option (γ0 = ζ0 = 1, in million of dollars).

In addition to performance measures we considered for the single capacity type experi-
ments, we are also interested in understanding when the firm uses the less expensive longer
lead time base case project, when the firm uses the expensive alternative, and when the firm
starts with the base case project, and then later switches to the more expensive alternative.
To isolate the effect of preliminary data, we set (γ0, ζ0) = (1, 1). The results are summarized
in Table 4.4.

For all three construction lead times, 12, 24, and 36 months, the expensive alterna-
tive’s role changes as a function of its building cost. When the building cost of this ca-
pacity type is low, the firm tends to wait for more information and chooses to build the
more expensive capacity rather than the base case project. For example, for the case when
(s0

2, c2) = (36 months, $15 million), 32% of the time firm builds capacity during the planning
horizon, and when it does, it chooses the expensive option over the base case capacity type.
However, when this alternative costs more, $20 million, the firm chooses the base case most
of the time, and the expensive option is only used as a back up. In this case, each time
the expensive technology is used, the firm has already made some investment in the basic
capacity, and switches to the expensive option later to make up for “lost time” after it pauses
construction of the cheaper capacity.

In other words, when the expensive alternative is relatively cheap, the firm is better off
paying the premium to build this capacity in order to “buy” more time for the prospect of a
final approval to become clearer. Although this option is more expensive than the base case,
the firm on average pays less for “mistakes” made in building either too early or too late,
and hence, the firm is better off by paying this premium in exchange for better information.
Comparing the two settings in which the novel technology takes 36 months to build, we
see that the firm is able to make the “right” decision not to build 68% of the time when
c2 = $15 million. In contrast, when c2 = $20 million the firm has to build the basic capacity
earlier on in the horizon (when the firm confidence level on the estimate of p is low) in
order to hedge against the possibility of production delay or the need to use the expensive
option; as a result, the firm invests in the basic capacity type when there ultimately isn’t
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any demand 78% of the time.

We see similar results when the expensive alternative takes 24 months and 12 months
to build – the availability of an expensive alternative generally improves the solution to
this capacity investment problem. However, the benefit of having this alternative capacity
type decreases as the construction cost becomes relatively expensive. For example, when
s0

2 = 12 months, the expensive alternative is used less as a backup as c2 increases from
$80 million to $100 million.

4.6.8 How does the random arrivals of patients at the the treat-
ment centers affect the firm’s building decisions and invest-
ment performance?

In additional to the likelihood of a successful trial, the estimation of the arrival time
of the clinical trial conclusion is important to firm’s capacity building decision. In practice,
patients arrival at the treatment centers at random, hence, the number of marginal results
at each review periods and the drug approval time are not known to the firm ahead of
time. At each review period, the firm’s decision to build at each period should be a function
of both the progress of the trial and the construction in order to finish the production
capacity on time, as we have seen in section 4.5. The firm is expected have a greater risk
exposure given this additional uncertainty, in this section, we examined the firm’s capacity
investment performance at the presence of random drug approval time. We assumed the prior
information (γ0, ζ0) = (1, 1), the building cost c = $10 million, the penalty cost π = $100
million, the discount rate α = 0.99, the construction time s = 15 and the trial size N = 48.
We assume the number of marginal results revealed at each period are i.i.d. Binomial(n, ρ).
We look at four settings of (n, ρ): (2, 1), (4, 1/2), (6, 1/3), and (8, 1/4), such that, the
expected number of marginal results are identical in each setting, but with different variances.

n ρ E[TotalCost] E[Penalty|Success] E[Building|Failure]
2 1 $56.51 $4.92 $21.28
4 1/2 $59.76 $55.72 $18.68
6 1/3 $61.36 $65.81 $18.15
8 1/4 $60.38 $63.39 $18.71

Table 4.5 The change in expected costs respected to the change in the distribution of patients
arrival (γ0 = ζ0 = 1, in million of dollars).

From Table(4.5), we observed that the production capacity is more expensive when the
trial conclusion time τ is random, and the decrease in the expected building cost spend given
a failed trial suggests that the firm build more conservatively when the number of results
observed at each period is random. Furthermore, the firm is expected to pay more in penalty
cost from a delayed production in the cases where the drug is approved when the approval
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time is random, but it is uncertain if the increase in the variability of patient arrival at each
period has any effect on the firm’s performance. This can be explained by the conclusion
time τ , as shown in Table(4.6), there is a wide range of possible value τ can take when the
patient arrival is random. When τ is small, the firm may not have enough time to react the
early approval, and hence, a higher expected penalty cost in case of a successful trial.

n ρ max(τ) min(τ)
2 1 24 24
4 1/2 36 16
6 1/3 38 16
8 1/4 38 14

Table 4.6 The change in clinical trial conclusion time with respected to the change in the
distribution of patients arrival (γ0 = ζ0 = 1, in million of dollars).

4.7 Summary & Discussion

We studied the capacity investment problem faced by a pharmaceutical firm that re-
quires new production capacity for a product that is still undergoing testing. Under pressure
to recover research and development costs as quickly as possible, firms traditionally make
a one-time commitment to build or acquire production capacity so that the new drug can
be launched on time. However, it is typically difficult to gauge the likelihood of passing re-
quired clinical trials early in the process. We developed a stylized model to study the value of
periodically reviewing data from the on-going clinical trial and appropriately adjusting the
ongoing capacity acquisition project, and characterized the optimal building strategy under
various model settings. Our analysis suggests that in many cases, reevaluation dramatically
reduces both the total expected investment cost, as well as the costs associated with the
“mistakes” made in building too early or too late, i.e. the investment cost wasted in case of
a failed clinical trial and the penalty cost of delayed production.

Of course, this stylized model significantly simplifies both capacity acquisition and clin-
ical trial data collection. Nevertheless, we believe that the key take-away from this research
will hold in more complex settings: regularly reviewing clinical data and reassessing ongoing
capacity investment projects can significantly reduce the risk associated with these complex
capital investment projects. Moreover, in many cases, but not always, it is often optimal
for the firm to a premium to build an alternative novel type of production facility if it has
significantly shorter construction time.

To better reflect reality, we intend to consider a set of natural extensions to our model.
We will consider more realistic models of clinical trials, focusing on the combination of safety
and efficacy that is often used in practice to compare alternative and standard treatments
in phase three clinical trials; the survival time of trial participants that is often used in
measuring the performance of drugs for cancer and other terminal deceases; and the random
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arrival of trial participants to test centers and the resultant random treatment schedule. We
also plan to consider more realistic and detailed models of capacity acquisition, modeling
stages of construction where the specificity of the capacity increases as construction moves
forward, so that early in the construction project, the capacity may be appropriate for a
variety of possible products.
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Chapter 5

Appendices

5.1 Appendix I – Preliminary

Definition 5.1.1 A switching control α = (τn, κn)n≥0 consists of an increasing sequence
of stopping times (τn)n≥0 and a sequence of new regime values (κn)n≥0 that are assumed
immediately after each stopping time.

Definition 5.1.2 A two-state switching control α = (τn, κn)n≥0 is called admissible if the
following hold almost surely: τ0 = 0, τn+1 > τn for n ≥ 1, τn → ∞, and for all n ≥ 0,
κn ∈ {0, 1} is Fτn measurable, with κn = κ0 for even n and κn = 1− κ0 for odd n.

Proposition 5.1.3 There is a one-to-one correspondence between admissible switching con-
trols and the regime indicator function It(ω), which is an F-adapted càglàd process of finite
variation, so that It(ω) : Ω× [0,∞)→ {0, 1}, with

It :=
∞∑
n=0

κn1{τn<t≤τn+1}, I0 = κ0. (5.1)

Definition 5.1.4 Let I = (0, b), y ∈ Ī be given, and for each z ∈ I, let α(z) = (τn(z), κn(z))n≥0

be a switching control. The collection (α(z))z∈I is consistent if

α(z) is admissible for Lebesgue-almost every z ∈ I, (5.2)

I0(z) := κ0(z) = 1{z≤y}, for Lebesgue-almost every z ∈ I, (5.3)

and for all t <∞, ∫
I
(I+
t (z) + I−t (z))dz <∞, almost surely, and (5.4)

It(z) is decreasing in z for P⊗ dz-almost every (ω, z). (5.5)
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Here I+
t (z) and I−t (z) are defined by

I+
t :=

∞∑
n>0,κn=1

1{τn<t}, I+
0 = 0 and I−t :=

∞∑
n>0,κn=0

1{τn<t}, I−0 = 0.

5.2 Appendix II – Proofs

Proof of Theorem 3.4.1:

First, given any (ξ+, ξ−) ∈ A′y, from the integration by parts formula,

E
[∫ ∞

0

e−ρtChYtdt

]
=
Ch
ρ
y +

Ch
ρ
E
[∫ ∞

0

e−ρtdξ+
t −

∫ ∞
0

e−ρtdξ−t

]
.

Next, let Zt = e−ρtPt. by Ito’s formula, we have

dZt = −(ρ− µ)Ztdt+
√

2σZtdWt, Z0 = p > 0.

Note that ρ− µ > 0 implies E[
∫∞

0
Zsds] <∞. Moreover limt→0 Zt = 0 almost surely and in

L1. Now, from the integration by parts formula in (Protter 2004, p. 68) and noting that Z
and Y are left continuous,∫ t

0

Zs−dYs = ZtYt −
∫ t

0

Ys−dZs − [Z, Y ]t

= ZtYt + (ρ− µ)

∫ t

0

YsZsds−
√

2σ

∫ t

0

YsZsdWs − py,

because [Z, Y ]t = Z0Y0 = py for all t from the finite variation of Y .

In addition, from (Protter 2004, p. 63), the process
∫ t

0
YsZsdWs is a martingale, so for

all t > 0,

E
[∫ t

0

ZsdYs

]
= E

[
ZtYt + (ρ− µ)

∫ t

0

YsZsds

]
− py.

And since Zt → 0 in L1 and Yt ∈ [0, b] is bounded, limt→∞ E[ZtYt] = 0.

Furthermore, since (ξ+, ξ−) ∈ A′y and Zt is integrable, the dominated convergence the-
orem gives

E
[∫ ∞

0

ZsdYs

]
= lim

t→∞
E
[∫ t

0

e−ρsPsdYs

]
= lim

t→∞
E
[
ZtYt + (ρ− µ)

∫ t

0

YsZsds

]
− py

= E
[
(ρ− µ)

∫ ∞
0

YsZsds

]
− py.

Hence,

E
[
−
∫ ∞

0

e−ρtPtdξ
+
t +

∫ ∞
0

e−ρtPtdξ
−
t

]
= py − E

[
(ρ− µ)

∫ ∞
0

e−ρtYtPtdt

]
.
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Now, putting all terms together, an easy application of the Dominated Convergence Theorem
reveals the statement. �

Proof of Proposition 3.4.2: Let p > 0 and y ∈ [0, b] be given. Since ρ > µ we have

E
[∫ ∞

0

e−ρt[H̃(Yt)Pt]dt

]
≤ E

[∫ ∞
0

e−ρt[MPt]dt

]
≤ ηMp.

Note that for any given (ξ+, ξ−) ∈ Ay, −y ≤ ξ+
t − ξ−t ≤ b − y. From integration by parts,

for any T > 0,

−
∫

[0,T )

e−ρtdξ+
t ≤ −

∫
[0,T )

e−ρtdξ−t + y,

which, together with K+ +K− > 0 and K+ > 0, implies

E
[
−(K+ +

Ch
ρ

)

∫ ∞
0

e−ρtdξ+
t − (K− − Ch

ρ
)

∫ ∞
0

e−ρtdξ−t

]
≤ Ch

ρ
y − (K+ +K−)E

[∫ ∞
0

e−ρtdξ−t

]
≤ Ch

ρ
b.

Since these bounds are independent of the control, we have

V (p, y) ≤ ηMp+
Ch
ρ
b <∞.

�

Proof of Proposition 3.4.6: The consistency follows immediately from Definition 5.1.4
and the following monotonicity property of F and G: F is non-increasing and G is non-
decreasing in Case I, and F is non-decreasing and G is non-increasing in Case II.

Proof of Proposition 3.4.8: Since (0, b) is bounded, the integrability follows (Guo and
Tomecek 2008, Theorem 3.10) as

lim
t→∞

E
[
e−ρtG−1(Mt)

]
= 0.

(See also Lemma 1 and Eqn. (23) in (Merhi and Zervos 2007)). �

Proof of Lemma 4.3.1: By direct calculation,

Pr

(
m∑
j=1

δt−1+j = k

∣∣∣∣∣ γt−1, γt−2, . . . , γ0

)

=

(
m
k

)
Γ(γt−1 + ζt−1)

Γ(γt−1)Γ(ζt−1)

∫ 1

0

pγ
t−1+k−1(1− p)ζt−1+(m−k)−1dp

=

(
m
k

) k−1∏
j=0

(γt−1 + j)
m−k−1∏
j=0

(ζt−1 + j)

m−1∏
j=0

(γt−1 + ζt−1 + j)

(5.6)
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=Pr

(
m∑
j=1

δt−1+j = k

∣∣∣∣∣ γt−1

)
. (5.7)

�

Proof of Lemma 4.3.2:

Pr(γT ≥ γc|γt−1 = γ) =

T−t+1∑
k=(γc−γ)+

(
T − t+ 1

k

) k−1∏
j=0

(γt−1 + j)
T−t−k∏
j=0

(ζt−1 + j)

T−t∏
j=0

(γt−1 + ζt−1 + j)

. (5.8)

With some algebraic manipulation, we have:

Pr(γT ≥ γc|γt−1 = γ)− Pr(γT ≥ γc|γt−1 = γ − 1)

=

T−t∑
k=(γc−γ)+

(
T − t+ 1

k

) k−1∏
j=0

(γt−1 + j)

T−i−k∏
j=1

(ζt−1 + j)

[
ζt−1 − (γt−1 − 1)

T − t− k + 1

k + 1

]
+

T−t∏
j=0

(γt−1 + j)

T−t∏
j=0

(γt−1 + ζt−1 + j)

.

Note that the term
(ζt−1)(k + 1)− (γt−1 − 1)(T − t− k + 1)

is increasing in k, and changes sign at most once. Combined with the fact that all other terms remain
positive, we observe that:

Pr(γT ≥ γc|γt−1 = γ)− Pr(γT ≥ γc|γt−1 = γ − 1)

≥min{Pr(γT ≥ γc|γt−1 = γc)− Pr(γT ≥ γc|γt−1 = γc − 1),

P r(γT ≥ γc|γt−1 = γc − T + t− 1)− Pr(γT ≥ γc|γt−1 = γc − T + t− 2)}
≥0,

and by transitivity, we have:

Pr(γT ≥ γc|γt−1 = γ1) ≥ Pr(γT ≥ γc|γt−1 = γ2),

for all γ1 > γ2. �

Proof of Lemma 4.3.3: From (4.3.1), we show that γt−1 is a Markov process, and by conditioning on γt,
we have:

Pr(γT ≥ γc|γt = γ + 1)− Pr(γT ≥ γc|γt−1 = γ)

=Pr(γT ≥ γc|γt = γ + 1)−
1∑
i=0

Pr(γT ≥ γc|γt = γ + i)]Pr(δt = i|γt−1 = γ) ≥ 0.

The inequality results from a direct application of Lemma 4.3.2. �

Proof of Lemma 4.3.4: Similar to the proof of Lemma 4.3.3, we have:

Pr(γT ≥ γc|γt = γ)− Pr(γT ≥ γc|γt−1 = γ)
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=Pr(γT ≥ γc|γt = γ)−
1∑
i=0

Pr(γT ≥ γc|γt = γ + i)Pr(δt = i|γt−1 = γ) ≤ 0.

The inequality again results from a direct application of Lemma 4.3.2. �

Proof of Lemma 4.4.1: Suppose T > s0max and consider an admissible strategy a1 as a potential candidate
optimal strategy at period t = 1 with a1 6= 0. We define index I ′ to identify the entries such that a1i = 1.
We further define a stopping time for each i ∈ I ′, τi := min{t|ati = 0}, and note that τ ≤ s0max < T a.s.,
since it is a waste of resources to invest in a project which is already completed. We consider an alternative
strategy a′1 such that a′1 = 0, and for t = 2, . . . , T . We couple a′t with at for each outcome γt−1, such that
a′
t
i = ati for i ∈ I \ I ′ and for each t = 2, 3, . . . , T . For facility types i ∈ I ′, we couple a′

t
i with ati such that,

a′
t
i =

{
1 for t = τi,
ati otherwise.

Let J(γ0, s
0,a0,a1) be the expected total cost if the firm uses investment strategy a1 at period t = 1, then

J(γ0, s
0,a0,a1) ≥ J(γ0, s

0,a0,a′1) + E

∑
i∈I′

τi∑
j=1

(αj−1 − αj)Ci(s0i − j + 1)|γ0


≥ J(γ0, s

0,a0,a′1)

≥ V1(γ0, s
0,a0).

The decision, at, indeed gives a suboptimal solution at t = 1, therefore by contradiction,

V1(γ0, s0,a0) = αE
[
V2(γ1, s0,a0)

∣∣ γ0] .
�

Proof of Theorem 4.4.2: The result is a consequence of Lemma 4.3.2 and (4.7). �

Proof of Corollary 4.4.3: From Lemma 4.3.2, and the monotonicity stated in Theorem 4.4.2:

Pr(γT ≥ γc|γt = γ + 1) ≥ Pr(γT ≥ γc|γt−1 = γ) ≥ Pr(γT ≥ γc|γt−1 = γt−1∗ ) ≥ c

αT−t(c+ π)
,

therefore, it is also optimal for the firm to invest in period t. �

Proof of Corollary 4.4.4: The corollary is a direct consequence of Theorem 4.4.2 and Lemma 4.3.4. �

Proof of Theorem 4.4.5: Here, we observe that the firm should build capacity for period t if:

Pr(γT ≥ γc|γt−1) ≥ c+K + αE[Wt+1(γt, st−1 − 1)|γt−1]

αT−t+1(c+ π)
,

when at−1 = 0; and

Pr(γT ≥ γc|γt−1) ≥ c+ αE[Wt+1(γt, st−1 − 1)|γt−1]

αT−t+1(c+ π)
,

when at−1 = 1. Since K > 0, if we can show that for W (·, ·) as defined in equation (4.8), E[Wt+1(γt, st−1 −
1)|γt−1] is a non-increasing function in γt−1 for all t, then for each t there exist a pair of investment thresholds
γt−1∗0 ≥ γ

t−1
∗1 ,

γt−1∗0 := inf

{
γ ∈ {γ0, . . . , γ0 + t− 1}

∣∣∣∣Pr(γT ≥ γc|γt−1 = γ) ≥ c+K + αE[Wt+1(γt, st−1 − 1)|γt]
αT−t+1(c+ π)

}
,

γt−1∗1 := inf

{
γ ∈ {γ0, . . . , γ0 + t− 1}

∣∣∣∣Pr(γT ≥ γc|γt−1 = γ) ≥ c+ αE[Wt+1(γt, st−1 − 1)|γt]
αT−t+1(c+ π)

}
,
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such that for at−1 = 0 the firm should built at period t if and only if γt−1 ≥ γt−1∗0 ; and for at−1 = 1 if and
only if γt−1 ≥ γt−1∗1 . To show E[Wt+1(γt, st−1)|γt−1] is non-increasing in γt−1 for all t ∈ {1, 2, . . . , T + 1},
we use induction. For t = T + 1,

WT+1(γT , sT ) =

{
0 for γT < γc,
−K for γT ≥ γc.

Then by Lemma 4.3.2, we see E[WT+1(γT , sT )|γT−1] is non-increasing in γT−1, and γT−1∗0 ≥ γT−1∗1 . Now we
suppose E[Wt+1(γt, st)|γt−1] is non-increasing in γt−1 at period t and need to show it is also true for period
t− 1. Observe:

Wt(γ
t−1, st−1) =

 0 for γt−1 < γt−1∗1 ,
c+ αE[Wt+1(γt, st)|γt−1]− αT−t+1(c+ π)Pr(γT ≥ γc|γt−1) for γt−1∗1 ≤ γ

t−1 ≤ γt−1∗0 ,
−K for γt−1 ≥ γt−1∗0 .

By Lemma 4.3.2, E[Wt(γ
t−1, st−1)|γt−2] is non-increasing in γt−2. �

Proof of Theorem 4.4.7: Note that since the setup cost is zero, we rewrite the penalty function as follows:

F (sT , aT ) = F (sT )

The proof proceeds by backward induction:

i. Suppose period t = T ,

VT (γT−1, sT−1)

= min{c, α(F (sT−1)− F (sT−1 − 1))Pr(γT ≥ γc|γT−1)}+ αF (sT−1 − 1)Pr(γT ≥ γc|γT−1).

By Lemma 4.3.2, there exists γT−1∗s for each sT−1 = s such that the firm should invest if and only if
γT−1 ≥ γT−1∗s .

ii. Moreover, by (4.9), γT−1∗s is decreasing in s.

iii. After some algebraic manipulation, we have:

VT (γT−1, s)− VT (γT−1, s− 1)

=


α(F (s− 1)− F (s− 2))Pr(γT ≥ γc|γT−1) for γT−1 ≥ γT−1∗s−1

,

c for γT−1∗s ≤ γT−1 < γT−1∗s−1
,

α(F (s)− F (s− 1))Pr(γT ≥ γc|γT−1) for γT−1 < γT−1∗s .

≥ 0.

By Lemma 4.3.2, we also see that VT (γT−1, s)− VT (γT−1, s− 1) is increasing in γT−1.

iv. For the convexity of VT (γT−1, s) in s, we observe:

VT (γT−1, s+ 1)− 2VT (γT−1, s) + VT (γT−1, s− 1)

=


α[F (s)− 2F (s− 1) + F (s− 2)]Pr(γT ≥ γc|γT−1) for γT−1 ≥ γT−1∗s−2

,

α(F (s)− F (s− 1))Pr(γT ≥ γc|γT−1)− c for γT−1∗s−1
≤ γT−1 < γT−1∗s−2

,

c− α(F (s)− F (s− 1))Pr(γT ≥ γc|γT−1) for γT−1∗s ≤ γT−1 < γT−1∗s−1
,

α[F (s+ 1)− 2F (s) + F (s− 1)]Pr(γT ≥ γc|γT−1) for γT−1 < γT−1∗s .

≥ 0.

Therefore, VT (γT−1, s) is convex in s.

Now we suppose that the above statements i, ii, iii and iv hold true for t + 1 and show the they hold true
for t. Observe:

Vt(γ
t−1, s) = min{c, αE[Vt+1(γt, s)− Vt+1(γt, s− 1)|γt−1]}+ αE[Vt+1(γt, s− 1)|γt−1].
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• By Lemma 4.3.2 and Vt+1(γt, s)−Vt+1(γt, s−1) is increasing in γt. Therefore, we conclude that there
exists a γt−1∗s for each st−1 = s, such that the firm should invest if and only if γt−1 ≥ γt−1∗s .

• In addition, by the convexity of Vt+1(γt, s) in s, we see that γt−1∗s is decreasing in s.

• Again, after algebraic manipulation, we have:

Vt(γ
t−1, s)− Vt(γt−1, s− 1)

=


E[Vt+1(γt, s− 1)− Vt+1(γt, s− 2)|γt−1] for γt−1 ≥ γt−1∗s−1

,

c for γt−1∗s ≤ γ
t−1 < γt−1∗s−1

,

E[Vt+1(γt, s)− Vt+1(γt, s− 1)|γt−1] for γt−1 < γt−1∗s .

≥ 0.

• Then by Lemma 4.3.2, we see that Vt(γ
t−1, s)− Vt(γt−1, s− 1) is increasing in γt−1.

• For the convexity of Vt(γ
t−1, s) in s:

Vt(γ
t−1, s+ 1)− 2Vt(γ

t−1, s) + Vt(γ
t−1, s− 1)

=


αE[Vt+1(γt, s)− 2Vt+1(γts− 1) + Vt+1(γt, s− 2)|γt−1] for γt−1 ≥ γt−1∗s−2

,

αE[Vt+1(γt, s− 1)− Vt+1(γt, s− 2)|γt−1]− c for γt−1∗s−1
≤ γ−1t < γt−1∗s−2

,

c− αE[Vt+1(γt, s− 1)− Vt+1(γt, s− 2)|γt−1] for γt−1∗s ≤ γ
t−1 < γt−1∗s−1

,

αE[Vt+1(γt, s+ 1)− 2Vt+1(γt, s) + Vt+1(γt, s− 1)|γt−1] for γt−1 < γt−1∗s .

≥ 0.

�

Prove of Lemma 4.4.8: Here, we calculate kt1 and kt2 directly. At t = T + 1, we see that kT+1
1 = kT+1

2 = 0
from the penalty function (4.10).

At t = T , for s2 ≥ s1 π+c1π+c2
+1, since E[VT+1(γT , s1, s2−1)|γT−1] = E[VT+1(γT , s1, s2)|γT−1] = E[VT+1(γT , s1)|γT−1],

it is not optimal for the firm to build Project 2. Similarly, for s2 < (s1 − 1)π+c1π+c2
, it is not optimal for the

firm to build Project 1. For s1
π+c1
π+c2

≤ s2 < s1
π+c1
π+c2

+ 1, the firm should choose Project 2 over Project 1 when

s2 ≥ s1
π + c1
π + c2

− c2 − c1
π + c2

(
1

αPr(γT ≥ γc|γT−1)
− 1

)
,

However, since it is always true that

s2 ≥ s1
π + c1
π + c2

in this region, it is not optimal for the firm to build Project 1. For s1
π+c1
π+c2

> s2 ≥ (s1 − 1)π+c1π+c2
, the firm’s

decision is based on a three way comparison:

min{αs2(π + c2)Pr(γT ≥ γc|γT−1),c1 + α(s1 − 1)(π + c1)Pr(γT ≥ γc|γT−1),

c2 + α(s2 − 1)(π + c2)Pr(γT ≥ γc|γT−1)},

Note that,
c1

α[s2(π + c2)− (s1 − 1)(π + c1)]
≤ c2 − c1
α[(s1 − 1)(π + c1)− (s2 − 1)(π + c2)]

,

if and only if

s2 ≥ (s1 − 1)
π + c1
π + c2

+
c1
c2
,

thus, it is not optimal for the firm to build Project 1 in the region s2 < (s1−1)π+c1π+c2
+ c1
c2

. Therefore, kT1 = 0

and kT2 = c1
c2
− π+c1

π−c2 .

At t = T − 1, for s2 ≥ (s1 − 1)π+c1π+c2
+ c1

c2
+ 1, we have

E[VT (γT−1, s1 − 1, s2)|γT−2] = E[VT (γT−1, s1 − 1)|γT−2] = E[VT (γT−1, s1 − 1, s2 − 1)|γT−2],
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therefore, it is not optimal for the firm to build Project 2. Likewise, for s2 < (s2 − 2)π+c1π+c2
+ c1

c2
, we have

E[VT (γT−1, s1 − 1, s2)|γT−2] = E[VT (γT−1, s2)|γT−2] = E[VT (γT−1, s1, s2)|γT−2],

the cost to go of building Project 1 is always greater than the cost of waiting, therefore, it is not optimal for
the firm to build Project 1. Thus, we have kT−11 = c1

c2
+ c2−c1

π+c2
and kT−12 = c1

c2
− 2π+c1π+c2

With similar analysis,

we see that for 0 ≤ t < T1, kT−t1 = c1
c2

+ (T − t) c2−c1π+c2
and kT−t2 = c1

c2
− (T − t+ 1)π+c1π+c2

. �
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