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Abstract – The Gyrokinetic Toroidal Code at Princeton (GTC-P) is a highly scalable and portable particle-in-
cell (PIC) code. It solves the 5D Vlasov-Poisson equation featuring efficient utilization of modern parallel computer
architectures at the petascale and beyond. Motivated by the goal of developing a modern code capable of dealing
with the physics challenge of increasing problem size with sufficient resolution, new thread-level optimizations have
been introduced as well as a key additional domain decomposition. GTC-P’s multiple levels of parallelism, including
inter-node 2D domain decomposition and particle decomposition, as well as intra-node shared memory partition and
vectorization have enabled pushing the scalability of the PIC method to extreme computational scales. In this paper, we
describe the methods developed to build a highly parallelized PIC code across a broad range of supercomputer designs.
This particularly includes implementations on heterogeneous systems using NVIDIA GPU accelerators and Intel Xeon
Phi (MIC) co-processors and performance comparisons with state-of-the-art homogeneous HPC systems such as Blue
Gene/Q. New discovery science capabilities in the magnetic fusion energy application domain are enabled, including
investigations of Ion-Temperature-Gradient (ITG) driven turbulence simulations with unprecedented spatial resolution
and long temporal duration. Performance studies with realistic fusion experimental parameters are carried out on
multiple supercomputing systems spanning a wide range of cache capacities, cache-sharing configurations, memory
bandwidth, interconnects and network topologies. These performance comparisons using a realistic discovery-science-
capable domain application code provide valuable insights on optimization techniques across one of the broadest sets
of current high-end computing platforms worldwide.

1 Introduction
The Gyrokinetic Toroidal Code (GTC) [23] is a particle-in-cell (PIC) code that solves the five-dimensional (5D) gy-
rokinetic Vlasov equation in full, global torus geometry to address kinetic turbulence issues in magnetically-confined
fusion experimental facilities known as tokamaks [36]. This code was developed using FORTRAN 90 and fea-
tures three levels of parallelism: a one-dimensional domain decomposition in the toroidal dimension, a particle de-
composition in each toroidal domain, and multithreaded, shared memory loop-level parallelism implemented with
OpenMP [11, 12]. The method scales well to a large number of processor cores with respect to the number of par-
ticles. However, the approach can suffer from performance bottlenecks when dealing with significantly increased
problem size, e.g., simulating large-scale plasmas, such as the burning plasma experimental facility ITER, the largest
device currently under construction in France [15]. This is due to the increasing grid-related computation and mem-
ory requirement on each process. With only one-dimensional domain decomposition in the toroidal dimension, this
algorithm has each process keep a copy of the full poloidal grid, and the number of grid points in the poloidal grid
increases 4x for a plasma device of 2x in minor radius. In order to effectively address the open questions in fusion
plasma physics, such as the scaling of the energy confinement time with system size [14, 22, 29, 37], a key additional
level of domain decomposition in the radial dimension was introduced. In this new version named GTC-Princeton or
GTC-P [2,10], the additional domain decomposition substantially reduces the memory requirements and thus enables
the code to deal with increased problem size, including being able to scale to ITER-size simulations.

The illustrative application domain on which the present studies are focused begins with the fact that the fusion of
light nuclides forms the basis of energy release in the universe and can potentially be harnessed and used as a clean and
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sustainable supply of energy on Earth. Magnetic confinement fusion devices in which very high temperature plasma
is confined in a tokamak, a donut-shaped vacuum vessel, is one of the most promising approaches to fusion reactors.
In such a system, the interplay between the complex trajectories of individual charged particles and the collective
effects arising from the long range nature of electromagnetic forces lead to a wide range of waves, oscillations, and
instabilities. These include larger-scale (macro) instabilities that produce rapid topological changes in the device
resulting in a catastrophic loss of fusion power, as well as smaller-scale (micro) instabilities that gradually leak energy
and thus affect performance and economic viability. Turbulent fluctuations (“microturbulence”) are instabilities caused
by the unavoidable spatial variations (gradients) in a plasma system. They can significantly increase the transport
rate of heat, particles, and momentum across the confining magnetic field and severely limit the energy confinement
time for a given machine size. High-fidelity predictive numerical experiments based on 5D gyrokinetic simulations
play a significant role in understanding, predicting and possibly controlling these instabilities. However, gyrokinetic
simulations are extremely compute-intensive since the phase space distribution function in five dimensions needs to
be accurately resolved. This is a key motivating factor for developing highly-optimized modern PIC codes that can
effectively carry out microturbulence simulations capable of being deployed on the most powerful supercomputing
systems.

The basic particle method has long been a well established approach for simulating the behavior of charged parti-
cles interacting with each other through pair-wise electromagnetic forces. At each time step, the particle properties are
updated according to these calculated forces. For applications on powerful modern supercomputers with deep cache
hierarchy, a pure particle method is efficient with respect to both locality and arithmetic intensity (compute bound).
Unfortunately, the O(N2) complexity makes a particle method impractical for plasma simulations using millions of
particles per process. Rather than calculating O(N2) forces, the particle-in-cell (PIC) method, which was introduced
by J. Dawson and N. Birdsall [4] in 1968, employs a grid as the medium to calculate the long range electromagnetic
forces. This reduces the complexity from O(N2) to O(N + M logM ), where M is the number of grid points that
is generally much smaller than N . However, achieving high parallel and architectural efficiency is a significant chal-
lenge for PIC methods due to potential fine-grained data hazards, irregular data access, and low arithmetic intensity.
Attaining performance becomes even more complex as HPC technology evolves towards vast on-node parallelism in
modern multi- and many-core designs. A deep understanding of how to improve the associated scalability will have a
wide-ranging influence on numerous physical applications, which use particle-mesh algorithms, including molecular
dynamics, cosmology, accelerator physics, and plasma physics.

Driven by chip- and system power limitations, the HPC community is moving to the era of multi- and many-core
architectures with greatly increased thread and vector parallelism on shared memory processors. While the family of
the GTC FORTRAN codes (the original GTC [11] and GTC-P [2, 10]) continue to scale well to a large number of
processes, the level and efficiency of multithreading need to be increased significantly to take full advantage of the up-
coming technology. In order to benefit from the computer science advances in exploiting multi-threading capabilities
to facilitate large-scale simulations on modern systems, we have strived to develop a thread- and accelerator-optimized
version of the code over the last five years. These efforts commenced with a complete rewrite of the original GTC
FORTRAN code in the C language. The need for this change arose from our 2009 study of the GTC charge accumu-
lation step, in which several low-level multi-threaded algorithms were implemented using Pthread programming [27]
and compared for performance. The best algorithm was later re-implemented with OpenMP, replacing the much more
complicated Pthread constructs. The C version also simplified the process of porting GTC-P to GPU and Intel Xeon
Phi. Novel multi-core centric optimizations were introduced to enhance the performance of the code [25–27]. The
earlier efforts also included the development of the corresponding GPU version using the CUDA language [13, 25].
The journey continued with the development of a highly efficient radial domain decomposition [39]. Specifically,
we carefully addressed several issues identified in the original GTC-P FORTRAN code, such as load imbalance and
the lack of multithreading capability for some grid-based subroutines. The multiple levels of parallelism, including
inter-node 2D domain decomposition and particle decomposition, and intra-node shared memory partition, as well as
vectorization within each core, have allowed the new GTC-P code to efficiently scale to the full capability of several
top computer systems, including Sequoia at Lawrence Livermore National Laboratory (US) and Mira at the Argonne
Leadership Computing Facility (US) [39].

In this paper, we describe our approach to developing such a highly parallel PIC code that has the unique capability
of efficiently simulating large size plasmas on both homogeneous and heterogeneous systems. In particular, we discuss
our recent experience in porting and optimizing GTC-P on NVIDIA GPU- and Intel Xeon Phi- (MIC) accelerated
systems. The performance studies with production simulation parameters are performed on numerous supercomputing
platforms including Titan at the Oak Ridge Leadership Computing Facility (US), Mira at the Argonne Leadership



Computing Facility (US), Piz Daint at the Swiss National Supercomputing Center (Switzerland), Edison at the National
Energy Research Scientific Computing Center (US), Stampede at the Texas Advanced Computing Center (US) and
Blue Waters at the National Center for Supercomputing Applications (US). This is the first study that examines the
production code with “true weak scaling study” on both large scale homogeneous and heterogeneous HPC systems, as
opposed to our earlier research that focused on either large size (ITER-size) simulations on CPU systems [39] or small
to moderate size simulations on GPU systems [13, 25]. Given that the PIC algorithm consists of several phases of
varying computational intensity, memory access patterns, and communication patterns, our study enables exploration
with respect to computer science contributions as well as from a full-scale discovery-science-capable applications
standpoint. With regard to the important challenge of dealing with code portability on advanced supercomputing
platforms, another contribution from these studies involves providing a quantitative comparison of the number of
“lines of code changes” and associated speedup obtained from our experience in developing the modern GTC-P code
across a wide range of architectures.

The sections below are organized as follows. In §2 we first review the 5D gyrokinetic Vlasov-Poisson equation
used for studying low-frequency microturbulence in fusion plasmas. Then we describe the numerical discretization for
the system based on the PIC method. In §3, the modern GTC-P code is introduced. We discuss its main kernels as well
as the parallelization and optimization deployed. In particular, this paper provides results from our new optimization
techniques for GPUs and description of our experience in porting and optimizing the code on the Intel Xeon Phi
system. The performance analysis and results of high resolution, long time simulations of Ion Temperature Gradient
(ITG) driven turbulence are given at the end of §6.

2 Gyrokinetic Vlasov Poisson System
2.1 Governing Equations

The study of low-frequency microturbulence in high-temperature, magnetically confined plasmas requires the use of
the kinetic model described by the Vlasov equation in six-dimensional phase space. In the gyrokinetic approach [20],
the dynamics of the high frequency cyclotron motion of the charged particles in the strong magnetic field is averaged
out, reducing the six-dimensional equation to a five-dimensional gyrokinetic equation:

dfα
dt

=
∂fα
∂t

+
dR

dt
· ∂fα
∂R

+
dv‖

dt

∂fα
∂v‖

= 0, (1)

dR

dt
= v‖b̂ + vE + vd, (2)

dv‖

dt
= − 1

mα
b∗ · (µ∇B + Zα∇φ̄) (3)

b∗ = b̂ +
v‖

Ωα
∇× b̂ ≈ b̂ +

v‖

Ωα

b̂×∇B
B

, (4)

where fα(R, v‖, µ) is the five-dimensional phase space distribution function of species α in the gyrocenter coordinates
R. Zα is the particle charge. mα is the particle mass. B = Bb̂ is the nonuniform equilibrium magnetic field.
µ =

mαv
2
⊥

2B is the magnetic moment. φ̄ is the gyrophase-averaged potential. vE , vc and vg are the E × B drift,
magnetic curvature drift, and grad-B drift velocities, which take the forms

vE =
cb̂×∇φ̄

B
, (5)

vc =
v2‖

Ωα
∇× b̂ ≈

v2‖

Ωα

b̂×∇B
B

, (6)

vg =
1

mαΩα
b̂× µ∇B, (7)

vd = vc + vg = (
v2‖

Ωα
+
cµ

Zα
)
b̂×∇B

B
. (8)



where c is the speed of the light and Ωα = ZαB
mαc

is the gyrofrequency. We use the identity

∇×B = B∇× b̂ +∇B × b̂ = 0 (9)

in the low β limit.
Consider a simple plasma of electrons and ions, the corresponding gyrokinetic Poisson’s equation is

∇2φ− 4πZ2
i ni0
Ti

(φ− φ̃) = −4π(Zin̄i − ene), (10)

where the second gyrophase-averaged potential is

φ̃ =
1

2π

∫
φ̄(R)FMi(R, v‖, µ)δ(R− x− ρ)dRdµdv‖dϕ, (11)

and
φ̄ =

1

2π

∫
φ(x)δ(R− x− ρ)dxdµdv‖dϕ. (12)

FMi(R, v‖, µ) is assumed to be Maxwellian. n̄i is the gyrophase-averaged charge density

n̄i =
1

2π

∫
fi(R)δ(R− x− ρ)dxdµdv‖dϕ. (13)

Equation 10 can be interpreted as a normal Poisson equation plus an ion polarization term (the second term on the
left). In the gyrokinetic ordering limit, we usually drop the three dimensional Debye shielding term (the first term) in
the gyrokinetic Poisson’s equation as the Debye shielding term is much smaller than the ion polarization term.

In the case of adiabatic electron where δne
ne0

= eφ
Te

, the Poisson equation is reduced to

Z2
i ni0
Ti

(φ− φ̃) +
e2ne0
Te

φ = Ziδ̄ni, (14)

where ni0 and ne0 are ion and electron densities at equilibrium.

2.2 Numerical Discretization

In the PIC method, the five dimensional distribution function is represented by a set of particles. Specifically, the PIC
simulations are being carried out using marker particles representing a small volume of phase space characterized by
position, velocity, and weight. After being initialized, the particles follow trajectories computed from the characteristic
curves given by the Vlasov equation. There are usually two approaches for the initial loading of the particles. They can
be loaded uniformly in phase space and assigned different weights that are proportional to the value of the distribution
function, or, alternatively, they can be loaded following the distribution function where each particle carries the same
weight. The latter is based on the importance sampling approach of the Monte Carlo method [3], and thus is preferred
as it produces a low-noise loading. To avoid particle load imbalance due to spatial gradient in the distribution function,
we use a uniform background density function based on multi-scale expansion [21].

In order to address the well-known issue of particle noise in PIC methods, we use the so-called δf method [32].
In our simulations, the particles discretize only the perturbation δf with respect to an equilibrium state f0. The δf
method reduces noise by replacing as much of the Monte Carlo estimate as possible by an analytical formula [3, 32]
describing f0, and hence reducing the variance . However, it does not control the noise increase during the long time
particle evolution. For carrying out long time simulations, we introduce coarse-graining to the system, also called
phase space remapping [7, 40, 41]. The phase space grid works as a natural numerical dissipation model to stabilize
the collisionless system in long time simulations. The system of equations are advanced using numerical integration,
e.g., the second order Runge Kutta method.

In the PIC method, the Poisson equation is solved on a grid. In GTC-P, we utilize a highly specialized grid that
follows the magnetic field lines as they twist around the torus due to the magnetic field pitch (Figure 1). This allows
the code to take advantage of the strong anisotropy between the fast motion of the particles along the field lines and
their slow motion across them. With such a grid, the same accuracy can be achieved by using much fewer poloidal
planes (1/100) than a non field-aligned grid. Thus, a production simulation generally consists of only 32 or 64 high
resolution poloidal planes wrapped around the torus. The 3D torus geometry is first discretized uniformly in the
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Figure 1: An illustration of 3D toroidal grid.

toroidal dimension. Each 2D poloidal plane (cross section of the torus) is represented by an unstructured grid with
uniform spacing in the radial direction (psi) and approximate uniform arc length spacing in the poloidal direction
(theta). To follow the magnetic field line, each concentric circle forming the radial grid of a poloidal plane shifts by a
specific poloidal angle as one goes around the torus (see Figure 1). As discussed earlier, the gyrokinetic approximation
neglects the three dimensional Debye shielding term in the Poisson equation, which reduces the complex 3D grid-
based solve to a fixed number of independent 2D solves. On each 2D plane, the four points algorithm [24] is used to
approximate the second order gyro-averaged operator (Equation 11) on the unstructured grid. The resulting diagonally
dominant matrix is then solved by a weighted Jacobi iterative solver [24].

3 The modern GTC-P code
GTC-P is developed under the philosophy that in order to leverage the computer science and applied mathematics
advances in a timely matter, the physical model needs to be sufficiently simple but nevertheless complete for studying
the scaling of turbulent transport spanning the range from present generation experiments to the large ITER-scale
plasmas. This leads to the fact that GTC-P includes the model that takes into account all the toroidicity effects,
such as the curvature drift and multiple rational surfaces, but not the non-circular cross-section effects or the fully
electromagnetic, non-adiabatic electron dynamics found in some of the other gyrokinetic codes at the current stage [6,
17,19,42]. These techniques reduce the complexity of developing the algorithmic advances required to take advantage
of rapidly evolving architectural platforms. It is worth mentioning that the modern GTC-P code shares the same
physical model as the original FORTRAN code that has a long history of producing important scientific discoveries
via state-of-art computers [22, 23]. Besides the implementation differences, the major difference is the dissipation
models used in these two codes. While the original FORTRAN version used an artificial heat bath model, the modern
GTC-P introduced several numerical dissipation models [7, 28, 40] to stabilize long time simulation.

3.1 Main kernels

Each time step of GTC-P requires the execution of six principal computational kernels. The kernels present a number
of intra- and inter-node performance and scalability challenges when running on today’s multicore and accelerated
supercomputers. We highlight the kernels and their challenges here.

Charge performs a particle-to-grid interpolation in which particles deposit charge onto the charge grid using the
4-point gyro-averaging method (see Figure 2). Particles, represented by a 4-point approximation for a charged ring,
may deposit charge onto as many as 32 unique grid memory locations and as few as eight.

In a shared memory environment, Figure 2 visualizes the fact that threading over either particles or points on the
charge ring can result in data hazards, which must be guarded by synchronization mechanisms in order to guarantee
correct results. Unfortunately, this challenge extends to SIMD architectures in which attempting to vectorize (or unroll)
beyond 8-way (there are 4-points in the two enclosing poloidal planes) can produce intra-thread data dependencies.
Construction of thread (or lane) private copies of the charge grid can remedy the synchronization challenges, but can
exacerbate cache and memory challenges. In a distributed memory environment, the charge deposition phase will also
involve bandwidth-intensive MPI communication (a reduction). For example, particles deposit charge on local grids
consisting of non-overlapping zones and ghost zones. The charge on ghost zones needs to be merged to neighboring
non-overlapping zones. In addition, if the domain is decomposed in toroidal dimension, the charge from neighboring
toroidal sections needs to be merged. Additionally, the charge phase includes a MPI Allreduce to obtain a flux-
surface-averaged charge for solving the so-called “zonal flow”.

The Poisson, Field, Smooth kernels solve the gyrokinetic Poisson equation, compute an electric field, and smooth
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Figure 2: The “4-point gyrokinetic averaging” scheme employed in the charge deposition and push steps. Ion centers are in green,
their gyrokinetic charge rings in pink, and the grid points (in one of two planes) on which charge is deposited in blue. Observe the
overlapping grid accesses.

the charge and potential with a filter on the grid, respectively. These three steps constitute purely grid-related work in
which the floating-point operations and memory references scale with the number of poloidal grid points. As in the
charge deposition phase, in a distributed memory environment, all three subroutines may involve MPI communication
to update the values in the ghost zones.

Push interpolates the electric field onto particles, and using that field, advances particle phase space positions. In
the push phase, the electric field values at the location of the particles are “gathered” and used for time-advancing their
phase space coordinates. This step also requires reading irregular grid locations in memory (the electric field values)
corresponding to the four bounding boxes of the four points on the ring, involving data reads from up to 32 unique
memory locations. Fortunately, the operations in the push step are usually independent (hazard free), and are thus
relatively easier to parallelize and vectorize.

In distributed memory environment, Shift identifies particles being moved, copies them to a separated buffer and
moves them to the appropriate processes.

In general, particle-related work such as charge, push, and shift scales linearly with the number of particles. Grid-
related work such as poisson, smooth and field scales with the number of poloidal grid points. Since particle to mesh
ratio is in the order of 100 to 100,000 in PIC methods, the time spent in grid-related operations is a small component
of the overall run time.

3.2 Parallel Decomposition

GTC-P employs two levels of decompositions. First, a two-dimensional domain decomposition occurs in the toroidal
dimension zeta and the radial dimension psi (see Figure 1). In order to further increase MPI parallelism, a second
level of decomposition over the particles is introduced. Within each subdomain, the particles are divided between
several processes wherein each process owns a fraction of the total particles in that subdomain, as well as a private
copy of the local grid to simplify the charge deposition. The 2D domain decomposition and particle decomposition
are implemented with MPI using three different communicators: a toroidal communicator, a radial communicator, and
a particle communicator. The particles move between domains with nearest-neighbor communication (implemented
with MPI Sendrecv) within the toroidal communicator and radial communicator. To merge these private copies to-
gether, GTC-P performs a MPI Allreduce within the particle communicator. In gyrokinetic simulations, particles
move much faster in the toroidal dimension than in the radial dimension at every time step. The messages transferred
within the toroidal communicator are of much larger size than the messages exchanged within the radial communica-
tor. To optimize performance, if possible, MPI ranks should be placed such that the physical processors assigned to
adjacent toroidal domains in the same toroidal communicator stay close together.

The domain decomposition in the toroidal dimension is trivial as the toroidal grid is uniformly discretized. How-
ever, with unstructured grid in circular geometry, the domain decomposition in the radial dimension is far more chal-
lenging. We begin the process by partitioning a poloidal plane into non-overlapping domains with equal area. As-
suming particle density is uniform, this partitioning divides all particles in one toroidal section equally across multiple
processes. Next, the non-overlapping domain is extended to line up with the mesh boundary in the radial direction.
Finally, the valid grid is extended on each side with ghost cells accounting for charge deposition with 4-point approx-
imation. In general, 3 to 8 ghost cells are sufficient. Though this discretization will result in more grid points for the



processes close to the edge, the effect from load imbalance is small considering that the number of particles is much
larger than the number of grid points (e.g., particles per cell number is much greater than 1). In the case where more
than 8 ghost cells are required for charge decomposition with the 4-point averaging, we can either send the off-region
points explicitly to the neighboring processes [41] or completely ignore those points. For the later case, benchmarking
will be required to ensure that accuracy is preserved with the approximation.

The multiple levels of decomposition enables GTC-P to efficiently carry out “true weak scaling study” where
both the grid size and the number of particles are increased in proportion to the number of processors. With a 2D
domain decomposition and particle decomposition, GTC-P pushes the scalability of the PIC method to an extreme
and allows scaling on the world’s largest computing systems [39]. Note that although the simulations are in 3D, a
2D domain decomposition is sufficient for weak scaling since the number of grid points in the toroidal dimensional
remains constant for all plasma sizes due to Landau damping physics.

4 Experimental Platforms
In this paper, we examine the performance and optimization of GTC-P on six different systems. We detail the machines
here.

Edison: is a 5600 node Cray XC30 MPP at NERSC [9]. Each node includes two 12-core Xeon (Ivy Bridge)
processors running at 2.4GHz. Each processor includes a 30MB L3 cache and four DDR3-1600 (the machine has since
been upgraded to DDR3-1866) memory controllers which provide nearly 40GB/s of memory bandwidth. Edison’s
nodes are connected together using Cray’s Aries (Dragonfly) network which provides lower latency, higher bandwidth,
and better scalability than torus or fat tree topologies. As each node has two NUMA nodes (one per processor), we
run one 12-thread process per NUMA node.

Titan: is a GPU-accelerated Cray XK7 MPP at the Oak Ridge National Lab and is composed of 18,688 nodes
connected via Cray’s Gemini 3D torus like Blue Waters [38]. Unlike the similar Blue Waters, there are only 2 Inter-
lagos CPU processors per node with the others being replaced by a PCIe-attached NVIDIA Kepler K20x GPU. Each
GPU, running at 733MHz, has 14 streaming multiprocessors each of 192 CUDA cores, 64 DP data paths, a 64KB
SRAM which can be partitioned into a cache and a scratchpad, and 32K 32-bit registers. Each GPU includes 6GB
of GDDR5 memory. The GPU presents programmers with dramatically different performance characteristics than
CPU architectures as it favors computations that maximize parallelism, present streaming access patterns with easily
expressible locality, and minimize off-node (off-GPU) communication.

When using Titan, there are several programming styles which must mix MPI, OpenMP, and CUDA. First, one
can run one 16-thread, GPU-accelerated process per node. This minimizes off-node computation and allows one to
fully exploit the GPU. However, this demands the programmer optimize for NUMA in OpenMP — a challenging
prospect. Second, one can run one 8-thread, GPU-accelerated process per node. This has all the benefits of the
aforementioned style, but side steps NUMA by constraining the process to a single NUMA node. Unfortunately, this
cuts CPU bandwidth and memory in half. Finally, one may ignore the GPU altogether and run two 8-thread processes
per node.

Mira: is an IBM Blue Gene/Q supercomputer at the Argonne National Lab [31]. Mira is composed of 49,152
compute nodes connected via a high-performance custom network in a 5D torus. Each node includes a 16-core (+1
system core) 1.6GHz SOC processor connected to 16GB of DDR3-1333 DRAM via two 128-bit memory controllers.
Each core is in-order, dual-issue, 4-way multithreaded, has a 4x64b SIMD FMA functional unit, and includes a private
16KB cache. One must run at least two threads per core in order to dual-issue instructions. All cores are connected
via a crossbar to a 32MB L2 cache.

Blue Waters: is a Cray XE6 MPP at the the National Center for Supercomputing Applications [5]. It contains
22,500 Interlagos-based nodes connected by Cray’s Gemini network into a 3D torus. Each node includes four 8-core
processors running at 2.3GHz in which each core has a private 16KB L1 data cache, each pair of cores shares a 256b-
wide SIMD unit, each pair of cores shares a 2MB L2 cache, and all cores share a 32MB L3 cache. Each processor
is connected to 16GB of DDR3-1333 DRAM via a 128-bit memory controller. As such, each compute node contains
four NUMA nodes and programmers are motivated to run 4 processes of 8 threads per node. Computation must be
partitioned across NUMA nodes in order to maximize performance. Each processor (NUMA node) thus provides
about half the bandwidth and one-third the compute capability of a Blue Gene/Q node, but has a much more cache.

Piz Daint: is a 5,272-node GPU-accelerated Cray XC30 MPP at the Swiss National Supercomputing Center
(CSCS) [33]. Piz Daint is very similar to Titan with the caveat that rather than using Cray’s Gemini 3D torus, nodes
are connected via Cray’s Aries dragonfly network. Aries provides much higher bandwidth, fewer hops, and overall,
better scalability than Gemini. The other significant difference is the switch from Interlagos to Xeon (Sandy Bridge).



Edison Titan Blue Mira Piz Daint Stampede
XC30 XK7 Waters BGQ XC30 MIC Cluster
Intel AMD NVIDIA AMD IBM Intel NVIDIA Intel Intel

Processor Xeon Opteron Kepler Opteron BGQ Xeon Kepler Xeon Xeon Phi
Freq. (GHz) 2.4 2.2 0.733 2.3 1.6 2.6 0.733 2.7 1.1

D$ per core (KB) 32+256 16+2048† 64 16+2048† 32 32+256 64 32+256 32+512
Cores per CPU 12 8 14 8 16 8 14 8 60

D$ per CPU (MB) 30 8 1.5 8 32 16 1.5 20 —
CPUs/Node 2 2 1 4 1 1 1 2 1
DP GFlop/s 460.8 140.8 1314 294.4 204.8 166.4 1314 345.6 1056

STREAM (GB/s) 78∗ 31∗ 171 62∗ 26 38 171 78∗ 160
STREAM/NUMA 39 15.5 171 15.5 26 38 171 39 160

Memory (GB) 64∗ 32∗ 6 64∗ 16 32 6 32∗ 8
Network Aries Gemini Gemini 5D Aries Infiniband

and Topology Dragonfly 3D torus 3D torus Torus Dragonfly Fat Tree
Compiler Cray Cray NVCC Cray XLC Cray NVCC ICC ICC

Table 1: Systems evaluated in this paper. †Each pair of cores shares a 2MB L2 cache. ∗NUMA.

As a result, there is only one NUMA node per compute node. As such, one may simply run one 8-thread process per
node and ignore any NUMA optimizations. Performance per NUMA node is broadly comparable to Edison.

Stampede: is a 6400-node Xeon Phi (MIC)-accelerated Infiniband cluster at TACC [35]. Each node includes
two 8-core Xeon (Sandy Bridge) processors running at 2.7GHz and a PCIe-connected 60-core Xeon Phi co-processor.
Each Xeon Phi core is a dual-issue, in-order, 4-way multithreaded core capable of executing one 8-way SIMD FMA
per cycle. Each core has a private 32KB L1 cache and a coherent 512KB L2 cache. Each Xeon Phi is attached to
8GB of GDDR5 memory providing 160 GB/s of streaming bandwidth. In practice, the Xeon Phi and the Kepler
GPU have comparable DRAM bandwidth, but the Xeon Phi has a more conventional cache hierarchy and can run
existing MPI+OpenMP applications in native mode. However, many of the programmer-friendly micro-architectural
features of the commodity Xeon processors are not present in the Xeon Phi. As a result, attaining high performance
can be difficult. In addition to native mode (host-only) performance experiments, we also examine the performance
of Xeon/Xeon Phi clusters in symmetric mode. In symmetric mode, hosts and accelerators are viewed as piers each
running an MPI process. Although simpler than offload mode and more capable of fully utilizing a heterogeneous
node than native mode, load balancing between Xeon processes and Xeon Phi processes becomes a challenge.

5 GTC-P on Modern Node Architectures
In order to harness the computing power of the emerging architectures, applications need to be carefully designed
such that the hierarchy of parallelism provided by the hardware is fully utilized. In GTC-P, aside from inter-node
parallelization implemented with MPI, we explore on-node scaling with shared memory thread-level parallelism im-
plemented with OpenMP and in-core vectorization with SIMD intrinsics. The structure of array (SoA) layout is chosen
for particle data to maximize spatial locality on streaming accesses. The data allocation is aligned to memory boundary
to facilitate SIMD intrinsics.

For heterogeneous systems with GPU accelerators, we judiciously select computationally expensive kernels such
as charge and push as well as the mandated shift kernel to run on GPUs while leave the communication intensive sub-
routines such as smooth, poisson and field on CPUs. GPU architectures exhibit multiple distinguishing computational
constraints including limited-capacity high-bandwidth memory, limited coherence support, low-overhead scheduling,
and high-throughput vector computing. For instance, their small memory to core ratio restricts the use of memory
replication as a technique to avoid data hazards in charge. We also found it more efficient to redundantly recompute
values rather than precompute and load from memory. Additionally, loop/computation fusion was implemented to
further reduce memory usage for auxiliary arrays in push. The GPU’s relatively small cache capacity makes it diffi-
cult to exploit locality to avoid expensive memory accesses. We addressed this limitation previously using cooperative
computation to capture locality for co-scheduled threads (thread blocks) [26]. In this paper, we also explore differ-
ent techniques for explicit management of the GPU shared memory. Like CPUs, GPUs benefit greatly from sorting
particles based on their cell association. Sorting helps in reducing the temporal reuse distance and aids the cache
hierarchy in capturing locality. We exploit the GPUs low-overhead hardware scheduler to load-balance computation
using fine-grained tasks (one particle computation per thread). Ultimately, the high overhead of moving data between
the GPU and CPU host motivated us to keep particle persistently allocated on the GPU memory. Only shifted particles
are moved to/from the host during communication phases.



In this section, we detail our efforts in optimizing GTC-P kernels on multi-core CPU and many-core GPU.
Charge: Since modern computer architectures rely on data locality and regular computation to tolerate access

latency, it is extremely challenging to optimize the charge kernel due to the random memory access, potential fine-
grained data hazard and low computational intensity characteristics. In order to improve data locality for grid access
in charge and push, the particles are binned in the radial dimension. The binning frequency is an adjustable parameter
given by the users.

In multithreading environment, two particles operating by two different threads may access the same grid point and
cause a read-after-write data hazard. Thus, the data access must be either guarded with a synchronization mechanism
or redirected to a private copy depending on the availability of memory resources. On CPUs with up to hundreds
of threads, the grid replication strategy on a per thread basis is usually used to address the issue of fine-grained data
hazards [25,39]. The charge densities on each private copy are summed at the end of the charge phase, where the order
of summation is carefully chosen to avoid synchronization. Note for large size plasma simulation, the grid replication
strategy is only applicable with 2D domain decomposition.

On GPUs with thousands of threads, the grid replication strategy is no longer applicable even with particle binning
in all dimensions. This is because in gyrokinetic PIC simulation, each particle is actually a gyroparticle represented
by 4 points on a ring of gyroradius. Even with perfectly sorting, the influential grid points from a set of particles of a
single cell will spread up to 16 radii. In a circular geometry, each thread may require as much as 2 MB private memory
to store the local grid information such as charge density and field — cost prohibitive with thousands of threads.
This motivates us to use an update binning algorithm to implement charge deposition on the GPU. Besides binning
gyroparticles according to their coordinates periodically, we also bin the points of all gyroparticles at every time step.
This additional points binning step simplifies the gyrokinetic PIC algorithm to the standard PIC algorithm. As a result,
a local grid private to each thread spans only up to 1 radii instead of 16. Due to reduced ghost zones, the additional
point binning significantly reduces the temporary memory storage for hazard-free charge deposition. Hence, we can
use the fast shared memory for charge deposition.

Specifically, the binned points are carefully organized such that all points belonging to the same super-cell are
processed by the same CUDA thread iteratively and the points in two adjacent super-cells are processed by two
consecutive CUDA threads. Every thread block holds a local copy of the grid on shared memory for charge deposition
relying solely on fast shared memory atomic operations. Furthermore, atomic operations could be totally avoided by
providing two copies of the partial grid in shared memory, one for charge deposition by threads with even IDs and
another with odd IDs. The charge in shared memory is added to global memory at once at the end. Given the extensive
use of shared memory, we configure the GPU to favor shared memory.

One drawback of the above algorithm is when the number of points in different super-cells has large variations,
leading to potential issues of memory waste and load imbalance. As we discussed earlier, in a Monte Carlo type particle
simulation, the particles are loaded with importance sampling such that the particle number density is proportional
to the distribution function f . In the δf method, this translates to the particle number density is proportional to
the background distribution function f0. As we consider uniform background density currently, we should expect
relatively uniform particle number density in each cell. However, since GTC-P uses magnetic coordinates, the Jacobian
from the coordinate transformation (from magnetic coordinates to Cartesian coordinates) needs be taken into account.
Consequently, the particle number density will be proportional to the Jacobian J = (1 + r cos(θ))

2
, where r and θ is

the radial and poloidal coordinates. This issue can be addressed by developing a non-uniform grid on each poloidal
ring such that the number of points on the new grid has small variations. Note that the non-uniform grid discretization
is only used for the purpose of binning points.

The updated binning algorithm works especially well on NVIDIA’s previous Fermi architecture, where double-
precision atomic increments are expensive. The subsequent introduction of the NVIDIA Kepler architecture (em-
ployed in Titan and Piz Diant) enabled fast double-precision atomic increment (implemented via a compare-and-swap
operation). As a result the performance of the charge algorithm is limited by the number of active thread blocks in a
streaming multiprocessor. While Kepler preserves the same amount of shared memory as the earlier version Fermi,
we observe that the updated binning algorithm is less appealing on Kepler. Alternatively, the previous implementation
using cooperative computation [25] that uses global atomic write performs well if designed properly. Specifically,
computation is organized so that CUDA threads access successive particles when reading, but is reorganized so that
threads work together on one charge deposition (of up to 32 neighboring grid points) when writing. The reorganization
is through transposing the data write in shared memory. Given the limited use of shared memory in this case, the GPU
is configured to favor the L1 cache.



Poisson/Field/Smooth: The grid-related kernels are run on the CPUs for both homogeneous and heterogeneous
systems. This is mainly because simulations typically employ high particle number densities. As a result, the time
spent in grid-based kernels is substantially lower than the particle-related kernels. In addition, due to two-dimensional
domain decomposition, all grid-based kernels involve extensive MPI communication to update the values at ghost
zones.

The poloidal planes in tokamaks are in circular geometry, thus the grid-related kernels usually include irregularly
nested loops in which psi is the outer loop and theta is the inner loop. On large tokamak devices, the outermost domain
has little variability in the outer loop, but large variability in the inner loop. Simple thread parallelization of the outer
loop among threads is not sufficient for multi-core architectures with thread numbers varying up to 64. The main
optimization we used for the grid-based kernels is manually flattening the nested loop into a single loop to expose
more thread-level parallelism. Note the OpenMP collapse(2) clause is not applicable here as it requires that the
nested loops form a rectangular iteration space.

Push: The push kernel involves two operations: gather and update. The key optimization we employ is loop
fusion to avoid the write and read of temporary particle data. The loop fusion optimization also minimizes parallel
thread fork-join overhead and increases computational intensity of the kernel. The data locality for grid access is
improved by binning the particles in the radial dimension. For large tokamak devices, binning in the radial dimension
only may lead to large cache or even TLB misses in CPUs, since the outermost rings usually consist of a large number
of grid points. On GPUs, it is important to place the electrostatic field on CUDA’s texture memory to maximize the
read bandwidth from non-coalescing memory access.

Shift: This kernel streams through the particle array with unit access, identifies the particles to move, packs them
in a separated buffer and sends/receives them to/from the neighboring processors with message passing. On CPUs,
the performance of this kernel sensitively depends on two factors. One is the network performance of the system,
in particular for nearest neighbor point-to-point communication. The second factor is the effect of caches misses in
packing the particles in a separated buffer. On heterogeneous systems with GPUs, particle packing is implemented
on the GPU while the message passing remains on the CPU. Besides the network performance of the system, the
performance of shift kernel will depend on how well the GPU handles the packing process and the performance of
data transfer between the CPU and the GPU via the PCIe bus.

In the previous GPU implementation of particle packing [25], each thread block maintains small shared buffers
that are filled as it traverses its subset of the particle array. Particles are sorted into three buffers for left shift, right
shift and keep buffer. Whenever the local buffer is exhausted, the thread block atomically reserve a space in a pre-
allocated global buffer and copy data from the local buffer to the global one. Recall that the normal iterative shift
algorithm on CPUs uses array of structure data layout to pack the data for message passing, the data is transposed
while flush to the global buffer. Then the data is copied back to the CPU where the message passing is executed. Upon
completion, the host transfers a list of incoming particles to the GPU, where unpacking involves filing clustered holes
in the particle arrays and transposing the data back to the GPU data structure of arrays layout. With data transposes and
atomic operations, maximizing parallelism and attaining good memory coalescing make porting shift kernel extremely
challenging on GPUs. This strategy works well on the NVIDIA Fermi Architecture, even though it slightly limited the
number of active thread blocks (thread block occupancy).

With the introduction of the NVIDIA Kepler architecture with Streaming Multiprocessor Architecture (SMX), the
core count per multiprocessor increased and the core speed decreased, while the amount of shared memory is preserved
similar to earlier generation Fermi. As such, we redesigned areas of the code that stress the use of the shared mem-
ory and limit occupancy including the shift routine. In the latest version of the code, the shift and sort functionality
are simultaneously executed in the same phase. Relying on the fast sorting algorithm provided by Thrust library [1],
particles are sorted into three buffers for the left shift, right shift and keep buffer in the GPU’s global memory. By
modifying the normal iterative shift algorithm on the CPUs to pass message with structure of array data layout instead
of array of structure, the data transpose operation is not required. Compared with the previous approach, both reliance
on the GPU’s shared memory and data transpose operations are reduced.

MIC-Specific Implementation: The Intel Xeon Phi supports several execution models, including native, offload
and symmetric mode. As its programming environment is based on C/Fortran languages and MPI/OpenMP standards,
it is reasonably straightforward to port the code onto the MIC processor. However, attaining high performance can be
difficult on some applications. This is mainly due to several differences in the design of the processor cores on Xeon



Phi [34]. First, MIC supports much larger number of threads than the Xeon processor while the performance of each
thread is much lower than that of the Xeon processor. The MIC also has wider vector units. Thus, high performance
can only be achieved if the applications utilize all cores and vector units effectively. Additionally, although the peak
performance of Xeon Phi is much higher than the Xeon processor, the memory bandwidth per core is not. As such,
the lower flop per byte on MIC may require choosing a different data structure and algorithms for solving the same
problem. In this paper, we share our early experience in porting and optimizing GTC-P code onto Intel Xeon Phi in
native mode and symmetric mode. As PIC algorithm involves “gather” and “scatter” operations that features random
memory access and potential data hazards, our studies show some challenges and opportunities of using Intel Xeon
Phi for irregular applications.

The initial performance of the code on Xeon Phi in native mode was 2x-4x slower compared with the same code
running on host CPU. As the number of threads per core increased from 1 to 4, shift performance did not scale as
the number of OpenMP threads were increased, instead the runtime grew linearly with the number of threads. Further
investigation concluded that this was due to the “malloc” and “free” operations performed by each thread. With 240
threads, the calls for these two operations were serializing and thus causing poor scalability. The first optimization
we applied is to replace heap memory created by each thread within the OpenMP parallel region with pre-allocated
memory buffer on shift. On multi-core CPUs and many-core GPUs, we use loop fusion to increase computational
intensity and to minimize parallel thread fork-join overhead for push. On Intel Xeon Phi, we find that loop fission
boosts the performance by 20%. Specifically, we implement the gather and update operations with two separate loops.
For the gather loop, in order to decrease the memory access latency due to “gather” operation, the neighboring grid
information is prefetched to level 1 cache. In addition, the grid memory read is implemented with vector intrinsics.
The update loop does not include any irregular operation and can potentially have high performance on Intel Xeon
Phi. We thus use #pragma omp for simd to enable SIMD instructions. Considering that the synchronization
between the large number of threads in Xeon Phi could be expensive, we use the grid replication strategy, the same as
we choose for multi-core CPU, to address the issue of fine grained data hazard in charge.

In symmetric mode execution, MPI processes can run fully on both host and co-processor. However, it has been
demonstrated that the latency and the bandwidth can vary in an order of magnitude depending on the pair of commu-
nication devices involved [18]. The multiple levels of decompositions in GTC-P provides great flexibility in mapping
the MPI ranks to physical devices with relatively optimal communication bandwidth. To enable message passing
through only high bandwidth channels, we turn on particle decomposition and confine all MPI ranks among the same
node to a particle communicator. With particle decomposition among the MPI ranks of the same node including the
host CPUs and the MICs, we can further enhance the performance by running the communication intensive grid-based
subroutines only on the host CPUs. The grid-based charge density and electrostatic field can be copied from and to the
co-processors with MPI Reduce and MPI Scatter within the particle communicator. Since the collective com-
munication only involves message passing inside a node, this avoids communications that potentially involve varying
latency and bandwidth. Depending on the performance of the particle-based kernels (e.g., charge, push) on different
devices, we distribute the particles between them such that the work on different devices is well balanced.

We also highlight that the current GTC-P symmetric mode implementation is similar to the GPU implementation
and future offload mode implementation in that only particle-based kernels are running on accelerators. Unlike the
offload approach in which the host CPUs and the accelerators are running in a staggered pattern, both the host CPUs
and the MICs are running concurrently in symmetric mode.

6 Results and Analysis
In this section, we demonstrate the performance of GTC-P on the six evaluated supercomputing systems using weak
scaling on different plasma sizes. In contrast to the weak scaling studies by our previous studies [13, 25] and by other
particle-based fusion codes [30] where the grid size was kept constant but the number of particles was scaled, our
experiments represent a true weak scaling study of both the grid size and the number of particles. This is important to
effectively address the outstanding open issues in fusion plasma physics such as the scaling of the energy confinement
time with system size. A summary of our recent ITG simulations using the highly efficient code is presented in §6.4.

6.1 Configuration

A GTC-P simulation is described by several important numerical parameters: the toroidal grid size ntoroidal, the
poloidal grid size mgrid, and the average particle density as measured in the ratio of particles to grid points micell;
where the total number of particles in a simulation is ntoroidal×mgrid×micell. In order to demonstrate the viability
of our optimizations across a wide variety of potential simulations, we explore four different grid problem sizes, labeled



Grid Size A B C D
mpsi 90 180 360 720

mthetamax 640 1280 2560 5120
mgrid (grid points per plane) 32449 128893 513785 2051567

chargei grid (MB)† 0.5 1.97 7.84 31.30
evector grid (MB)† 1.49 5.90 23.52 93.91

Total particles micell=100 (GB) 0.29 1.16 4.64 18.56

Table 2: The GTC-P numerical settings for different plasma sizes. The grid and particle memory requirements are for one toroidal
domain only. A simulation typically consists of fixed number of toroidal domains, e.g., 64. “mpsi” is the number of grid points in
the radial dimension and “mthetamax” is the number of grid points in the poloidal dimension at the outermost ring.

A, B, C, D. Grid size A and B correspond to the majority of existing tokamaks in the world, C corresponds to the JET
tokamak, the largest device currently in operation [16], and D to ITER, the largest device currently under construction
in France [15]. Table 2 lists the poloidal grid sizes and the corresponding grid and particle related memory requirement
in one toroidal domain for different plasma sizes. Observe that when moving to a plasma device of one size larger
(with constant micell), e.g., A to B, the poloidal grid size and number of particles in one toroidal domain increase
by 4×. As discussed earlier, a production simulation generally consists of only fixed number of poloidal planes (e.g.,
64), wrapped around the torus for all plasma sizes due to Landau damping physics. As as result, in our weak scaling
study, the number of processors increases 4× (instead of 8× as in some 3D codes) as we move to a plasma one size
larger. In all of our experiments below, we choose particle number density micell = 100. There are two reasons of
choosing a single particle number density in our current performance study. First, micell = 100 is a typical number
in all production runs using δf method. Second, as suggested in earlier studies [25, 39], high particle density leads
to improved parallel efficiency. Thus, the results in this study will establish a performance base line for subsequent
higher resolution simulation.

6.2 Performance Evaluation and Analysis

Since the proper placement of MPI ranks to physical nodes/processors is important to the network performance, we
have applied optimized placements on each system if applicable. In gyrokinetic simulations, because the parallel
velocity is much larger than the perpendicular velocity (parallel and perpendicular to the magnetic field), at each time
step, the number of particles moving out of the local domain in the toroidal dimension is 10× more than in the radial
dimension. We thus place the MPI ranks to favor the toroidal communicator. Generally, this can be achieved by
assigning consecutive MPI rank numbers for processes within each toroidal communicator. On a Blue Gene/Q system
with 5D torus network, we further group two or three torus dimensions to match 64 for an optimized placement layout
by setting the environmental variable RUNJOB MAPPING. The network resources are shared among all users on
Titan and Blue Waters. leading to large performance variation for the same experiment. In order to minimize this
effect, we run the same experiment multiple times and record the best result. On Blue Waters, we further select a set
of convex shaped computing nodes through job scheduler for optimal network performance. The similar convex node
selection is not available on Titan by the time the data was collected.

6.2.1 One Process per NUMA Domain

NUMA nodes are increasingly viewed as the standard unit of computation. When subtracting for age bias, most
NUMA nodes has a comparable amount of memory and bandwidth. As such, in our first series of experiments, we
choose to run with one MPI process per NUMA node and thereby eliminate the need for NUMA optimizations. The
configuration for each platform is shown at the top of Figure 3, showing the MPI ranks × OpenMP threads, as well as
MIC in native mode and GPU experiments.

To fit the largest problem size D on Piz Daint, a 5,272 compute nodes system, we choose 4096 MPI partitions
with 64-way parallelization in both toroidal and radial dimensions. Our weak scaling study starts from A size problem
using total 64 MPI processes with 64-way partitioning in the toroidal dimension and 1-way partitioning in the radial
dimension. While the number of partitioning in the toroidal dimension remains unchanged in the weak scaling study,
we increase the radial partitioning by 4× as we move to each larger plasma size. For all experiments with 1 MPI per
NUMA node, we do not apply particle decomposition.

Figure 3 presents the breakdown wall-clock time for 100 time steps on each kernel for the weak scaled plasma
sizes A–D on our evaluated systems. Note that on GPUs, the shift and sort routines have been merged to one phase in
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Figure 3: GTC-P Weak scaling run times for 100 time steps using plasma sizes A–D with 1 MPI process per NUMA node. Table
presents run configurations showing MPI ranks × OpenMP threads, as well as MIC in native mode and GPU experiments. In all
experiments, the number of particles per process ∼3,235,900. Due to system issues, we were unable to conduct 4096 node native
mode simulations on Stampede. Run time relative to Edison is shown above each bar (times greater than 1.0 designate a slowdown).

our new GPU-based shift kernel, thus their total wall-clock time are represented by shift time only.
Observe, performance on the CPU-based architectures is generally correlated with the DRAM STREAM band-

width per NUMA node as shown in Table 1. However, we observe that the overall run time on MIC-only and GPU-
accelerated systems is substantially greater than the STREAM-predicted run time of 25% of Edison. There was no
speedup on the MIC-only native mode performance over Edison on any function with shift being substantially slower.
Conversely, on the GPU-accelerated systems, there was a substantial speedup on the easily parallelized and compute
intensive push despite its data locality challenges with comparable performance on charge and slowdowns on push.
It is likely the data locality, synchronization, and PCIe challenges of these operations impede the performance of the
GPU.



Titan (1 MPI×8 OpenMP + K20x per node)
Charge Push Shift+Sort

Problem PCIe GPU Kernel CPU Comm. PCIe GPU Kernel PCIe GPU Kernel CPU Comm.
A100 0.05 11.65 0.30 0.15 7.73 4.25 1.99 3.70
B100 0.05 11.48 0.71 0.17 7.57 4.34 3.90 5.18
C100 0.05 11.48 1.00 0.18 7.47 4.36 3.89 6.07
D100 0.05 11.38 2.71 0.18 7.29 4.35 3.86 6.30

Piz Daint (1 MPI×8 OpenMP + K20x per node)
Charge Push Shift+Sort

Problem PCIe GPU Kernel CPU Comm. PCIe GPU Kernel PCIe GPU Kernel CPU Comm.
A100 0.04 11.65 0.15 0.09 7.72 2.94 1.95 1.52
B100 0.04 11.48 0.29 0.10 7.56 3.00 3.79 1.71
C100 0.04 11.48 0.41 0.10 7.47 3.00 3.77 1.83
D100 0.04 11.40 0.55 0.10 7.29 3.01 3.76 3.68

Table 3: Breakdown time (sec) for charge, push and shift+sort using CPU+GPU on Titan and Piz Daint in Figure 3.

On the CPU systems, when weak scaling to larger size plasmas, the time spent in charge increases for two reasons.
First, there are load imbalance issues for charge interpolation on the 2D poloidal plane. Although the number of
particles is well-balanced among different processes, the particle interpolation close to the outer edge of the 2D will
suffer larger cache- or even TLB misses. The problem is exacerbated on larger sized devices where the number
of grid points at the edge increases. Second, as we discussed in §3, charge includes two type of communications,
a point-to-point communication that merges values at ghost cell, and a collective communication that obtains flux-
surface-averaged charge for solving “zonal flow”. The time spent on both communications increases as the plasma
size grows. By examining the code using performance tools such as CrayPat on several Cray systems (i.e., Titan,
Blue Waters and Piz Daint), we confirm that more L1, L2 and TLB cache misses occur for processors assigned to the
domain close to the edge for C and D size plasmas. Although MPI communication time increases from A to D as
expected, the time is mostly spent at the synchronization point before the collective communication, thus suggesting
that load imbalance is accounting for the major overheads in charge kernel.

The load imbalance caused by cache misses also accounts for the performance behaviors of push as its operation
only involve random memory access. The performance of shift sensitively depends on the network performance.
Therefore, the time increase from A to D for shift can be used as an indicator of the network performance of a system.
The time spent on the grid-based subroutine has increased with large size devices. This is due to the increasing load
imbalance on large plasma sizes from the radial domain decomposition in circular geometry. We observe that the
time increase on Titan and Blue Waters is especially significant, where the time is mostly spent on the point to point
communications in the radial dimension to update the ghost cell values. This issue could be alleviated by placing the
MPI ranks to physical nodes to favor the radial communicator. However, this will affect the performance of shift in
toroidal communicator. The push run time remains relatively flat from A–D plasmas as expected.

The GPU design relies on massive number of threads to hide the memory access latency (as opposed to hierarchies
of caches on commodity CPUs). Thus, compared with the CPU-only results on Titan and Piz Daint (Figure 3), our
CPU/GPU hybrid implementation results in a significant 2× and 3× speedup on charge and push kernels respectively.
In order to understand the GPU performance in more details, we measure the time spent in PCIe, in GPU execution
and in CPU communication, respectively. Table 3 lists these breakdowns for three kernels, charge, push and shift
from Figure 3.

Observe that the cache miss issue on larger size plasmas is no longer significant since the GPUs rely on massive
number of threads to hide the latency. The GPU execution times on Titan and Piz Daint are similar as both systems use
the same NVIDIA K20X GPU accelerator. However, Piz Daint has shown better PCIe performance since it has PCIe
3.0 interface whereas Titan utilizes PCIe 2.0. It worth noting that the execution time on shift+sort increases 2× from
A to B size plasma. This is because A does not have radial shift where only 1-way radial partition is used. The time
increase on charge and shift is solely related to the network performance of the systems. It shows that the Aries NIC
on Piz Daint has much better performance than the Gemini NIC on Titan since it has 3× more injection bandwidth
and significantly higher global bandwidth.



1 MPI Process per Compute Node
MIC- CPU+ CPU+

— CPU-only configurations — only MIC GPU
Edison Titan Blue W. Mira Piz D. Stamp Stamp Stamp Titan Piz D.

MPI Procs 1 1 1 1 1 1 1 1+1 1 1
OMP Threads 24 16 32 64 16 8 240 16+240 8 8

Accelerators — — — — — — — — +K20x +K20x

A (MPI ranks: 64) B (MPI ranks: 256)

1.0	  

2.5	  

1.4	  

3.4	  

2.1	  

1.2	  

2.1	  

1.0	  

1.7	  
1.5	  

0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

Ed
is
on

	  

Ti
ta
n	  

Bl
ue

	  W
	  

M
ira

	  

Pi
z	  D

	  

St
am

p	  

St
am

p	  

St
am

p	  

Ti
ta
n	  

Pi
z	  D

	  

CPU	  Only	   NAT	  SYM	   GPU	  

Se
co
nd

s	  

1.0	  

2.4	  

1.4	  

3.1	  

2.0	  

1.2	  

2.3	  

1.1	  

1.7	  
1.4	  

0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

Ed
is
on

	  

Ti
ta
n	  

Bl
ue

	  W
	  

M
ira

	  

Pi
z	  D

	  

St
am

p	  

St
am

p	  

St
am

p	  

Ti
ta
n	  

Pi
z	  D

	  

CPU	  Only	   NAT	  SYM	   GPU	  
Se
co
nd

s	  

C (MPI ranks: 1024) D (MPI ranks: 4096)

1.0	  

2.3	  

1.3	  

2.7	  

1.9	  
1.7	  

2.4	  

1.4	  
1.6	  

1.2	  

0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

Ed
is
on

	  

Ti
ta
n	  

Bl
ue

	  W
	  

M
ira

	  

Pi
z	  D

	  

St
am

p	  

St
am

p	  

St
am

p	  

Ti
ta
n	  

Pi
z	  D

	  

CPU	  Only	   NAT	  SYM	   GPU	  

Se
co
nd

s	  

1.0	  

2.1	  

1.3	  

2.4	  

1.6	   1.6	   1.6	  

1.1	  

0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  
Ed

is
on

	  

Ti
ta
n	  

Bl
ue

	  W
	  

M
ira

	  

Pi
z	  D

	  

St
am

p	  

St
am

p	  

St
am

p	  

Ti
ta
n	  

Pi
z	  D

	  
CPU	  Only	   NAT	  SYM	   GPU	  

Se
co
nd

s	  

Smooth     Field     Poisson     Sort     Shift     Push    Charge 

Figure 4: GTC-P Weak scaling run times for 100 time steps using plasma sizes A–D with 1 MPI process per compute node (2 per
compute node for symmetric mode Stampede). Table presents run configurations showing MPI ranks × OpenMP threads, MIC in
native and symmetric mode as well as GPU experiments. Run time relative to Edison is shown in the text above each bar (times
greater than 1.0 designate a slowdown).

6.2.2 One Process per Node

Often, there is a desire to view a multi-socket, multi-accelerator heterogeneous compute node as the single unit of
computation. Thus, in our second series of experiments, we use one MPI process per node (except on symmetric
mode Stampede where we use 2 MPI processes per compute node). The configuration for each platform is shown at
the top of Figure 4, showing MPI ranks× OpenMP threads, MIC in native mode and symmetric mode as well as GPU
experiments. These experiments help us to measure the overall node (as opposed to NUMA domain) performance,
while scaling the problem to the largest node configuration possible for a given problem size. As before, we choose
4096 MPI partitions for the D size simulation with 64-way partitions in both toroidal and poloidal dimensions. The
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Figure 5: (left) GTC-P weak scaling run time for 100 time steps using one process per compute node. The four points on each
line represent A, B, C and D size simulations from Figure 4. The D size data is missing for Stampede as system issues prevented
us from conducting 4096 node symmetric mode experiments. (right) Closeup of Mira (CPU), Edison (CPU), and Piz Diant (GPU)
performance across A–D problem sizes (from Figure 4). Run time relative to problem size A of each platform is shown in the text
above each bar (times > 1 designate a scaling degradation).

performance results are presented in Figure 4, where for each problem size, the number of computing nodes involved
is the same for all systems. These experiments highlight the performance challenges associated with attempting to
program multi-socket NUMA architectures using OpenMP.

The Xeon Phi offers three programming models — offload (akin to GPU acceleration), native (no host), and
symmetric (host and MIC are peers in a heterogeneous system). In order to run in symmetric mode, one must balance
work between CPU processes and MIC processes. Using the data from the previous section (CPU-only and MIC-only),
we observe that GTC-P performance using one MIC processor per node is comparable to the performance attained
using one of the 8-core Xeon E5-2680 processors. This suggests there is roughly a 2:1 performance difference between
the Xeons and the MIC. When running in symmetric mode on Stampede, there are two ways of decomposing particles
on a node. On one hand, we can use 1 MPI process per 8-core Xeon E5-2680 and 1 MPI process per MIC, thus
resulting in 3 MPI processes per compute node in which each process has approximately the same amount of particles.
On another hand, we can use 1 MPI process on two 8-core Xeon E5-2680 and 1 MPI process per Xeon Phi. In this
section, we use the latter wherein we assign twice as many particles to the multi-socket CPU process as the MIC
process. This configuration delivered better overall performance as the grid-based subroutines are now threaded over
all 16 host cores. Figure 4 shows that the symmetric (SYM) mode boosts the performance by 1.2× with respect to the
CPU-only version up to 1024 nodes on Stampede.

Figure 5 presents the weak scaling trend for the simulations in Figure 4, where ideal scaling is a flat line. The
slope of the results essentially shows the impact of load imbalance (due to cache design) and network performance of
a given system to our application. Generally speaking, we see good scalability on all systems except Stampede where
there is marked degradation in scalability on its fat tree beyond 256 nodes. Moreover, Titan and Blue Waters both use
the same Gemini 3D torus. When subtracting for the difference in the performance of 4 CPUs vs. to 2 CPUs and a
GPU, we see very similar scalability between these two machines. Interestingly, Piz Daint and Edison show different
scalability despite both using the same Cray Aries Dragonfly network. Figure 5(right) shows there is a substantial
increase in time in charge on Edison while time remains roughly constant on Piz Daint and Mira. An investigation of
the timing showed even the average performance over 100 iterations was highly variable on Edison. One can speculate
that there is a qualitative difference in machine usage and contention, but further investigation is warranted.

Although Mira delivers the lowest performance, one should remember that it consumes roughly one quarter of the
power per node as Edison and only 8% of the full machine was utilized. As GTC-P has demonstrated effective scala-
bility to the full capability of Mira and Titan [37, 39], alternate experiments in which the D100 problem is distributed
across each full machine (accepting that work per node will differ from one machine to the next) is a potential avenue
of future research.



charge push shift
Architecture speedup NOLC %LC speedup NOLC %LC speedup NOLC %LC

CPU 1.0 0 0% 1.0 0 0% 1.0 0 0%
CPU+GPU 1.6-2.8 830 140% 2.29-4.69 928 105% 0.78-1.55 555 150%

MIC (Native) 1.03 43 4% 1.21 133 13% 0.56 69 6%
CPU+MIC (Sym.) 1.47 43 4% 1.85 133 13% 1.03 69 6%

Table 4: Portability vs. Speedup on different compute architectures. The number of lines of code changed (NOLC) and the
percentage of lines of code changed (%LC) partially indicates the level of effort made to port and optimize GTC-P to a specific
architecture. The speedup is obtained from the data in Figure 3. For example, the two GPU speedup values are calculated by
comparing the kernel CPU and GPU times on Piz Daint and Titan, respectively. The speedup can be regarded as chip-to-chip
performance comparison except for the MIC symmetric mode.

6.3 Portability vs. Speedup

The computer architecture has evolved significantly over the last two decades. This revolution requires the application
developers to modify their codes to take full advantage of the new hardware. Sometimes, this even means a complete
re-write of a code. Table 4 shows the trade-off between portability with respect to the number of lines changed and
the achieved speedup based on our experience in porting GTC-P to different architectures. While the GPU hardware
enhances the performance by up to 4.69x, it also requires rewriting whole kernels in CUDA. Directive-based pro-
gramming models, such as OpenMP, greatly simplify the implementation of new optimizations. In the case of GPU,
however, the current directive models (OpenACC 2.0, OpenMP 4.0) are still lacking several key features needed to
achieve the same performance as the CUDA version. Overall, the symmetric mode MIC version seems to have the
best balance between portability and speedup. However, one has to remember that the speedup is solely obtained by
utilizing additional resources.

6.4 ITG Simulations

With the advances of computer architectures and numerical algorithm as well as the development of the modern GTC-
P code, we now have the ability to study long time behavior of turbulence transport on large scale devices (ITER-size)
with high phase-space resolution. Compared with the original GTC size scaling study of 7000 time steps [22], our
production run has increased the phase-space resolution by up to 12× and total time steps by 4×.

The physical parameters for the simulations are the Cyclone case [8] which has peak ion temperature gradient at
r = 0.5a and local parameters: R0/LT = 6.9, R0/Ln = 2.2, q = 1.4 and (r/q)(dq/dr) = 0.78. Here a is the
minor radius, R0 is the major radius, LT and Ln are the temperature and density gradient scale length, respectively.
The safe factor q defines the amount of twist in the magnetic field as a function of radius. A homogeneous Dirichlet
boundary condition is enforced for the electrostatic potential at the core and edge boundary, r = 0.1a and r = 0.9a.
This model uses a circular cross section and assumes electrostatic fluctuations with adiabatic electron. The pressure
gradient profile, which is the driving force for the turbulence, is defined as exp{−[r − 0.5a]/0.35a]

6}. The velocity
space nonlinearity, which is usually ignored as a high order term, but has been shown to be important to maintain
energy conservation [8], is included in the simulations. Figure 6 shows the time evolution of the diffusivity in Gyro-
Bohm units for a wide range plasma sizes up to 30,000 time steps. We see a gradual “rollover” of transport level in
large size devices. However, this “rollover” is much more gradual and the transport level’s magnitude is significant
lower than the value obtained from much lower resolution and shorter-duration kinetic simulation by the original GTC
code early [22]. It is unclear at this point what are the exact reasons that cause the transport level difference between
these two codes. Considering that the original GTC used a heat bath model whereas GTC-P used numerical dissipation
to stabilize the long time simulation, we are systematically investigating the effects of various dissipation models. A
more in depth study will be presented elsewhere.

7 Conclusion
In this paper, we have described our efforts in developing a highly parallelized PIC code which solves the 5D Vlasov-
Poisson equation with efficient utilization of modern massively parallel HPC systems. In particular, we discuss the ker-
nel implementation on NVIDIA GPU accelerators and Intel Xeon Phi co-processors. As being “memory bound”, the
performance of our application is correlated to the DRAM STREAM bandwidth per NUMA node on CPU. On ac-
celerators, however, its performance is substantially lower than the STREAM-predicted number due to data locality,
synchronization and PCIe challenges in “gather” and “scatter” operations and unavoidable data transfer through PCIe.
Comparisons of the code performance on multiple supercomputer systems show that the network performance of a
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Figure 6: (Left) The time evolution of the heat conductivity in Gyro-Bohm units for a wide range plasma sizes. a is the minor
radius of the tokamak and cs(=

√
Te/mi) is the ion acoustic speed. The normalized length a/ρi=125, 250, 500 and 1000 stand

for A-D plasma sizes, respectively. The normalized time 1800 corresponds to 30,000 time steps. (Right) The time average of the
heat conductivity between time 240 to 1800 for different plasma sizes. Note this simulation was carried out on Mira using up to
32,768 compute nodes.

system has become an increasingly important factor for the overall performance of our application, especially for large
scale simulations. GTC-P currently uses two-sided MPI for distributed memory communication. In near-future work,
we will actively explore the potential benefits of deploying one-sided communication using MPI standard 3.0. Our
future work will also involve the development of the offload version for Intel Xeon Phi based system using both Intel
compiler offload directives and OpenMP 4.0 standard. Additionally, we will explore the utilization of multiple Intel
Xeon Phi co-processors in a single node. Our expectation is that if these efforts prove successful, scientific discovery
in application domains such as fusion energy will be significantly enhanced.
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