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Abstract

In this report, we discuss the characteristics necessary for specifying embedded hardware'software

systems. We describe the constructs needed to capture these characteristics and propose a new C

based specification language to describe heterogeneous embedded systems.
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Abstract

In this report, we discuss the characteristics nec
essary for specifying embedded hardware-software sys
tems. We describe the constructs needed to capture
these characteristics and propose a new C based spec
ification language to describe heterogeneous embedded
systems.

1 Introduction

A system can be described at any one of several dis
tinct levels of abstraction, each of which serves a par
ticular purpose. By describing a system at the logic
level, for example, designers can verify detailed timing
as well as functionality. Alternatively, at the archi
tectural level, the complex interaction among system
components such as processors, memories, and ASICs
can be verified. Finally, at the conceptual level, it is
possible to describe the system's functionality without
any notion of its components. Descriptions at such
level can serve as the specification of the system for
designers to work on. Increasingly, designers need to
conceptualize the system using an executable spec
ification language, which is capable of capturing the
functionality of the system in a machine-readable and
simulatable form.

Such an approach has several advajitages. First,
simulating an executable specification allows the de
signer to verify the correctness of the system's in
tended functionality. In the traditional approach,
which started with a natural-language specification,
such verification would not be possible until enough
of the design had been completed to obtain a simulat
able system description (usually gate-level schemat
ics). The second advantage of this approach is that
the specification can serve as an input to codesign and
synthesis tools, which, in turn, can be used to obtain
an implementation of the system, ultimately reduc
ing design times by a significant amount. Third, such

a specification can serve as comprehensive documen
tation, providing an unambiguous description of the
system's intended functionality. Finally, it also serves
as a good medium for the exchange of design infor
mation among various users and tools. As a result,
some of the problems associated with system integra
tion can be minimized, since this approach would em
phasize well-defined system components that could be
designed independently by different designers.

The increasing design complexity associated with
systems-on-a-chip also makes an executable mod
eling language extremely desirable where an inter
mediate implementation can be represented and val
idated before proceeding to the next synthesis step.
For the same reason, we need such a modeling lan
guage to be able to describe design artifacts from pre
vious designs and intellectual properties (IP) provided
by other sources.

Since different conceptual models possess different
characteristics, any given specification language can
be well or poorly suited for that model, depending on
whether it supports all or just a few of the model's
characteristics. To find the language that can capture
a given conceptual model directly, we would need to
establish a one-to-one correlation between the charac

teristics of the conceptual model and the constructs in
the language.

In this report, we will begin by describing some
of the characteristics commonly found in design mod
els. We will then introduce the SpecC-h language and
demonstrate how well it supports the modeling of em
bedded systems.

2 Characteristics of conceptual models

In this section, we will present some of the charac
teristics most commonly found in conceptual models
used by designers. In presenting these characteristics,
part of our goal will be to assess how useful each char-



acteristic is in capturing one or more typ^ of system
behavior.

2.1 Concurrency

Any system can be decomposed into chunks of func
tionality called behaviors, each of which can be de
scribed in several ways, using the concepts of pro
cesses, procedures or state machines. In many cases,
the functionality of a system is most easily conceptu
alized as a set of concurrent behaviors, simply because
representing such systems using only sequential con
structs would result in complex descriptions that can
be difficult to comprehend. If we can find a way to
capture concurrency, however, we can usually obtain
a more natural representation of such systems. For
example, consider a system with only two concurrent
behaviors that can be individually represented by the
finite-state machines Fi and F2. A sequential repre
sentation of the system would be a cross product of
the two finite-state machines, Fi x F2, potentially re
sulting in a large number of states. A more elegant so
lution, then, would be to use a conceptual model that
has two or more concurrent finite-state machines, as
do the Statecharts [Har87] and PSM [GVN93] models.

Concurrency representations can be classified into
two groups, data-driven or control-driven, depending
on how explicitly the concurrency is indicated. Fur
thermore, a special class of data-driven concurrency
called pipelined concurrency is of particular impor
tance to signal processing applications.

2.1.1 Data-driven concurrency

Some behaviors can be clearly described as sets of op
erations or statements without specifying any explicit
ordering for their execution. In a case like this, the
order of execution would be determined only by data
dependencies between them. In other words, each op
eration will perform a computation on input data, and
then output new data, which will, in turn, be input
to other operations. Operation executions in such
dataflow descriptions depend only upon the avail
ability of data, rather than upon the physical loca
tion of the operation or statement in the specification.
Dataflow representations can be easily described from
programming languages using the single assignment
rule, which means that each variable can appear ex
actly once on the left hand side of an assignment state
ment.

Consider, for example, the single assignment state
ments in Figure 1(a). As in any other data-driven ex-

1: qsa-f b
2: y = p + x
3: p.(c-d)-q

Figure 1: Data-driven concurrency: (a) dataflow
statements, (b) dataflow graph generated from (a).

ecution, it is of little consequence that the assignment
to p follows the statement that uses the value of p to
compute the value of y. Regardless of the sequence of
the statements, the operations will be executed solely
as determined by availability of data, as shown in the
dataflow graph of Figure 1(b). Following this princi
ple, we can see that, since a, b, c and d are primary
inputs, the add and subtract operations in statements
1 and 3 will be carried out first. The results of these
two computations will provide the data required for
the multiplication in statement 3. Finally, the addi
tion in statement 2 will be performed to compute y.

2.1.2 Pipelined concurrency

Dataflow description in the previous section can be
viewed as a set of operations which consume data from
their inputs and produce data on their outputs. Since
the execution of each operation is determined by the
availability of its input data, the degree of concur
rency that can be exploited is limited by data depen
dencies. However, when the same dataflow operations
are applied to a stream of data samples, we can use
pipelined concurrency to improve the throughput,
that is, the rate at which the system is able to pro
cess the data stream. Such throughput improvement
is achieved by dividing operations into groups, called
pipeline stages, which operate on different data sets
in the stream. By operating on different data sets,
pipeline stages can run concurrently. Note that each
stage will take the same amount of time, called a cy
cle, to compute its results.

For example. Figure 2(a) shows a dataflow graph
operating on the data set a(n),6(n),c(n),d(n) and
x(n), while producing the data set y(n),p(n) and y(n),
where the index n indicates the nth data in the stream,
called data sstznple n. Figure 2(a) can be converted
into a pipeline by partitioning the graph into three
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Figure 2: Pipelined concurrency: (a) original dataflow, (b) pipelined dataflow, (c) pipelined execution.

stages, as shown in Figure 2(b).
In order for the pipeline stages to execute con

currently, storage elements such as registers or FIFO
queues have to be inserted between the stages (indi
cated by thick lines in Figure 2(b)). In this way, while
the second stage is processing the results produced by
the first stage at the previous cycle, the first stage can
simultaneously process the next data sample in the
stream. Figure 2(c) illustrates the pipelined execu
tion of Figure 2(b), where each row represents a stage,
each column represents a cycle. In the third column,
for example, while the first stage is adding a(n -|- 2)
and 6(n + 2), and subtracting c(n -j- 2) and d{n -f 2),
the second stage is multiplying (a(n -f 1) -I- 6(n -|-1))
and a(n + 1) —d{n + 1), and the third stage is fin
ishing the computation of the nth sample by eidding
((a(n) + b{n)) * (c(n) - d(Ti)) to x(n).

2.1.3 Control-driven concurrency

The key concept in control-driven concurrency is the
control thread, which can be defined as a set of opera
tions in the system that must be executed sequentially.
As mentioned above, in data-driven concurrency, it is
the dependencies between operations that determine
the execution order. In control-driven concurrency,
by contrast, it is the control thread or threads that
determine the order of execution. In other words,
control-driven concurrency is characterized by the use
of explicit constructs that specify multiple threads of
control, all of which execute in parallel.

Control-driven concurrency can be specified at the
task level, where constructs such as fork-joins and pro
cesses can be used to specify concurrent execution of
operations. Specifically, a fork statement creates a
set of concurrent control threads, while a join state
ment waits for the previously forked control threads

sequential behavior X
begin

Q():
fork A(); B(); CO: join;
R():

end behavior X;

A) (B) (C

concurrent behavicM'X
begin

process A():
process B():
process CO;

end behavior^

Figure 3: Control-driven concurrency: (a) fork-join
statement, (b) process statement, (c) control threads
for fork-join statements, (d) control threads for process
statement.

to terminate. The /orAr statement in Figure 3(a), for
example, spawns three control threads A, B and C,
all of which execute concurrently. The correspond
ing join statement must wait until all three threads
have terminated, after which the statements in R can
be executed. In Figure 3(b), we can see how process
statements are used to specify concurrency. Note that,
while a fork-join statement starts from a single control
thresid and splits it into several concurrent threads as
shown in Figure 3(c), a process statement represents
the behavior as a set of concurrent threads, as shown
in Figure 3(d). For example, the process statements
of Figure 3(b) create three processes A, B and C, each
representing a different control thread. Both fork-join
and process statements may be nested, and both ap
proaches are equivalent to each other in the sense that



a fork-join can be implemented using nested processes
and vice versa.

2.2 State transitions

Systems are often best conceptualized as having
vjirious modes, or states, of behavior, as in the case
of controllers and telecommunication systems. For ex
ample, a traffic-light controller [DH89] might incorpo
rate different modes for day and night operation, for
manual and automatic functioning, and for the status
of the traffic light itself.

In systems with various modes, the transitions be
tween these modes sometimes occur in an unstruc

tured manner, as opposed to a linear sequencing
through the modes. Such arbitrary transitions are
akin to the use of goto statements in programming
languages. For example, Figure 4 depicts a system
that transitions between mod^ P, Q, R, S and T, the
sequencing determined solely by certain conditions.
Given a state machine with N states, there can be
N X N possible transitions among them.

Figure 4: State transitions between arbitrarily com
plex behaviors.

In systems like this, transitions between modes can
be triggered by the detection of certain events or cer
tain conditions. For example, in Figure 4, the tran
sition from state P to state Q will occur whenever
event u happens while in P. In some systems, actions
can be associated with each transition, and a partic
ular mode or state can have an arbitrarily complex
behavior or computation associated with it. In the
case of the traffic-light controller, for example, in one
state it may simply be sequencing between the red,
yellow and green lights, while in another state it may
be executing an algorithm to determine which lane of
traffic has a higher priority based on the time of the
day and the traffic density. In traditional and hierar
chical finite-state machine conceptual models, simple
assignment statements, such as x = y -}-1, can be as
sociated with a state. In the PSM [GVN93] model.

any arbitrary algorithm with iteration and branching
constructs can be associated with a state.

2.3 Hierarchy

One of the problems we encounter with large sys
tems is that they can be too complex to be consid
ered in their entirety. In such cases, we can see the
advantage of hierarchical models. First, since hier
archical models allow a system to be conceptualized
as a set of smaller subsystems, the system modeler is
able to focus on one subsystem at a time. This kind
of modular decomposition of the system greatly sim
plifies the development of a conceptual view of the
system. Furthermore, once we arrive at an adequate
conceptual view, the hierarchical model greatly facil
itates our comprehension of the system's functional
ity. Finally, a hierarchical model provides a mecha
nism for scoping objects, such as declaration types,
variables and subprogram names. Since a lack of hi
erarchy would make all such objects global, it would
be difficult to relate them to their particular use in
the model, and could hinder our efforts to reuse these
names in different portions of the same model.

There are two distinct types of hierarchy - struc
tural hierarchy and behavioral hierarchy - both of
which are commonly found in conceptual views of sys
tems.

2.3.1 Structural hierarchy

A structural hierarchy is one in which a system speci
fication is represented as a set of interconnected com
ponents. Each of these components, in turn, can have
its own internal structure, which is specified with a set
of lower-level interconnected components, and so on.
Each instance of an interconnection between compo
nents represents a set of communication channels con
necting the components. The advantage of a model
that can represent a structural hierarchy is that it can
help the designer to conceptualize new components
from a set of existing components.

This kind of structural hierarchy in systems can
be specified at several different levels of abstraction.
For example, a system can be decomposed into a set
of chips/modules communicating over buses. Each of
these chips may consist of several blocks, and each
block, in turn, may consist of several RT components,
such as registers, ALUs and multiplexers. Finally,
each RT component can be further decomposed into
a set of gates. In eiddition, we should note that dif
ferent portions of the system can be conceptualized



at different levels of abstraction, as in Figure 5, where
the processor has been structurally decomposed into a
datapath represented as a set of RT components, and
into its corresponding control logic represented as a
set of gates.

Control Logic

Memory

Figure 5: Structural hierarchy.

2.3.2 Behavioral hierarchy

The specification of a behavioral hierarchy is de
fined as the process of decomposing a behavior into
distinct subbehaviors, which can be either sequential
or concurrent.

The sequential decomposition of a behavior
may be represented as either a set of procedures or
a state machine. In the first case, a procedural se
quential decomposition of a behavior is defined as
the process of representing the behavior as a sequence
of procedure calls. Even in the case of a behavior that
consists of a single set of sequential statements, we can
still think of that behavior as comprising a procedure
which encapsulates those statements. A procedural
sequential decomposition of behavior P is shown in
Figure 6(a), where behavior P consists of a sequential
execution of the subbehaviors represented by proce
dures Q and R. Behavioral hierarchy would be repre
sented here by nested procedure calls. Recursion in
procedures allows us to specify a dynamic behavioral
hierarchy, which means that the depth of the hierarchy
will be determined only at run time.

Figure 6(b) shows a state-machine sequential
decomposition of behavior P. In this diagram, P is
decomposed into two sequential subbehaviors Q and
R, each of which is represented as a state in a state-
machine. This state-machine representation conveys
hierarchy by allowing a subbehavior to be represented
as another state-machine itself. Thus, Q and R are
state-machines, so they are decomposed further into
sequential subbehaviors. The behaviors at the bottom

behavior P
variable x, y;

begin

Figure 6: Sequential behavioral decomposition: (a)
procedures, (b) state-machines.

level of the hierarchy, including Ql, ...R2, are called
leaf behaviors.

In a sequentially decomposed behavior, the subbe
haviors can be related through several types of tran
sitions: simple transitions, group transitions and hier
archical transitions. A simple transition is similar
to that which connects states in an FSM model in that
it causes control to be transferred between two states
that both occupy the same level of the behavioral hi
erarchy. In Figure 6(b), for example, the transition
triggered by event el transfers control from behavior
Ql to Q2. Group transitions are those which can
be specified for a group of states, as is the case when
event eS causes a transition from any of the subbe
haviors of Q to the behavior R. Hierarchical tran
sitions are those (simple or group) transitions which
span several levels of the behavioral hierarchy. For ex
ample, the transition labeled e6 transfers control from
behavior Q3 to behavior Rl, which means that it must
span two hierarchical levels. Similarly, the transition
labeled el transfers control from Q to state R2^ which
is at a lower hierarchical level.

For a sequentially decomposed behavior, we must
explicitly specify the initial subbehavior that will be
activated whenever the behavior is activated. In Fig
ure 6(b), for example, R is the first subbehavior that
is active whenever its parent behavior P is activated,
since a solid triangle points to this first subbehavior.
Similarly, Ql and Rl would be the initial subbehaviors
of behaviors Q and R, respectively.

The concurrent decomposition of behaviors al
lows subbehaviors to run in parallel or in pipelined
fashion.

Figure 7 shows a behavior X consisting of three
subbehaviors A, B and C. In Figure 7(a) the sub
behaviors are running sequentially, one at a time, in
the order indicated by the arrows. In Figure 7(b),
A, B and C run in parallel, which means that they
will start when X starts, and when all of them fin
ish, X will finish, just like the fork-join construct dis-



Sequential Concurrent Pipelined

Figure?: Behavioral decomposition types: (a) sequen
tial, (b) parallel, (c) pipelined.

cussed in Section 2.1. In Figure 7(c), A, B and C run
in pipelined mode, which means that they represent
pipeline stages which run concurrently where A sup
plies data to B and B to C as discussed in Section 2.1.

2.4 Programming constructs

Many behaviors can best be described as sequential
algorithms. Consider, for example, the case of a sys
tem intended to sort a set of numbers stored in an ar

ray, or one designed to generate a set of random num
bers. In such cases, if the system designer manages
to decompose the behavior hierarchically into smaller
and smaller subbehaviors, he will eventually reach a
stage where the functionality of a subbehavior can be
most directly specified by means of an algorithm.

The advantage of using such programming con
structs to specify a behavior is that they allow the sys
tem modeler to specify an explicit sequencing for the
computations in the system. Several notations exist
for describing algorithms, but programming language
constructs are most commonly used. These constructs
include assignment statements, branching statements,
iteration statements and procedures. In addition, data
types such as records, arrays and linked lists are usu
ally helpful in modeling complex data structures.

The following code segment shows how we would
use programming constructs to specify a behavior that
sorts a set of ten integers into descending order. Note
that the procedure swap exchanges the values of its
two parameters.

1 int bufll0],i, j;
2

3 for( i = 0; i < 10; i )
4 for( j = 0; j < i; j -I-+ )
5 if( bufli] > buf[j] )
6 8wap( &bufli], &:bufl)l );

Source Listing 1

2.5 Behavioral completion

Behavioral completion refers to a behavior's ability
to indicate that it has completed, as well as to the
ability of other behaviors to detect this completion.
A behavior is said to have completed when all the
computations in the behavior have been performed,
and all the variables that have to be updated have
had their new vdues written into them.

In the finite-state machine model, we usually desig
nate an explicitly defined set of states as final states.
This means that, for a state machine, completion will
have occurred when control flows to one of these final
states, as shown in Figure 8(a).

In cases where we use programming language con
structs, a behavior will be considered complete when
the last statement in the program has been executed.
For example, whenever control flows to a return state
ment, or when the last statement in the procedure is
executed, a procedure is said to be complete.

OutputUsi

Figure 8: Behavioral completion: (a) finite-state ma
chine, (b) program-state machine, (c) a single level
view of the program-state X, (d) decomposition into
sequential subbehaviors.

The PSM model denotes completion using a special
predefined completion point. When control flows to
this completion point, the program-state enclosingit is



said to have completed, at which point the transition-
on-completion (TOC) arc, which can be traversed only
when the source program-state has completed, could
now be traversed.

For example, consider the program-state machine
in Figure 8(b). In this diagram, the behavior of leaf
program-states such as XI have been described with
programming constructs, which means that their com
pletion will be defined in terms of their execution
of the last statement. The completion point of the
program-state machine for X has been represented as
a bold square. When control flows to it from program-
state X2 (i.e., when the arc labeled by event e2 is
traversed), the program-state X will be S8ud to have
completed. Only then can event e5 cause a TOC tran
sition to program-state Y. Similarly, program-state B
will be said to have completed whenever control flows
along the TOC arc labeled e4 from program-state Y
to the completion point for B.

The specification of behavioral completion has two
advantages. First, in hierarchical specifications, com
pletion helps designers to conceptualize each hierar
chical level, and to view it as an independent module,
free from interference from inter-level transitions. Fig
ure 8(c), for example, shows how the program-state X
in Figure 8(b) would look by itself in isolation from the
larger system. Having decomposed the functionality of
X into the program-substates Xt, X2 and X3, the sys
tem modeler does not have to be concerned with the

effects of the completion transition labeled by event
e5. From this perspective, the designer can develop
the program-state machine for X independently, with
its own completion point (transition labeled €2 from
X2). The second advantage of specifying behavioral
completion is that the concept allows the natural de
composition of a behavior into subbehaviors which are
then sequenced by the "completion" transition arcs.
For example. Figure 8(d) shows how we can split an
application which sorts a list of numbers into three dis
tinct, yet meaningful subbehaviors: ReadList, SortList
and OutputList. Since TOC arcs sequence these be
haviors, the system requires no additional events to
trigger the transitions between them.

2.6 Exception handling

Often, the occurrence of a certain event can require
that a behavior or mode be interrupted immediately,
thus prohibiting the behavior from updating values
further. Since the computations associated with any
behavior can be complex, taking an indefinite amount
of time, it is crucial that the occurrence of the event,

or exception, should terminate the current behavior
immediately rather than having to wait for the com
putation to complete. When such exceptions arise, the
next behavior to which control will be transferred is

indicated explicitly.

I Z I

Figure 9: Exception handling; (a) abortion, (b) inter
rupt

Depending on if the control will be transferred back
to the behavior that is interrupted, the exception can
be further distinguished into two cases: Figure 9(a)
shows the situation of abortion, where behavior X
will be terminated by the occurrence of el or e2. Fig
ure 9(b) shows the case of interrupt, where control
will transfer to Y or Z upon the occurrence of el or
e2, and it will return sdter they finish.

Examples of such exceptions include resets and in
terrupts in a computer system.

2,7 Timing

In system specifications, there may be components
of the system where the notion of real time becomes
relevant to ensure the correct implementation. In
these situations, a component receives or generates
events in specified time ranges. The time range is
measured in real time units such as nanoseconds.

In general, a timing relation can be described by a
4-tuple T =< el, e2, mm, max >, where event el pro
ceeds e2 by at least mm time units and at most max
time units. The timing relation which specifies what
the component can ensure is called timing delay.
The timing relation which specifies what the compo
nent has to satisfy is called timing constraint.

The added timing information is especially impor
tant for describing parts of the system which inter
act extensively with the environment according to a
predefined protocol. The protocol defines the set of
timing relations between signals, which both commu
nicating parties have to respect.

A protocol is usually visualized by a timing dia
gram, such as the one shown in Figure 10 for the read
cycle of a static RAM. Each row of the timing diagram
shows a waveform of a signal, such as Address, Read,
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Figure 10: Timing diagram

Write and Data in Figure 10. Each dashed vertical
line designates an occurrence of an event, such as tl,
t2 through t7. There may be timing delays or timing
constraints associated with pairs of events, indicated
by an arrow annotated by x/y, where x stands for the
min time, y stands for the max time. For example,
the arrow between tl and tS designates a timing de
lay, which says that Data will be valid at least 10, but
no more than 20 nanoseconds after Address is valid.

The timing information is very important for the
subset of embedded systems known as real time sys
tems, whose performance is measured in terms of
how well the implementation respects the timing con
straints. A favorite example of such systems would be
an aircraft controller, where failure to respond to an
abnormal event in a predefined timing limit will leeid
to disaster.

2.8 Communication

In general, systems consist of several subbehaviors
or processes which need to communicate with each
other. This kind of communication between portions
of the system is usually conceptualized in terms of
shared memory or message passing paradigms. We
will discuss each of these individusdly before we gen
eralize them into the more flexible hierarchical com

munication model.

2.8.1 Shared-memory communication model

In a shared memory model, each sending process
writes to a shared medium, such as a global variable,
which can then be read by all receiving processes. If
synchronization is required between the communicat
ing processes, it must be specified explicitly. For ex
ample, the sending process could incorporate a spe
cial valid flag to indicate that the shared memory has

been updated with a new value, which can then be
read by the receiving processes. The shared memory
model also includes the broadcast mechanism, which
ensures that any value or event generated by one pro
cess or its environment will immediately be sensed by
all the receiving processes.

Process P

voklmainO

M • x:

...}

Process P

voidmaln{)

intx;

C.Mnd(x);

Shared
Memory

Channel 0

Process Q

vok>main()

int y;

IvaNd};

Process 0

void maln()

y • C.receiveO;

Figure 11: Inter-process communication paradigms:
(a) shared memory, (b) message passing.

Figure 11(a) shows how the communication be
tween processes P and Q could occur through the use
of a shared memory M. To send data to process Q,
process P simply updates the shared memory M and
the valid flag, which is then read by process Q.

2.8.2 Message-passing communication model

In the message-passing model, the details of data
transfers between processes are replaced by commu
nication over an abstract medium called a channel,
over which data or messages are sent. In each pro
cess, send and receive procedures would be used to
transfer data over the channel.

Consider, for instance, Figure 11(b), which shows
how the communication between processes P and Q
could be achieved by using the messagepassing model.
A channel C has been defined for the transfer of data
from process P to proc^ Q. The data, represented by
the value of variable x in process P, is then transferred
over the channel through the use of a send procedure.
Finally, this data is received into the variable y in pro
cess Q by means of a receive function. .



2.8.3 Hierarchical communication model

A useful generalization of shared memory and message
passing paradigms is the hierarchical communication
model, where a communication channel is specified
as the encapsulator of a set of communication me
dia in the form of variables, and a set of methods
in the form of functions that operate on these vari
ables. These functions specify how data is transferred
over this channel. The accesses to the channel are

restricted to these methods.

For example, the shared memory model in Fig
ure 11(a) can be replaced by the following integer
channel:

1 channel integer( void ) {
2 bool valid;
3 int M;
4

5 int read( void ) {
6 wbile( valid == 0 );
7 return M;

8 }
9 void write( int a ) {
10 M = a;
11 valid = 1;
12 >

Source code 2

Here methods read and write provide the restricted
ziccesses to the variables M and valid.

The adoption of this model can achieve informa
tion hiding, since the media and the way how the
methods are implemented are hidden. In this way,
the modeling complexity is reduced, since the users
only need to make function calls to the methods. This
model also encourages the separation of computation
and communication, since the functionality responsi
ble for communication can be confined in the channel

specification and will not be mixed with descriptions
used for computation.

I I I I 1 I I I

I I I 1
I I I *—r
I I I I

Figure 12: A simple synchronous bus protocol: (a)
read cycle, (b) write cycle.

Consider, for example, a synchronous bus specifi
cation in Figure 12. A component using this bus can

initiate a communication by asserting the start and rw
signals in the first cycle, supplying the address in the
second cycle, and then supplying data in the follow
ing cycles. The communication will terminate when
the start signal is deasserted. This protocol descrip
tion is shown in Source code 3, which encapsulates the
communication media, in this case the signals dock,
start, rw and AD, and a set of methods, in this case
read.cycle suid writej:ycl€, which implement the com
munication protocol for reading and writing the data
as described.

channel bus( void ) {
2 8ignal<btt> elk;
3 signal<bit> start;
4 signal<bit> rw;
5
£

signal<word> AD;
o

7 void read-£ycle( word addr, word "d ) {
8 start 1, rw = 1, clk.tick();
9 AD = addr, clk.tickO;
10 •d s= AD, clk.tick();
11 start = 0, rw = 0, clk.tick();
12 }
13 void writejcycle( word a, word d ) {
14 start = 1, rw = 0, clk.tick();
15 AD = addr, clk.tick();
16 AD = d. clk.tick();
17 start = 0, clk.tick();
18 }
19 };

Source code 3

2.9 Synchronization

In a system that is conceptualized as several con
current processes, the processes are rarely completely
independent of each other. Each process may gen
erate data and events that need to be recognized by
other processes. In cases like these, when the pro
cesses exchange data or when certain actions must be
performed by different processes at the same time, we
need to synchronize the processes in such a way that
one process is suspended until the other reach^ a cer
tain point in its execution. Common synchronization
methods fall into two classifications, namely control-
dependent and data-dependent schemes.

2.9.1 Control-dependent synchronization

In control-dependent synchronization techniques, it is
the control structure of the behavior that is responsi
ble for synchronizing two processes in the system. For



behavior X
begin

QO:
fork AO; BQ: C(); join;
R():

end behavior X;

.A) (B) (C

tynehronOaOon
point

Figure 13: Control synchronization: (a) behavior
X with a fork-join, (b) synchronization of execution
streams by join statement, (c) and (d) synchroniza
tion by initialization in Statecharts.

example, the fork-join statement introduced in Sec
tion 2.3 is an instance of such a control construct. Fig
ure 13(a) shows a behavior X which forks into three
concurrent subprocesses. A, B and C. In Figure 13(b)
we see how these distinct execution streams for the be

havior X are synchronized by a join statement, which
ensures that the three processes spawned by the fork
statement are all complete before R is executed. An
other example of control-dependent synchronization
is the technique of initialization, in which processes
are synchronized to their initial states either the first
time the system is initialized, as is the case with most
HDLs, or during the execution of the processes. In the
Statechart [DH89] of Figure 13(c), we can see how the
event e, associated with a transition arc that reenters
the boundary of ABC, is designed to synchronize all
the orthogonal states A, B and C into their default
substates. Similarly, in Figure 13(d), event e causes
B to initialize to its default substate B1 (since AB is
exited and then reentered), at the same time transi-
tioning A from A1 to A2.

2.9.2 Data-dependent synchronization

In addition to these techniques of control-dependent
synchronization, processes may also be synchronized
by means of one of the methods for interprocess com
munication: shared memory or message passing.

Shared-memory based synchronization works
by making one of the processes suspend until the other
process has updated the shared memory with an ai>-
propriate value. In such cases, the shared memory
might represent an event, a data value or the status
of another process in the system, as is illustrated in
Figure 14 using the Statecharts language.

Figure 14: Data-dependent synchronization in Stat
echarts: (a) synchronization by common event, (b)
synchronization by common data, (c) synchronization
by status detection.

Synchronization by common event requires
one process to wait for the occurrence of a specific
event, which can be generated externally or by an
other process. In Figure 14(a), we can see how event e
is used for synchronizing states A and B into substates
A2 and B2, respectively. Another method is that of
synchronization by common variable, which re
quires one of the processes to update the variable with
a suitable value. In Figure 14(b), B is synchronized
into state B2 when we assign the value "1" to variable
X in state A 2.

Still another method is synchronization by sta
tus detection, in which a process checks the status of
other processes before resuming execution. In a case
like this, the transition from A1 to A2 precipitated by
event e, would cause B to transition from B1 to B2,
as shown in Figure 14(c).

3 SpecCH-

In this section, we will present the SpecC-t- lan
guage, which was specifically developed to capture di-



rectly a conceptual model possessing all the above dis
cussed characteristics.

3.1 Language description

The SpecC+ view of the world is a hierarchical net
work of actors. Each actor possesses

• a set of ports through which the actor communi
cates with the environment;

• a set of state variables;

• a set of communication channels;

• a behavior which defines how the actor will

change its state and perform communication
through its ports when it is invoked.

Source code 4 shows the textual representation of
the example in Figure 15, where an actor is repre
sented by a rectangular box with curved corners.

typedef int TData[16l;

interface IData( void ) {
TData read( void );
void write( TData d );

};

channel CData( void ) implements IData {
bool valid;
event s;

TData storage;

TData read( void ) {
if( valid ) 8.wait();
return storage;

}
void write( TData d ) {

8torage=d; valid = 1; 8.notify();
}

22 actor Xl( in TData i, out TData o ) { ... };
23 actor X2( in TData i, IData o ) {
24 void main( void ) •(
25

26 o.write(...);
27 }
28 };
29

30 actor X( in int a, IData c ) {
31 TData s;

xl( a, s );
x2( s, c );

main( void ) {
(1 : ( TI, condl, x2 );
c2 : ( TOC, cond2, complete );

41 actor Y ( DData c, out int m ) {
void main( void ) •{

int inax,j;
TData array;

array = c.read();
max = 0;
for( j = 0; j < 16; j ++ )

if( arraypj > max )
max = arrayp);

m s max;

}

55 actor B( in TData p, out int q ) {
CData ch;

x( p, ch ):
y( ch. q);

main( void ) {
par { x.mainO; y-niain(); }
}

Source code 4

kit max.);
TDala array;

array • c.rMd();
max •> 0;
tor (}«0:)<16:(++)

H(aiTay(J]>max)
max-ainyUJ;

msmax:

Figure 15: A sample SpecC-H specification.

There is an actor construct which capture all the
information for an actor. An actor construct looks
like a C-l—I- class which exports an main method. The
ports are declared in the parameter list. The state
variable, channels and child actor instances are de
clared as typed variables, and the behavior is specified
by the methods, or functions start from main. Actor
construct can be used as a type to instantiate actor
instances.

SpecC-l- supports both behavioral hierarchy and
structural hierarchy in the sense that it captures a
system as a hierarchy of actors. Each actor is either a
composite actor or a leaf actor.



Composite actors are decomposed hierarchically
into a set of child actors. For structural hierarchy, the
child actors are interconnected via the communication

channels by child actor instantiation statements, simi
lar to component instantiation in VHDL. For example,
actor X is instantiated in line 57 of Source code 4 by
mapping its port a and c to the ports (p) and commu
nication channels (ch) defined in its parent actor B.
For behavioral hierarchy, the child actors can either
be concurrent, in which case all child actors are active
whenever the parent actor is active, or can be sequen
tial, in which case the child actors are only active one
at a time. In Figure 15, actors B and X are composite
actors. Note that while B consists of concurrent child

actors X and Y, X consists of sequential child actors
XI and X2.

Leaf actors are those that exist at the bottom

of the hierarchy whose functionality is specified with
imperative programming constructs. In Figure 15, for
example, V is a leaf actor.

SpecC-H also supports state transitions, in the
sense that we can represent the sequencing between
child actors by means of a set of transition arcs.
In this language, an arc is represented as a 3-tuple
<T, C, N >, where T represents the type of transi
tion, C represents the condition triggering the transi
tion, and iVrepresents the next actor to which control
is transferred by the transition. If no condition is as
sociated with the transition, it is assumed to be "true"
by default.

SpecC-j- supports two types of transition arcs. A
transition-on-completion arc (TOC) is traversed
whenever the source actor has completed its compu
tation and the associated condition evaluates as true.

A leaf actor is said to have completed when its last
statement has been executed. A sequentially decom
posed actor is said to be complete only when it makes
a transition to a special predefined completion point,
indicated by the name complete in the next-actor field
of a transition arc. In Figure 15, for example, we
can see that actor X completes only when child actor
X2 completes and control flows from X2 to the com
plete point when cond2 is true (as specified by the arc
< TOC, cond2, complete > in line 36 of Source code
4). Finally, a concurrently decomposed actor is said
to be completed when all of its child actors have com
pleted. In Figure 15, for example, actor B completes
when all the concurrent child eictors X juid Y have

completed.

Unlike the TOC arc, a transition-immediately
arc (TI) is traversed instantaneously whenever the as
sociated condition becomes true, regardless of whether

the source actor has or has not completed its com
putation. For example, in Figure 15, the arc
< Tly condl, x2 > terminates XI whenever condl is
true and transfers control to actor X2. In other words,
a TI arc effectively terminates all lower level child ac
tors of the source sictor.

Transitions are represented in Figure 15 with
directed arrows. In the case of a sequentially-
decomposed actor, an inverted bold triangle points to
the first child actor. An example of such an initial
child 2w:tor is XI of actor X. The completion of se
quentially decomposed actors is indicated by a transi
tion arc pointing to the completion point, represented
as a bold square within the actor. Such a completion
point is found in actor X (transition from X2 labeled
e2). TOC arcs originate from a bold square inside the
source child actor, as does the arc labeled e2. TI arcs,
in contrast, originate from the perimeter of the source
child actor, as does the arc labeled el.

SpecC-l- supports both data-dependent syn
chronization and control-dependent synchro
nization. In the first method, actors can synchronize
using common event. For example, in Figure 15, ac
tor Y is the consumer of the data produced by actor X
via channel c, which is of type CData in Source code
4. In the implementation of CData at line 8 of Source
code 4, an event s is used to make sure Ycan get valid
data from X: the wait function over s will suspend Y
if the data is not ready. In the second method, we
could use a TI arc from actor B back to itself in order
to synchronize all the concurrent child actors of B to
their initial states. Furthermore, the fzict that X and
Y are concurrent actors enclosed in B automatically
implements a barrier, since by semantics, B finishes
when both the execution of X and Y are finished.

Communication in SpecC-f is achieved through
the use of communication channels. Channels can be

primitive channels such as variables and signals (like
variable s of actor Ain Figure 15), or complex chsinneis
such as object channels (like variable ch in Figure 15),
which directly supports the hierarchical communica
tion model discussed in Section 2.8.

The specification of an object channel is separated
in the inier/ace declaration and the channe/definition,
each of which can be used as data types for channel
variables. The interface defines a set of function pro
totype declarations without the actual function body.
For example, the interface IData in Figure 15 defines
the function prototypes read and write. The channel
encapsulates the communication media and provides
a set of function implementations. For example, the
channel CData encapsulates media s and storage and



an implementation of methods read and write. The
interface and the channel are related by the imple
ments keyword. A chainnel related to an interface in
this way is said to implement this interfeice, meaning
the channel is obligated to implement the set of func
tions prescribed by the interface. For example, CData
has to implement read and write since they appear in
IData. It is possible that several channels can imple
ment the same interface, which implies that they can
provide different implementations of the same set of
functions.

Interfaces sLre usually used as port data types in
port declarations of an actor (as port c of 8u:tor Y
at line 41 of Source code 4). A port of one interface
type will be bound to a particular channel which im
plements such an interface during actor instantiation.
For example, port c of actor Y is mapped to channel
c of actor B, when actor Y is instantiated.

The fact that a port of interface type can be bound
to a real channel until actor instantiation is called late

binding. Such a late binding mechanism helps to
improve the reusability of an actor description, since
it is possible to plug in any channel as long as they
implement the same interface.

word rtg(6}:

rMd_word(0x1,

«^t»_word(0x2. reg[4I):

CSnmWreppar

CDrwnWnppor

Figure 16: Component wrapper specification.

Consider, the example in Figure 16 as specified in
Source code 5:

1 interface IRam( void ) {
2 void read.word( word a, word *d );
3 void write-word( word a, word d );
4 };
5

6 actor AAsic( IRam ram ) {
7 word reg[8l;
8

9 void main( void ) {

ram.read-word( 0x0001, &reg[0] );

ram.write.wordf 0x0002, reg[4] ):
}

actor ASratn( in 8ignaI<word> addr,
incut signal<word> data,
in signal<bit> rd, in 8ignal<bit> wr ) {

actor ADr£un( in signal<word> addr,
inout signal<word> data,
in 8ignal<bit> cs, in signal<bit> we,
out signa]<bit> ras, out signal<bit> cas ) {

channel CSramWrapper( void ) implements IRAM {
8ignal<word> addr, data; //addres8, data
8ignal<bit> rd, wr; // read/write select
ASram 8ram( addr, data, rd, wr );

void read-word( word a, word *d ) { ... }
void write_word( word a, word d ) { ... }

channel CDramWrapper( void ) implements IRam {
8ignal<word> addr, data; //address, data
signal<bit> cs, we; //chip select, write enable

signal<bit> ras, cas; // row, col address strobe
ADram sramf addr, data, cs, we, ras, cas );

void read.word( word a, word *d ) { ... }
void write_word( word a, word d ) { ... }

actor ASystem( void ) {
CSramWrapper ram;
// CDramWrapper ram;
AAsic asic( ram );

/ / can be replaced by
// this declaration

main( void ){...}

Source code 5

The system described in this example contains an
ASIC (actor AAsic) talking to a memory. The in
terface IRam specifies the possible transactions to ac
cess memories: read a word via read.word and write

a word via write.word. The description of AAsic can
use IRam as its port so that its behavior can make
function calls to methods read^word and writejword
without knowing how these methods are exactly im
plemented. There are two types of memories avail
able in the library, represented by actors ASram and
ADram respectively, the descriptions of which provide
their behavioral models. Obviously, the static RAM



ASram and dynamic RAM ADTom have different pins
and timing protocols to access them, which can be
encapsulated with the component actors themselves
in channels called wrappers, as CSramWrxipper and
CDramWrapper in Figure 16. When the actor AA-
sic is instantiated in actor ASystem (lines 52 and 53
in Source code 5), the port IRam will be resolved to
either CSramWrapperox CDramWrapper.

The improvement of reusability of this style of spec
ification is two fold: first, the encapsulation of commu
nication protocols into the channel specification make
these channels highly reusable since they can be stored
in the library and instantiated at will. If these chan
nel descriptions are provided by component vendors,
the error-prone effort spent on understanding the data
sheets and interfacing the components can be greatly
relieved. Secondly, sictor descriptions such as AAsic
can be stored in the library and easily reused without
any change subject to the change of other components
with which it interfaces.

It should be noted that while methods in an actor

represent the behavior of itself, the methods of a chan
nel represent the behavior of their callers. In other
words, when the described system is implemented, the
methods of the channels will be inlined into the con
nected actors. When a channel is inlined, the encapsu
lated media get exposed and its methods are moved to
the caller. In the case of a wrapper, the encapsulated
actors also get exposed.

Figure 17 shows some typical configurations. In
Figure 17(a), two synthesizable components A and B
(eg. eictors to be implementedon an ASIC) are inter
connected via a channel C, for example, a standard
bus. Figure 17(b) shows the situation after inlining.
The methods of the channel C are inserted into the

actors and the bus wires are exposed. In Figure 17(c)
a synthesizable component A communicates with a
fixed component B (eg. an olT-the-shelf component)
through a wrapper W. When W is inlined, as shown
in Figure 17(d), the fixed component B and the sig
nals get exposed. In Figure 17(e) again a synthesizable
component A communicates with a fixed component
B using a predefined protocol, that is encapsulated
in the channel C. However, B has its own built-in
protocol, which is encapsulated in the wrapper W. A
protocol transducer T has to be inserted between the
channel C and the wrapper W in order to translate all
transactions between the two protocols. Figure 17(f)
shows the final situation, when both channels C and
W are inlined.

SpecC+ supports the specification of timing ex
plicitly and distinguishes two types of timing specifi-

Legend: •ynthMizabto
component

Mrwd
component

Axed W protocol
component II transducer

Figure 17: Common configurations before and after
channel inlining: (a)/(b) two synthesizable actors con
nected by a channel, (c)/(d) synthesizable eictor con
nected to a fixed component, (e)/(f) protocol trans
ducer.

cations, namely timing constraints and timing delays,
as discussed in Section 2.7. At the specification level
timing constraints are used to specify time limits that
have to be satisfied. At the implementation level com
putational delays have to be noted.

Consider, for example, the timing diagram of the
read protocol for a SRAM, as shown earlier in Fig
ure 10. The protocol visualized by the timing dia
gram can be used to define the read^word method of
the SRAM channel above (line 35 in Source code 5).
The following code segment shows the specification of
the read access to the SRAM:

void read.word( word a, word "d ) {
2 do -j
3 tl { addr = a; }
4 t2 { rd = 1; }
5 t3 ( }
6 t4 { *d = data; }
7 ts { addr.disconnect()',}
8 t6 ( rd = 0; }
9 t7 { break;}
10 }
11 timing {



range( tl; t2; 0; );
range( tl; t3; 10; 20 );
range( t2; t3; 10; 20 );
range( t3; t4; 0; );
range( t4; t5; 0; );
range( tS; t7; 10; 20 );
range( t6; t7; 5; 10 );

Source code 6

The do-ftmm^rstatement efFectiveiy describes all in
formation contained in the timing diagram. The first
part lists all the events of the diagram. Events are
specified as a label and its associated piece of code,
which describes the change on signal values. The sec
ond part is a list of rxinge statements, which specify the
timing constraints or timing delays using the 4-tuples
as described in Section 2.7.

This style of timing description is used at the spec
ification level. In order to get an executable model of
the protocol, scheduling has to be performed for each
do-fiminp statement. Source code 7 shows the imple
mentation of the read.word method which follows an
ASAP scheduling, where all timing constraints are re
placed by delays, which are specified using the wait/or
function.

void read-word( word a, word *d ) {
addr — a;
rd = 1;
waitfor( 10 );
*d — data;

addr.disconnectO;
rd = 0;
waitfor( 10 );

Source code 7

4 Conclusion

The purpose of this report is to demonstrate the
need for a direct mapping between the conceptual
model characteristics and the language constructs we
use to capture those characteristics. In the absence of
such a one-to-one correspondence, the task of system
specification can become cumbersome and the likeli
hood of errors or incompleteness in the specification
is increased. We presented various characteristics of
common conceptual models. For the particular case

of embedded systems, we have shown that the ease
with which the constructs in the SpecC-f- language
are able to capture conceptual model characteristics
makes the language well-suited for embedded system
specification. When there is a good match between a
language and a model, we can expect shorter specifica
tion times and fewer errors, in addition to enhancing
the comprehensibility and adaptability of the specifi
cations themselves.
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