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Anatomical image guided fluorescence molecular tomography 
reconstruction using kernel method 
 
Reheman Baikejiang,a Yue Zhao,a Brett Z. Fite,b Katherine W. Ferrara,b Changqing Lia,* 
aSchool of Engineering, University of California, Merced, CA, 95343, USA 
bDepartment of Biomedical Engineering, University of California, Davis, CA, 95616, USA 
 
 

Abstract. Fluorescence molecular tomography (FMT) is an important in vivo imaging modality to visualize 
physiological and pathological processes in small animals. However, FMT reconstruction is ill-posed and ill-
conditioned due to strong optical scattering in deep tissues, which results in poor spatial resolution. It is well known 
that FMT image quality can be improved substantially by applying the structural guidance in the FMT 
reconstruction. In this paper, a new approach to introducing anatomical information into the FMT reconstruction is 
presented using the kernel method. In contrast to conventional methods that incorporate anatomical information with 
a Laplacian-type regularization matrix, the proposed method introduces the anatomical guidance into the projection 
model of FMT. The primary advantage of the proposed method is that it does not require segmentation of targets in 
the anatomical images. Numerical simulations and phantom experiments have been performed to demonstrate the 
proposed approach’s feasibility. Numerical simulation results indicate that the proposed kernel method can separate 
two FMT targets with an edge-to-edge distance of 1 mm and is robust to false positive guidance and inhomogeneity 
in the anatomical image. For the phantom experiments with two FMT targets, the kernel method has reconstructed 
both targets successfully, which further validates the proposed kernel method. We have compared the proposed 
kernel method with the soft prior method thoroughly and found that the kernel method without target segmentation 
is able to achieve similar anatomical guided results as the soft prior method. 

  
Keywords: Fluorescence molecular tomography, anatomical guidance, kernel method. 
 
*Corresponding author, E-mail: cli32@ucmerced.edu  
 

1 Introduction 

Fluorescence molecular tomography (FMT) has been emerging as an optical imaging modality 

for many years. FMT, as an important molecular imaging tool, has a broad range of applications 

in biomedical studies from drug development in small animal models1-8 to the clinical diagnosis 

in human9-11. However, due to the strong scattering nature of optical photons in deep tissues and 

a limited number of measurements, the inverse problem of FMT is ill-posed and under-

determined, which results in low spatial resolution in FMT imaging, in particular for targets in 

deep turbid media.  



2 

Many approaches have been proposed to improve the FMT image quality, including 

multispectral wavelengths for both excitation and emission wavelengths, different illumination 

patterns,12,13 a large number of FMT measurements by using charge-coupled device(CCD) 

cameras,14-18 and improved FMT reconstruction algorithms-- especially the sparse enhancement 

FMT reconstruction for the sparse FMT targets19-24. A region reconstruction method 

implemented with level set method was also introduced to improve the FMT image 

reconstruction.25, 26 A thorough review of FMT imaging in terms of instruments, methods, and 

applications was presented in Ref. 27. 

Although numerous efforts have been implemented to improve FMT, its spatial resolution is 

still worse than those of other functional imaging modalities such as functional magnetic 

resonance imaging (fMRI), single-photon emission computed tomography (SPECT), and 

positron emission tomography (PET). To further improve the spatial resolution of FMT, 

structural guidance from other anatomical images has been introduced into the FMT.4,28-30 Davis 

et al. reported the magnetic resonance imaging (MRI)-coupled FMT implemented with the 

Laplacian-type regularization.3,5,10,28,31 Schulz et al. reported a hybrid system for simultaneous 

FMT and X-ray computed tomography,7,8,29,32 Stuker et al. reported combined MRI and FMT 

system using single photon avalanche diode detectors.33 Recently, microscopic positron emission 

tomography (microPET), with a spatial resolution up to 1 mm, has been used to guide FMT 

imaging.30,34 More recently, tri-modality35 and even pentamodality, tomographic imaging 

systems were also investigated.36 

 One of major challenges in the multimodality FMT system is how to utilize anatomical 

information properly and easily in the FMT reconstruction. Soft prior method is a widely 

accepted approach, which allows variations within the regions. Local Laplace and weighted 



3 

segments have also been introduced to FMT reconstruction.29,32 It has been demonstrated that the 

combination of Laplace with weighted segments performed best in terms of quantification and 

localization. However, both methods require image segmentation, which is time-consuming and 

prone to human error. To eliminate the need for direct prior image segmentation, Holt et al. 

reported a direct regularization method, in which the anatomical image gray-scale values are 

introduced into a regularization operator37. Similarly, our proposed kernel method also 

eliminates the need of anatomical image segmentation. The major difference is that our approach 

does not need the regularization operator, which allows us to have maximum flexibility to 

implement this method. 

In this paper, inspired by the kernel method in PET image reconstruction,38 we introduce the 

kernel-based image reconstruction as a new approach to incorporating anatomical guidance into 

FMT. Compared with the Laplacian-type regularization methods, the proposed kernel method 

does not require the target region segmentation. Furthermore, as demonstrated by the numerical 

simulations in this paper, the proposed kernel method is robust to the false positive guidance and 

inhomogeneity in the anatomical images.   

In the kernel method, the fluorophore concentration at a node i is defined as a function of a 

set of features,	𝒇#, which is directly extracted from the voxel intensities of the corresponding 

anatomical 3D images. Then, the kernelized FMT image model is incorporated into the forward 

model of FMT. Due to the simplicity of this model, we can combine it with any FMT 

reconstruction algorithm. In this study, we used a kernelized projection model with the 

majorization-minimization (MM) approach.39,40             

The rest of this paper is organized as follows. In Section 2, we describe the FMT forward 

model, the regularized reconstruction method of FMT, and the proposed kernel-based 



4 

reconstruction algorithm. In Section 3, numerical simulations and experimental results are 

presented. Finally, we conclude the paper with discussions in Section 4.  

2 Methods 

2.1 Forward model and reconstruction algorithms of FMT 

Light propagation in tissues is dominated by optical scattering and can be modeled by the 

diffusion equation.41 For FMT in the continuous wave (CW) domain, the light propagation 

model in 3D is described by a set of coupled differential equations which are given below:42,43 

−∇ ⋅ 𝐷() 𝒓 ∇Φ() 𝒓 + 𝜇-,()Φ() 𝒓 = 𝛿1(𝒓 − 𝒓1)
𝒏 ⋅ 𝐷() 𝒓 ∇Φ() 𝒓 + 𝛼()Φ() 𝒓 = 0												

−∇ ⋅ 𝐷(7 𝒓 ∇Φ(7 𝒓 + 𝜇-,(7Φ(7 𝒓 = 𝛷()	 𝒓 𝒙 𝒓 		
𝒏 ⋅ 𝐷(7 𝒓 ∇Φ(7 𝒓 + 𝛼(7Φ(7 𝒓 = 0																

                       (1) 

where ∇  denotes the gradient operator, 𝐷 𝒓 = 3 𝜇1< 𝒓 + 𝜇= 𝒓 >?  is the diffusion 

coefficient, 𝜇=(𝒓) is the absorption coefficient, 𝜇1< (𝒓) is the reduced scattering coefficient, Φ(𝒓) 

is the photon fluence at the location r, 𝛿1(𝒓 − 𝒓1) is Dirac delta function defining point source, 𝒙  

is the unknown to be reconstructed which is related to the fluorescent dye concentration and the 

quantum yield at each node,23  𝒏 is the outward unit normal vector of the boundary, and 𝛼 is the 

Robin boundary coefficient. In Eq. (1), subscripts of 𝑒𝑥 and 𝑒𝑚 mean corresponding terms at the 

excitation and emission wavelengths, respectively. Eq. (1) can be solved by the finite element 

method (FEM) based on a finite element mesh and is linearized to the following equation: 

𝐾()Φ() = 𝛿1 𝒓 − 𝒓1 ,								𝐾(7Φ(7 = Φ()𝒙                                          (2) 

where 𝐾()  and 𝐾(7  are the stiffness matrices at the excitation and emission wavelengths, 

respectively. With the conjugate gradient approach,16 the above equations can be described as:42 

𝑨𝒙 = 𝒃                                                             (3) 
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where 𝑨 ∈ 𝑹 HI×HK  is the system matrix, 𝒙 ∈ 𝑹 HK×?  is  the unknown related to fluorophore 

distribution or the FMT image to be reconstructed, 𝒃 ∈ 𝑹 HI×?  is the measurement vector, 𝑁M is 

the finite element node number, and	𝑁7 is the number of measurement. 

Because of the ill-conditioned and ill-posed nature, Eq. (3) is usually solved as a regularized 

least square problem with the non-negativity constraint: 

𝒙 = argmin
𝒙,𝒙TU

		Φ 𝒙 =: ||𝑨𝒙 − 𝒃||XX + 𝜆||𝒙||? }                                       (4) 

where 𝜆 is 𝐿? the regularization parameter.  

In this study, for the case without anatomical guidance, Eq. (4) is solved by the MM 

approach that updates the FMT image iteratively to minimize the mismatch between the model 

predictions and the measurements.39, 40, 43 

2.2 Soft prior method 

When structured priors are present, the objective function of the FMT with Laplacian 

regularization will be: 

𝒙 = argmin
𝒙,𝒙TU

		Φ 𝒙 =: ||𝑨𝒙 − 𝒃||XX + 𝜆||𝑳𝒙||XX}                                       (5) 

In soft prior method, regularization matrix L is defined as:10 

 

𝑳#] =
1,																for	𝑖 = 𝑗	

− ?
H
,																if	𝑖	and	𝑗	are	in	the	same	region		
0,																otherwise										

                            (7) 

Where N is number of nodes in that region. In Eq. (5), regularization term ||𝑳𝒙||XX can be treated 

as special case of ||𝑨𝒙 − 𝒃||XX when b=0. Then it can be solved by the MM approach as 

described in Refs. 39, 40 and 43. 

 



6 

2.3 Kernel based anatomically-aided reconstruction algorithm 

The anatomically-aided FMT reconstruction algorithms usually incorporate the anatomical 

guidance as a regularization matrix, which enhances the smoothness within the anatomical 

regions and also allows sharp transition between the different regions.37 In this paper, we 

introduce the kernel method which includes the anatomical guidance into the projection model of 

FMT. The fluorophore distribution at the node 𝑖 is defined with a kernel function as38,44,45 

𝒙# = 𝛼]𝜅(𝒇#, 𝒇])]                                                                  (7) 

where 𝒇# and 𝒇]  are the anatomical feature vectors corresponding to the finite element nodes of 𝑖 

and j, respectively. These anatomical feature vectors are directly extracted from the 

corresponding voxels in the 3D anatomical images for each finite element node. The finite 

element mesh and the anatomical images should be co-registered. In some reported 

multimodality FMT systems, accurate co-registrations were reported,7,33 which makes the 

proposed kernel method to be implemented easily. It is also worth pointing out that voxels 

corresponding to finite element nodes on the surface of the mesh and outside of the mesh are 

excluded from the feature vector extraction. The length of the feature vectors depends on the 

voxels number. For example, for a voxel number of 3×3×3, the length of the feature vector is 27.  

In Eq. (7), 𝜅	is the kernel function. There are a variety of choices of the kernel function 𝜅.46,47  

Here we use the radial Gaussian kernel:48  

𝜅 𝒇#, 𝒇] = 𝑒𝑥𝑝(
> 𝒇l>𝒇m

n

on
)                                                         (8) 

where the parameter 𝜎 controls the edge sensitivity and yields more accurate results when 𝜎 =

1.49 For computational efficiency, a k-nearest neighbor (knn) search is carried out for each 

feature vector corresponding to each finite element node using the knnsearch function in 

MATLAB. The search is carried out according to the Euclidean distance between the feature 
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vectors, not the physical distance between the finite element nodes in the Cartesian coordinate. 

Only those elements corresponding to the k-nearest neighbors are stored in the kernel matrix and 

the rest of them are set to be 0. This will result in the following definition of the kernel matrix: 

𝐾#] =
𝜅 𝒇#, 𝒇] , 𝒇] ∈ 𝑘𝑛𝑛		of			𝒇#
0,																otherwise										

                                              (9) 

Thus, the kernel matrix is a sparse symmetric 𝑁M×𝑁M matrix. The kernel matrix is normalized in 

this study for higher image quality:38 

𝑲 = 𝑑𝑖𝑎𝑔>? 𝑲𝟏H 𝑲                                                                        (10) 

here 1N is a vector of all ones. Eq. (7) can be written in a matrix-vector form as: 

𝒙 = 𝑲𝜶                                                                        (11) 

where the vector 𝜶 is a new unknown vector referred as the coefficient image. By substituting 

Eq. (11) into Eq. (3), the kernelized projection model of FMT can be written as 

𝑨𝑲𝜶 = 𝒃                                             (12) 

Combining the kernelized projection model of Eq. (12) with the objective function of Eq. (4) 

leads to the following objective function: 

𝜶 = argmin		Φ 𝜶 =: ||𝑨𝑲𝜶 − 𝒃||XX + 𝜆||𝜶||? }                                       (13) 

Because the reconstructed images are already regularized by the kernels, we set the 

regularization parameter in Eq. (13) to zero in this study,38 and solved by the MM approach.39, 40  

Once 𝜶 is obtained we can easily obtain the final fluorophore distribution image by the linear 

transformation	𝒙	 = 𝑲𝜶. 
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2.4 Numerical simulation setup 

2.4.1 Cylindrical simulation phantom 

In this simulation, we used a cylindrical phantom with a diameter of 22 mm and a height of 80 

mm. Cylindrical targets with a diameter of 1.4 mm and a length of 20 mm were embedded 20 

mm below the top surface of the phantom. In the coordinate system, the base of the cylinder was 

a circle on the x-y plane centering the origin of the coordinate system and the height was along 

the 𝑧 axis. In this simulation, two targets were embedded at (-1.7, 5.56) and (1.7, 5.56) in the x-y 

plane with an edge-to-edge distance of 2 mm as shown in Fig. 1(a). 

                            

Fig. 1 Numerical simulation phantom geometry of (a) the cylindrical phantom with target locations at T1 (-1.7, 5.56) 

and T2 (1.7, 5.56) and (b) the elliptic cylindrical phantom with target locations at T1 (-1.2, -5.0) and T2 (1.2, -5.0).      

In this and following numerical simulations, the phantom tissue optical properties were set to 

be 𝜇==0.012 mm-1 and 𝜇1< =0.83 mm-1 at both the excitation wavelength (650 nm) and the 

emission wavelength (700 nm). We assigned the fluorophore concentration to be 1 in the target 

regions and 0 in the background regions.  

The numerical phantom was discretized with a 3-dimensional (3D) tetrahedral finite element 

mesh with 29,989 nodes and 155,310 elements. Numerical FMT measurement data were 

generated by Eq. (3) with a line pattern laser projected on the phantom surface. The line laser 

had a width of 1 mm and a length of 50 mm. We had 30 excitation positions of the line laser to 
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cover the whole surface.50 For each line laser excitation, the 9,280 surface nodes on the side of 

the cylinder were used as the measurement detectors. Then, we added 30% Gaussian noise to the 

numerical FMT measurement data. 

The 3D CT images with 220×220×801 voxels were generated with a grid size of 0.1 mm. 

The intensities of target regions and the background were set to be 0.24 and 0.06, respectively, 

which were close to the CT data in the phantom experiments. We added 15% white Gaussian 

noise to the numerical CT images. 

2.4.2 Elliptic Cylindrical simulation phantom 

In this simulation, we used an elliptic cylindrical phantom with a horizontal semi-axis of 6.9 mm, 

vertical semi-axis of 9.2 mm and a height of 50 mm. Cylindrical targets with a diameter of 1.4 

mm and a length of 20 mm were embedded 20 mm below the top surface of the phantom. In the 

coordinate system, the base of the cylinder was an ellipse on the x-y plane centering the origin of 

the coordinate system and the height was along the z-axis. Two targets were embedded at (-1.2,-

5.0) and (1.2,-5.0) in the x-y plane with an edge-to-edge distance of 1 mm as shown in Fig. 1(b). 

The numerical phantom was discretized with a three-dimensional (3D) tetrahedral finite element 

mesh with 32,882 nodes and 191,359 elements. Numerical FMT measurement data were 

generated by Eq. (3) with a line pattern laser projected on the phantom surface. The line laser 

had a width of 1 mm and a length of 50 mm. We had 30 excitation positions of the line laser to 

cover the whole surface.50 For each line laser excitation, the 6,013 surface nodes on the side 

surface of the cylinder were used as the measurement detectors. Then, we added 30% Gaussian 

noise to the numerical FMT measurement data. 

The transverse sections of the CT images were generated using the “phantom” command in 

MATLAB (as shown in Fig. 5(a) in the result section). The region outside of the ellipse was 
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trimmed. Then we stacked the “phantom” images to generate 3D CT images with 234×176×501 

voxels. Two targets with a diameter of 1.4 mm and a length of 20 mm were added in the 3D CT 

phantom. The intensity of targets is 0.99, which is 1% less than the intensity of edges of the 

ellipse. This is because the tumor with CT contrast agent injection has contrast as high as bones 

in CT images.29 As in the first simulation, we added 15% Gaussian noise to the numerical CT 

images. 

2.4.3 Numerical simulation using MRI images of a rat brain 

The ultimate goal of the proposed kernel method is its application in anatomical image (such as 

CT or MRI) guided FMT for small animal studies. To validate the feasibility of the proposed 

method using in vivo anatomical guidance with heterogeneous structures, we used MRI image of 

a rat brain as the anatomical guidance. MRI imaging was performed with a Bruker Biospec 7 

Tesla (7T) small-animal scanner (Bruker BioSpin MRI, Ettlingen, Germany). A 72 mm internal 

diameter linear resonator was used for radio frequency (RF) transmission, and a four-channel rat 

brain phased array surface coil was used for signal reception. The rat brain was imaged coronally 

with a fast-spin echo sequence (RARE; axial: TE/TR = 8 ms/750 ms; FOV = 40×40 mm2; 

MTX=256×256; ST/SI = 1 mm/1 mm; ETL = 4). Data were acquired and reconstructed using 

ParaVision 5.1 software (Bruker BioSpin MRI). The experiment was conducted under a protocol 

approved by the University of California, Davis, Animal Use and Care Committee (Davis, CA). 

A male athymic nude rat, purchased from Harlan Laboratories (Hayward, CA), was inoculated 

with 3×10mm6 U87 MG cells/10 µL intracranially. The rat was administered 0.5 mmol/kg of the 

small molecule gadolinium chelate, gadoteridol (Bracco Imaging) via bolus i.v. injection prior to 

T1w imaging. 
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From the MRI images, we used the open-source software, iso2mesh, to generated a 3D finite 

element mesh with 181,686 tetrahedral elements, and 41,427 nodes.51 We segmented the tumor 

in the MRI images as the FMT target region. Similar to the numerical phantom studies, 

numerical FMT measurement data was generated by Eq. (3) with a line pattern laser projected on 

the rat brain surface. We had 30 excitation positions of the line laser to cover the whole rat brain 

surface.50 For each line laser excitation, the 20,055 surface nodes were used as the measurement 

detectors. The tissue optical properties were set to 𝜇==0.012 mm-1 and 𝜇1<=0.83 mm-1 at both the 

excitation wavelength (650 nm) and the emission wavelength (700 nm). We assigned the 

fluorophore concentration to be 1 in the target regions and 0 in the background regions. Like the 

numerical simulation studies described above, we added 30% Gaussian noise to the numerical 

FMT measurement data.  

In the kernel method, we extracted the feature vectors from the MRI images easily because 

the finite element mesh was generated from the same MRI images. Then we generated the kernel 

matrix using the Eqs. (8) and (9) to incorporate anatomical information from MRI images into 

the FMT reconstruction by minimizing the kernelized objective function as described in Eq. (13). 

The voxel number for each corresponding node and the number of nearest neighbors in 

knnsearch are important parameters in generating the kernel matrix 𝑲  and have significant 

effects on the kernel reconstruction method. In this paper we studied 3 different voxel numbers, 

3×3×3, 5×5×5, and 7×7×7. The lengths of feature vectors were 27, 125, and 343 respectively. 

For knnsearch, different values of k (16, 32, 64, 128, 256), the number of nearest neighbors, 

were also studied. 

During the FMT reconstruction, for the kernel method, we used the MRI images without 

segmentation as the anatomical guidance to generate the K matrix. For the soft prior method, we 
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used the segmented images to generate the soft priors matrix without adding any segmentation 

error. 

2.5 Phantom experimental setup 

To validate our algorithm, we conducted an agar phantom experiment. In this experiment, we 

used a cylindrical phantom with a diameter of 22 mm and a length of 80 mm. The phantom was 

composed of 1% intralipid, 2% agar, 20 µM bovine hemoglobin (H2625, Sigma-Aldrich Inc., St. 

Louis, MO) and water. We embedded two capillary tubes with a length of 20 mm and a diameter 

of 1.4 mm as targets, in which 20 µM Sulfo-Cyanine5 dye (Lumiprobe Corporation, Hallandale 

Beach, FL) was injected. The geometry of the experimental phantom with two targets is shown 

in Fig 2, where the two red bars indicate two FMT targets. The edge-to-edge distance of the two 

targets was 2.94 mm. 

   The phantom geometry was discretized with a 3D tetrahedral finite element mesh with 

37,333 nodes and 199,881 elements. During the FMT imaging, a line laser (1 mm wide and 50 

mm long) at the wavelength of 643 nm scanned the surface of the phantom sequentially with 30 

excitation positions that were distributed uniformly on the phantom surface. For each line laser 

excitation position, an emission picture at the wavelength of 720 nm was taken. All 9,384 surface 

nodes on the side surface of the cylinder were used as the detector nodes, and the measurements 

were obtained from the acquired emission pictures. Details of the conical mirror based FMT 

imaging system were described in Ref. 52. The phantom optical properties were 𝜇=	= 0.012 mm-

1, 𝜇1<  = 0.83 mm-1 at both 643 nm and 720 nm wavelengths. 
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Fig. 2  The geometry of the phantom experiment with target locations at T1 (1.72, 4.71) and T2 (5.01, 1.87). 

We scanned the phantom with our lab-made microCT imaging system with 180 

projections53 and reconstructed the 3D CT images of the phantom with an isotropic voxel size of 

0.15 mm. The micro-CT system consisted of an X-ray source and a flat panel detector placed 

opposite to each other on a micro-CT gantry that rotated around the bed where the phantom was 

placed. The source-to-isocenter distance was 205.34 mm, and the source-to-detector distance was 

246.2 mm. The detector had a 49.2 mm by 49.2 mm sensing area consisting of 1024 by 1024 

pixel sensors with 48 µm pixel spacing. The X-ray tube was operated at a current of 0.5 mA and 

a voltage of 50 kVp. A filtered backprojection algorithm was used to reconstruct the micro-CT 

images with a Shepp-Logan filter. The obtained CT images are shown in Fig. 9(a), from which 

we calculated the targets’ size and position. Because Sulfo-Cyanine5 dye does not have CT 

contrast, only the capillary tubes were observed in the reconstructed microCT images, and the 

fluorescence dye (target) regions were filled by pixels having the same CT contrast as the 

capillary tubes as guidance in the kernel method.  

2.6 FMT image evaluation criteria 

According to our previous studies, the combinations of 4 metrics listed below can evaluate the 

quality of the reconstructed FMT images very well. Their detailed definitions can be found in 
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Refs. 39 and 40. Briefly, the Volume Ratio (VR) measures the ratio between the true region of 

interest (ROI) and the reconstructed region of interest (rROI). The Dice similarity coefficient 

(Dice) measures the location accuracy of the reconstructed target. Ideally, VR and Dice 

coefficients should be 1. The Contrast-to-Noise Ratio (CNR) measures how well the 

reconstructed target is distinguished from its background. The higher the CNR coefficient is, the 

better the reconstructed image. The Mean Square Error (MSE) is the difference between the 

measurements and the model predictions. The MSE closer to zero is better.  

3 Results 

3. 1 Simulation Results 

3.1.1  Numerical simulation with two FMT targets 

In this simulation, we had two capillary tube targets embedded inside the cylindrical background 

phantom with an edge-to-edge distance of 2 mm as described in Fig. 1(a). For comparison, we 

have reconstructed FMT images with the soft prior method. The ground truth FMT images, 

simulated CT images and the reconstructed FMT images with the soft prior method are plotted in 

Fig. 3. All the FMT reconstructions in this paper were conducted in 3D and the reconstructed 

FMT images are shown by slices along the z-axis with equal distance. Then, we performed the 

reconstruction with the proposed kernel based FMT reconstruction algorithm. To investigate how 

the parameters in the kernel method affect the FMT reconstruction, we studied three different 

voxel numbers (3×3×3, 5×5×5, and 7×7×7) and three different nearest neighbors (k=16, 32, 64) 

with 9 combinations of the kernel based FMT reconstructions. The reconstructed FMT images 

are plotted in Fig. 4, in which each column indicates different voxel numbers and each row 
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(a) (b) 

indicates different numbers of nearest neighbors. For all 9 cases, the two targets have been 

reconstructed and separated successfully as indicated by Fig. 4.  

 

Fig. 3 For the numerical simulation of two targets: (a) the ground truth images,  

(b) simulated anatomical guidance images, and (c) the reconstructed FMT images with the soft prior method. The 

distance between slices along z-axis is 5.33 mm.  

 

To evaluate the simulation results quantitatively, we calculated image quality metrics such as 

VR, Dice, CNR and MSE for the FMT reconstruction with the soft prior mehtod, and the 9 FMT 

reconstructions with the kernel method, as shown in Table 1. For the kernel method, when the 

voxel number is fixed, we have better FMT reconstruction quality as the nearest neighbor k 

increases. One example is that the Dice increased from 0.02 to 0.23 as k increased from 16 to 64 

for the voxel number of 3×3×3. Similarly, for the fixed nearest neighbor k, we found that the 

FMT image quality becomes better with larger voxel number. The best FMT reconstruction 

result was obtained with k=64 and a voxel number of 7×7×7, which is highlighted in Table 1. 

From Table 1, we see that the soft prior method performed better than the kernel method in this 

simulation when the target regions were known accurately in the anatomical guidance. 

Table 1 For the cylindrical phantom simulation of 2 targets, the calculated VR, Dice, CNR and MSE with the kernel 
method for different numbers of nearest neighbor k and different voxel numbers and the soft prior method. 

k Voxel number VR Dice CNR MSE 
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16 3×3×3 0.124 0.002 18.264 3.88e-4 
16 5×5×5 0.223 0.159 21.351 2.96e-4 
16 7×7×7 0.387 0.306 19.554 3.44e-4 
32 3×3×3 0.127 0.006 19.688 3.41e-4 
32 5×5×5 0.243 0.187 22.713 2.51e-4 
32 7×7×7 0.451 0.430 22.099 2.66e-4 
64 3×3×3 0.139 0.23 20.029 3.29e-4 
64 5×5×5 0.347 0.323 23.956 2.22e-4 
64 7×7×7 0.639 0.596 24.111 2.21e-4 

Soft prior 0.952 0.964 32.355 1.67e-4 
 

 

Fig. 4 Reconstruction FMT images for the cylindrical phantom simulation of 2 targets by the kernel method with 

different nearest neighbor k as indicated by each row and different voxel numbers indicated by each column. The 

distance between slices along z-axis is 5.33 mm.  
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3.1.2 Elliptic cylindrical phantom simulation with two FMT targets 

 In this simulation, we had two capillary tube targets embedded inside the elliptic cylindrical 

background phantom with an edge-to-edge distance of 1 mm as described in Fig. 1(b). For 

comparison, we have also reconstructed FMT images with the soft prior method. The ground 

truth FMT images, the simulate CT images, and the reconstructed FMT images with the soft 

prior method are plotted in Fig. 5. Then, we performed the reconstruction with the proposed 

kernel based FMT reconstruction algorithm. To investigate how the parameters in the kernel 

method affect the FMT reconstruction, we studied 3 different voxel numbers (3×3×3, 5×5×5, and 

7×7×7) and 3 different nearest neighbors (k = 64, 128, 256) with 9 combinations of the kernel 

based FMT reconstructions. The reconstructed FMT images with the kernel method are plotted 

in Fig. 6, in which each column indicates different voxel numbers and each row indicates 

different numbers of nearest neighbors. For all 9 cases, the two targets have been reconstructed 

and separated successfully as indicated by Fig. 6. 

 

Fig. 5 For the simulation of elliptic cylindrical phantom with 2 FMT targets, (a) the ground truth images and (b) 

simulated CT images (c) the reconstructed FMT images with the soft prior method. The distance between slices 

along z-axis is 4.54 mm.  
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To evaluate the simulation results quantitatively, we calculated quantitative image quality 

metrics for the FMT reconstruction with the soft priors method and the 9 FMT reconstructions 

with the kernel method, as shown in Table 2. From Table 2, when the voxel number is fixed, we 

have better FMT reconstruction quality as the nearest neighbor k increases. One example is that 

the Dice increased from 0.469 to 0.803 as k increased from 64 to 256 for the voxel number of 

3×3×3. Similarly, for the fixed nearest neighbor k, we found that the FMT image quality 

becomes better with larger voxel number in this simulation setup up. The best FMT 

reconstruction result was obtained with k = 256 with 7×7×7 voxel size, which is highlighted in 

Table 2.  

Table 2 For the numerical simulation of elliptic cylindrical phantom with 2 FMT targets, the calculated VR, Dice, 
CNR and MSE with the kernel method for different numbers of nearest neighbor k and different voxel numbers, and 

with the soft prior method. 

k Voxel number VR Dice CNR MSE 
64 3×3×3 0.366 0.469 18.971 6.22e-4 
64 5×5×5 0.318 0.419 19.452 6.16e-4 
64 7×7×7 0.519 0.635 22.262 4.82e-4 

128 3×3×3 0.516 0.604 20.811 5.16e-4 
128 5×5×5 0.481 0.590 21.113 5.39e-4 
128 7×7×7 0.519 0.653 23.072 4.57e-4 
256 3×3×3 0.713 0.803 25.028 1.35e-4 
256 5×5×5 0.668 0.782 25.286 1.46e-4 
256 7×7×7 0.757 0.845 26.108 1.21e-4 

Soft prior 1.046 0.934 26.661 1.73e-4 
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Fig. 6 Reconstructed FMT images for the elliptic cylindrical phantom simulation of 2 targets by the kernel method 

with different nearest neighbor k as indicated by each row and different voxel numbers indicated by each column. 

The distance between slices along z-axis is 4.54 mm.  

 

3.1.3  Numerical simulation with false target size in the numerical anatomical CT images 

The numerical phantom geometry of this simulation study same as the second simulation is 

plotted in Fig. 1b. However, the diameter of the right target in the simulated anatomical guidance 

CT images (Fig. 7b) was enlarged intentionally from 1.4 mm to 2.8 mm to study how the false 

target size affects the FMT reconstruction with the proposed kernel method. The enlarged target 
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was moved to the right side for 0.7 mm, so that the edge-to-edge distance of the two targets was 

still 1mm in the simulated CT images as shown in Fig. 7(b). For comparison, we have performed 

the reconstruction with the soft prior method and with the kernel method of 3 different nearest 

neighbor k and 3 different voxel numbers as in the above section. Among all the reconstructions 

with the kernel method, unlike the previous simulation, we found that the reconstruction with the 

nearest neighbor of k=256 and the voxel number of 3×3×3 had the least error with an MSE of 

8.54e-4, whereas the soft prior method had the MSE of 1.31e-3. Fig. 7 plots the ground truth 

images (Fig. 7a), the reconstructed FMT images with soft prior method (Fig. 7c), and the 

reconstructed FMT images by the kernel method with the nearest neighbor of k = 256 and the 

voxel number of 3×3×3 (Fig.7d). As indicated in Fig.7c, the two targets were barely separated 

with the soft prior method. Fig.7d is a representative reconstructed FMT image with the kernel 

method and indicates that the image quality is much better than that of Fig. 7c as demonstrated 

by the CNR of 12.214 for Fig. 7c and 17.543 for Fig. 7d. The calculated image quality metrics 

are listed in Table 3.  

 

 Table 3 For the numerical simulation with a false target size, the calculated VR, Dice, CNR and MSE with the 

kernel method of different numbers of nearest neighbor k and different voxel numbers, and with the soft prior 

method. 

k Voxel number VR Dice CNR MSE 
256 3×3×3 0.394 0.548 17.543 8.54e-4 
256 5×5×5 0.281 0.416 16.816 8.91e-4 
256 7×7×7 0.409 0.537 16.728 9.06e-4 

Soft prior 0.466 0.527 12.214 1.31e-3 
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Fig. 7 For numerical simulation with false larger target size, (a) the ground truth images, (b) simulated CT images 

with the false enlarged target. (c) the reconstructed FMT images with the soft prior method, and (d) the 

reconstructed FMT images by the kernel method with the nearest neighbor of k = 256 and the voxel number of 

3×3×3. The distance between slices along z-axis is 4.54 mm.  

 

 

3.1.4  Numerical simulation using MRI images of a rat brain 

To validate the proposed kernel based FMT image reconstruction algorithm with guidance from 

realistic anatomical images, we conducted this simulation study using in vivo rat brain MRI 

images as shown in Fig. 8(a). Details of the MRI images and the simulation setup described in 

Section. 2.4.3. The contrast of the brain tumor to its surrounding tissues in the MRI images is 2:1 

approximately. First, we reconstructed the FMT images using the soft prior method, in which 

only two regions were considered. We have obtained very good FMT results from the soft prior 
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method as shown in Fig. 8(b).  Fig. 8(c) plots the reconstructed FMT images obtained by the 

kernel method using the MRI images as the anatomical guidance directly without segmentation. 

In the kernel method, we set the nearest neighbor of k = 256 and the voxel number of 3×3×3. 

From Fig. 8, we can see that the kernel method has reconstructed the target very well with 

comparable results from the soft prior method. The VR, Dice, CNR and MSE are 0.529, 0.626, 

and 23.007 and 7.14e-4 for the kernel method, and 0.966, 0.974, 42.622, and 3.12e-4 for the soft 

prior method, respectively. 

 

 

Fig. 8 Numerical simulation with the rat brain MRI images: (a) MRI images; the FMT reconstructed images with (b) 

the soft prior method and (c) the kernel method with k = 256 and the voxel number of 3×3×3. The distance between 

slices along z-axis is 2.45 mm.  

 

 

3.2 Phantom experimental results 

3.2.1 Reconstruction with homogeneous background in CT images  

The phantom’s geometry is plotted in Fig. 2. As described in the numerical simulation section, 

we have performed the FMT reconstruction of this phantom experiment with the soft prior 

method and with kernel method of 15 different cases with 5 different nearest neighbor k (16, 32, 

64, 128, 256) and 3 different voxel numbers (3×3×3, 5×5×5, 7×7×7). The reconstructed FMT 
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images along with anatomical CT images are plotted in Fig. 9. The kernel based reconstruction 

results (Fig. 9(d)) are as good as the results from the soft prior method (Fig. 9(c))  when the 

homogeneous anatomical images were used as the guidance. For comparison, we have also 

reconstructed the target without anatomical guidance as shown in Fig. 9(b), from which we see 

that the two targets were reconstructed with large position errors. To analyze the reconstructed 

FMT images quantitatively, we have calculated the VR, Dice, and CNR as listed in Table 4 for 

each case, where the microCT images were referred as the ground truth images when we 

calculated the image quality metrics. The MSE has not been calculated because we do not know 

the exact fluorescent dye concentration. From Table 4, we know that the kernel method can 

achieve good reconstruction results with the nearest neighbor of 64 and the voxel number of 

5×5×5, in which the VR, Dice, and CNR are 0.714, 0.643, and 25.849, respectively. The VR, 

Dice, and CNR are 0.717, 0.740, and 29.846 for the FMT reconstruction with the soft prior 

method. These similar image quality metrics indicate that the kernel method is as good as the 

soft prior method for FMT target reconstruction with the homogeneous background. 
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Fig 9 (a) Original CT images. The reconstructed FMT images (b) without priors, (c) with the soft prior method and 

the homogenous background,  (d) with the kernel method using original CT images as guidance with k = 64 and the 

voxel number of 5×5×5. The distance between slices along z-axis is 5.33 mm.  

 

Table 4 The calculated VR, Dice and CNR for the phantom experiments without prior, with the kernel method, and 

with the soft prior method.  

 Homogeneous Inhomogeneous 
 VR Dice CNR VR Dice CNR 

Soft prior 0.729 0.757 30.312 0.677 0.728 29.704 
Kernel method 0.714 0.643 25.849 0.672 0.648 28.250 

No prior 0.752 0.025 2.569    

3.2.2 Reconstruction with inhomogeneous background in CT images 

To further validate the proposed method in a more complex anatomical images, we added some 

artificial features in the physical CT image we obtained. As shown in Fig. 10(a), the darkest big 

cylinder has an intensity of less than 50% of the background. The other two big cylinders have 
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an intensity of 50% more than the background intensity. We also added another three small 

cylinders at the random locations with different intensities. Two of them have an intensity of 5 

times more than the background, which is slightly higher than the targets’ intensity. Those bright 

inclusions mimic bones in the CT images or fat and blood in the MRI images. For the FMT 

reconstruction with the soft prior method, we had 6 regions: two targets, three big cylinder 

artificial features and the background. Unlike the homogeneous background case, here we 

obtained the best kernel method based FMT images with the nearest neighbor of 256 and the 

voxel number of 3×3×3, in which the VR, Dice, and CNR are 0.672, 0.648, and 28.250, 

respectively. These image quality metrics are slightly lower than those of the soft prior method, 

which are 0.717, 0.740, and 29.846 respectively. These results demonstrated that the kernel 

method is able to achieve comparable results with as the soft prior method when there are 

inhomogeneous inclusions in the anatomical guidance images. 

Fig 10 (a) CT images with artificial features. (b) Reconstructed FMT images with the soft prior method and the 

inhomogenous background in the CT images. (c) Reconstructed FMT images with the kernel method using the CT 

images with artificial features as the guidance with k = 256 and the voxel number of 3×3×3. The distance between 

slices along z-axis is 5.33 mm.  
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4 Discussions and Conclusion 

In this paper, we have introduced the kernel method as a new approach to including the 

anatomical guidance in the FMT image reconstruction, in which a kernel matrix having the 

anatomical priors is created and incorporated into the projection model of FMT. It is worth 

noting that we used the forward model without the kernel method to generate the FMT 

measurements for numerical simulations. Numerical simulations and phantom experiments have 

been performed to demonstrate that the proposed kernel method has reconstructed the FMT 

targets successfully and have comparable results as the soft prior method. 

Compared with conventional Laplacian-type regularization method to include anatomical 

priors such as the soft priors, the kernel method has the advantage of easy implementation, in 

which we do not need to segment the target and background regions in the anatomical images. 

This advantage is more significant for some cases in which the targets are not easily 

differentiated and segmented. This may result in a concern of the misguidance from the false 

positive regions. To address this issue, we have performed one numerical simulation with a false 

target size (from 1.4 mm to 2.8 mm in diameters) as described in section 3.1.3. Our results 

indicate the false target size guidance has some effects when two targets are very close. 

However, the kernel method performs better than the soft prior method. Another advantage of 

the kernel method is that we do not have to search for the optimum regularization parameter, 

which is searched with the L-curve method in conventional regularization methods.  

To generate the kernel matrix, three parameters must be set before the FMT image 

reconstruction. The first parameter is the Gaussian kernel coefficient 𝜎. According to previous 

studies,38,49 𝜎=1 yields best results. The second parameter is the number of nearest neighbor’s k. 

From the results of both numerical simulations and phantom experiments, we found that the 
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reconstructed image quality is better with a larger number of k. It also depends on the features of 

anatomical images. As indicated in the numerical simulations with cylindrical geometry and the 

phantom experiment with homogeneous background, for anatomical images with fewer features, 

we can obtain good reconstruction results considering only 64 nearest neighbors in the kernel 

matrix. However, for the anatomical images with rich features, such as elliptic cylindrical 

simulation, the simulation with MRI data and the phantom experiment with inhomogeneous 

background, we have to consider more nearest neighbors in the kernel matrix. We also found that 

for the simulations and experiments with the kernel method of k=64, we can obtain better 

reconstruction results with k=256 at a price of longer time to form the kernel matrix. The third 

parameter is the voxel number. As demonstrated in the first and second simulations, for the 

anatomical images without any false information, the quality of reconstructed FMT images 

increases slightly as the voxel number increases for a fixed number of nearest neighbors k. 

However, for the numerical simulations with the false target size in anatomical images, the 

kernel method with the smaller number of voxels performed better than the kernel method with 

the larger number of voxels. As shown in Table 3, Dice and CNR are achieved highest with the 

voxel number of 3×3×3 for the reconstruction with the kernel method when k=256. MSE also 

reached the lowest for the case of voxel number 3×3×3. VR coefficient is not informative in this 

case because the incorrect bigger size of the target in the anatomical images introduce higher 

volume ratio to the reconstruction image. Similarly, the numerical simulation with MR images 

and the phantom experiment with artificial features further demonstrate this trend by obtaining 

the best results with of voxel number of 3×3×3.  

 The kernel matrix was generated before the FMT reconstruction with the matrix generation 

time depending on the voxel size and the nearest neighbor number. Table 5 lists the K matrix 
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generation time for the elliptic cylindrical simulation with two targets. For the best image quality 

setup with the nearest neighbor of 256 and the voxel number of 3×3×3, the K matrix generation 

time was 20.09 seconds on a cluster with 12 nodes (2.8 GHz each node) and 128 GB memory. 

This is slightly longer than the time spends on generating the regularization matrix for the soft 

prior method, which was 12.28 seconds in this simulation with 5 regions. We acknowledge that, 

the time spent on the generating the soft prior matrix refers to the time for generating the matrix 

L from the region labeled vector. Since kernel matrices are sparse, multiplications involved in 

reconstruction processes also do not introduce significant computation time. In this study, the 

kernel method based FMT reconstruction converged in no more than 10 iterations which were 

around 5 seconds in total.  

Table 5 Time to generate the kernel matrix K with different k and voxel sizes (in seconds) 

Voxel size k =16 k =32 k=64 k=128 k =256 
3×3×3 3.36 3.78 5.46 8.88 20.09 
5×5×5 11.32 12.78 16.81 23.58 38.79 
7×7×7 28.89 34.59 43.05 57.30 96.42 

 

 The gray-scale values in the anatomical guidance images are included in the kernel 

matrix so that these values affect the kernel method. As shown in the rat brain case, when the 

target has distinct contrast to other background regions, the kernel method performed very well. 

And we have also found that the kernel method is robust to the inhomogeneous inclusions in the 

anatomical guidance images when these inclusions have lower gray-scale values than the values 

in the target region. However, it is fine to have inclusions with larger gray-scales values when 

the inclusions are not close to the target as shown in Fig. 10a.         

In summary, we have introduced a kernel method based FMT reconstruction algorithm as 

a new approach to include the anatomical guidance. Numerical simulations prove that this 

method is robust in overcoming incorrect anatomical guidance. Phantom experiments further 
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validate that the proposed method can improve the FMT reconstruction quality and does not 

increase the reconstruction time. In the future, we will apply the proposed kernel method to in 

vivo experiments on the hybrid systems.  
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List of Figures 
 
Fig. 1 Numerical simulation phantom geometry of (a) the cylindrical phantom with target locations at T1 (-1.7, 

5.56) and T2 (1.7, 5.56) and (b) the elliptic cylindrical phantom with target locations at T1 (-1.2, -5.0) and T2 (1.2, -

5.0). 

Fig. 2 The geometry of the phantom experiment with target locations at T1 (1.72, 4.71) and T2 (5.01, 1.87).  

Fig. 3 For the numerical simulation of two targets: (a) the ground truth images, (b) simulated anatomical guidance 

images, and (c) the reconstructed FMT images with the soft prior method. The distance between slices along z-axis 

is 5.33 mm.  

Fig. 4 Reconstruction FMT images for the cylindrical phantom simulation of 2 targets by the kernel method with 

different nearest neighbor k as indicated by each row and different voxel numbers indicated by each column. The 

distance between slices along z-axis is 5.33 mm.  

Fig. 5 For the simulation of elliptic cylindrical phantom with 2 FMT targets, (a) the ground truth images and (b) 

simulated CT images (c) the reconstructed FMT images with the soft prior method. The distance between slices 

along z-axis is 4.54 mm.  

Fig. 6 Reconstructed FMT images for the elliptic cylindrical phantom simulation of 2 targets by the kernel method 

with different nearest neighbor k as indicated by each row and different voxel numbers indicated by each column. 

The distance between slices along z-axis is 4.54 mm.  

Fig. 7 For numerical simulation with false larger target size, (a) the ground truth images, (b) simulated CT images 

with the false enlarged target. (c) the reconstructed FMT images with the soft prior method, and (d) the 

reconstructed FMT images by the kernel method with the nearest neighbor of k = 256 and the voxel number of 

3×3×3. The distance between slices along z-axis is 4.54 mm.  

Fig. 8 Numerical simulation with the rat brain MRI images: (a) MRI images; the FMT reconstructed images with (b) 

the soft prior method and (c) the kernel method with k = 256 and the voxel number of 3×3×3. The distance between 

slices along z-axis is 2.45 mm.  

Fig 9 (a) Original CT images. The reconstructed FMT images (b) without priors, (c) with the soft prior method and 

the homogenous background,  (d) with the kernel method using original CT images as guidance with k = 64 and the 

voxel number of 5×5×5. The distance between slices along z-axis is 5.33 mm.  
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Fig 10 (a) CT images with artificial features. (b) Reconstructed FMT images with the soft prior method and the 

inhomogenous background in the CT images. (c) Reconstructed FMT images with the kernel method using the CT 

images with artificial features as the guidance with k = 256 and the voxel number of 3×3×3. The distance between 

slices along z-axis is 5.33 mm.  
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List of Tables 
 

Table 1 For the cylindrical phantom simulation of 2 targets, the calculated VR, Dice, CNR and MSE with the kernel 

method for different numbers of nearest neighbor k and different voxel numbersand the soft prior method. 

Table 2 For the numerical simulation of elliptic cylindrical phantom with 2 FMT targets, the calculated VR, Dice, 

CNR and MSE with the kernel method for different numbers of nearest neighbor k and different voxel numbers, and 

with the soft prior method. 

Table 3 For the numerical simulation with a false target size, the calculated VR, Dice, CNR and MSE with the 

kernel method of different numbers of nearest neighbor k and different voxel numbers, and with the soft prior 

method. 

Table 4 The calculated VR, Dice and CNR for the phantom experiments without prior, with the kernel method, and 

with the soft prior method.  

Table 5 Time to generate the kernel matrix K with different k and voxel sizes (in seconds) 

 

 




