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Abstract

Background.—Neuroimaging reveals structural brain changes linked with HIV infection and 

related neurocognitive disorders; however, group-level comparisons between persons with HIV 

(PWH) and persons without HIV (PWoH) fail to account for within-group heterogeneity. The aims 

of this study were to quantify the impacts of co-morbidities such as cardiovascular disease and 

adverse social determinants of health on brain aging in PWH and PWoH.

Methods.—PWH (n=379; age=44·8±15·5 yr.; 78·1% male; 68·6% African American; 77·8% 

undetectable viral load) and PWoH (n=259; age=38·3±17·1 yr.; 49·8% male; 56·4% African 

American) were clinically characterized and underwent 3-Tesla T1-weighted magnetic resonance 

imaging (MRI) at Washington University in St. Louis between 2009 and 2022. In this retrospective 

case-control analysis, DeepBrainNet, a publicly available machine learning algorithm, was applied 

to estimate brain-predicted age from MRI for PWH and PWoH. The brain-age gap, defined as the 

difference between brain-predicted age and true chronological age, was modeled as a function of 

clinical, co-morbid, and social factors using linear regression. Variables were first examined singly 
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for associations with brain-age gap, then combined into multivariate models using best-subsets 

variable selection.

Findings.—In PWH, brain-age gap was associated with Framingham cardiovascular risk score 

(p=0·0034), detectable viral load [>50 copies/mL] (p=0·0023) and hepatitis C co-infection 

(p=0·0065). After variable selection, the final model for PWH retained Framingham score 

and hepatitis C and added unemployment (p=0·0015). Educational quality assayed by reading 

proficiency was linked with reduced brain-age gap (p=0·016) for PWoH but not PWH, indicating 

a potential resilience factor. When PWH and PWoH were modeled jointly, selection resulted in 

a model containing cardiovascular risk (p=0·0039), hepatitis C (p=0·037), area deprivation index 

(p=0·033), and unemployment (p=0·00010). Male sex (p=0·078) and alcohol use history (p=0·090) 

were also included in the model but were not individually significant.

Interpretation.—These findings indicate that co-morbid and social determinants of health are 

associated with brain aging in PWH, alongside traditional HIV metrics such as viral load and CD4 

lymphocytes, suggesting the need for a broadened clinical perspective on healthy aging with HIV, 

with additional focus on co-morbidities, lifestyle changes, and social factors.

Funding.—National Institute of Mental Health, National Institute of Nursing Research, and 

National Institute of Drug Abuse.
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Introduction

Aging persons with HIV (PWH) exhibit altered brain structure and function compared 

to persons without HIV (PWoH), including morphological changes detectable on 

magnetic resonance imaging (MRI)1-3. However, group-level differences conceal substantial 

within-group heterogeneity Although dementia is increasingly rare due to combination 

antiretroviral therapy (cART), subtler forms of cognitive impairment persist in a subset 

of PWH, in some instances diminishing quality of life4.

To account for variability in aging, new models must consider a broader range of health 

drivers than previous paradigms, which focused mainly on clinical HIV metrics such 

as viral load. A growing literature quantifies the impact of co-morbid disease burden 

and social determinants of health (SDOH) such as poverty, stress, and social stigma5,6. 

However, relationships between such risk or resilience factors and MRI biomarkers are 

poorly understood. To address this gap, innovative methods are needed.

Machine learning algorithms can provide unexpected insights into latent patterns in large 

clinical and neuroimaging datasets, including in PWH7,8. One of the most fruitful lines of 

research has involved brain-predicted age, in which models are trained to estimate the age 

of individuals from their neuroimaging features. The difference between brain-predicted age 

and true chronological age defines the brain-age gap.
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Positive brain-age gap (i.e. age overestimation) reflects the accumulation of pathology; for 

example, persons with Alzheimer’s disease or mild cognitive impairment9, schizophrenia10, 

and HIV11-13 have higher brain-age gap on average than controls. However, these studies 

have largely focused on between-group differences rather than explaining within-group 

variability. Moreover, they have typically examined the impact of the primary disease rather 

than the effects of co-morbidities and social factors. To meet these challenges, we utilized a 

large sample of PWH and PWoH who underwent neuroimaging at a single site and whose 

clinical profiles and socioeconomic statuses are well-characterized.

The goal of this study was to identify current and lifetime factors that explain brain aging in 

PWH and PWoH. These groups were first modeled separately, then a joint model was used 

to identify common factors affecting brain aging across both populations. The two groups 

were not compared directly, due to large differences in sample size and demographics. The 

outcome variable in all analyses was the brain-age gap, derived by applying a deep neural 

network to individual MRI. The analysis consisted of two methods. First, potential correlates 

of brain aging were examined singly, controlling for demographics, with correction for 

multiple comparisons. Then, multivariate models were built using variable selection.

While our approach was data-driven, previous findings enabled us to hypothesize specific 

associations. We predicted that cardiovascular risk14 and detectable viral load11 would show 

positive associations with brain-age gap in PWH. Based on known relationships between 

SDOH and mortality and morbidity in PWH, we predicted that greater neighborhood 

socioeconomic deprivation15 and early life stress16 would correspond to an elevated brain-

age gap. By contrast, since education is linked with better neuropsychological functioning in 

PWH17, we predicted an inverse association between educational quality and brain-age gap.

Methods

Participants.

Participants were drawn from several HIV studies conducted in a single laboratory for the 

primary purpose of examining the effects of HIV disease and prevalent health co-morbidities 

on brain structure and function. Adult PWH were recruited between December 2009 and 

January 2022 from the Washington University in St. Louis Infectious Disease Clinic, 

and PWoH were identified through community organizations or the Research Participant 

Registry in the same years. All participants provided written informed consent for study 

procedures, approved by the Institutional Review Board.

Exclusion criteria were established by a combination of self-report and medical 

records. Individuals who met DSM-5 criteria for current, severe substance use disorder 

or unmedicated major depressive disorder were excluded from parent protocols due 

to challenges with study compliance and the potential for confounding effects on 

neuroimaging. Individuals with depressive symptoms, anxiety, or mild-to-moderate 

substance use disorders were included to maximize external validity. Other exclusion 

criteria were incidental psychiatric disorders including schizophrenia and bipolar disorder, 

or neurological disorders such as epilepsy, traumatic brain injury with prolonged 

unconsciousness, or active opportunistic brain infections.
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For PWH, viral load was measured with reverse-transcriptase PCR using blood obtained on 

the day of imaging. PWH with >50 HIV copies/mL in plasma were considered detectable. 

CD4 T-lymphocytes were measured using flow cytometry, and nadir levels were taken from 

self-report or medical records if available. Cardiovascular health was quantified with the 10-

year Framingham score, which forecasts individual probability of developing cardiovascular 

disease18, calculated from the following risk factors: age, sex, smoking, systolic blood 

pressure, high-density lipoprotein, total cholesterol, and blood pressure medications. 

Lifetime heaviest substance use was quantified with the Kreek-McHugh-Schluger-Kellogg 

(KMSK) scale for alcohol, tobacco, and cocaine, which corresponds to clinical rating 

scales such as the Structured Clinical Interview for the DSM (SCID). Heaviest use was 

assessed on a semi-quantitative 13-point scale based on duration, frequency, and amount 

of consumption. Cannabis was not examined due to limited data availability. Hepatitis C 

co-infection was self-reported.

Socioeconomic status was assayed using the Area Deprivation Index (ADI), which combines 

U.S. census tract-level housing, employment, education, and poverty data into a summary 

metric, with increasing scores indicating greater deprivation19. ADIs were obtained from 

geospatial coding of residential addresses. The 2015 ADI national ranking was utilized, as 

this was the nearest time-point to the mean visit (June 2014±2·6 years). Educational quality 

was quantified using the Wide Range Achievement Test (WRAT-III) reading component. 

WRAT-III reading is a better proxy for educational quality than years of schooling, and 

attenuates apparent racial discrepancies in neurocognitive test performance, suggesting 

better sensitivity to socioeconomic effects20. Self-reported unemployed status including 

disability was recorded. Childhood-and-adolescent stress was measured with the Early Life 

Stress Questionnaire (ELSQ), summing total adverse events experienced by age 17.

Neuroimaging.

MRI was conducted on two 3-Tesla Siemens scanners (Prisma, Trio) and included 

T1-weighted magnetization prepared rapid gradient echo (T1-MPRAGE) structural MRI 

(repetition time/echo time=2400/3·2 ms, spatial resolution=1x1x1mm). Minimal pre-

processing was applied, including skull-stripping with the FMRIB Software Library Brain 

Extraction Tool, and linear registration to the 1-mm Montreal Neurological Institute 

template. To obtain brain structure volumes, FreeSurfer v5·3 was run, with manual 

inspection and correction.

Machine learning and brain-age prediction.

DeepBrainNet, a publicly available brain-predicted age model, was trained on 11,729 MRI 

scans from a diverse cohort of normative controls (ages 3-95 years), from 16 imaging 

databases including multiple scanners and sites. Model accuracy was tested on a previously 

unseen cohort of 2,739 healthy controls. DBN was built with the inception-resnet-v2 

framework, which has high performance on complex computer vision challenges. DBN uses 

a 2D convolutional architecture, including a global maximum pooling layer, a dropout layer 

to prevent overfitting, and a fully connected 1024-node layer. The network was implemented 

in TensorFlow and Keras with five-fold cross-validation. Networks were initialized on 

ImageNet, a dataset of over 14 million hand-annotated images.
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DBN takes minimally processed T1-weighted scans as input, with brain extraction and 

linear registration but no segmentation or warping. Scans are represented as 80 axial 

slices; to obtain the brain-predicted age, each slice was used as a separate input, and the 

median age estimate was taken. Brain-age gap was obtained by subtraction of chronological 

age from DeepBrainNet-predicted age; thus, a positive brain-age gap indicates model 

overestimation. To ensure that brain-age gap was not hardware-dependent, we tested for 

statistical differences between scanners.

Machine learning interpretation.

Interpretation of spatial patterns detected by deep learning algorithms is non-trivial due to 

network complexity. To obtain a first-order approximation of volumetric features relevant 

to DeepBrainNet, we correlated normalized FreeSurfer gray and white matter volumes 

with brain-age gap. Correlation heatmaps for PWH and PWoH were applied to a standard 

atlas for cortex (Desikan-Killiany), subcortical structures, white matter (including T1 

hypointensities), and cerebrospinal fluid compartments.

Data preparation and transformation.

Potential predictors of brain-age gap were transformed to mitigate skewness. CD4 count 

and Framingham score were square-root transformed, ELSQ was log10-scaled, and ADI was 

logit transformed. Cocaine and tobacco use were binarized (user/never user); alcohol use 

(KMSK lifetime heaviest use) was continuous. As study participants were over 97% White 

or Black/African American, approximately consistent with demographics of PWH in the 

Saint Louis area, race was collapsed into a binary (Black and non-Black). Due to protocol 

differences between studies conducted over the 13-year timeframe, some missingness was 

present in the dataset. For a sensitivity analysis with complete observations and the use of 

Least Absolute Shrinkage and Selection Operator (LASSO) as additional validation, please 

see Supplemental Methods.

Univariate hypothesis testing.

All statistical analyses were performed in R 4·1·3 (Vienna). To test whether brain-age gap is 

associated with clinical, co-morbid, and social factors, we performed univariate testing for 

all predictors separately for PWH and PWoH, controlling for age, sex, and race. Thirteen 

predictors were tested: viral load, current CD4, nadir CD4, Framingham score, alcohol, 

tobacco, cocaine, hepatitis C, ADI, early life stress, WRAT-III reading, years of education, 

and employment status. To mitigate false positives, multiple comparisons correction was 

performed using Benjamini-Hochberg false discovery rate (FDR) correction (α=5%).

Multivariate analysis and variable selection.

To build multivariate models of brain aging in PWH and PWoH, we performed multiple 

linear regression modeling with best-subsets variable selection using the Regsubsets R 

package. This method involves fitting one regression model per combinatorial subset 

of predictors. Variable selection was performed by choosing the model with minimum 

Mallows’ Cp, a measure commonly used for selective modeling22. Multivariate modeling 
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was performed separately for PWH and PWoH, and in the combined PWH+PWoH cohort, 

adding HIV serostatus as a predictor.

Results

Participants.

Participants included PWH (n=379; age=44·8±15·5 yr.; 78·1% male; 68·6% Black; 77·8% 

undetectable viral load) and PWoH (n=259; age=38·3±17·1 yr.; 49·8% male; 56·4% Black). 

PWH were older (p<0·0001) and more likely to be male (p<0·0001) and Black (p=0·0021). 

These core demographics were included as co-variates in all analyses.

In PWH, 10-year Framingham scores (p=0·0065), and lifetime alcohol (p=0·015), cocaine 

(p<0·0001), and tobacco use (p<0·0001) were greater than in PWoH (Table 1). PWH lived 

in neighborhoods with greater socioeconomic disadvantage as measured by ADI (p=0·0011), 

experienced more early life stressors (p=0·0023), and had lower educational quality on 

the WRAT-III reading subtest (p<0·0001). For PWH, mean viral load was 1·8 log units 

(63·1 copies/mL), and mean CD4 T-cell counts were 588·0±311·8 cells/μL, with a nadir of 

224·3±199·7. Of 379 PWH, 25 (7·0%) reported a history of hepatitis C.

Machine learning and brain-age prediction.

DeepBrainNet predicted participant age from T1-weighted images with a mean absolute 

error of 5·7 years (5·5 years for PWoH; 5·8 years for PWH). After linear bias correction, i.e., 

regression of chronological age from the brain-age gap, mean absolute error was reduced 

to 5·3 years. Brain-age gap was not different between T1-weighted images from Prisma and 

Trio scanners (p=0·20). Spatial heatmaps of correlations between brain-age gap and regional 

volumes are shown in Fig. 1. Regardless of serostatus, all significant associations for gray 

and white matter regions were negative (i.e., greater brain-age gap correlated with smaller 

volume), while significant positive associations (greater brain-age gap with larger volumes) 

were limited to CSF compartments (lateral ventricles, e.g.; r=0·15-0·52) and T1 white matter 

hypointensities (r=0·36 for PWH, r=0·12 for PWoH).

Univariate analysis.

Among HIV-specific variables (Fig. 2, Table S2), detectable viral load (p=0·0023) and 

hepatitis C co-infection (p=0·0065) were significantly, positively associated with brain-age 

gap. CD4 count was negatively associated (p=0·025) but fell short of significance after FDR 

adjustment. Other predictors were examined in both serostatus groups (Fig. 3). Framingham 

score, quantifying cardiovascular risk, was significantly, positively associated with brain-age 

gap in PWH (p=0·0034) but not PWoH (p=0·097), though the direction of effect was the 

same. Educational quality (WRAT-III reading) (p=0·016) and educational duration (p=0·033) 

were negatively associated with brain-age gap, indicating potential predictors of resilience, 

but these did not survive FDR correction. Unemployed status was associated with greater 

brain-age gap only in PWH (p=0·0019).
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Multivariate analysis and variable selection.

To create multivariate brain-age gap models for PWH and PWoH, regression with best-

subsets selection was used. The best model for PWH (Fig. 4A,B) included Framingham 

score (p=0·0019; β=1·43), hepatitis C (p=0·073; β=3·90), and unemployment (p=0·020; 

β=3·21). The best model for PWoH (Fig. 4C,D) included alcohol use (p=0·0041; β=0·40), 

early life stress (p=0·047; β=−3·27), WRAT-III reading (p<0·0001; β=−0·304), with a 

non-significant term for unemployment (β=0.327, p=0.79). Finally, the best model for 

the combined cohort (PWH+PWoH) (Fig. 5) included Framingham score (p=0·0039; 

β=1·06), hepatitis C (p=0·037; β=3·84), area deprivation index (p=0·033; β=0·684), and 

unemployment (p=0·00010), with retained non-significant terms for male sex (p=0·078; 

β=2·11) and alcohol use (p=0·090; β=0·224).

Sensitivity analysis using the complete-observation subset, using best-subsets selection and 

LASSO regression, yielded consistent findings and is discussed in Supplemental Results. 

In five-fold cross-validation, the best-subsets model predicted brain-age gap for persons in 

the complete-observations subset with a root-mean-square error (RMSE) of 6·72 years and a 

Pearson’s r=0·44.

Interpretation

Using neuroimaging, machine learning, and model selection, we have demonstrated that 

a combination of clinical measures, co-morbidities and SDOH are associated with brain-

predicted age in PWH and PWoH. Cardiovascular disease burden, detectable HIV viral 

load, and hepatitis C co-infection were identified as the strongest univariate correlates of 

brain-age gap in PWH. Additionally, the effects of social factors such as unemployment 

and area socioeconomic deprivation were identified in multivariate regression. Differences in 

significant variables between univariate and multivariate analyses may have several causes. 

For example, two predictors with high co-linearity, accounting for shared variance in the 

response variable, may both show significant effects on brain-age gap in independent 

univariate tests, but not in a multivariate model.

Brain-age gap was also modeled in PWoH. Because our primary goal was to explain 

within-group variability in brain aging rather than test for between-group differences, and 

due to sample size and demographic differences, we elected not to perform head-to-head 

comparisons between HIV serostatus groups. Best-subsets selection produced a multivariate 

model for PWoH that included significant terms for alcohol use, early life stress, and 

WRAT-III reading subscale. The latter showed a significant inverse relationship with brain-

age gap, indicating that educational quality may be a resilience factor for brain aging. 

Finally, modeling PWH and PWoH together implicated Framingham score, alcohol use, 

area deprivation index, unemployment, male sex, and hepatitis C with older-appearing brain 

phenotypes. Notably, HIV itself was not significantly associated with brain-age gap when 

modeling these other factors, suggesting the relative importance of non-HIV drivers of brain 

aging in the cART era.

Substantial evidence now implicates non-HIV risk and resilience factors in aging effects 

for PWH23,24. Health disparities between PWH and PWoH partially reflect the legacy of 
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early uncontrolled infection, but these residual effects alone are insufficient to explain the 

persistence of neurocognitive impairment among persons with well-controlled HIV25. As a 

result, co-morbidities and SDOH are increasingly salient features in PWH with suppressed 

viral loads, immune reconstitution, and the expectation of longevity.

PWH have previously been shown to have increased average brain-age gap relative 

to seronegative peers; however, available data indicate that within-group variability in 

brain aging exceeds between-group differences, making it crucial to better account for 

heterogeneity12,14. Here we approach the question of brain aging using an array of 

multimodal predictors, including clinical measures, co-morbid disease burden, and SDOH. 

A novel aspect of this study is the incorporation of geospatial data on neighborhood 

characteristics into MRI data analysis.

The first group of factors that may impact brain aging are direct effects of HIV. We 

examined four key variables: viral load, current CD4 lymphocytes, nadir CD4 count, and 

hepatitis C co-infection. Detectable viral load was significantly associated with elevated 

brain-age gap, consistent with a large literature implicating viral suppression and immune 

reconstitution in preserved neurocognitive function26. Hepatitis C was associated with 

approximately four years of added brain-age gap in PWH, suggesting that the pathological 

effects of HIV and hepatitis C have additive impacts on brain health27. Thus, achieving 

control of both viruses is likely important for healthy brain aging.

The strongest and most consistent brain-age gap association was with Framingham 

cardiovascular risk score. The modeled difference in brain-age gap between those at 

minimum (<2%) and maximum (>60%) cardiovascular risk in this study was over 10 

years. In univariate modeling, this association was significant in PWH; however, the effect 

size was similar in PWoH, marking cardiovascular disease as a good candidate for a 

general brain aging risk factor. However, it remains especially relevant for PWH, who have 

increased vascular disease compared to the general population28. These findings suggest that 

maintenance of normal blood pressure and cholesterol may be crucial for PWH who have 

established viral control but remain vulnerable to cardiovascular disease.

Substance use disorders are also more prevalent among PWH, and the effects of drug 

abuse history must be considered when studying neurocognitive deficits29. Prior work has 

linked drug use with brain structural and functional changes in PWH, but associations with 

brain-age gap have not been characterized. In multivariate analysis of PWoH, we found a 

positive association between brain-age gap and alcohol use in PWoH, potentially indicating 

that neurotoxic effects of heavy consumption influence MRI-based brain age. The absence 

of a similar effect in PWH may be a function of the co-linearity between alcohol use and 

other factors (e.g., cardiovascular disease) for which stronger links were found.

One unexpected finding was the detection of a protective effect of educational quality 

in PWoH alone, in contrast with years of formal education, which showed no significant 

association. WRAT-III reading score was found to have a significant negative correlation 

with brain-age gap in multivariate analysis, such that for each point of improvement WRAT-

III, the mean brain-predicted age was reduced by 0·45 years. The apparent absence of this 
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effect in PWH is challenging to interpret but might indicate that the enhanced cognitive 

reserve conferred by quality of education may not be fully realized in PWH who experience 

clinical and social stressors related to lower rungs on the hierarchy of needs, i.e., those 

related to safety, food security, or other basic needs.

SDOH were given consideration in this study, as economic instability and social 

marginalization disproportionately affect PWH. In addition to education, we examined three 

major social factors: childhood stress, residential neighborhood quality from geospatially 

derived ADI, and unemployment status. While neither ELSQ nor ADI were associated with 

brain-age gap, ADI had positive associations with brain-age gap in the combined cohort 

model. Finally, unemployment status showed a strong linkage with increased brain-age gap 

in PWH, though causality remains unclear, since neurocognitive impairment associated with 

accelerated brain aging might precede loss of employment.

Anatomically, the brain-age gap was interpreted by correlation with FreeSurfer volumes. 

While this approach does not capture all the complex patterns identified by the neural 

network, it provides an approximation of relevant features. Results were congruent with 

literature on brain structure and aging: positive associations with brain-age gap were 

confined to CSF compartments and T1 white-matter hypointensities, while the strongest 

negative correlations were in subcortical structures that atrophy with age, particularly 

amygdala, hippocampus, and corpus callosum30. These results suggest that DeepBrainNet 

identifies aging-relevant imaging features.

Some limitations should also be noted. The use of over ten years of participant data resulted 

in some differences in the measures collected, producing a degree of data incompleteness. 

To mitigate confounding effects of missing values, we performed a sensitivity analysis in 

the subset of PWH with complete data. Results thus obtained closely matched those derived 

from the full dataset, indicating that missing data were unlikely to drive results.

Self-reported data represent another limitation. For example, self-reported hepatitis C 

prevalence in PWH (n=25, 7·0%) was lower than expected, suggesting unawareness of 

infection in some participants. However, despite likely underestimation of co-infection, we 

nonetheless detected a substantial effect on brain-age gap (+4·0 years) in PWH with hepatitis 

C. Hepatitis C serostatus was not assessed in PWoH. Additionally, our sample represented 

almost exclusively persons who self-identified as Black or White, but not other racial or 

ethnic groups. Furthermore, PWH and PWoH were significantly different on self-identified 

race, sex, and age, limiting the comparability of serostatus groups.

The use of ‘best-subsets’ variable selection runs some risk of overfitting since all possible 

predictor combinations are modeled. This is partially remediated using Mallows’ Cp, 

a selection criterion which penalizes models with numerous predictors22. For further 

validation, we also performed variable selection using LASSO regression, an alternative 

method which utilizes coefficient shrinkage to eliminate weaker predictors. Again, results 

corresponded well to the main analysis, suggesting that findings are robust to overfitting and 

insensitive to methodology.
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Taken together, these results paint a nuanced picture of aging with HIV. Traditional 

clinical variables such as viral load and T-cell counts impact neuropathology; however, 

non-HIV drivers of health such as co-morbid diseases and socioeconomic status are growing 

in importance. Together, such factors may account for heterogeneity in neurocognitive 

outcomes in older PWH and PWoH. Identification of brain-aging correlates may lead to 

a broadened perspective on health for people aging with chronic infectious disease while 

navigating challenging and often adverse socioeconomic landscapes.
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Figure 1. Spatial correlation map of brain-age gap and volumetric features.
To estimate the importance of volumetric features in the derivation of the brain-age gap 

by the convolutional neural network DeepBrainNet, correlations between brain-age gap and 

FreeSurfer volumes were calculated for PWH (A, B) and PWoH (C, D). All significant 

positive correlations (blue) were for ventricular cerebrospinal fluid compartments and for 

T1 white matter hypointensities (not shown), while the strongest negative correlations were 

subcortical, in the hippocampus (bilateral), amygdala (bilateral), brainstem, and corpus 

callosum.
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Figure 2. HIV-specific predictors of brain aging.
Univariate associations between potential predictors of brain aging and DeepBrainNet-

derived brain-age gap, i.e., the difference between model-estimated age and chronological 

age. Four factors were considered only in persons with HIV (PWH): plasma HIV viral load 

(A), hepatitis C co-infection (B), current CD4 T-cells in plasma (C), and lifetime minimum 

(nadir) CD4 T-cells (D). *=significant at pre-corrected p<0·05. †=significant at p<0·05 after 

false discovery rate correction.
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Figure 3. Predictors of brain aging for persons with and without HIV.
Univariate associations between potential predictors of brain aging and DeepBrainNet-

derived brain-age gap. Seven factors were examined for both persons with and without 

HIV: area deprivation index (A), early life stressors (B), educational quality (C), educational 

duration (D), Framingham cardiovascular risk (E), alcohol (F), cocaine (G), tobacco (H), 

and employment status (I). *=p<0·05. †=significant at p<0·05 after false discovery rate 

correction.
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Figure 4. Multivariate prediction of brain-age gap in persons with and without HIV.
To identify predictor subsets that best explain the variability in the brain-age gap for persons 

with HIV (PWH, A and B) and persons without HIV (PWoH, C and D), best-subsets 

variable selection was performed using Mallow’s Cp as selection criterion. Left panels (A, 

C) display the best result (lowest Cp) for each number of predictors; shaded panels indicate 

that the predictor in that column was included. The selected model (highlighted row) for 

PWH included Framingham cardiovascular risk, hepatitis C, and unemployed status. The 

model for PWoH included alcohol use, early life stress, WRAT-III reading score, and 

unemployed status. Right panels (B and D) show model fit across the number of predictors, 

where the minimum Cp is obtained with three predictors for PWH and four predictors for 

PWoH.
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Figure 5. Multivariate predictors of brain aging in combined cohort of persons with and without 
HIV.
Best-subsets selection was also performed to model the brain-age gap for persons with HIV 

(PWH) and without HIV (PWoH). Panel A displays the best result (lowest Cp) for each 

number of predictors; shaded magenta panels indicate that the predictor in that column was 

included. The final model (top row) included male sex, Framingham risk score, lifetime 

alcohol use, hepatitis C, area deprivation index, and unemployment. Panel B shows the 

model fit across the number of predictors, where the minimum Cp is obtained with six 

predictors (asterisk).
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Table 1.

Participant characteristics.

PWoH PWH p-value

N 259 379

Age (yr, mean±SD) 38·3±17·1 44·8±15·5 <0·0001***

Sex (%) <0·0001***

 Male 129 (49·8%) 296 (78·1%)

 Female 130 (50·2%) 83 (21·9%)

Race 0·0021**

 Black / African-American (%) 146 (56·4%) 260 (68·6%)

 White 104 (40·2%) 111 (29·2%)

 Asian 7 (2·7%) 2 (0·5%)

 American Indian / Native American 0 (0·0%) 1 (0·2%)

 Multiracial 2 (0·8%) 4 (1·0%)

 Other 0 (0·0%) 1 (0·3%)

Education (years) 14·0±2·4 13·2±2·4 <0·0001***

Unemployed (incl. disability) 28 (10·8%) 102 (27·6%) <0·0001***

10-year Framingham risk score 12·7±10·8 17·1±12·1 0·0065*

Alcohol use (KMSK total) 6·0±3·7 6·9±4·0 0·015*

Cocaine use (KMSK total) 0·6±2·2 3·3±5·3 <0·0001***

Tobacco use (KMSK total) 4·4±4·8 6·6±4·9 <0·0001***

Area Deprivation Index (percentile) 63·8±25·0 73·4±24·8 0·0011**

Early Life Stress total events 3·1±2·8 3·9±2·9 0·0023**

WRAT-III reading subtest 47·1±7·1 43·0±8·7 <0·0001***

Viral load (copies/mL, log10) 1·8±1·1

Undetectable VL (≤ 50 copies/mL) 295 (77·8%)

Most recent CD4 count (cells/μL) 588·0±311·8

Nadir CD4 count (cells/μL) 224·3±199·7

Hepatitis C infection (%) 25 (7·0%)

Quantitative values reported as mean ± standard deviation, and compared between groups with Analysis of Variance (ANOVA). Categorical 

values reported as n and percentage, and compared with χ2 tests. Abbreviations: PWoH=persons without HIV, PWH=persons with HIV, yr=years, 
KMSK=Kreek-McHugh-Schluger-Kellogg, WRAT=Wide Range Achievement Test, Third Edition, VL=viral load. Significance key:

*
=p<0.05

**
=p<0.01

***
=p<0.001.
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