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Summary paragraph: 
 Turnover in species composition through time is a dominant form of biodiversity change 
that has profound impacts on the functioning of ecological communities (1–4). Turnover rates 
differ dramatically among communities (4), but the drivers of this variation across taxa and realms 
remain unknown. Here, we analyze 42,255 time series of species composition from marine, 
terrestrial and freshwater assemblages and show that temporal rates of turnover were consistently 
faster in locations that experienced faster temperature change, including both warming and 
cooling. In addition, assemblages with limited access to microclimate refugia or that faced 
stronger human impacts on land were especially responsive to temperature change, with up to 
48% of species replaced per decade. These results reveal a widespread signal of vulnerability to 
ongoing climate change and highlight which ecological communities are most sensitive, raising 
concerns about ecosystem integrity as climate change and other human impacts accelerate. 
 
Main text: 
 One of the most prominent signatures of biodiversity change in the Anthropocene is the rapid 
change in species composition through time, hereafter referred to as temporal turnover (1, 2). Turnover 
occurs when some species increase their abundance or occupancy through time while others decline. 
Such temporal turnover has dramatic impacts on the structure and functioning of ecological communities 
(3) and can be rapid even while the number of species remains relatively unchanged (1, 2). However, the 
rates of temporal turnover differ substantially across locations, from little change over many decades in 
some communities to almost complete turnover within years in others (1, 4). The reasons for this variation 
across organism and ecosystem types remain unclear, in part because most previous research has 
focused on particular taxa or locations (5–9).  

One possible explanation for this variation is that assemblages are exposed to differing rates of 
environmental change and have differing sensitivities to those changes (1, 4). Of the multiple 
environmental drivers that shape species distributions and abundance, temperature is particularly 
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important for biological processes across the tree of life (10). For example, changing temperatures have a 
strong influence on organismal physiology and species distributions (10, 11), and these effects differ 
systematically across taxa and between marine, terrestrial and freshwater realms (12–14). Systematic 
differences in temperature change and in species sensitivity to such changes may therefore help explain 
why some assemblages change composition quickly and others more slowly. Here, we i) tested the extent 
to which rates of temporal turnover increased with rates of temperature change using the largest 
compilation of biodiversity surveys through time available, and ii) explicitly evaluated which factors 
modified this relationship, including ecological realm, the degree of thermal habitat heterogeneity (i.e., 
availability of microclimates), and the extent of human impacts (e.g., land use and invasive species). 

We compiled temporal turnover rates from 257,289 observations of species composition across 
42,255 assemblage time series around the world covering a wide range of taxa from the BioTIME 
database (15) (see Methods, Fig. 1a and Extended Data Fig. 1). Following standard practice, we 
measured temporal turnover as the rate at which dissimilarity in species composition changed through 
time using the incidence-based Jaccard index, and specifically the component of dissimilarity that 
quantifies species replacement independent of changes in species richness (see Methods) (4, 16). 
Dissimilarity is bound to values between 0 (i.e., no change in composition) and 1 (i.e., complete turnover), 
and changes in turnover over time (i.e. turnover rate) are positive if compositional change accumulates 
over time. For example, birds in Sweden had a temporal turnover rate of 0.0046 per year (± 0.00017 
standard error, Fig. 1d), meaning that 0.46% of species were replaced per year in this assemblage. 
Turnover rate can also be negative if composition becomes more similar to initial assemblages again 
(Extended Data Fig. 2f). 

Across all studies, dissimilarity generally increased with time, yielding positive temporal turnover 
rates (Fig. 2a, median = 0.0082 per year [i.e., 0.82% per year] with a 95% bootstrap confidence interval of 
0.0065 to 0.0095). The few studies with negative turnover rates mostly had shorter durations, where 
variation in estimated rates was highest (n = 46, Extended Data Fig. 2b). On average, assemblages 
experienced warming of 0.27 °C per decade on land and of 0.20 °C per decade in the ocean, but there 
was also large variation in the magnitude and direction of temperature change, and many assemblages 
experienced cooling (Fig. 1b, c). The rates of temperature change for these local time series were often 
faster than for global temperatures since the time series were shorter (median 8 year duration). Statistical 
challenges with this type of dataset include pseudoreplication within time series and studies, the non-
linearity of species composition turnover, and the heteroskedasticity introduced by time series of differing 
lengths (17–19). Many statistical approaches produce high false positive error rates with datasets like this, 
but generalized linear mixed models (GLMMs) with ordered beta errors and environmental drivers as 
interaction effects kept false positive rates low (see Methods, conceptual diagrams in Fig. 1e and 
Extended Data Fig. 3, and Extended Data Fig. 2). We used this latter approach to evaluate the role of 
temperature change and other environmental drivers underpinning global variation in temporal turnover 
rates. 

 
Temperature change and turnover rates 

Rates of turnover were associated with the rate of local temperature change, such that higher 
turnover rates occurred with faster rates of temperature change. Models with a temperature change effect 
on turnover rate outperformed alternative models without this effect (𝜒2 = 143, df = 9, two-sided p < 2.2x10-
16, likelihood ratio test against a GLMM without a temperature change effect on turnover rate, n = 40,332 
time series, see Methods) or models that only considered differences among realms or taxonomic groups 
(Table 1, Fig. 2 and Extended Data Fig. 4a). 

Up to 5.1% of the species in an assemblage on average were replaced each year where rates of 
temperature change were highest in the terrestrial realm, and up to 5.2% in freshwater and 3.2% in the 
ocean, though few locations experienced these rates of temperature change (Fig. 2b). At more moderate 



 

 

rates of warming (0.5 °C/year) where data coverage was higher, 1.4% of species per year on land, 2.6% in 
freshwater, and 1.0% in the ocean on average were replaced (Fig. 2b). The temperature change 
relationships were significantly larger than expected from null distributions of model coefficients from 
permutation (p = 0.001 for terrestrial warming; p = 0.007 for marine warming; p = 0.001 for marine cooling; 
p = 0.024 for freshwater warming; and p = 0.004 for freshwater cooling), except for terrestrial cooling (p = 
0.067). A downsampling sensitivity test to address non-independence of dissimilarity values within time 
series also supported these effects, except for the freshwater warming effect that was highly uncertain 
(Extended Data Fig. 4b; see Methods). 

These findings are consistent with the expectations from thermal niche-based processes leading to 
community change, in which temperature changes alter the relative fitness and balance of interactions 
among species (11, 20–23). When niche-based processes are operating, both warming and cooling can 
drive changes in species composition, and—consistent with this prediction—we found that faster temporal 
turnover was associated both with higher rates of warming and with higher rates of cooling in all realms 
(Fig. 2b). That is, the rate of temperature change per se rather than its sign appears to play an important 
role underpinning changes in composition across taxa and realms. 

We further found that the relationship between temporal turnover and temperature change differed 
at warmer vs. colder baseline temperatures. In terrestrial and marine assemblages, turnover responded 
more to warming (i.e., had higher sensitivity) at locations with warmer average temperatures, and 
responded more to cooling at locations with cooler average temperatures (Fig. 2c), based on a model 
including the interaction between temperature change, average temperature, and year (Table 1, Extended 
Data Fig. 5a and Table 2). This model was statistically significant (𝜒2 = 96.2, df = 18, two-sided p = 1.1x10-
12, likelihood ratio test against a GLMM without this interaction), and the marine effects were also 
supported by a downsampling sensitivity test (Extended Data Fig. 4c). The modulating effect of average 
temperature in freshwater assemblages had substantial uncertainty, particularly in the downsampling test 
(Extended Data Fig. 4c), likely explained by the much lower availability of freshwater data. We also found 
that latitude was a less effective explanatory factor than average temperature (Table 1) and that 
alternative model formulations considering species gains and losses or focused only on longer time series 
produced similar results (Extended Data Table 3). Finally, when we used an abundance-based 
dissimilarity metric more sensitive to changes in common species, rather than the equal weighting of 
common and rare species in Jaccard dissimilarity (see Methods), we found similar effects of, and 
interactions between, temperature change and average temperatures (Extended Data Table 4; 𝜒2 = 170, 
df = 9, two-sided p < 2.2x10-16, likelihood ratio test for the model with a temperature change effect on 
turnover rate against a GLMM without this effect; 𝜒2 = 377, df = 18, two-sided p < 2.2x10-16, likelihood ratio 
test for the model with interactions between temperature change and average temperature against a 
GLMM without this interaction). These results suggest that the findings were not driven by simply the 
comings and goings of rare species, but rather by wholesale shifts in species composition through time.  

There are several potential and non-mutually exclusive explanations for these results. First, many 
assemblages exhibit a thermal bias, such that their constituent species are on average adapted to 
temperatures warmer or colder than the ones they experience locally (21). Assemblages with a positive 
thermal bias (warm-adapted) are expected to be more sensitive to cooling, while those with a negative 
thermal bias (cold-adapted) are expected to be more sensitive to warming. Assemblages with positive bias 
are more common in colder climates, while those with a negative bias are often found in warmer climates 
(21, 24, 25), which predicts stronger response to cooling in cold climates and to warming in warm climates. 
Second, species physiological limits differ across climate gradients, such that species in cold climates live 
closer to their lower thermal limit, and species in warm climates live closer to their upper thermal limit (11, 
26). Species in cold climates are therefore more likely to approach or exceed their limits with cooling, and 
those in warm climates to do so with warming. Third, assemblages may not yet have fully responded to 
past changes in temperature (27), which may accentuate their sensitivity to further changes in 



 

 

temperature. Some evidence suggests plant assemblages in warm climates, for example, have a negative 
thermal bias because they have not yet responded to past warming, which therefore makes them less 
tolerant of further warming (27). Fourth, low niche diversity towards the ends of the global climate gradient 
may drive species attrition with warming in warm climates and with cooling in cold climates (28). Further 
research will be needed to understand the relative importance of these mechanisms and processes. 

 
Microclimates and human transformation 

One potential moderator of community responses to changing climates is whether the landscapes 
in which assemblages are embedded have fine-grained temperature variation that helps buffer climate 
change impacts (29). To test this, we measured microclimate variability as the spatial standard deviation of 
surface temperatures within 20 km of each site (see Methods), and found that assemblages in more 
homogeneous land- and seascapes were more sensitive to temperature change than in more 
heterogeneous ones (Fig. 3a, Extended Data Table 5; 𝜒2 = 46.8, df = 8, two-sided p = 1.7x10-7, likelihood 
ratio test against a GLMM without microclimate terms). For example, with equally fast rates of warming, 
average terrestrial turnover rates in homogenous landscapes (4.7% ± 0.82% per year, ± standard error) 
were more than twice the rates in heterogeneous landscapes (2.3% ± 0.80% per year, ± standard error). 
The main effects of temperature change were similar in this more complex model (Extended Data Fig. 5b) 
to those in the simpler models reported above (Fig. 2b). 

Finally, human transformation of ecosystems and climate change are two of the greatest pressures 
on biodiversity (3), and yet it has remained difficult to understand how their combined impacts interact 
(30). We found a positive interaction between non-climate human impacts like land use, pollution, and 
invasive species (see Methods) and temperature change on rates of temporal turnover (Fig. 3b, Extended 
Data Table 5; 𝜒2 = 34.1, df = 8, two-sided p = 3.8x10-6, likelihood ratio test against a GLMM without human 
impact terms), indicating that human modifications to land- and seascapes exacerbate the impacts of 
temperature change. With equally fast rates of warming, terrestrial assemblages experiencing strong 
human impacts had more than one and a half times the turnover rates compared to those experiencing 
few human modifications (4.0% ± 0.7% per year vs. 2.1% ± 0.85% per year, ± standard error, Fig. 3b). The 
interaction between human impacts and temperature change on turnover rates on land is consistent with 
the hypothesis that human activity reduces microclimate availability, increases stress, alters the species 
pool, and/or strengthens the relative influence of abiotic factors on population dynamics (13, 30–32), all of 
which could increase the likelihood of resident population extirpation and of colonization by more tolerant 
species when temperatures change (13, 30). We detected a somewhat weaker interaction in the ocean 
(Fig. 3b), suggesting that harvesting—the dominant human impact affecting marine communities—has 
weaker or non-systematic interactions with temperature change compared to habitat degradation on land. 
Fishing does not substantially alter microclimate availability, for example, though habitat change in the 
ocean is intensifying (33). 

 
Discussion 

We found strong responses of temporal turnover to temperature change on land, in freshwater, and 
in the ocean. Previous research has found higher vulnerability to warming for marine species (26), and 
that geographic range shifts towards the poles and species richness responses to temperature change are 
stronger or more easily detected in the ocean than on land (13, 14). Greater thermoregulatory capacity 
and larger thermal safety margins on land as compared to the ocean have been suggested as reasons for 
limited geographic range shifts and richness changes, but substantial temporal turnover in species 
composition can occur without changes in richness or shifts in distributions (2). Temporal turnover 
therefore emerges as a particularly sensitive indicator of climate impacts in all realms.  

The results further suggest that factors that could insulate ecological communities from the 
physiological and indirect impacts of temperature change—including behavioral adaptation and changing 



 

 

biotic interactions—are insufficient in general to buffer the composition of assemblages from these 
environmental changes. Understanding the patterns of and processes leading to temporal turnover in the 
face of global change is a key issue that needs deeper investigation. Important topics include quantitative 
theory for temporal turnover (22, 34), understanding the role of species traits and community structure in 
regulating temporal turnover (22, 23), developing long time series of species composition, and addressing 
the taxonomic and spatial biases in existing data (35). Most of the data in the analyses come from 
northern temperate regions, as is typical of biodiversity data (15, 35), and the underrepresentation of high 
latitude regions where climate change is fastest (17) and of lower latitude regions where species 
vulnerability is higher (11, 26) suggest the analyses are conservative and underestimate the sensitivity of 
species composition to temperature change. 

The impacts of climate change on individual species have often been called largely unpredictable 
or idiosyncratic (36). Here, we reveal that community responses may be more easily predicted: changing 
temperatures drive widespread turnover in species composition that scales with the speed of warming or 
cooling. Rates of global warming are expected to triple by the end of the century and local human impacts 
continue to expand (37), which will likely drive even greater rates of temporal turnover. As communities 
change faster, society increasingly risks ecological surprises, which may include the loss of critical 
ecosystem functions and services (2). Efforts to avoid further global warming, preserve microclimate 
variability, and reduce land use change are thus important steps towards avoiding the most undesirable of 
these outcomes and maintaining ecosystem integrity. 
  



 

 

Main References and Notes 
1.  M. Dornelas, N. J. Gotelli, B. J. McGill, H. Shimadzu, F. Moyes, C. Sievers, A. E. Magurran, 

Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–9 
(2014). 

2.  H. Hillebrand, B. Blasius, E. T. Borer, J. M. Chase, J. A. Downing, B. K. Eriksson, C. T. Filstrup, W. 
S. Harpole, D. Hodapp, S. Larsen, A. M. Lewandowska, E. W. Seabloom, D. B. Van de Waal, A. B. 
Ryabov, Biodiversity change is uncoupled from species richness trends: Consequences for 
conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018). 

3.  IPBES, “Global assessment report on biodiversity and ecosystem services of the Intergovernmental 
Science-Policy Platform on Biodiversity and Ecosystem Services” (IPBES Secretariat, Bonn, 
Germany, 2019); https://ipbes.net/global-assessment. 

4.  S. A. Blowes, S. Supp, L. H. Antão, A. E. Bates, H. Bruelheide, J. M. Chase, F. Moyes, A. E. 
Magurran, B. J. McGill, I. H. Myers-Smith, M. Winter, A. D. Bjorkman, D. E. Bowler, J. E. K. Byrnes, 
A. Gonzalez, J. Hines, F. Isbell, H. P. Jones, L. M. Navarro, P. L. Thompson, M. Vellend, C. Waldock, 
M. Dornelas, The geography of biodiversity change in marine and terrestrial assemblages. Science 
366, 339–345 (2019). 

5.  J. M. M. Lewthwaite, D. M. Debinski, J. T. Kerr, High community turnover and dispersal limitation 
relative to rapid climate change. Glob. Ecol. Biogeogr. 26, 459–471 (2017). 

6.  V. Sgardeli, K. Zografou, J. M. Halley, Climate change versus ecological drift: Assessing 13 years of 
turnover in a butterfly community. Basic Appl. Ecol. 17, 283–290 (2016). 

7.  G. N. Daskalova, I. H. Myers-Smith, A. D. Bjorkman, S. A. Blowes, S. R. Supp, A. E. Magurran, M. 
Dornelas, Landscape-scale forest loss as a catalyst of population and biodiversity change. Science 
368, 1341–1347 (2020). 

8.  R. Nakadai, Degrees of compositional shift in tree communities vary along a gradient of temperature 
change rates over one decade: Application of an individual-based temporal beta-diversity concept. 
Ecol. Evol. 10, 13613–13623 (2020). 

9.  M. Lindholm, J. Alahuhta, J. Heino, H. Toivonen, Temporal beta diversity of lake plants is determined 
by concomitant changes in environmental factors across decades. J. Ecol. 109, 819–832 (2021). 

10.  M. J. Angilletta Jr., Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University 
Press, Oxford, 2009). 

11.  J. M. Sunday, J. M. Bennett, P. Calosi, S. Clusella-Trullas, S. Gravel, A. L. Hargreaves, F. P. Leiva, 
W. C. E. P. Verberk, M. Á. Olalla-Tárraga, I. Morales-Castilla, Thermal tolerance patterns across 
latitude and elevation. Philos. Trans. R. Soc. B Biol. Sci. 374, 20190036 (2019). 

12.  M. L. Pinsky, L. Comte, D. F. Sax, Unifying climate change biology across realms and taxa. Trends 
Ecol. Evol. 37, 672–682 (2022). 

13.  J. Lenoir, R. Bertrand, L. Comte, L. Bourgeaud, T. Hattab, J. Murienne, G. Grenouillet, Species better 
track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020). 

14.  L. H. Antão, A. E. Bates, S. A. Blowes, C. Waldock, S. R. Supp, A. E. Magurran, M. Dornelas, A. M. 
Schipper, Temperature-related biodiversity change across temperate marine and terrestrial systems. 
Nat. Ecol. Evol. 4, 927–933 (2020). 

15.  M. Dornelas, L. H. Antão, F. Moyes, A. E. Bates, A. E. Magurran, D. Adam, A. A. Akhmetzhanova, W. 
Appeltans, J. M. Arcos, H. Arnold, N. Ayyappan, G. Badihi, A. H. Baird, M. Barbosa, T. E. Barreto, C. 
Bässler, A. Bellgrove, J. Belmaker, L. Benedetti-Cecchi, B. J. Bett, A. D. Bjorkman, M. Błażewicz, S. 
A. Blowes, C. P. Bloch, T. C. Bonebrake, S. Boyd, M. Bradford, A. J. Brooks, J. H. Brown, H. 
Bruelheide, P. Budy, F. Carvalho, E. Castañeda-Moya, C. A. Chen, J. F. Chamblee, T. J. Chase, L. 
Siegwart Collier, S. K. Collinge, R. Condit, E. J. Cooper, J. H. C. Cornelissen, U. Cotano, S. Kyle 
Crow, G. Damasceno, C. H. Davies, R. A. Davis, F. P. Day, S. Degraer, T. S. Doherty, T. E. Dunn, G. 
Durigan, J. E. Duffy, D. Edelist, G. J. Edgar, R. Elahi, S. C. Elmendorf, A. Enemar, S. K. M. Ernest, 
R. Escribano, M. Estiarte, B. S. Evans, T.-Y. Fan, F. Turini Farah, L. Loureiro Fernandes, F. Z. 
Farneda, A. Fidelis, R. Fitt, A. M. Fosaa, G. A. Daher Correa Franco, G. E. Frank, W. R. Fraser, H. 
García, R. Cazzolla Gatti, O. Givan, E. Gorgone-Barbosa, W. A. Gould, C. Gries, G. D. Grossman, J. 
R. Gutierréz, S. Hale, M. E. Harmon, J. Harte, G. Haskins, D. L. Henshaw, L. Hermanutz, P. Hidalgo, 
P. Higuchi, A. Hoey, G. Van Hoey, A. Hofgaard, K. Holeck, R. D. Hollister, R. Holmes, M. 
Hoogenboom, C. Hsieh, S. P. Hubbell, F. Huettmann, C. L. Huffard, A. H. Hurlbert, N. Macedo 
Ivanauskas, D. Janík, U. Jandt, A. Jażdżewska, T. Johannessen, J. Johnstone, J. Jones, F. A. M. 



 

 

Jones, J. Kang, T. Kartawijaya, E. C. Keeley, D. A. Kelt, R. Kinnear, K. Klanderud, H. Knutsen, C. C. 
Koenig, A. R. Kortz, K. Král, L. A. Kuhnz, C.-Y. Kuo, D. J. Kushner, C. Laguionie-Marchais, L. T. 
Lancaster, C. Min Lee, J. S. Lefcheck, E. Lévesque, D. Lightfoot, F. Lloret, J. D. Lloyd, A. López-
Baucells, M. Louzao, J. S. Madin, B. Magnússon, S. Malamud, I. Matthews, K. P. McFarland, B. J. 
McGill, D. McKnight, W. O. McLarney, J. Meador, P. L. Meserve, D. J. Metcalfe, C. F. J. Meyer, A. 
Michelsen, N. Milchakova, T. Moens, E. Moland, J. Moore, C. Mathias Moreira, J. Müller, G. Murphy, 
I. H. Myers-Smith, R. W. Myster, A. Naumov, F. Neat, J. A. Nelson, M. Paul Nelson, S. F. Newton, N. 
Norden, J. C. Oliver, E. M. Olsen, V. G. Onipchenko, K. Pabis, R. J. Pabst, A. Paquette, S. Pardede, 
D. M. Paterson, R. Pélissier, J. Peñuelas, A. Pérez-Matus, O. Pizarro, F. Pomati, E. Post, H. H. T. 
Prins, J. C. Priscu, P. Provoost, K. L. Prudic, E. Pulliainen, B. R. Ramesh, O. Mendivil Ramos, A. 
Rassweiler, J. E. Rebelo, D. C. Reed, P. B. Reich, S. M. Remillard, A. J. Richardson, J. P. 
Richardson, I. van Rijn, R. Rocha, V. H. Rivera-Monroy, C. Rixen, K. P. Robinson, R. Ribeiro 
Rodrigues, D. de Cerqueira Rossa-Feres, L. Rudstam, H. Ruhl, C. S. Ruz, E. M. Sampaio, N. 
Rybicki, A. Rypel, S. Sal, B. Salgado, F. A. M. Santos, A. P. Savassi-Coutinho, S. Scanga, J. 
Schmidt, R. Schooley, F. Setiawan, K.-T. Shao, G. R. Shaver, S. Sherman, T. W. Sherry, J. Siciński, 
C. Sievers, A. C. da Silva, F. Rodrigues da Silva, F. L. Silveira, J. Slingsby, T. Smart, S. J. Snell, N. 
A. Soudzilovskaia, G. B. G. Souza, F. Maluf Souza, V. Castro Souza, C. D. Stallings, R. Stanforth, E. 
H. Stanley, J. Mauro Sterza, M. Stevens, R. Stuart-Smith, Y. Rondon Suarez, S. Supp, J. Yoshio 
Tamashiro, S. Tarigan, G. P. Thiede, S. Thorn, A. Tolvanen, M. Teresa Zugliani Toniato, Ø. Totland, 
R. R. Twilley, G. Vaitkus, N. Valdivia, M. I. Vallejo, T. J. Valone, C. Van Colen, J. Vanaverbeke, F. 
Venturoli, H. M. Verheye, M. Vianna, R. P. Vieira, T. Vrška, C. Quang Vu, L. Van Vu, R. B. Waide, C. 
Waldock, D. Watts, S. Webb, T. Wesołowski, E. P. White, C. E. Widdicombe, D. Wilgers, R. Williams, 
S. B. Williams, M. Williamson, M. R. Willig, T. J. Willis, S. Wipf, K. D. Woods, E. J. Woehler, K. 
Zawada, M. L. Zettler, BioTIME: A database of biodiversity time series for the Anthropocene. Glob. 
Ecol. Biogeogr. 27, 760–786 (2018). 

16.  S. L. Collins, F. Micheli, L. Hartt, A method to determine rates and patterns of variability in ecological 
communities. Oikos 91, 285–293 (2000). 

17.  E. Post, B. A. Steinman, M. E. Mann, Acceleration of phenological advance and warming with latitude 
over the past century. Sci. Rep. 8, 3927 (2018). 

18.  R. B. Millar, M. J. Anderson, N. Tolimieri, Much ado about nothings: using zero similarity points in 
distance-decay curves. Ecology 92, 1717–1722 (2011). 

19.  C. R. Muletz-Wolz, N. P. Kurata, E. A. Himschoot, E. S. Wenker, E. A. Quinn, K. Hinde, M. L. Power, 
R. C. Fleischer, Diversity and temporal dynamics of primate milk microbiomes. Am. J. Primatol. 81, 
e22994 (2019). 

20.  R. D. Stuart-Smith, G. J. Edgar, A. E. Bates, Thermal limits to the geographic distributions of shallow-
water marine species. Nat. Ecol. Evol. 1, 1–7 (2017). 

21.  R. D. Stuart-Smith, G. J. Edgar, N. S. Barrett, S. J. Kininmonth, A. E. Bates, Thermal biases and 
vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015). 

22.  J. A. Bonachela, M. T. Burrows, M. L. Pinsky, Shape of species climate response curves affects 
community response to climate change. Ecol. Lett. 24, 708–718 (2021). 

23.  I. Khaliq, C. Rixen, F. Zellweger, C. H. Graham, M. M. Gossner, I. R. McFadden, L. Antão, J. 
Brodersen, S. Ghosh, F. Pomati, O. Seehausen, T. Roth, T. Sattler, S. R. Supp, M. Riaz, N. E. 
Zimmermann, B. Matthews, A. Narwani, Warming underpins community turnover in temperate 
freshwater and terrestrial communities. Nat. Commun. 15, 1921 (2024). 

24.  R. V. Gallagher, S. Allen, I. J. Wright, Safety margins and adaptive capacity of vegetation to climate 
change. Sci. Rep. 9, 8241 (2019). 

25.  S. Peng, Y. Liu, T. Lyu, X. Zhang, Y. Li, Z. Wang, Towards an understanding of the latitudinal 
patterns in thermal tolerance and vulnerability of woody plants under climate warming. Ecography 44, 
1797–1807 (2021). 

26.  M. L. Pinsky, A. M. Eikeset, D. J. McCauley, J. L. Payne, J. M. Sunday, Greater vulnerability to 
warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019). 

27.  R. Bertrand, G. Riofrío-Dillon, J. Lenoir, J. Drapier, P. De Ruffray, J.-C. Gégout, M. Loreau, 
Ecological constraints increase the climatic debt in forests. Nat. Commun. 7, 12643 (2016). 

28.  G. Beaugrand, R. Kirby, E. Goberville, The mathematical influence on global patterns of biodiversity. 
Ecol. Evol. 10, 6494–6511 (2020). 



 

 

29.  A. J. Suggitt, R. J. Wilson, N. J. B. Isaac, C. M. Beale, A. G. Auffret, T. August, J. J. Bennie, H. Q. P. 
Crick, S. Duffield, R. Fox, J. J. Hopkins, N. A. Macgregor, M. D. Morecroft, K. J. Walker, I. M. D. 
Maclean, Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. 
Change 8, 713 (2018). 

30.  J. J. Williams, T. Newbold, Local climatic changes affect biodiversity responses to land use: A review. 
Divers. Distrib. 26, 76–92 (2020). 

31.  A. B. Tóth, S. K. Lyons, W. A. Barr, A. K. Behrensmeyer, J. L. Blois, R. Bobe, M. Davis, A. Du, J. T. 
Eronen, J. T. Faith, D. Fraser, N. J. Gotelli, G. R. Graves, A. M. Jukar, J. H. Miller, S. Pineda-Munoz, 
L. C. Soul, A. Villaseñor, J. Alroy, Reorganization of surviving mammal communities after the end-
Pleistocene megafaunal extinction. Science 365, 1305–1308 (2019). 

32.  A. R. Kortz, F. Moyes, V. R. Pivello, P. Pyšek, M. Dornelas, P. Visconti, A. E. Magurran, Elevated 
compositional change in plant assemblages linked to invasion. Proc. R. Soc. B Biol. Sci. 290, 
20222450 (2023). 

33.  D. J. McCauley, M. L. Pinsky, S. R. Palumbi, J. A. Estes, F. H. Joyce, R. R. Warner, Marine 
defaunation: Animal loss in the global ocean. Science 347, 1255641–1255641 (2015). 

34.  V. J. Ontiveros, J. A. Capitán, E. O. Casamayor, D. Alonso, The characteristic time of ecological 
communities. Ecology 102, e03247 (2021). 

35.  J. Hortal, F. De Bello, J. A. F. Diniz-Filho, T. M. Lewinsohn, J. M. Lobo, R. J. Ladle, Seven Shortfalls 
that Beset Large-Scale Knowledge of Biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015). 

36.  L. Zhang, D. Takahashi, M. Hartvig, K. H. Andersen, Food-web dynamics under climate change. 
Proc. R. Soc. B Biol. Sci. 284, 20171772 (2017). 

37.  J.-Y. Lee, J. Marotzke, G. Bala, L. Cao, S. Corti, J. P. Dunne, F. Engelbrecht, E. Fischer, J. C. Fyfe, 
C. Jones, A. Maycock, J. Mutemi, O. Ndiaye, S. Panickal, T. Zhou, “Future Global Climate: Scenario-
based Projections and Near-term Information” in Climate Change 2021: The Physical Science Basis. 
Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on 
Climate Change, V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. 
Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. 
Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou, Eds. (Cambridge University Press, Cambridge, 
UK and New York, NY, USA, 2021), pp. 553–672. 

 
 
 
  



 

 

Tables 
 
Table 1. Comparison of models of temporal turnover with or without temperature change. Lower 
Akaike's Information Criterion (AIC) indicates more parsimonious models (i.e., higher explanatory power 
without overfitting). Models with local temperature change (Tchange) interacting with year (Year) had 
negative ΔAICnull and were favored over the simplest Year model (dissimilarity as a function of year), while 
models with only realm (Realm) or only taxonomic group (Taxon) interacting with year were not favored. 
More complex models also included absolute latitude (|Lat|) or average temperature (Tave) as interactions 
with year (see Methods for full details). Columns show degrees of freedom (df), AIC, AIC compared to the 
lowest AIC (ΔAIC), and AIC compared to the simplest model (ΔAICnull). The most parsimonious model of 
this set is highlighted in bold. See Extended Data Fig. 5a and Extended Data Tables 1 and 2 for additional 
model details. See Extended Data Table 3 for alternative model formulations. 

Model df AIC ΔAIC ΔAICnull 

Year 17 679835 746 0 

Realm ✕ Year 19 679827 738 -8.05 

Taxon ✕ Year 31 679846 757 10.6 

(Tchange + Year) ✕ Realm 28 679794 705 -41 

Tchange ✕ Year ✕ Realm 37 679669 580 -166 

Tchange ✕ |Lat| ✕ Year ✕ Realm 61 679121 32 -714 

(Tchange + Tave) ✕ Year ✕ Realm 43 679150 60 -686 

Tchange ✕ Tave ✕ Year ✕ Realm 61 679089 0 -746 
 
  



 

 

 
Figures and Legends 

 
 
Fig. 1. Records of species composition temporal turnover from around the world. a) Location of 
assemblage time series from BioTIME, including 3,159 on land, 38,451 in the ocean, and 645 in 
freshwater. Map is from (38). b, c) Comparison of temperature change at BioTIME locations and at 
randomly selected sites globally with equivalent sampling intervals and durations on continents (b) or in 
the ocean (c). Note that the x- and y-axes have been square-root transformed to facilitate visualization. d) 
Example of a turnover rate calculation (ordered beta regression slope in blue), based on 57 years of bird 
community sampling in Sweden (39). Dissimilarity varies between 0 and 1 and was measured with the 
replacement component of the incidence-based Jaccard index. Slope is shown with 95% confidence 
intervals. e) Conceptual diagram of the statistical approach. The main hypothesis was that temporal 
turnover rates (slopes) differed across assemblages that experienced faster or slower rates of temperature 
change (Tchange). We tested Tchange as a continuous variable, though only two levels are shown in the 
diagram. 
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Fig. 2. Species turnover rates were related to rates of warming and cooling. a) Turnover rate [change 
in dissimilarity per year] for studies in terrestrial, freshwater, and marine realms. Dashed lines are the 
averages across studies within realms, and the top horizontal lines indicate the 95% confidence intervals 
for the averages. b) Marginal effects of absolute temperature change on the turnover rates with 95% 
confidence intervals (lines and shading) for assemblages that experienced warming or cooling (color). 
Translucent data points show individual time series with dot size scaled by duration. c) Marginal effects of 
average temperature on the turnover rate’s sensitivity to temperature change for assemblages that are 
warming or cooling (color). Error bars show 95% confidence intervals. Similar plots with downsampling are 
shown in Extended Data Fig. 4b and c, which highlight the uncertainty for freshwater ecosystems. The x- 
and y-axes in a and b have been square-root transformed to facilitate visualization. 
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Fig. 3. Covariates associated with the sensitivity of turnover rates to temperature change in the 
marine and terrestrial realms. Turnover rates were more sensitive to changing temperatures when a) 
environments had less microclimate availability (measured as the standard deviation of temperature within 
a 20 km radius, °C), or b) human impacts were greater, particularly on land (low-to-high index from 0 to 
10). The heavy line is the mean and the shaded area represents the 95% confidence interval. 
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Methods 
Data description 

We examined biodiversity change using the BioTIME database, which is the largest global 
compilation of species assemblage time series (15). We used time series of species composition or 
abundance from 319 individual studies. Because we were interested in analyzing local biodiversity 
change, we followed Blowes et al. (4) and gridded studies with multiple sampling locations and extents 
greater than 71.7 km2 (n = 147 studies) into 96 km2 equal area icosahedral hexagonal grid cells (40). This 
threshold has been previously identified as the mean plus one standard deviation of the spatial extent in 
single-location studies (4). We assigned studies with a single location and those with extents < 71.7 km2 to 
the grid cell in which their center latitude and longitude were located. The sample locations from all other 
studies were assigned to cells based on the latitude and longitude of individual samples. We then collated 
species within each unique study-cell combination for each year (i.e., samples from different studies were 
not combined when they were in the same cell), resulting in assemblage time series within grid cells. This 
approach allowed us to assess the effects of the different environmental drivers at a standardized 
resolution between studies and across realms. 

To minimize sampling effects in our estimates, we first calculated the abundance-based coverage 
(41) of each (annual) sample within each cell-level time series. We then removed all samples with 
coverage less than 0.85. This threshold meant that there was a <15% chance that another sample in any 
given year of one more individual would represent a new species. We also removed time series with fewer 
than five unique taxa or with less than ten individuals. In total, this process yielded 42,255 time series 
distributed among 41,483 locations. Most time series were started in the second half of the 20th century 
and were less than 40 years long, with a median length of 8 years (Extended Data Fig. 1).  

Our final dataset included 3,159 terrestrial; 38,451 marine; and 645 freshwater time series across a 
wide range of taxa, including birds (8,356 time series), mammals (259), fishes (24,334), amphibians and 
reptiles (339), invertebrates (2,577), and plants (285). Individual time series in this database generally 
focused on a single guild of organisms (e.g., birds or fishes). The time series were located across nearly 
the full range of latitudes and longitudes (Fig. 1a), and spanned effectively the full range of changes in 
surface temperatures observed globally (Fig. 1b,c). However, the time series were more densely 
concentrated in the Northern hemisphere and at temperate latitudes (Fig. 1a). 

We calculated dissimilarity between each pair of annual samples within each time series (2). We 
did not include any years compared to themselves (i.e., zero dissimilarity at zero difference in time) 
because doing so introduces a positive bias in temporal turnover rates, particularly for shorter time series. 
Before calculating dissimilarity, we used sample-based rarefaction to standardize the number of samples 
per year within each time series. This procedure helped prevent temporal variation in sampling effort from 
affecting diversity estimates (42). First, we identified the minimum number of samples taken in a year 
within each time series. This minimum was then used to randomly resample each year down to that 
number of samples. We then calculated pairwise Jaccard dissimilarity between each pair of years. We 
repeated this process 199 times for each time series and took the median dissimilarities. We partitioned 
total Jaccard dissimilarity into the components of species replacement and changes in the number of 
species (43, 44). Because the replacement component dominates biodiversity change (4), we focused our 
analysis here on replacement, i.e. the component quantifying species replacement independent of 
changes in species richness.  

In addition, we calculated pairwise Morisita-Horn dissimilarity, which also accounts for changes in 
species abundance and, in particular, is sensitive to changes in the more abundant species, making it less 
vulnerable to under-sampling (45, 46). We then proceeded with the analysis below (see Statistical models 
with and without temperature), using Morisita-Horn dissimilarity in place of the replacement component of 
Jaccard dissimilarity. 
 



 

 

Statistical models with and without temperature 
The rate of change in species composition (temporal turnover rate) is typically measured as the 

slope of dissimilarity vs. time (1, 4, 16). Steeper slopes indicate faster rates of biodiversity change through 
time. However, analysis of these data across many time series poses certain statistical challenges. First, 
dissimilarity is constrained from 0 and 1 but does not have a straightforward measure of sample size as, 
for example, binomial samples do. Continued turnover in species composition for two assemblages leads 
to dissimilarity that asymptotes at one. In addition, the dataset has multiple measures of dissimilarity from 
each time series and multiple time series from some studies, creating pseudoreplication. The time series 
also differ in duration, which affects the variance of their slopes and introduces strong heteroskedasticity 
(Extended Data Fig. 2).  

After testing a set of potential approaches (see Comparison of alternative statistical approaches), 
we chose a generalized linear mixed model (GLMM) with ordered beta errors (47) and a logit link function 
in which dissimilarity (𝐷!,#,$,%) between each pair of annual samples in time series j from study i between 
years s and t was modeled as a function of the number of years elapsed between those samples 
(𝑌𝑒𝑎𝑟𝑠$,%). The logit link helped to account for the non-linear response of dissimilarity to ongoing 
composition change such that dissimilarity could asymptote at one as elapsed years increased towards 
infinity, while the ordered beta errors helped account for the fact that observations were constrained 
between and including 0 and 1. To address pseudoreplication, we included random intercepts (𝛽&,!; 𝛽&,!,#) 
and random slopes for Years (𝛽',!; 𝛽',!,#) for each time series j nested within each study i in all models. The 
intercept represented the predicted dissimilarity of independent samples taken at the same time (zero time 
elapsed), and so captured factors including but not limited to differences in species pool size, sample size, 
sampling effort, sample completeness, and measurement error. We included an interaction between initial 
dissimilarity and elapsed years (𝐷!,#,!(!%: 𝑌𝑒𝑎𝑟𝑠$,%) to account for the fact that initial dissimilarity can 
influence the rate of temporal turnover (48). Initial dissimilarity was the average dissimilarity at the 
minimum elapsed years between samples in a time series. Based on visual inspection of the residuals, we 
also allowed the intercept and precision (𝜙, inverse of dispersion) to differ between realms (terrestrial, 
marine, and freshwater). The baseline model (the “Year” model) was therefore defined by 

 
𝐷!,#,$,%~𝑂𝑟𝑑𝐵𝑒𝑡𝑎(𝜇!,#,$,% , 𝜙& + 𝜙'𝑅𝑒𝑎𝑙𝑚!,#

)*+!(, + 𝜙-𝑅𝑒𝑎𝑙𝑚!,#
.,++,$%+!*/)   Eq. 1 

and 
𝑙𝑜𝑔𝑖𝑡(𝜇!,#,$,%)	~	𝛼&	+𝛼'𝑅𝑒𝑎𝑙𝑚!,#

)*+!(, + 𝛼-𝑅𝑒𝑎𝑙𝑚!,#
.,++,$%+!*/ + 𝛼0𝑌𝑒𝑎𝑟𝑠$,% + 𝛼1𝐷!,#,!(!% + 

+𝛼2𝐷!,#,!(!%𝑌𝑒𝑎𝑟𝑠$,% 	+ 𝛽&,! + 𝛽&,!,# + (𝛽',! + 𝛽',!,#)𝑌𝑒𝑎𝑟𝑠$,% 
with fixed effects 𝛼, random effects for intercept and slope by study ((𝛽&,!; 𝛽',!)~𝑀𝑉𝑁(0, 𝛴$%345)) and by 
time series ((𝛽&,!,#; 𝛽',!,#)~𝑀𝑉𝑁(0, 𝛴%!6,$,+!,$)), and indicator variables (1 if true, 0 if false) for whether each 
time series was marine or terrestrial instead of freshwater (𝑅𝑒𝑎𝑙𝑚!,#

)*+!(,and 𝑅𝑒𝑎𝑙𝑚!,#
.,++,$%+!*/). The 𝛼' 

and 𝛼- terms indicated the difference between the baseline (freshwater) and either marine or terrestrial 
realms, respectively.  

We then implemented more complex models to test specific hypotheses (Table 1). The first more 

complex model (the “Realm ✕ Year” model) tested for different rates of temporal turnover among realms 

by including an interaction between realm and the number of years elapsed between samples (i.e., 

Realm:Years). A larger coefficient for a given realm would indicate a faster rate of turnover compared to 

other realms. We also fit a taxonomic model (the “Taxon ✕ Year” model) that used taxonomic groups in 

place of realm. We used the groupings identified in the BioTIME dataset: plants, fishes, invertebrates, 



 

 

birds, benthos (renamed as “benthic species” to facilitate interpretation), mammals, amphibians, reptiles, 
and multiple taxa (the latter indicating studies that examined more than one group).  

The next model (the “Tchange ✕ Year ✕ Realm” model) tested our core hypothesis that the rate of 

temporal turnover differed for assemblages that had experienced different rates of temperature change, 

and whether this relationship differed between realms. To do this, we extracted all mean annual 

temperatures between and including the start and end years of each biodiversity time series at the 

corresponding latitude and longitude of each biodiversity time series from the CRU TS 4.03 (0.5 x 0.5° 

resolution) data on land and from the ERSST v5 (2 x 2° resolution, surface temperature) dataset in the 

ocean (49, 50). We calculated the average rate of temperature change for each biodiversity time series as 
the slope of temperature vs. year. We used the Theil-Sen slope, which is a standard non-parametric 
method with low sensitivity to outliers or start year effects (51, 52). To reflect the hypothesis that the rate of 
temporal turnover was associated with the rate of temperature change, the statistical model included an 
interaction between the magnitude (absolute value) of the temperature change rate (Tchange, measured in 
degrees Celsius per year), and the elapsed number of years between samples. A positive interaction 
coefficient would indicate faster rates of turnover with faster temperature change. We included the sign of 
temperature change (sign) so that responses to warming and cooling would be estimated separately. If we 
had instead used the raw rate of temperature change (negative for cooling, positive for warming), strong 
cooling responses would have counterintuitively been constrained to be the opposite of strong warming 
responses, with intermediate responses to no temperature change. We estimated the Tchange relationship 
independently for each realm because evidence suggests that rates of range shift and species additions 
and losses in response to temperature change differ among realms (12–14). Our full Tchange ✕ Year ✕ 

Realm model was therefore the baseline Year model (Eq. 1) with added terms for sign ✕ Tchange ✕ Years ✕ 
Realm, in which sign and Realm were factors with two and three levels, respectively. We centered Tchange 
and standardized it to a variance of one to facilitate model fitting. Our null hypothesis in this case was that 
dissimilarity was associated with elapsed number of years, realm, initial dissimilarity, and time series 
identity (see previous paragraphs for model structure descriptions), but that turnover rate was not 
consistently associated with the rate of temperature change. We tested the hypothesis by comparing the 
Tchange ✕ Year ✕ Realm model to a model with the interactions between temperature change and Years 

removed. We called the latter the (Tchange + Year) ✕ Realm model. 
The fact that lifespans, thermal niche breadths, and biological rates differ consistently across 

temperature gradients suggests that the temperature change response may depend on the average 
temperature (11, 20, 53–55). To address this, we included an interaction between temperature change 
and average temperature (the “Tchange ✕ Tave ✕ Year ✕ Realm” model). We measured average temperature 

(Tave, measured in degrees Celsius) as the average across all years between and including the first and 
last years in each biodiversity time series. Annual temperatures were obtained as described in the 
previous paragraph. The Tchange ✕ Tave ✕ Year ✕ Realm model was therefore the Tchange ✕ Year ✕ Realm 

model (previous paragraph) with added terms for sign ✕ Tchange ✕ Tave ✕ Years ✕ Realm. We centered Tave 
and standardized it to a variance of one to facilitate model fitting. We tested the influence of Tave on the 



 

 

Tchange response by comparing the Tchange ✕ Tave ✕ Year ✕ Realm model to a model with the interactions 

between Tchange and Tave removed. We called the latter the (Tchange + Tave) ✕ Year ✕ Realm model. 
We also fit a model in which we used the absolute value of latitude in place of average 

temperature, to test whether distance from the equator was a simpler explanation than average 
temperature. Additionally, we simulated turnover in communities with higher or lower species richness to 
test whether higher richness at higher temperatures could explain a Tave effect; we found that it did not. 

Sample sizes for Jaccard dissimilarity models were 1,134,799 pairwise dissimilarities from 40,332 
time series in 304 studies that had temperature and environmental covariate data available. Slightly fewer 
Morisita-Horn dissimilarities were available because time series had to report abundance, not just species 
occurrence (1,104,567 dissimilarities from 39,227 time series in 264 studies). We fit models in the 
glmmTMB package v. 1.1.8 (56) in R version 4.3.2 (57) and evaluated model assumptions with the 
DHARMa package v. 0.4.6 (58). 

To display model predictions, we plotted estimates of temporal turnover rates (change in 
dissimilarity/year) or estimates of sensitivity to temperature change (change in turnover rate per change in 
rate of temperature change) instead of the pairwise dissimilarities between years, since turnover rate and 
sensitivity were the measures of interest. To carry the uncertainty in model predictions through to 
uncertainty in the predicted slopes of dissimilarity vs. year, we sampled from the uncertainty in each point 
prediction of dissimilarity using Gaussian distributions, fit linear estimates of temporal turnover, and 
repeated the process 1000 times to generate a mean and standard error of turnover rates. We repeated 
the process to calculate uncertainty of sensitivity. We report 95% confidence intervals as 1.96 times the 
standard deviations across resampling trials for both metrics. To calculate the maximum turnover rate, we 
trimmed the Tchange ✕ Year ✕ Realm model predictions of turnover rate to the range of observed 

temperature change rates within each realm and identified the maximum rate in any realm. 
We compared models with Akaike's Information Criterion (AIC), which assigns lower AIC to more 

parsimonious models (i.e., higher explanatory power without over-fitting) (59). We also conducted two-
sided likelihood ratio tests of nested models to further gauge support for specific hypotheses. Given the 
complexity of our dataset, we also used reshuffling to test the statistical significance of the effect of Tchange 
on turnover rate by reshuffling Tchange across time series and refitting the Tchange ✕ Year ✕ Realm model. 

We repeated this process 1000 times to create a null distribution of sign:Tchange:Realm:Years coefficients in 
which Tchange was not associated with turnover rates. We then compared the six observed coefficients (one 
each for terrestrial, marine, and freshwater warming and cooling) against the corresponding null 
distribution and calculated a reshuffling p-value as (x+1)/(n+1), where x was the number of reshuffles with 
a coefficient greater or equal to the observed value, and n was the number of reshuffles (60). 

To more fully examine uncertainty, we also downsampled the dissimilarities within each time 
series. Time series of length y contained y(y-1)/2 pairwise dissimilarities, which were not all independent 
because multiple dissimilarities relied on the same observation of species composition. We therefore 
downsampled the dissimilarity time series to y dissimilarities, refit the Tchange ✕ Year ✕ Realm model, 

extracted the six marginal effects of Tchange (for each of terrestrial, marine, and freshwater warming and 

cooling), and repeated the process 1000 times. We also refit the Tchange ✕ Tave ✕ Year ✕ Realm model, 

extracted the sensitivity to temperature change across Tave levels, and repeated the process 1000 times. 
Theory suggests that the rate of dissimilarity can depend on whether species are being gained or 

lost and that the magnitude of this effect depends on the initial dissimilarity between assemblages (48). To 
test whether this process might affect our results, we calculated the relative proportion of species gains 



 

 

and losses (propGL) in each pairwise dissimilarity as the log10 ratio of the number of gains divided by the 
number of losses. We added one to the numerator and denominator to avoid infinite values. Data were 
available for 1,104,567 dissimilarities in 39,277 time series in 264 studies. We then refit our models while 
including a term for the interaction of initial dissimilarity, gains and losses, and the duration between 
observations (Dinit:propGL:Years). We included a random effect only for study because models that 

additionally had a random effect for time series nested within study had difficulty converging. The results 

(Extended Data Table 3) similarly supported a relationship of turnover rate to the rate of temperature 

change, and also supported an interaction between average temperature and the rate of temperature 

change. As another sensitivity analysis, we explored fitting the models to only time series ≥ 7 years in 
duration and found equivalent results to those reported in the main manuscript (Extended Data Table 3). 
 
Statistical models with environmental covariates 

Theory and empirical patterns suggest that the impacts of temperature change on biodiversity 
change depend on the environmental context (13, 61–63). We therefore tested whether environmental 
covariates modified the effects of temperature change by adding the interaction between the covariate 
(cov) and the temperature change effect. The covariate model was therefore the Tchange ✕ Tave ✕ Year ✕ 

Realm model with added terms cov ✕ Tchange ✕ Realm ✕ Years. As covariates, we tested microclimate 
variability and human impact based on hypotheses for their strong importance for biodiversity change (13, 
61). We measured microclimate variability as the spatial standard deviation of time-averaged surface 
temperature across all grid cells within 20 km of the central latitude and longitude of each assemblage 
time series. We used temperature data from Worldclim 2.0 on land (30 arcsec resolution, ~1 km) and Bio-
ORACLE 2.2 in the ocean (5 arcmin resolution, ~9 km) (64, 65) to calculate microclimate variability. Our 
index of human impact was the Bowler et al. (66) aggregate across measures of land conversion, fishing 
activities, human population density, pollution, and potential for alien species invasion, thereby capturing 
the multiplicity of avenues by which humans modify the landscape and seascape. We excluded climate 
change indices from our metric of human impact to avoid double-counting. We standardized each 
covariate to a mean of zero and variance of one to facilitate model fitting. For AIC and likelihood ratio 
tests, we compared the covariate models against the Year model and against the Tchange ✕ Tave ✕ Year ✕ 

Realm model. We fit models to the 39,689 time series in terrestrial and marine realms and excluded 

freshwater given the much smaller dataset available for this latter realm. 
 

Comparison of alternative statistical approaches 
 The slopes of species compositional dissimilarity and temperature time series both contained 
strong heteroskedasticity because longer-duration time series had smaller variances (Extended Data Fig. 
2b, c). The magnitudes of temporal turnover also declined with time series duration (Extended Data Fig. 
2b). This heteroskedasticity is a general characteristic when combining time series of different durations, 
and these patterns also appeared in time series composed of Gaussian white noise (Extended Data Fig. 
2d). Since heteroskedasticity can violate statistical testing assumptions and inflate false positive rates, we 
tested different statistical approaches using simulated datasets to identify methods with acceptably low 
false positive rates. 
 The test was constructed by simulating datasets analogous to time series of species dissimilarities 
at increasing temporal distances, which were paired with time series of an environmental covariate like 
temperature. The first time series of each pair consisted of dissimilarities that increased with temporal 



 

 

distance and explicitly included pseudoreplication and non-linearity of species composition turnover (i.e., 
to mimic the downsampled species dissimilarities from empirical time series). The second time series 
represented an uncorrelated environmental explanatory variable (such as temperature) and was defined 
by Gaussian white noise with mean of 0 and standard deviation of 1. This second time series had the 
same duration as the dissimilarity time series. For each dataset, we simulated 1000 pairs of time series—
which we pooled into 50 studies with 20 time series pairs each—to capture the hierarchical nature of our 
empirical dataset (i.e. pseudoreplication within studies and within time series). 

Each element of the first time series in each pair (i.e. the response variable) was generated 
following:  
 

𝑙𝑜𝑔𝑖𝑡(𝑦!#%) = 𝐷. 𝑖𝑛𝑖𝑡!# + (𝛽! + 𝛽!# − 0.01 × 𝐷. 𝑖𝑛𝑖𝑡!#) × 𝑡 + 𝜀!#%	    Eq. 2 
 
where yijt represents species composition dissimilarity in time series j from study i at time t; D.initij 
represents the initial dissimilarity and is therefore the intercept, uniformly sampled for each time series 
between 0 and 0.8; 𝛽! is the slope associated with study i, uniformly distributed between 0 and 0.03; 𝛽!# is 
the time series-specific slope uniformly distributed between 0 and 0.005; and 𝜀!#% represents a Gaussian 
white noise of mean 0 and standard deviation 0.1. The equation also included a term reducing the 
dissimilarity slope with time by a small fraction of the value of the original dissimilarity (𝐷. 𝑖𝑛𝑖𝑡!#) to 
represent the potential influence of this original dissimilarity on the rate of change (48). We used the 
inverse-logit transformation to constrain the simulated dissimilarity values to the interval [0, 1] and to 
introduce non-linearity. 
 In addition, we evaluated the effects of time series duration in our simulated datasets. Specifically, 
the simulated datasets differed in whether all the time series pairs were of the same duration (and 
therefore did not suffer from heteroskedasticity) or whether the durations differed among pairs, as in many 
ecological syntheses of biodiversity change. For the equal-duration datasets, we generated time series 
that were all 10 years long. For the variable-duration datasets, we generated a variety of small and large 
ranges of durations by generating time series between 3 and 12 (small range), 3 and 27, 3 and 52, or 3 
and 102 years (large range). Durations of individual pairs of time series within a dataset were evenly 
distributed between the minimum and maximum. 

We then fit a series of statistical models to each dataset to test for an association between the 
slopes of the time series in each pair under a null model of no correlation. This approach was analogous to 
testing for a correlation between temporal turnover rates (response) and the rate of temperature change 
(explanatory variable). The first statistical model tested for a non-zero Pearson product moment correlation 
between the slopes of the response and explanatory variables. We calculated the slope of each time 
series with a linear regression. We then used the absolute value of the explanatory time series slope to 
represent the magnitude of a temperature change. 

The second statistical approach was a meta-analytical model that weighted the response values by 
their uncertainty, similar to those used in previous ecological time series syntheses (14). The statistical 
model fitted the slope of the dissimilarity time series (estimated previously using a linear regression) as a 
function of the slope of the explanatory variable (also estimated previously using a linear regression) in 
glmmTMB (56) with a random intercept by study. To downweight more uncertain slopes, we specified that 
dispersion in the mixed effects model was related to the standard error of the response variable slope. 

The third approach was a one-stage mixed model fit directly to the response variable values, rather 
than to slopes of the response variable time series. We tested the hypothesis that time series with stronger 
trends in the explanatory variable had faster rates of change in dissimilarity (i.e., more positive slopes). 
The model therefore included time, the absolute value of the explanatory variable slope, and an interaction 
between the explanatory variable slope and time. We tested the hypothesis by examining whether the 



 

 

interaction between the explanatory variable slope and time was statistically significant. To account for 
initial dissimilarity, we also included terms for initial dissimilarity and its interaction with time. Because each 
time series had multiple response values and time series were nested within studies, we also included 
random intercepts and slopes for time series nested within studies to account for this pseudoreplication. 
The model was fit in glmmTMB with Gaussian errors. These errors may not be appropriate because the 
response time series was constrained to the interval [0, 1].  

Finally, we fit a one-stage generalized linear mixed model with ordered beta errors in glmmTMB 
(i.e., a GLMM). The fixed and random effects were the same as the previous approach, and the beta error 
with logit link term accounted for the fact that the response time series was constrained to [0, 1]. 

We simulated 600 datasets (each with 1000 pairs of time series) for each kind of duration range to 
examine false-positive rates. A false positive was counted if a given statistical test on a given dataset 
reported p < 0.05. Since the time series pairs were simulated to be uncorrelated, we would expect 5% of 
the datasets to produce p < 0.05 under the null hypothesis that we simulated. Values substantially higher 
than this would be of concern. 

All methods had low false positive rates when datasets were composed of time series of all the 
same length (Extended Data Fig. 2e). The only method that retained low false positive rates with datasets 
composed of different-length time series was the GLMM with beta errors (Extended Data Fig. 2e). We 
used this latter method for all analyses. 
 
Data availability 

Species composition data are available from BioTIME (https://biotime.st-andrews.ac.uk/), human 
impact data from Bowler et al. 2020 (pan310071-sup-0003-Supinfo2.7z from 
https://doi.org/10.1002/pan3.10071), sea surface temperature from ERSST v5 
(ftp://ftp.cdc.noaa.gov/Datasets/noaa.ersst.v5/sst.mnmean.nc), land surface temperature from CRU TS 
v.4.03 (http://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.03/data/cru_ts4.03.1901.2018.tmp.dat.nc), 
terrestrial microclimate data from WorldClim 2.0 (wc2.0_bio_30s_01.tif from https://worldclim.org), and 
marine microclimate data from Bio-ORACLE 2.2 (https://www.bio-oracle.org/). Please see 
https://doi.org/10.5281/zenodo.13905417 for additional details. 
 
Code availability 

Scripts are available from https://doi.org/10.5281/zenodo.13905417.  
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Extended Data Figures and Tables 

 
Extended Data Figure 1. Characteristics of the assemblage time series. a) Start year. b) End year. c) 
Number of years between the start and end year. d) Number of annual samples in each time series.  
 
 
 
 
 
 
 



 

 

Extended Data Figure 2. The effect of time series duration on turnover rates (change in 
dissimilarity/yr) and the statistical challenges when time series are compared. a) Duration affects 
turnover rates partly because there is a 0-1 constraint on dissimilarity, such that longer duration time 
series (blue) are constrained to a shallower slope than shorter duration time series (green). b) Turnover 
rates show strong heteroskedasticity with higher variance and faster rates among shorter time series. The 
red line shows mean turnover rate estimated from LOESS smoothing. c) Temperature changes (°C/yr) 
also showed strong heteroskedasticity with higher variance among shorter time series. The red line shows 
a fit from LOESS smoothing. d) Slopes calculated from Gaussian white noise time series also show strong 
heteroskedasticity with higher variance among shorter time series. The durations of the white noise time 
series matched the durations in the species composition dataset. The red line shows a fit from LOESS 
smoothing. e) A comparison of Type I (false positive) error rates shows that one-stage (i.e. fit directly to 
dissimilarities) generalized linear mixed models (GLMMs) with ordered beta errors have an acceptably low 
false positive rate when time series of different durations are analyzed together, while other common 
analytical methods (Pearson correlations of time series slopes, meta-analysis of time series slopes, or 
one-stage mixed effect models with Gaussian errors fit to time series data) have unacceptably high false 
positive rates if time series differ in duration (range of durations > 0). All methods have low false positive 
rates when time series are all the same duration (range of durations = 0). Data are presented as means 
with error bars for the 95% binomial confidence bounds. f) Example of a time series with a negative 
turnover rate. Data are demersal marine taxa from the Northeast Fisheries Science Center Bottom Trawl 
Survey. Beta regression trend line is shown with shading for +/- one standard error. 
 
 
 
 



 

 

Extended Data Figure 3. The statistical approach was implemented via one-stage generalized linear 
mixed models (GLMMs) in which the response variable was species composition dissimilarity 
among years. a) The simplest model included the relationship between dissimilarity and temporal 
distance among observations so that, for example, dissimilarity could increase with time. The slope of this 
relationship is the turnover rate. Random intercepts and slopes helped account for variation among studies 
and time series (not shown). b) We tested the hypothesis that faster rates of temperature change (Tchange) 
were associated with faster accumulation of dissimilarity through time (compare red vs. blue line). This 
hypothesis was statistically tested as an interaction (Tchange ✕ Years). c) We additionally tested the 
hypothesis that the influence of temperature change on the turnover rate depended on average baseline 
temperatures. For example, the slope of dissimilarity over time could be steeper in areas with hotter 
average temperatures and fast rates of temperature change than in areas with colder average 
temperatures and fast rates of temperature change (compare dashed red vs. solid red line). Statistically, 
this was tested as a three-way interaction (Tchange ✕ Tave ✕ Years). d) Turnover rates as a function of 
temperature change rates, showing an increase in turnover rate with increasing rates of temperature 
change (i.e., the same relationship as panel b but summarized as rates). The slope of this relationship was 
termed sensitivity (Δturnover rate/Δtemperature change rate). e) Turnover rates as a function of 
temperature change rates and average baseline temperatures, showing a faster increase in turnover rate 
with temperature change at hotter average baseline temperatures (i.e., summarizing the same relationship 
as panel c). f) Sensitivity as a function of average temperatures, showing an increase in sensitivity at 
hotter average temperatures (i.e., summarizing the same relationship as in panels c and e). The x-axis 
could also be other environmental covariates, such as microclimates or non-climate human impacts (as in 
Figure 3). 
 
 



 

 

Extended Data Figure 4. Association of turnover rate with taxonomic group and uncertainty of the 
association with temperature change and average temperature. a) Turnover rate [proportion of 
species per year] for studies organized by taxonomic group. Dashed lines are the averages across studies 
within taxa, and the top horizontal lines indicate the 95% confidence intervals on the averages. The x- and 
y-axes have been square-root transformed to facilitate visualization. b) Uncertainty in the marginal effects 
of temperature change on the turnover rate, calculated by downsampling each time series of dissimilarities 
(see Methods). Plot shows the individual downsampled effects (thin green lines), the average across 1000 
downsampling trials (yellow line), the 95% confidence interval from downsampling (green shading), and 
the mean marginal effects from the full dataset with 95% confidence intervals (black line and shading). c) 
Uncertainty in the marginal effects of average temperature on the sensitivity of turnover rate to 
temperature change, calculated by downsampling each time series of dissimilarities (see Methods). Plot 
shows the individual downsampled effects (thin lines), the average across 1000 downsampling trials (thick 
lines), and the 95% confidence interval from downsampling (vertical error bars) for warming (orange) and 
cooling (blue). The mean marginal effects from the full dataset with 95% confidence intervals are also 
shown (black lines and error bars). 



 

 

 

Extended Data Figure 5. Turnover rate model interactions. a) Interaction of Tchange (x-axis) with Tave (y-
axis) from the Tchange ✕ Tave ✕ Year ✕ Realm model (Table 1). Two average temperature levels (0 °C and 

25 °C) from this interaction are plotted in Fig. 2c. b) Marginal effects of temperature change on the 

turnover rate (lines) as predicted from the best environmental interaction model identified by AIC 

(Extended Data Table 5). The model included effects of microclimate availability (colors). 
 
 
 
 
 
 
 
 
 



 

 

Extended Data Table 1. Random effect standard deviations and correlations for the Tchange ✕ Tave ✕ Year 

✕ Realm model (see Table 1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Extended Data Table 2. Fixed effect terms for the Tchange ✕ Tave ✕ Year ✕ Realm model (see Table 1). Z 
values and p-values are from Wald tests. The marine, terrestrial, and warming effects are differences from 
the baseline values (Freshwater cooling). 
 
 
 
 
 



 

 

Extended Data Table 3. As for Table 1, but models either 1) included an additional term for the interaction 
of initial dissimilarity (Dinit), the proportion of species gains vs. losses (propGL), and the duration between 
observations (Years), and only included random effects for study, or 2) were fit to only time series with at 
least 7 years of data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Extended Data Table 4. Comparison of models of temporal turnover calculated with abundance-based 
Morisita-Horn dissimilarities with or without the temperature change (Tchange) and average temperature 
(Tave). Details as in Table 1. The most parsimonious model (highlighted in bold) included both Tchange and 
Tave. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Extended Data Table 5. Comparison of models of temporal turnover with or without environmental 
covariates. Models with microclimate variability (#3, Micro) or human impact (#4, Human) were favored 
over the simplest Year model (#1) with dissimilarity as a function of year, shown as negative ΔAICnull and 
were also favored over a model with only temperature (#2), shown as negative ΔAICtemp. Columns show 
the degrees of freedom (df), Akaike's Information Criterion (AIC) compared to the AIC of the model with 
only temperature (ΔAICtemp), and AIC compared to the null model (ΔAICnull). The favored model is shown in 
bold. 
 




