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Abstract

Given a set of assets, a numeraire portfolio (Long, 1990) is a self-financing portfolio
with positive value and whose return process is a stochastic discount factors process.
By relaxing the self-financing constraint, we define the generalized numeraire portfolios,
and state necessary and sufficient conditions for their existence. We show that a set of
assets admits generalized numeraire portfolios if and only if it is arbitrage free and at
least one trading strategy has positive value. We also show that generalized numeraire
portfolios are solutions to the optimal growth problem under the weaker constraint that
the self-financing condition holds in conditional discounted expected value. Since the
numeraire portfolio is unique (up to a scale factor), it generates only one admissible
stochastic discount factor process. Generalized numeraire portfolios generate instead an
infinite subset of, and, under some conditions, all the admissible one-period stochastic
discount factors. Finally, we propose some interesting tests that exploit the notion of

generalized numeraire portfolios and provide preliminary empirical evidence.
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1 Introduction

Since the work of Harrison and Kreps (1979), a considerable amount of research in asset pricing
has been devoted to the characterization of stochastic discount factors that can be used to price
securities in arbitrage-free markets.

In one line of work, researchers have attempted to impose as little structure as possible to
the analysis in order to identify the set of admissible stochastic discount factors for a given
set of assets. For example, in Hansen and Jagannathan (1991) admissibility is defined with
respect to the first two moments of the discount factors. In Gallant, Hansen, and Tauchen
(1990) and Bekaert and Liu (1999) the same concept is applied in a conditional framework.

As an alternative, researchers have imposed more assumptions on the economic model in
an attempt to identify specific stochastic discount factors. The work of Long (1990) on the
numeraire portfolio is one interesting example in this area. Long calls numeraire portfolio
a self-financing trading strategy with positive value such that, when prices and cash flows
are expressed in its units, the current net-of-cash-flow prices are the best predictors of the
next period cum-cashflow prices. Long also shows that the numeraire portfolio corresponds
to the self-financing strategy with positive value and highest continuously compounded return
over a given time interval. For this reason, the numeraire portfolio is also referred to as
the optimal-growth portfolio. Due to its appealing economic interpretation, the numeraire
portfolio has been further analyzed by Artzner(1995), Johnson (1996), Bajeux-Besnainou and
Portait (1997), Dijkstra (1998), Hentschel, Kang and Long (1999), Bansal (1997), and Bansal
and Lehman (1998).

In this paper, we propose an extension of Long’s results by introducing what we call gener-
alized numeraire portfolios. In particular, we show that a given set of assets admits generalized
numeraire portfolios if and only if: (a) it is free of arbitrage opportunities, and (b) it allows to
manage at least one trading strategy with strictly positive value. Compared to the numeraire
portfolio, our portfolios represent an important generalization for a variety of reasons. First,
the numeraire portfolio is only a special case of generalized numeraire portfolio, because the
strategy that it generates is required to be self-financing. In addition, the conditions for its
existence are stronger then those for the existence of generalized numeraire portfolios: it is pos-

sible to produce robust examples of arbitrage-free securities markets for which the generalized



numeraire portfolios are well defined but the numeraire portfolio is not. Finally, the numeraire
portfolio is unique up to a scale factor, so that the reciprocals of its per-period gross returns
generate a unique one-period stochastic discount factor process. The generalized numeraire
portfolios, instead, generate all the one-period stochastic discount factors that characterize
no-arbitrage prior to the terminal period. This fact is particularly important when the securi-
ties market is incomplete over some period prior to the last one, so that, under no-arbitrage,
the set of one-period stochastic discount factor processes is infinite. In this case, the general-
ized numeraire portfolios track either a non trivial subset, or under some further conditions,
all elements of that set. By contrast, the numeraire portfolio tracks only one element of the
set of one-period stochastic discount factor processes. Hence generalized numeraire portfolios
provide a far richer characterization of the information in asset prices.

For empirical purposes, the (generalized) numeraire portfolio approach provides a very
intuitive characterization of stochastic discount factors as the inverse of the gross price appre-
ciation rate of the numeraire portfolios. We derive several empirical implications of the theory
and describe how to estimate generalized numeraire portfolios. We implement our approach on
US decile portfolios and show that while both the usual market index proxies and fixed weight
portfolios estimates of Long’s numeraire portfolio fail to price all decile portfolios, the gener-
alized numeraire extension of these portfolios do so. Although preliminary in nature, these
results suggests that the generalized numeraire portfolio approach may provide an attractive
alternative to empirically characterize admissible stochastic discount factors.

The paper is structured as follows. In Section 2, we model a multiperiod, finite horizon
securities market in which assets trade at each date. We also review the notion of one-period
stochastic discount factor processes, and relate them to the notion of no-arbitrage. Section
3 contains the core of the theoretical contribution of the paper. We define the generalized
numeraire portfolios, analyze the links between generalized numeraire portfolios and one-period
stochastic discount factors processes, and present necessary and sufficient conditions for their
existence. Finally, we explain their relation with an extended version of the optimal growth
problem. In Section 4, we discuss the main testable implications of our theoretical results.

Section 5 presents some preliminary empirical evidence. Section 6 concludes the paper.



2 Assumptions and notation

We consider a frictionless securities market in which J assets are traded over the investment
horizon 7 = {0,1,...,7}. We denote by d; (t) the cashflow distributed by asset j at date
t, by S;(t) the date ¢ price of asset j net of the current cashflow, and regard S;(¢) and
d; (t) as random variables with a finite, but otherwise arbitrary, number of possible outcomes.
Without loss of generality, we impose that the assets distribute no cashflow at date 0, and
a liquidating one at date T, i.e., d; (0) = S;(T) = 0. At each date ¢, the investors share a
common information set, P;, constituted by all the histories of prices and cash flows’ outcomes
up to t, and agree on the probability measure, P, that governs the occurrence of the events in
Pr.

Our definition of asset is quite general, and can be specialized to fit the basic features
of most securities commonly traded in actual financial markets. For example, if asset j is a
share of common stock, we interpret S; (t) as the ex-dividend price, d; (t) as the dividend,
and impose d; (t) > 0 for all ¢. If asset j is instead a unit zero-coupon bond with maturity
t', we interpret S; (¢) as the bond price and let d; (t) = 0 for all ¢t # ¢/, and d; (f') = 1. As
a third example, suppose that asset j is a marked-to-market futures position; in this case, we
interpret S; () as the value of the position, d; (¢) as the margin generated by marking the
position to market, and impose S; (t) = 0 for all ¢,! and d; (¢t) = f(t) — f(¢t — 1), with f(¢) the
date t futures price. Finally, if asset j is a Furopean call option with maturity 7" and strike
K on asset i, we interpret S; (t) as the call premium and let d; (¢) =0 for all t < T — 1, and
d; (T) = max (d;(T) — K,0).

We describe intertemporal trading by means of sequences 6 = {6 (t) ;[;01 of J-dimensional
random variables, that is 6 (t) = {61 (¢),602(t),...,0;(t)}, where 6, (t) represents the position
(in number of units) taken in assets j at date ¢, and liquidated at date ¢ + 1. We call such 6's
dynamic trading strategies, and restrict 6; (t) to depend on information in P, only.

We denote by Vj (t) the date t value of a dynamic trading strategy, defined as the cost of

establishing the positions in the J assets at their net-of-cashflow prices, if ¢t precedes the last

'"We disregard initial and maintenance margins since we assume frictionless trading.



trading date, and, at T', as the payoff from the final liquidation of #. Therefore:

o(t) - S(t) t<T
Vo (t) = (1)
OT —1)-d(T) t=T

In what follows, we refer to the sequence Vy = {Vj (t)}tTZO as to the value process of 6.

At date ¢, a dynamic trading strategy produces a cashflow xy (), equal to the difference
between the resources obtained from liquidating the positions taken at t—1 at the cum-cashflow
prices S(t)+d(t), and the cost to establish the new positions at the net-of-cashflow prices S(t).
The cashflow g (¢) is therefore related to the value Vj (t) as follows:

—V5(0) t=0
zy (1) = Ot —1)-[S(t)+dt)])—Ve(t) 0<t<T (2)
Vo (T) t="T

Henceforth, we call the sequence xy = {xy (t)},_, the cashflow process of 6.

The basic economic assumption underlying our results is the absence of arbitrage opportu-
nities, a minimal requirement for the existence of equilibrium in a frictionless securities market
populated by non-satiated investors. In our framework, a dynamic trading strategy 6 gives
rise to an arbitrage opportunity when it generates a cashflow process non-negative at all dates,

and positive with positive probability at some date, that is
P(zg(t)>0)=1 for all t
P(zg(t)>0)>0  for somet

Absence of arbitrage opportunities at the given level of prices and cash flows can be charac-

terized in terms of stochastic discount factors processes, defined as follows.

Definition 1 A stochastic discount factors (SDFs) process for a set of assets is a sequence
m = {m(t)};;r:1 of random wvariables that are strictly positive, depend only on information in

P, and satisfy

Sj(t =1) = E{m () [5; (t) +d; ()] | Pea},  for all jit (3)

The sense in which the SDFs processes characterize no-arbitrage is that a set of assets is

arbitrage-free if, and only if, it admits SDFs processes (see, e.g., Duffie, 1996).

5



The SDFs processes, moreover, constitute the tool for pricing under no-arbitrage the in-
tertemporal cash flows generated by trading in a set of assets. Given a dynamic trading
strategy 6, if we multiply both sides of (3) by (¢t — 1) and exploit the definitions of value and

cashflow processes, we obtain

E{m (t) [Vo (t) +zo ()] | P} t<T
Vot —1) = (4)
FE [m (T) Ty (T) | ,PTfl] t="1T
Next, we apply (4) in an iterative fashion, make use of the law of iterated expectation, and let

M (t —1,7) = [[ m(l) represent the multiperiod stochastic discount factors derived from the

SDF's process mi to obtain

Vo (t—1) ZMt—lfxg()‘Ptll, for all t (5)

Under no-arbitrage, therefore, the date ¢t — 1 value of a dynamic trading strategy 6 is equal to
the conditional expected present value of the cash flows generated by 6 after t — 1, cash flows

discounted back to ¢t — 1 with the multiperiod stochastic discount factors M (t — 1, 7).

3 Generalized numeraire portfolios
To introduce the pivotal concept of this paper, we denote by O, the set collecting all the
dynamic trading strategies whose value process is certainly strictly positive, that is
O, ={0|P(Vy(t)>0)=1, for all t}
We define the generalized numeraire portfolios as follows

Definition 2 A generalized numeraire portfolio for a set of assets is a dynamic trading strategy
Oan € O, such that
Sit-1 [sj<t>+dj<t>
V9GN (t - 1) VGGN (t)

The value of a generalized numeraire portfolio is a unit of account under which the net-of-

\P} . Joralljit (6)

cashflow prices at date t — 1 are the best predictors of the cum-cashflow prices at t. Applying
the law of iterated expectations to (6), we see that

S;(t—1) ~ d;(7)

‘/GGN(t_l):E %GN()

Py 1] ,  forall j,t



When prices and cash flows are expressed in units of the value of a generalized numeraire
portfolio, therefore, the ex-dividend price of each asset is equal to the sum of its expected
future cash flows.

The following result states necessary and sufficient conditions for a set of assets to admit

generalized numeraire portfolios. All proofs are in the appendix.

Theorem 1 A set of assets admits generalized numeraire portfolios if, and only if, it is

arbitrage-free and satisfies ©, # (.

The existence of generalized numeraire portfolios, therefore, is completely characterized by
only two conditions. The first is the no arbitrage condition, that we have discussed in the
previous section. The second is the existence of at least one trading strategy whose value
process is strictly positive with probability one. This condition guarantees that the value of

at least one portfolio can serve as a bona fide numeraire.

3.1 Generalized numeraire portfolios as SDF's processes

The generalized numeraire portfolios are closely related to the SDFs processes. Observe indeed

that (6) is equivalent to

5t~ 1) =E{ [VV(—t@l)] 1S, () + d; (1)

Pt—l} , Jorall jt (6)

Compare then (6’) with Definition 1 in the previous section, to realize that a generalized
numeraire portfolio fgxn generates the SDF's process my,,, defined as follows:
~\T
me — ‘/GGN (t> (7)
o V9GN (t - 1) =1
To give a financial interpretation to my,,, we exploit the definition of value in (1), and the

relation between value and cashflow in (2), to see that

Oan (t—1) - [S(t) +d(t)] Ty (1)
N0 bon(t-1) S(-1) fon(-1)-5¢-1 '~ 8
Viow 0 =1) | Gon(T = 1) - d(T) - (®)

ban(T —1) - S(T — 1)



The components of the SDFs process my,,, generated by gy via (7) are then the reciprocals
of the gross returns on fgy from ¢ — 1 to t, net of the cashflow yield #% for the
periods before the last.

All marketed cash flows can therefore be priced using the gross returns on a generalized
numeraire portfolio. Recall indeed from (5) that the no-arbitrage value of a trading strategy
can be computed from its generated cashflow using the multiperiod stochastic discount factors
M (t —1,7) derived from any SDFs process m. Given a generalized numeraire portfolios
fcn, we can then plug in (5) the multiperiod stochastic discount factors My, (t —1,7) =
1—1:[t [V;Zi—]gl(fl)l)} B derived from my,,,. From this standpoint, the date ¢t — 1 value of a dynamic
trading strategy is the conditional expected present value of its future cash flows, with each
date 7 cashflow discounted back to ¢t —1 at the (7 — ¢+ 1)—periods rate obtained compounding
the one-period gross returns on 6y (net of the cashflow yields, before the last period).

At this point, the following questions arise: do the generalized numeraire portfolios generate
all the SDF's processes, that is, do we obtain all the SDF's processes by letting 0y vary in
(7)? Or, instead, the SDFs processes that can be represented as the reciprocals of the gross
returns, net of the cashflow yield before the last period, on a generalized numeraire portfolio
are just a subset of the entire set of SDF's processes? And, if so, what are the properties that
characterize this subset?

To answer, we let M denote the entire set of SDFs processes, and Mgy the set of all SDFs

processes generated via (7), that is

Voon (1) |

Men = {m e M ‘ m(t) = magy (t) = [Ve = 1)} Vt, for some HGN} 9)

We define then the following subset M of M:

Mrp = {m eM | m(T) = {%} ! for some 9} (10)

The only restriction imposed on the elements of My is that their last component be the recip-
rocal of the gross return on some dynamic trading strategy. This restriction, however, is quite
tight, since it implies that all the SDF's processes in Mt have the same last component. The
reason is that all dynamic trading strategies such that the reciprocal of their last period gross

return is a date T' stochastic discount factor (hence, in particular, all generalized numeraire
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portfolios) have the same gross return from 7' — 1 to 7.2

We characterize now the relationships among the sets M, M7 and Mgy. The comparison
of M and Mgy is based on the notion of complete markets at date T. Specifically, we say
that markets are complete at date T" if any payoff x depending only on information in Pr is
marketed at date T'— 1, i.e. x = 0(T — 1) - d(T') for some asset allocation §(T" — 1) depending

only on information in Pr_;.

Theorem 2 If a set of assets satisfies O, # 0, then Mgy = My, that is, for any SDFs

process m € M there exists a generalized numeraire portfolio Oqn such that

Vien 1) 17
Voo (E= 1) ., forallt

) = o (8= |
If ©, # 0 and markets are complete at date T', moreover, then Mgy = M, that is all the

SDF's processes can be recovered by letting Ogn vary in (7).

Theorem 2 supplies a detailed answer to the questions concerning the relationships among M,
M and Mgy. First, it shows that when the generalized numeraire portfolios are well defined,
they span via (7) a set of SDFs processes that need to satisfy only one condition: their last
component must be the reciprocal of the gross return on some dynamic trading strategy. This
can be rephrased as follows: if the last component of an SDFs process is the reciprocal of the
gross return on some dynamic trading strategy, then all of its components are reciprocals of
the one-period returns, net of the cashflow yield before the last period, on some generalized
numeraire portfolio. When markets are complete at date 7T, moreover, the condition on the
last component is not binding. In that case, there exists a unique stochastic discount factor
that prices, at ¢ — 1, the liquidating cash flows, so that all SDFs processes have the same
terminal component. Theorem 2 shows that, in this case, the generalized numeraire portfolios
generate via (7) the entire set of SDFs processes that characterize no arbitrage for a given set

of assets.

2This is proved as Lemma 1 in the Appendix.



3.2 Generalized numeraire portfolios as extended growth-optimal

portfolios

The generalized numeraire portfolios are also related to the growth-optimal portfolio extensively

discussed in the finance literature.®> To review this concept, recall that a dynamic trading
strategy 6 is self-financing when at all the intermediate trading dates the resources obtained

from liquidating 6(t — 1) exactly cover the cost to establish §(¢), that is
zo(t) =0t —1)-[S{t)+d(t)—Vo(t)=0, t=1,...,T—1

The growth-optimal portfolio is the dynamic trading strategy which, among the self-financing

ones, has the highest continuously compounded return from 0 to 7', i.e. it is the solution to

max s {1“ MQ } } (11)

st.xg(t)=0,t=1,...,T—1

the optimal growth problem

Equivalently, the growth-optimal portfolio is the dynamic trading strategy that maximizes the
expected logarithmic utility from terminal wealth.

Hereafter, we characterize the generalized numeraire portfolios as solutions to an extended
version of the optimal growth problem, in which the dynamic trading strategies with the
highest continuously compounded return from 0 to T" are searched for in a set that includes,
but is not exhausted by, the self-financing ones. Precisely, given a SDF process m = {m(t)}L_,,

we consider the extended optimal growth problem P(m), defined as follows:

o [ {n [ )

st. Elm(t)xe(t) | Pia]) =0, t=1,...,T -1

While the objective is the same as in the standard optimal growth problem, the feasible set
of P(m) includes also non self-financing dynamic trading strategies, as long as they satisfy the
following property: their intermediate cash flows multiplied by m(¢) have zero expected value

conditional on information in P;_;. Recall now that m(¢) prices the cash flows marketed at

3See Latane’ (1959), Markowitz (1959) and Breiman (1960) for early contributions, and Hakansson and

Ziemba (1995) for a recent survey.

10



date t, conditional on the date ¢t — 1 information. Therefore, the feasible set of P(m) can be
interpreted as the collection of dynamic trading strategies 6 with strictly positive value and
whose intermediate cash flows zy(¢) would be assigned zero date ¢t — 1 price by m(t), if they
could be stripped from the payoff process {xp (t)}tTZO and marketed by themselves.*

We now characterize the generalized numeraire portfolio in terms of solutions to P(m).

Theorem 3 A generalized numeraire portfolio Oy is a solution to P(my., ), i.e. to the ex-
—1
tended optimal growth problem parameterized by the SDF's process my,,, = { [‘/.;/%—J‘é(i)l)] }
GN =1
generated by Oan via (7).

-1
V};%h—]\(;(j)l)} is the reciprocal of the net-of-cashflow-yield
GN

return on fgy. A generalized numeraire portfolio, therefore, has the highest continuously

To interpret this result, recall that [

compounded return from 0 to 7" among all # in ©, whose intermediate cash flows zy(?),
discounted back to t — 1 at the gross return on 64y net-of-cashflow-yield, have zero conditional
expected value. In other words, f4n maximizes the continuously compounded return among
the strategies in ©, whose intermediate cash flows z(t), if stripped away from {zy (t)},_, and
marketed by themselves, would be assigned zero date ¢ — 1 price by the stochastic discount

factor generated by Ogn.

3.3 Generalized numeraire portfolios versus Long’s numeraire port-

folio

Our definition of generalized numeraire portfolios is closely related to Long’s (1990) numeraire
portfolio. Long calls numeraire portfolio a self-financing dynamic trading strategy with strictly
positive value process such that, when prices and cash flows are expressed in its units, the
current net-of-cashflow prices are the best predictors of the next-period cum-cashflow ones. In

our notation, therefore, the numeraire portfolio is a dynamic trading strategy 8y € ©, that

4The formal sense in which an intermediate payoff xy () is marketable by itself when stripped away from
{zo (t)}tT:o is the following: there exists §' such that xg: (t) = z¢ (t) and xg (1) = 0 if 7 # t. Thus, z¢ (¢) is
marketed by itself if some dynamic trading strategy generates a payoffs process equal to xy (¢) at date ¢, and
null at all other times. We use the conditional in the interpretation of the strategies that are feasible for P(m)
because we do not require that the intermediate payoffs ¢ () be actually marketable by themselves (although

we obviously allow for it).
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satisfies

Sj(t—1)  _[8;(t)+d;(t) .
Vow (= 1) [ Vou () ’7’} for all 3,¢
(L‘QN(t):O ZfZl,...,T—l

As pointed out by Long, moreover, the numeraire portfolio 0y solves the optimal growth prob-
lem (11), i.e. it is the self-financing dynamic trading strategy in ©, with the highest continu-
ously compounded return from 0 to 7.°

Clearly, the generalized numeraire portfolios extend Long’s numeraire portfolio by relaxing
the self-financing constraint. The property with financial significance, indeed, is the existence
of a dynamic trading strategy whose value is a numeraire under which the current net-of-
cashflow prices are the best predictors of the next-period cum-cashflow ones, while the self-
financing requirement seems dispensable. It is now natural to question the actual gains from
relaxing the self-financing constraint. We address the theoretical side of this issue below, while
we discuss its empirical implications in Section 4.

A first measure of the gains from removing the self-financing requirement comes from
comparing the generalized numeraire portfolios to the numeraire portfolio in terms of existence
conditions. As shown by Long (1990, Theorem 1), a set of assets admits a numeraire portfolio
if, and only if, it is arbitrage-free and, among the dynamic trading strategies with strictly
positive value, at least one is self-financing. It is however possible (see Girotto and Ortu,
1996) to supply robust examples of sets of assets which satisfy the following three conditions:
1. no-arbitrage holds, 2. at least one trading strategy has strictly positive value, and 3. no
self-financing trading strategy has strictly positive value.® By Theorem 1 in this paper, the
generalized numeraire portfolios are well defined in these cases, while the numeraire portfolio
is not. The generalized numeraire portfolios, therefore, exists for a larger class of assets than
the numeraire portfolio, and hence have a wider spectrum of applicability.

A second way to gauge the relevance of our extension is based on comparing the generalized
numeraire portfolios to the numeraire portfolio in terms of SDFs processes. Recall to this end

that, by Theorem 2, the generalized numeraire portfolios span via (7) the set My of all

5This follows directly from Theorem 3 by observing that the numeraire portfolio is a particular generalized

numeraire portfolio.
6n this framework, for robust ezample we mean a situation in which any sufficiently small, but otherwise

arbitrary, change in the realizations of prices and cashflows does not perturb properties 1. to 3.
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SDF's processes whose last component is the reciprocal of the gross return on some dynamic
trading strategy. The numeraire portfolio, instead, generates via (7) a unique element of M.
Indeed, all numeraire portfolios have the same one-period gross returns even if they may call

for different asset allocations,” that is

Vo O _ Vo () for any Oy, 0% and for all t
Vo, (t=1) Vg (t=1) M

Therefore, the SDFs process

Voy () )]1

= |:‘/9N(t_]‘

t=1
is independent from the composition of #,, and hence it constitutes a unique element of M.
Consider now the case in which no arbitrage holds but markets are incomplete at some date
t < T, in the sense that some payoff T that depends only on information in P; is not marketed at
date t—1.% In this case, the set of SDFs processes that differ (at least) by their t—th component
is infinite,” which implies that My is infinite as well. When markets are incomplete at some
date before the last one, therefore, the generalized numeraire portfolios span an infinite set of
SDF's processes, and hence convey more information about the properties of the prices and cash
flows than the numeraire portfolios, which generates a single SDF's process. This distinction,
moreover, is maximized in the particular case in which markets are incomplete before the
last trading date, but complete at 7. By Theorem 2, in this case the generalized numeraire
portfolios span the entire, infinite set of SDF's processes, only one of which is generated by the
numeraire portfolio.

Summing up, the generalized numeraire portfolios constitute a robust extension of the

numeraire portfolio when, under no arbitrage, at least one of these two conditions is satisfied:

"The composition of the numeraire portfolio is not unique whenever there exist redundant assets, i.e. assets
whose cashflow can be replicated by the cashflow process of a dynamic trading strategy involving the other
assets. The equality of gross returns across numeraire portfolios with different compositions is established in

Long, 1990, Theorem 1.
8Formally, this means that there exists T in P; such that T # 6 (t — 1) - [S(¢) + d(t)] for any asset allocation

6(t — 1) that depends only on information in P;_;.
In our framework, a component m(t) of a SDFs process is a random variable with a finite number of

strictly positive realizations that satisfy the linear system of equations (3). When markets are incomplete
at t, this system has more unknowns than linearly independent equations, and hence and infinite number of
(strictly positive) solutions. A formal proof of this fact can be obtained following the proof of the second part
of Theorem 2.
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1. there exist trading strategies with strictly positive value process, but none of them is
self-financing; 2. markets are incomplete at some date before the last. In the first case, the
generalized numeraire portfolios are well defined although the numeraire portfolio is not. In the
second case, the generalized numeraire portfolios convey more information on the prices and
cash flows even if the numeraire portfolio is well defined, and this is so because the numeraire
portfolio generates a unique SDF's process, while the generalized numeraire portfolios map an

infinite set of SDF's process (all the SDFs processes, if markets are complete at date T').

3.4 Generalized numeraire portfolios and risk-neutral valuation

In this section, we compare the generalized numeraire portfolios to the approach taken by
Girotto and Ortu (1996, 1997) to extend the set of numeraires commonly employed in the
risk-neutral valuation literature. In this literature, the standard paradigm consists in selecting
a numeraire a-priori, to show then the equivalence between no arbitrage and the existence of
a probability @ 'Y under which the newly denominated current net-of-cashflow prices are the
best predictors of the future cum-cashflow ones. The probability () is usually referred to as an
equivalent martingale measure, or risk-neutral probability, associated with the fized numeraire.
Typical examples of fixed numeraires are the cost of rolling over single-period pure discount
bonds (e.g., Duffie, 1996), the price of a zero-coupon bond with maturity the last trading date
(e.g., Jamshidian, 1989, Geman, El Karoui and Rochet, 1995), and, more generally, the strictly
positive value process of any self-financing dynamic trading strategy (e.g., Schroeder, 1999).
Girotto and Ortu (1996) show that the set of numeraires employable in the risk-neutral
valuation framework can be extended by incorporating dynamic trading strategies that are not
self-financing. Specifically, they call numeraire any dynamic trading strategy 6 with strictly

positive value process and that satisfies, for some equivalent martingale measure (), the relation

S;(t—1) S; (t) +dj (1) .

L = Fy | L P, Iyt 12
-1 T vw | foreltd (12)
Comparing (12) with (6) in Definition 2, we see that, from a risk-neutral valuation perspective,
the generalized numeraire portfolios can be interpreted as the numeraires for which some

associated equivalent martingale measure Q) coincides with the actual probability P.

0 The probability @ is required to be equivalent to P, in the sense that P and (Q assign positive probability
to the same events.
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It is interesting to note that the existence of numeraires as defined in (12) is characterized
by the same conditions that, in Theorem 1, characterize the existence of generalized numeraire
portfolios, that is no arbitrage and ©, # () (Girotto and Ortu, 1996, Theorem 3.1). If the
value of some dynamic trading strategy is a unit of account such that, under a probability @)
equivalent to P, the current net-of-cashflow prices are the best predictors of the future cum-
cashflow one, then there is also some dynamic trading strategy whose value is a unit of account
under which the current net-of-cashflow prices optimally predict the future cum-cashflow ones

under the natural probability P.

4 Testable implications

In this section, we discuss how to test the empirical content of the extension achieved by the
generalized numeraire portfolios. To this end, we characterize the existence of generalized
numeraire portfolios in terms of rates of returns and portfolio weights, rather than prices, cash
flows and dynamic trading strategies. For simplicity, we concentrate our attention on sets of
assets whose net-of-cashflow prices are certainly non null at all times, so that the gross return

from t — 1 to t on each asset 7,

is well-defined at all dates. We denote by R(t) the vector of returns on all the J assets,
and interpret any J—dimensional random variable w (t) = {wi (t),...,ws (t)} that depends
only on information in P; and satisfies ijl wj(t) = 1 as a set of portfolio weights. We
call portfolio weights process any sequence w = {w (t)}tT:Bl of sets of portfolio weights. The

following proposition restates Theorem 1 in terms of returns and portfolio weights.

Proposition 1 A set of assets admits a generalized numeraire portfolio if, and only if, there
exist a portfolio weights process way, and a sequence {« (t)};;r:1 of random variables, with each

a (t) depending only on information in Py and o (T) = 0, such that

Pla(t)+wgn(t—1)-R(t)>0=1  forallt (13)
R; () _ .
E O T =1 R0 1‘ Ptl] =0  forallj,t (14)
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Next, we use conditions (13) and (14) to discuss some of the testable implications of our results

on generalized numeraire portfolios.

Implication 1. For any set of asset with well defined returns, by combining Theorem 1 with
Proposition 1, we see that satisfying conditions (13) and (14) is equivalent to the absence
of arbitrage plus the existence of at least one dynamic trading strategy 6 with terminal
value Vp (T) certainly strictly positive. Therefore, the orthogonality conditions (13) and
(14) lend themselves naturally to perform a direct test of the no-arbitrage condition for
any set of limited liability assets that allow to generate strictly positive wealth at the

end of a given finite horizon.

Implication 2. The empirical relevance of the extension proposed in this paper can be also
addressed as follows. One can use the Generalized Method of Moments (Hansen, 1982) to
estimate the portfolio weights process {wan (t)}z:ol and the sequence {« (t)}z;l ya(T) =
0 from the set of orthogonality conditions (14). Note that from Theorem 3, the sequence
{a(t)}]_, must also satisfy the following condition

a(t)
a(t) +wGN(t— 1

TR ‘ Pt_l} —0 forallt (15)

To test if the solution is indeed an estimate of (the per-period simple return on) a gener-
alized numeraire portfolio, one can employ Hansen’s test of overidentifying restrictions to
determine whether the orthogonality conditions in (14) and (15) are satisfied. Additional
orthogonality conditions can be generated by observing that the inverse of the 7 period
compound capital gain return on the generalized portfolio is also an admissible stochastic
discount factor for the 7 period compound gross return on any asset, for 1 < 7 < T. It

can readily be shown that

[ R (s) B _ - .
H32§+T (Oé (S) t wen (S — 1) R (S)) 1’ Pt—1:| 0 fi 11 7,t < T (16)

Implication 3 The existence of Long’s numeraire portfolios is equivalent to the existence of
a portfolio weights process wy = {wy (£)}1 such that

R; (t)

E wy (t) - R(t)

— 1’ Ptl} =0 forall j,t (17)
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The existence of Long’s numeraire portfolios, therefore, can be tested along the same
lines outlined for the generalized numeraire portfolios, with the exception that now one
imposes the additional restriction a(t) = 0 for all t = 1,..,7 — 1. The generalized
numeraire portfolios can then be compared to the numeraire portfolio in terms of the
average pricing errors for each asset computed in the two cases: the intuition is that the
average pricing errors are likely to deteriorate in the case of the numeraire portfolio, since
the estimation is performed under the further restriction o (t) =0 for all t =1,..,T — 1.
By the same token, it could also be the case that the set of orthogonality conditions (17)
is rejected while that in (14) and (15) are not.

Implication 4. Various portfolios of assets are commonly used in the empirical literature to
test the pricing restrictions of a given model. A typical example is the value-weighted eq-
uity index computed by the Center for Research on Security Prices (CRSP) at the Univer-
sity of Chicago. Long (1990) suggests the following procedure to evaluate the performance
of those portfolios as proxies of the numeraire portfolio. If Rp = {Rp (t)}tT:1 denotes the

sequence of one-period returns on a candidate proxy, one substitutes wy (t) - R (t) with

Rp(t)

at each trading date t. The theoretical results on the generalized numeraire portfolios al-

Rp (t) in (17) and then measure the pricing errors £ [ ) 1’ Pt,l] = 0 for each asset

low us to improve over Long’s approach in the following way. Given the return process Rp
on a candidate proxy, compute the average pricing errors F [ﬁ% — 1‘ 77,5,1} =0
using in this orthogonality condition the GMM estimates for {a (1), (2),...,a (T — 1)}.
Obviously, when using the generalized numeraire portfolios their existence can be tested

so that the average pricing errors can only improve.

The generalized numeraire portfolios can also be used to measure abnormal returns. For
example, let Ry be the risk-free rate of return, 3; the beta of some security and Ry, the return
on the market portfolio, and consider the CAPM-based abnormal returns ¢; = R; — Ry —
B; (Rar — Ry). Although a testable implication of the CAPM is E(g;) = 0, one typically
runs into (at least) three types of problems: first, one needs a sensible proxy for the market
portfolio, second one has to cope with CAPM parameters that can be cursed by estimation
errors, and eventually, if the no-abnormal-returns hypothesis is rejected, one has to decide if

this is a rejection of the CAPM or, more profoundly, of market efficiency /no-arbitrage. The
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generalized numeraire portfolios supply the following alternative: given the return Rgy on a
generalized numeraire portfolio, define the abnormal returns on any asset j as n; = % —-1. A
direct testable implication of our theoretical results is £ (nj) = 0. In performing this test, one
encounters only two types of problems: the identification of a proxy for a generalized numeraire
portfolio, and the fact that rejecting £ (773') = 0 implies rejecting the joint hypothesis of no-
arbitrage and ©, # (), i.e. the existence of at least one trading strategy with strictly positive
value. However, since the condition © # () is typically satisfied, in all the interesting cases the

rejection of K (nj) = 0 is to be attributed to either the choice of the proxy or to the existence

of arbitrage opportunities.

5 Data and tests

In this section, we investigate the empirical relevance of the generalized numeraire portfolio.
In particular, we will start by investigating how well the commonly used empirical proxies
for the numeraire portfolio suggested by Long (1990) or the fixed weight portfolios suggested
by Hentschel, Kang and Long (1998) perform in pricing size-based portfolios and whether
the simple extension proposed above yields significant improvement in the pricing of the test
portfolios.

We use monthly data for the period January 1962 to December 1997, for a total of 432
observations. To measure the return on the market portfolio we use end-of-month total returns
on the NYSE-AMEX-NASDAQ composite stock market index computed by the Center for
Research in Security Prices (CRSP) at the University of Chicago. We use both the market
value-weighted and equally-weighted indices as our market portfolio proxies. The test assets
are the 10 size decile portfolios computed by CRSP. The stocks in portfolio j for month ¢ are
those of the firms in the j size decile of NYSE-AMEX-NASDAQ firms at the end of month
t—1.

We use a number of instruments to model the dynamics of the numeraire portfolio trading
strategy. Specifically, we use the lagged dividend price ratio (denoted XDP) on the CRSP
market indices in excess of the 1 month T-Bill rate, the lagged default premium (DFP), and the
first difference in the monthly returns on the three-month T-Bill (Ars,,.) The T-Bill rates are

from the U.S. Government Bond Files developed by CRSP. The default premium is computed
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as the difference between the yield on Moody’s BAA and AAA corporate bond indices.

Table 1 reports the results of the GMM tests of condition (17) for the two market portfolio
indices as prespecified proxies of Long’s numeraire portfolio. We perform the tests using both
gross returns and excess returns as it can readily be shown that condition (14) can be restated

as

0 ) 0
o) twan (t—1)-R({E) o) twen(t—1)-R()

E ‘Pt_l] =0 forall j > 1,¢

(18)
Excess returns are computed in excess of the one month return on the 3 month Treasury
bill'!. The results show that for both versions of the test, the market indices are unable
to price small stocks correctly. The abnormal returns for decile portfolio 1 are significantly
different from zero when denominated in either numeraire proxies. Further, using the equally
weighted market index as numeraire is also unsatisfactory for decile portfolios 5, 6 and 7. The
tests of the overidentifying restrictions are soundly rejected in all cases. Hence neither the
equally weighted nor the value weighted market indices are satisfactory deflators of returns for
empirical purposes.

Next we investigate the performance of fixed weight portfolios including two, three or four
decile portfolios as proxies for the numeraire portfolio. We use GMM to estimate the weights
of the decile portfolios included in the numeraire and impose the restriction that the weight
of decile 10 (the highest market capitalization stocks is equal to 1 — w'i, where w denotes the
vector of portfolio weights of the other decile portfolios included in the numeraire and i is a
conformable vector on ones'?. Table 2 presents the estimated weights invested in each of the
decile portfolios as well as their robust standard errors and the test of the overidentifying
restrictions. In all but one cases the portfolios include a large long position in the smallest
decile portfolio and a large short position in the next size decile and positive positions of

smaller magnitude in the other decile portfolios. As a result, all these portfolios, while having

' The excess return specification of the orthogonality condition tends to be slightly easier to estimate. Note
though that the raw return and excess return tests are not exactly identical. Implicitly, in the excess return
test the numeraire portfolio has to price the ten decile portfolios plus the 3 month bill, while in the raw return

test, it prices only the ten decile portfolios.
12We duplicated all the estimations and test for fixed weight numeraire and generalized numeraire portfolios

that included the decile portfolios and the 3 month Treasury bill. The results are essentially the same.

19



always a positive value, exhibit extremely large monthly return volatility. In all experiments,
at most 2 weights are statistically significantly different from zero, and in all cases, the test of
the overidentifying restrictions are rejected.

Next, as a first step to investigate whether generalized numeraire portfolios may have

empirical relevance, we estimate a generalized numeraire portfolio of the form
GNP(t)=a(t)+ Ryp(t),  a(t)=-AO)[Rne(t)-1,  AQ@)=[f(v,Z-) (19)

where Ry p is either one of the prespecified market index proxies investigated earlier or a fixed
weight portfolio of the decile portfolios, Z; | a set of conditioning variables known at the
beginning of period ¢, and v a vector of parameters. We specify the A process to be linear
in the information variables, and choose Z; to include the lagged dividend price ratio on the
market portfolio and the default premium, variables which have been shown to be useful in
predicting returns. This particular specification is chosen because it generates (empirically)
strictly positive stochastic discount factor, and has an intuitive interpretation has in terms of
the cash flow process it implies: « is the fraction of portfolio gains that the investor withdraws
from the numeraire when it experiences gains and the fraction he reinvest in his portfolio
when the numeraire experiences losses. It is estimated under the constraint that expected
numeraire denominated value of the o process is zero, which is imposed through orthogonality
condition (15). Parameter estimates and test results are reported in Table 3 when we use
the market portfolio proxies and in Table 4 when we use the fixed weight portfolios. First,
consider Table 3. For both market index proxies and both returns specifications, the coefficients
of the conditioning variables are highly significant. This suggests that the a process varies
significantly with market conditions and that such a variation is necessary to account for the
time variation in the returns on decile portfolios. This could be due for example, to changes in
the prices of risk or to time variation in the investment opportunity set. Next consider the test
results for the decile portfolios. The abnormal returns of the decile portfolios, denominated
in units of the generalized numeraire portfolios are not significantly different from zero, for
the small stock portfolio as well as the other decile portfolios. Moreover, in all cases the test
of the overidentifying restrictions is no longer significant. This suggests that the generalized
numeraire portfolios can also account for the cross sectional differences in decile portfolio

returns.
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Consider next the generalized numeraire portfolios constructed from a fixed proportion
investment in decile portfolios and a cash flow process. Column two to three report the
coefficients of the conditioning variables determining the cash flow process and the next four
columns the proportions invested in the decile portfolios. The evidence in panel a is consistent
with the evidence reported in Table 3. The coefficients on the conditioning variables are of
similar magnitude and sign, and the test of the overidentifying restrictions is not significantly
different from zero. Interestingly, the estimated decile portfolio weights, while still large in
absolute value, are four to five times smaller that those reported Table 2. This suggest that
sufficient volatility of the stochastic discount factor is achieved not through extreme stock
positions but through the combination of significant stock positions and a large cash flow
process. The results in panel b are less sanguine. The evidence for the estimated GNP
including decile 1 and 10 only is very similar to that reported in panel a. However when either
decile 5 or decile 4 and 7 are included to the GNP, the parameters of the cash flow process are
significantly different and the investment proportions of the included assets are much larger.
For the last portfolio, the overidentifying restrictions are also rejected!®.

These results are promising but still preliminary. We need to investigate further specifi-
cations of the numeraire and generalized numeraire portfolios along the lines of Long (1990).
In the current version of the paper we examine one specification of the generalized numeraire
portfolio cash flow process. Other specifications need to be investigated. Second, we may want
to add other assets, for example corporate and treasury bond portfolios, to the universe of
assets on which the tests are implemented. This would allow for more general forms of the
(generalized) numeraire portfolios as well as impose a more severe test on the pricing perfor-
mance of the implied stochastic discount factors. Lastly, it would be of interest to empirically
characterize the whole set of admissible generalized numeraire portfolios. This requires further

methodological advances that we leave for future research.

13To investigate these results, we estimates a GNP including five decile portfolios (deciles 1, 3, 5, 7 and 10)
for both raw returns and excess returns. In this case, the results are consistent for both raw returns and excess
returns and the both the cash flow coefficients and the estimated weights are of similar magnitude and sign as
in panel a. This suggests that the results for the last two portfolios in Table 4 may be due to some estimation

problems
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6 Conclusion

In this paper, we generalize the concept of numeraire portfolio proposed by Long, 1990, to the
case in which the self-financing restriction is relaxed. For a given set of assets, a numeraire
portfolio is a unique (up to a scale factor) self-financing portfolio with positive value and whose
return process is a one-period stochastic discount factor process. By relaxing the self-financing
constraint, we define the generalized numeraire portfolios and show that they are solutions
to an extended optimal growth problem under the weaker constraint that the self-financing
condition hold in conditional expected value. In contrast to the numeraire portfolio, in mar-
kets incomplete prior to the terminal period, the generalized numeraire portfolios generate an
infinite subset of the set of all the one-period stochastic discount factor processes compatible
with no-arbitrage .

We use GMM to provide preliminary empirical evidence of the relevance of the generalized
numeraire portfolios for decile portfolios. We find that while the numeraire portfolio proposed
by Long is rejected by the data due to its failure to price small stocks, the generalized numeraire
portfolios deliver consistently small pricing errors for all portfolios and is not rejected by the
test of the overidentifying restrictions. However further work is necessary to examine the

robustness and general applicability of our approach.
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Appendix

To prove our results we need to introduce some further notation. First, we denote by ff the
generic history of prices and cash flows’ outcomes up to date t. Since we assume that prices
and cash flows are random variables with a finite number of outcomes, at each date ¢ there is
a finite number, s;, of such histories, so that the information set common to all investors is
P ={fl,k=1,...,s:}. We assume, without loss of generality, that P(f}) > 0 for all ¢, k, i.e.
all histories of prices and cash flows have strictly positive probability to occur.

We denote by S;(f}), d;(fi), the date ¢ net-of-cashflow price, respectively cashflow of asset
J under history fi. We translate the requirement that the components 6; (¢) of a dynamic
trading strategy 6 depend only on information in P, by denoting their realizations by 6; (ff).
In other words, 6; (f}) represents the position in asset j taken at date ¢ if, up to that date, the
history of prices and cash flows’ outcomes has been f}.. We denote then by Vj(ff), respectively
zo(ff) the date t value, respectively cashflow, of strategy 6 under history ff. Observe that,
in this notation, O, = {6 | Vy(f}) > 0 V¢, k}. Finally, we translate the requirement that each
component m(t) of an SDFs process m = {m(t)};;il depend only on information in P; by
denoting its realizations by m (ff).

Given flt*1 € P,_1, we denote by P} the set of prices and cash flows’ histories up to ¢ that
are compatible with the history up to ¢t — 1 having been ff’l. In other words, P} collects
the information available at ¢ conditional on having observed the history f/~' up to t — 1. A

sequence of random variables m = {m(t)}!_, is then an SDFs process if m (f.) > 0 Vt, k, and

S =Y 29w () [, () + 4, (01} vt (D

f;;erplf ( l )

A dynamic trading strategy 6oy € O is a generalized numeraire portfolio if

Voon (fi)
%GN ( lt_l)

501 = 3 gt S () <y ()] bo Yand (A2

ftept !

It is more efficient to prove Theorem 2 before Theorem 1. However, we first need to establish

Lemma 1 All SDFs processes in the set My defined in (10) have the same last component,
that is m'(T) = m"(T) for any m', m" € Mr.
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Proof. Given m/, m" € Mr, let 6" be such that m'(T) = V:f’(’Tu:)l), and 0" be such that

m"(T) = fo'('ig)l). By (3) in the main text we have

Vy(T) 17 .
S;(T—-1)=FE{ |=————| d;(T _ \
(1) {[WT_D} S| P Y
since, by assumption, S; (T') = 0 Vj. Multiplying both sides of this relation by 67(T — 1),
summing up over j, and exploiting the definition of value process we obtain

Vp(T) 17 V(D) -
E{lWT—lJ v~<T—1>'7’t‘1}‘1

Inverting the order of # and 6” in this procedure, we get instead

Vo (T) 17" Vie(T) _
E{h@@—ﬂ]‘m@—n'ﬂl}_l

By Jensen’s inequality, these two conditions imply V:g(lil(z)l) = V:?l(’il(“jj)l)’ ie. M'(T)=m"(T)m

Proof of Theorem 2. We first show that Mgy = Mr if ©, # (. To this end, it is enough

to show that for any m € M there exists § € © such that

Vo (f1)
‘/0 ( ltfl)

Comparing with (A1) and (A2), it is clear that any such 6 is a generalized numeraire portfolio.

-1
m(fy) = ] , Vk:fiePl,l=1,..,8_1,t=1,..,T (A3)

Given then m € M, we first observe that, by the definition of M, there exists 6 that
satisfies (A3) for ¢t = T', that is

-1
‘/L T
5 (17) ] Nk TPl =1, s, (A4)

m () = v 70

Since ©, # (), there is no loss of generality in assuming that 0 O.. We supply now a
recursive procedure that, in T — 1 steps, transforms  into 0 € O, that satisfies (A3). To
initialize the procedure, we let 6 = 5, and define the sequence {9(7) }T_ll of dynamic trading
strategies according to the following recursive mechanism: 67 (t) = 97(;_1)@) if ¢ # 7, while
the realizations of 87 (7) across the histories fi are given by

Vv (f77)
m(fi) Vo (f{)

07 (f7) =

] H(T_l)(fll—% YV k: fl::— S 7);7 [ = 17 sy 871 (A5)
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We show by induction that, for 7 = 1,...,7 — 1, 6 € ©, and satisfies (A3) for all ¢ < 7.
The first step is to establish this for 7 = 1. Indeed, since 8 (¢) = 8 (¢) = 6(¢) for all t # 1 and
0e O, Vo) (t) is strictly positive for all ¢ # 1, so that we need only to establish V) (f2) > 0
Vk, and that (A3) holds with ") for t = 1. Let then 7 = 1 in (A5), multiply both sides by
S(fH) = (S1(fY), -, S7(fL)), and exploit the definition of value process, to obtain

Voo (£ =0W(f) - S(fh)

— |- O O (£1). S(f!
) lm<f,1>v9@ (fé)] ) - S

_ { Voo (0)
m(fp)Veo (fp)

/UGN
m(fy,)
where the sign follows from m(f}) > 0 Yk, and V@) (0) > 0 since 8V (0) = 6(0) and 6 € O,.

Moreover, Vyo (0) = V,a) (0) since by construction 8% (0) = 6©(0), so that (A6) implies

} Voo (f3)

N [V (FD] _
m(fk)—{—‘z(l) (;)} C Vk=1.s

Therefore, #Y) € ©, and satisfies (A3) for t = 1. Given now any 7 > 2, we show that
0 € O, and that {V (t)};io satisfies (A3) for all t < 7 if "~ € O, and satisfies (A3) for
all t < 7 — 1. Since by construction 07 (t) = 07~V (¢) for all t # 7 and 07V € @, clearly
Vi (%) is strictly positive for all ¢ # 7 and satisfies (A3) for ¢ < 7 —1. Therefore, we only need
to show that Vi) (f7) > 0 Vk, and that it satisfies (A3) for ¢ = 7. Multiply then both sides of
(A5) by S(ff) = (S1(fL), .- Ss(fL)), fi € P/ and exploit the definition of value process, to

obtain

Vo (fF) = 07(f1) - S(ff)

[ Ve (7)) ] o
- 0 V. S(fT
_m(f]l—)‘/g(f—l) (f]z)_ (fe) - S(fe)

| Ve () .
= WUV )| V)

‘/0(7_71) (fl‘r—l)
=—2>0, Vk:ffeP,l=1,..8_
m(f7) L 1
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where the sign follows from m(f]) > 0 Vk and V-1 ( ff’l) > ( for all [ since by construction
07 (r—1) =0""V(r —1) and 7Y € ©,. Moreover, since (1 —1) = "~V (7 — 1) then
Vet (f71) = Voo (f7 1), so that (A7) implies

-1
m (ff) = V"‘”(f’f))] L Yk fleP =1 08

‘/9("') ( lTil

which proves our claim on ) forall 7 = 1,...,7— 1. For 7 = T — 1, in particular, 7V e O,
and satisfies (A3) for all ¢ < T. To conclude the proof, therefore, we need only to show that
0T satisfies (A3) also for ¢t = T. To do so, we observe that

H(Tfl)( [Tfl) _ Voa-2 (fr?_Q) 9(T72)(f]T71)
' m(f" Wy (F77) '
i V-2 (fr:zrﬂ) 1~ T-1 T-1
= — — 9( ), \V/lf G,Pg:_l,n:l,...,ST,Q
(W (£ | :

(A8)
where the first equality comes from (A5), and the second from the fact that, by construction,
0T —1) = 0" (T —-1) 7 =1,..,T — 2, and 6O(T — 1) = §(T — 1). Letting then
d(fT) = (di(fT), ... di(fT)), from (A8) and the definition of value we have

Voo (fF) =0T V() - d(f])

= - Vyr—2 (fg_Q) - O(£T-1Y . d( T
_m(flel)Vg(ng) (flel)_ (ff =) -dfy)

r Vier. T-1
_ A (fl ) Vé(fg)’ Vk:fkTEPIT,l:flT*lEpg_l,nSSTfQ

| m(fi ) Vg (f7 )

and

Vo(T*U (flT_l) = Q(Til)(flT_l) ) S( lT_l)

_ i ‘/9(T72) (fg_Q) ] 5( lT—l) . S( T—l)

(i DWoer-o ()

r V 3 T—2
_ 9(T—2) (fn ) Vi( I, Vk:flepPl 1. ff7tePl~t n<sr

| m(fi ) Vg (f7 )
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Putting the last two expressions together with (A4), we have

V_W}: D 1y e
|:‘/9(T1)(flT1) m(fk)7 : fk 67)1, 1,...,87_1

Vi (f7)
hence 87~ satisfies (A3) for t = T as well. Therefore, § = 0"~V € ©, and satisfies (A3),
i.e. Mgy = Mr when ©, # ().
We show now that Mgy = M when O, # () and markets are complete at date 7. We

need only to prove this statement when M # (). Moreover, since Mgy = M7 when O, # (),
by Lemma 1 it is enough to show that all SDF's processes have the same last component when
markets are complete at date T, i.e. that (Al) has a unique strictly positive solution in the
variables m(fI') when t = T. Markets completeness at date 7' means that, given any payoff x

in Pr, the following linear system in the variables 6,( IT’I) is feasible for all [ = 1, ..., s7_1:
() =3 0T, Yk T eP!

Therefore, the matrix [d;(f{ )]jzl has rank equal to the cardinality of Pl, | =

ey k:f,?E'PlT

1,...,s7_1, which implies that if the linear system

Si(A) =D wd;(fh), Vk:flePl

fiep!

is feasible, it has a unique solution. That this system is feasible when M # () is readily
P(f)
P(fi™)
assumption S;(fl) = 0 Vf[. For t = T, therefore, (A1) has indeed a unique solution in the

acknowledged by letting y(fl) = m (f}), comparing with (A1), and recalling the

variables m(fI'). This concludes the proof m

We prove now Theorem 1, that establishes necessary and sufficient conditions for a set of

assets to admit generalized numeraire portfolios.

Proof of Theorem 1. Since the only if part is obvious, we concentrate on the if part.
To establish the existence of generalized numeraire portfolios when no arbitrage holds and
©, # 0, it is enough by Theorem 2 to show that M7 # () under these assumptions. To do so,
we establish the existence of 6 such that, for all = 1,...,s7 1, Vap(f/ ') =1 and

T—1\ _ P(fl?) dj(fkT) . . T T
Sj( )_f;TP( lel)‘/e(flz“)y v],k.fk Epl
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Since, by the definition of value process, Vo(f/ ') = >0 (NS (F77) and Vo(fF) =
> 0i( T Dd,;(f) for all k : fI € P, it is readily seen that the above expression constitutes
the set of first order condition for an interior solution to the following optimization problem:

o%%é%ﬁ% -y s (£6)

st. Vo(ff =1

The proof is concluded by employing the no arbitrage assumption to observe that, for all

[=1,...,s7_1, this optimization problem has indeed optimal interior solutions m

Next, we prove Theorem 3, that characterizes the generalized numeraire portfolios as solu-

tions to the extended optimal growth problems P(m) defined in Subsection 3.2.

Proof of Theorem 3. For simplicity, we prove the result for the case T" = 2. In this case,

problem P(m) can be explicitly written as follows:

max ZZPfk 1n[26 (fi)d ]

{(050.65(1)>0} 15 f2ep?

]:

§P<><>{§ O3 () +d; ()] - 30,01, ()(ﬁ%—

s.t.

> 6,(0)8 (0) = 1

where we have exploited the fact that there is no loss of generality in normalizing the solutions
so that the initial value is 1. Since m is an SDF's process, arbitrage opportunities are ruled out
so that the above problem has optimal solutions. Moreover, all solutions can be characterized
by the first-order conditions of the Lagrangian associated to our problem. Precisely, denoting

by A; the multiplier for the first constraint, and by As that for the second, the solutions to our
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problems are the solutions to the following set of first-order conditions:

(

P(fd;i(fi) j=1
fg;f S0 (fhdi(f2) WP U8 () = I=1,..5
M PUmUA) I8 () + d ()] = %o, (0) =0 j=1d
S (s >{z )18 )+d(fz)]—jé%(ff)%(fﬂ)}:
S0,080) =1
(FOCs)

Let now 6y be a generalized numeraire portfolio and assume, without loss of generality, that
Voo (0) =3, 056n(0)S; (0) = 1. Our proof is concluded by showing that if m(fl) = m,
Il =1,..., s, then there exist A1, A2, such that 0oy solves (FOCs). This is readily done by
letting A\; = Ay = 1, observing that 327 60, an(fi)di(f2) = Vouy (f2), using the definition of
SDF's process in (A2), and observing that

Z Vo fl {Z 6;.an (0 +d; (fll)} o ZQJ',GN(le)Sj (le)} =

j=1

J s
- fl)+d (fl )]
= ., P(f -1
2 Puen(0) 2 PUN=2 S

=> 0;an(0)S;(0) = 1=0

which concludes the proof m

Finally, we prove the characterization in terms of portfolio weights of the existence of

generalized numeraire stated in Proposition 1.

Proof of Proposition 1. Given a generalized numeraire portfolio 0y, define the portfolio
weights process wgy component-wise as follows:

0j,an(8)S; (1)

, forallt<T
Oan(t) - S (1) J

wjan(t) =
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and let

Logn (t)

- t=1,..T-1
at)={ Ofon(—1)-5t-1)
0 t="T
Some simple algebraic manipulations shows that
Voan (t)
t t—1)-R(t) = —<~—~— It A9
0 (1) + wonlt ~ 1) R(t) = 2 s for (A9

Since gy € O, then
Pla(t) +wen (t—1)-R(t) >0/ =1, forallt

which establishes (13) in Proposition 1. Moreover, substituting (A9) in (6’) in the main text,

dividing both sides by S; (t — 1), and recalling that R;(t) = %, we have

B\ o 1 [P =0 ot

which establishes (14) in Proposition 1, and concludes the proof of the only if part.

To prove the if part, let the portfolio weights process wgy and the sequence {« (t)}thl, with
a(t)in Py and o (T') = 0, satisfy (13) and (14) in Proposition 1. Define then # component-wise

according to the following recursive procedure:

wjen (1) B
Sj(t) =0
0;(t) = ”
WjGN B
S P D (S0 )+ Vel - Da )] t=1.T -1

Observe that V5(0) = 1 and, by (1) and (2) in the main text, xo(t) = —Vi(t — 1) (t) for
t=1,...,T — 1, so that 0 satisfies

0;(1)S; (@)

Voll) =wjan(t), forallt

Multiplying both sides of this expression by R;(t+ 1) = SJ(SJTH and summing up over j

we obtain

O(t)- (S(t+1)+d(t+1))
Va(t)

—wen(t)-R(t+1), t=0,...,T—1

30



Summing then «(t+ 1) to both sides of this expression, and recalling that zy(t + 1) =
—Vo(t)a (t + 1) so that 6(t) - (S(t+ 1) +d(t+ 1)) + Va(t)a(t +1) = Vp(t + 1), we have

Vo(t+1)

b S e Fean() R+, 120,71 (A10)

which by (13) implies that § € ©,. Moreover, substituting (A10) into (14), and multiplying

by S; (t), after some elementary algebra we have

S;(t) S;(t+1)+4d;(t+1)
T@)_E{ Vo(t+ 1)

‘Pt}, forall j,;t <T

which shows that 6 is indeed a generalized numeraire portfolio, and concludes the proof m
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Table 1: Pricing decile portfolios with Long’s NP

The table reports tests of whether decile portfolio returns deflated by the return on the numeraire
portfolio have mean zero (orthogonality condition (17)). The tests are performed using raw returns
or returns in excess of the 3 month Treasury bill return and two proxies for the numeraire portfolio,
the value weighted and the equally weighted market index. We report the test for individual decile
portfolios (Xl) as well as a joint test of all the orthogonality conditions (Xlo). All estimations
are performed using GMM. The sample covers the period January 1962 to December 1997 (432
observations) and is extracted from the CRSP NYSE-AMEX-NASDAQ monthly database.

Numeraire Portfolio Proxy
Value-Weighted Index Equally-Weighted Index

Panel a: raw returns

Dec. Test p-value Test p-value
1 5.046 .025 6.058 .014
2 1.541 214 0.335 .563
3 0.576 448 0.731 .393
4 0.682 409 1.152 .283
5 0.399 528 4.647 .031
6 0.356 551 5.139 .023
7 0.322 571 3.500 .061
8 1.030 310 0.797 372
9 0.987 321 0.619 431
10 0.981 322 0.641 423

X10 22.20 .014 22.12 .015

Panel b: excess returns

Dec Test p-value Test p-value
1 5.136 .023 3.778 .049
2 2.305 129 1.324 .249
3 1.443 .229 0.701 .403
4 1.544 214 0.801 371
5 1.281 .256 0.643 423
6 1.253 .262 0.656 418
7 1.241 .265 0.692 407
8 1.709 191 1.109 .292
9 1.689 194 1.193 275
10 1.279 258 1.176 278

X10 23.04 011 23.30 .010
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Table 2: Pricing Decile portfolios with fixed weight NP’s

The table shows estimates of numeraire portfolio weights and tests of whether decile portfolio
returns deflated by the return on the numeraire portfolio have mean zero (orthogonality condition
(17)). The numeraire portfolio consists of a set of decile portfolios with returns R;; such that
the return on the numeraire portfolio is Rypr = > w; R+ (1= w;) Ript. J-stat is the test
of the overidentifying restrictions and is distributed as a X10— (n—1) where 70 is the number of
decile portfolios included in the numeraire portfolio. The tests are performed using raw returns
or returns in excess of the 3 month Treasury bill return. All estimations are performed using
GMM. The sample covers the period January 1962 to December 1997 (432 observations) and is
extracted from the CRSP NYSE-AMEX-NASDAQ monthly database.

Component Decile w1 Wi W w10 J-stat

Panel a: raw returns

Dec. 1 & 10 0.999 - - 0.001  21.46
(0.001) - - - 0.006
Dec. 1, 5 & 10 5.619  -6.409 - 1.716  15.106

(1.515) (2.391) 0.035
Dec. 1,4,7& 10 6833 -9.572  3.013 0.795  14.805

(1.631) (3.755) (3.549) - 0.022

Panel b: excess returns
Dec. 1 & 10 1.928 - - -0.928 21.266
(0.916) - - - 0.012
Dec. 1,5 & 10 5.038  -6.153 - 2.115 15.751

(1.482) (2.316) - 0.046
Dec. 1,4,7& 10 5910 -8.070 1.879 1.282  14.730
(1.704) (4.034) (3.849) - 0.039
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Table 3: Pricing decile portfolios with GNP’s

The table shows the estimates of the coefficients of the cash flow process and reports tests of
whether decile portfolio returns deflated by the return on the generalized numeraire portfolio
have mean zero (orthogonality conditions (14) and (15).) The generalized numeraire portfolio is

estimated as follows
GNP(H) = a () +Bxr (1), ()= -AO[Ry, -1,  AH)=1Z,

where the elements of Z; are the default premium and the market index dividend price ratio in
excess of the risk free rate. The tests are performed using raw returns or returns in excess of
the 3 month Treasury bill return and two proxies for the numeraire portfolio, the value weighted
and the equally weighted market index. We report the test for individual decile portfolios (Xl)
as well as the test of the overidentifying restriction (X9)~ All estimations are performed using
GMM. The sample covers the period January 1962 to December 1997 (432 observations) and is
extracted from the CRSP NYSE-AMEX-NASDAQ monthly database.

Panel a: raw returns

Ryp : Value-Weighted Index Ryp : Equally-Weighted Index

Z; 07 t-stat Y t-stat
DFP -0.598 -1.79 -0.695 -3.923
XDP -2.226 -3.118 -1.937 -4.775
Dec. Test p-value Test p-value

1 0.249 617 0.283 .595

2 0.568 451 0.438 .508

3 0.718 397 0.479 489

4 0.753 .386 0.447 .504

5 0.820 .365 0.444 .505

6 0.873 .350 0.457 499

7 0.892 .345 0.427 .bl14

8 0.830 .362 0.365 .546

9 0.895 344 0.361 548

10 1.059 303 0.359 .549
Overall test:

Xo 14.389 .109 12.704 176
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Table 3: Pricing decile portfolios with GNP’s

Panel b: excess returns

Ryp: Value-Weighted Index Ryp: Equally-Weighted Index

Z; Y t-stat Y t-stat
DFP -0.580 -2.893 -0.691 -4.118
XDP -2.227 -3.380 -1.942 -4.730
Dec. Test p-value Test p-value

1 2.187 139 0.230 .632

2 0.776 378 0.029 .861

3 0.362 547 0.057 811

4 0.344 .558 0.021 .884

5 0.224 .636 0.024 .876

6 0.160 .690 0.032 .859

7 0.146 702 0.009 929

8 0.282 .596 0.018 .894

9 0.175 676 0.023 .879

10 0.002 966 0.008 931
Overall test:

Xo 14.392 .109 12.295 197
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Table 4: Pricing Decile portfolios with fixed weight GNP’s
The table reports the estimates of the coefficients of the cash flow process, of generalized nu-
meraire portfolio weights, and tests of whether decile portfolio returns deflated by the return on
the generalized numeraire portfolio have mean zero (orthogonality condition (14) & (15)). The

generalized numeraire portfolio is estimated as follows

GNP(t) = a(t)+ Ryp(t), a(t)=—-Xt)[Ryp (t) —1], A(t) =7,
Ryp = ZwiRit +(1— Z%’)Rmt.

The elements of Z; are the default premium and the market index dividend price ratio in excess
of the risk free rate. J-stat is the test of the overidentifying restrictions and is distributed as
a X11—(n+1) where 71 is the number of decile portfolios included in the numeraire portfolio.
The tests are performed using raw returns or returns in excess of the 3 month Treasury bill
return. All estimations are performed using GMM. The sample covers the period January 1962

to December 1997 (432 observations) and is extracted from the CRSP NYSE-AMEX-NASDAQ
monthly database.

Component Decile YpFP  YXDP w1 W wj w1 J-stat

Panel a: raw returns

Dec. 1 & 10 0.668 -2.440 0.560 - - 0440  10.11
(0.215) (0.455)  (0.938) - - - 0.183
Dec. 1, 5 & 10 0.550  -1.648 1.200 -1.484 - 1284  9.619

(0.324) (0.752)  (1.144) (1.711) 0.142
Dec. 1,4,7& 10 -0.571  -1.585 1.307  -1.070 -0.553 1.317  9.688

(0.238) (0.994) (0.876) (1.161) (0.992) - 0.085
Panel b: excess returns
Dec. 1 & 10 -0.607 -2.478 0.667 - - 0.333 10.31
(0.160) (0.589) (0.927) - - - 0.245
Dec. 1,5 & 10 -0.028  0.836 1.955  -2.281 - 1.326 12.37
(0.047) (0.325) (0.460) (0.502) - - 0.089
Dec. 1,4, 7 & 10 -0.005  0.669 2.729 -3.323 0.516 1.079 13.511
(0.038) (0.362) (0.994) (2.155) (1.635) - 0.036
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