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ABSTRACT—Burn-induced coagulopathy is not well understood, and consensus on diagnosis, prevention, and treatments

are lacking. In this review, literature on burn-induced (and associated) coagulopathy is presented along with the current

understanding of the effects of burn injury on the interactions among coagulation, fibrinolysis, and inflammation in the acute

resuscitative phase and reconstructive phase of care. The role of conventional tests of coagulopathy and functional assays

like thromboelastography or thromboelastometry will also be discussed. Finally, reported methods for the prevention and

treatment of complications related to burn-induced coagulopathy will be reviewed.

KEYWORDS—Clot dysfunction, coagulopathy, hemostasis, thermal injury, thrombosis
The development of coagulopathy, (i.e., dysfunctional hemo-

stasis resulting in either hemorrhagic or thrombotic events) after

burn injury complicates the already intricate level of care

required for this patient population. An experienced multidisci-

plinary team is essential to meet the needs of a severely-burned

individual. The typical course of a patient who has survived a

critical thermal injury is represented in Figure 1. The dynamic

process of recovery is highlighted as patients transition from

aggressive interventions immediately after injury and in the

phase of acute burn shock to the period of chronic recovery that

begins during hospitalization and continues after discharge.

At each of these phases, internal and external forces impact

coagulation homeostasis. The inflammatory mechanism initi-

ated by the injury itself has profound effects that impact clot

formation and can lead to burn induced coagulopathy (BIC).

During transport and initial hospital care, patients are subjected

to lifesaving measures including large volume resuscitation and

surgical interventions that further influence coagulation. After

stabilization, hemostasis is altered by care that may include

blood product transfusion, extensive excision and grafting, and

other surgical interventions.

The coagulation status of patients who survive the acute

phase is impacted during recovery by a battery of forces. The

development of infection or sepsis remains a leading cause of
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mortality for severely-burned patients, and the physiologic

stress of this event can precipitate coagulopathy. After

discharge, patients may encounter events that could trigger

coagulopathy, such as incomplete wound healing, surgical

reconstructions, and impaired mobility.

Underlying these external forces, patient-specific character-

istics must be continually recognized. Age, gender, race, pre-

existing conditions, and concomitant injuries may play a role in

the physiologic response to thermal injury, and must be con-

sidered when treating BIC.

In the past few decades, impressive advances have been made

in the understanding of coagulopathy following blunt and pene-

trating trauma resulting in promising clinical interventions to

diagnose, prevent, and treat trauma induced coagulopathy (TIC)

(1–5). While the extent of research in the burn population has

lagged in comparison with other types of trauma, a growing body

of knowledge elucidates many unique characteristics of BIC.

In this review, we examine the history of BIC research, and

discuss the current understanding of potential biochemical mech-

anisms underlying BIC in the contexts of the initial response to

injury, the acute care provided during large-volume resuscita-

tion, the recovery during a prolonged hospital stay, and long after

discharge. The tools that allow clinicians to recognize BIC and

initiate clinical interventions are also be discussed. This review

will synthesize basic science and clinical studies by connecting

the pathophysiologic mechanisms of BIC with clinical manifes-

tations, and identify areas that merit further investigation.

HISTORY OF BURN-INDUCED COAGULOPATHY
RESEARCH

On review of the literature, the first mention of coagulopathy

in thermally-injured patients appeared in the Polish journal,

Polski Tygodnik Lekarski, by Blonska and Kamienski in 1957

mailto:Jeffrey.W.Shupp@medstar.net


FIG. 1. A simplified schematic illustrating a patient’s hospital course after burn injury.
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(6). Hemostasis following scald injuries in children and adults

was investigated. By measuring clotting time, a hypercoagula-

ble state following scald injury was observed, and this was

more pronounced and prolonged in children. A transition to a

hypocoagulable state was noted in patients with severe scalds

at 3 weeks postinjury. The authors postulated the increased

bleeding tendency was a result of liver damage induced by

bacterial toxins.

Longitudinal studies of BIC by the French military in the

early 1960s examined clot formation and platelet function

(7, 8). Thrombocytopenia was described in the initial 24 to

48 h after injury with a rebound thrombocytosis and slow return

to normal platelet levels over 2 to 4 months. Thromboelastog-

raphy (TEG), a viscoelastic hemostatic assay that was first

introduced in 1948 in Germany by Hartert (9), which measures

the global viscoelastic properties of whole blood clot formation

under low shear stress, was performed to supplement platelet

counts. Despite initial thrombocytopenia, TEG conducted at

2 days demonstrated hypercoagulability and was attributed to

high levels of fibrinogen and thromboplastin due to tissue lysis.

The investigators also demonstrated a reduction of this hyper-

coagulability observed using TEG with the administration of

heparin and proposed the use of thromboembolic prophylaxis

with heparin in burn patients.

The earliest available English-language publication focusing

on coagulopathy in burn patients appeared in Surgery in 1963

(10). Holder et al. (10) noted evidence of thromboembolic

events on autopsy of severely-burned patients. They further

examined coagulopathy after thermal injury in a mouse model

using clotting time measurements and evaluated the effects of

heparin and thromboplastin on BIC. A novel method of extract-

ing thromboplastin from burned skin was developed. Subse-

quently injecting this extract into mice resulted in significant

procoagulant states or death (10). Ultimately, the authors
concluded that thermal injury induced a hypercoagulable state

and hypothesized that thromboplastic material in the injured

tissue may be partially responsible.

Investigation of BIC continued in the 1970s with animal models

again focusing on platelet function and clot dynamics. In 1974,

using a scald-burned rat model, Eurenius and Rothenberg (11)

observed an initial period of markedly depressed platelet function

in burned animals using ADP-induced platelet aggregation tests.

The initial depression was followed by increased platelet aggre-

gation by 24 and 48 h, which the authors presented as a possible

mechanism behind the clinically observed hypercoagulability

noted in human burn and trauma patients.

In 1975, using a similar scald-burned rat model, Curreri et al.

(12) studied the effects of heparin and protamine sulfate on

coagulation dynamics. In this study, an initial low-normal

platelet level was followed by thrombocytosis after 48 h,

echoing the findings of Eurenius and Rothenberg. When fibrin

split product concentration was measured after administering

heparin to burned rats at 24 h postinjury, no significant effect

was observed relative to controls (12). The authors conclude by

strongly advocating against prophylactic anticoagulation with

heparin, contrary to current practices in many burn institutions.

Debate continues on the role of prophylactic anticoagulation in

burn care and will be discussed, but it is important to note that

here, the effects of heparin were measured at 24 h postinjury.

A more longitudinal and thorough case series on BIC in

human patients was published by Bartlett et al.(13) . Numerous

coagulation tests were serially conducted on 11 patients with

large burns (total body surface area (TBSA) range 30%–68%)

with data collected up to 5 weeks postinjury. In addition to tests

of platelet counts and function, coagulation function was

assessed by activated partial thromboplastin time (aPTT),

prothrombin time (PT), and thrombin time (TT), as well as

individual clotting factors (fibrinogen, Factor (F) V, and FVII).
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Again, an initial decrease in platelet function and clotting

factors was observed in the first 48 h before returning toward

baseline, and platelet function remained depressed even after

initial resuscitation (up until 3 or 4 days postinjury) (13). The

authors used these findings to propose changes in care plans of

their patients that included avoiding surgical interventions until

the fourth or fifth day after injury. However, the conclusions of

this series must be viewed in the context of the institution-

specific treatment protocols and standard practices of the time.

Colloid-only resuscitation with albumin was used and average

time to excision and grafting was 21 days (13). This is in stark

contrast to crystalloid-based resuscitation (14) and early exci-

sion and grafting that is the practice of most burn institutions

today (15, 16).

More recently, Sherren et al. (17) defined the effects of

clotting alterations caused by thermal injury in their retrospec-

tive review of acute BIC. Their analyses demonstrated that

39.3% of severely-burned patients met their established criteria

for coagulopathy on admission based on elevations of PT

(>14.6 s), aPTT (>45 s), or international normalized ratio

(INR, > 1.2) on admission labs. They found a significant

correlation between PT elevation and burn severity and acute

BIC was an independent predictor of 28-day mortality.

In contrast to Sherren et al. (17), in another retrospective

study from the same year, Lu et al. (18) concluded that major

burn injury was not associated with acute coagulopathy. Acute

coagulopathy was defined as an INR of 1.3 or greater, an aPTT

of 1.5 or greater times normal, and normal platelet count.

Thermally-injured patients needed to meet all three criteria

to be classified as having coagulopathy. Of the 102 patients

included, none met criteria on admission. Lu et al. highlighted

the difference of this 0% frequency with a previously estab-

lished 20% frequency in blunt and penetrating trauma to assert

that TIC is unique to non-burn trauma.

Perceptions regarding existence and relevance of BIC are

clearly varied. The difference between time of injury and

admission sampling in the retrospective studies above could

explain the divergent conclusions. For example, Sherren et al.

(17) reported a mean time from burn to hospital arrival of

approximately 6 h, while Lu et al. presented a median time of

only 2.5 h. Review of the longitudinal data presented by Lu

et al. reveals increases in INR to levels above 1.3 in the days

following injury for several patients. Furthermore, 68% of the

patients in the Lu et al. study suffered burns between 15% and

30% TBSA, whereas all 117 patients included in the Sherren

et al. review had burns of at least 30% TBSA. The extent of

burn injury has been shown to correlate with development of

coagulopathy (19, 20). The relatively small number of patients

with burns greater than 30% TBSA in the Lu et al. study

weakens their assertion that BIC does not exist.

In 2016, Glas et al. (21) summarized current understanding

of BIC, presented outcomes, and highlighted the need for better

management strategies for this disease process. The review

aimed to clarify definitions to arrive at consensus. Here, acute

BIC was defined as abnormal INR (>1.5) and aPTT (>60s)

with early onset BIC defined as presence of these abnormalities

in the first 24 h after injury (21). Severe burns are defined as

greater than 30% TBSA and are associated with a greater
coagulopathy with earlier onset. It is noted that early detection

of coagulopathy is a challenge and routine tests of coagulation

(PT, aPTT, INR) have limited diagnostic value, while the pres-

ence of coagulopathy is associated with increased mortality. The

pathophysiology of BIC was characterized over time with a

discussion of relevant clinical influences and the response of

systemic markers of coagulation and inflammatory cytokines.

Ultimately, the authors conclude that further work is needed to

optimize the diagnosis and subsequent treatment of BIC.

The lack of consensus for monitoring BIC was highlighted in

a reported survey of burn care providers conducted by Lav-

rentieva et al. (22) in 2016. Of the 55 respondents who

completed the questionnaire, 46 burn specialists (70.8%) indi-

cated that they only use PT, aPTT, fibrinogen, and platelets as

tests to detect BIC. The remaining providers noted the use

of measurements of antithrombin (AT), protein C (PC), and

D-dimer levels, as well as viscoelastic methods like TEG

to supplement traditional measurements. Furthermore, 41

respondents (74.5%) revealed that no specific coagulopathy

scoring system was used at their institutions.

Conventional tests of coagulopathy, such as PT, INR, and

aPTT, do not reliably detect the presence of coagulopathy in

burn patients, and global assay methods (i.e., viscoelastic and

thrombin generation assays [TGA]) are more informative.

Viscoelastic testing of whole-blood clotting uses technology

that has been in existence since it was introduced by Hartert (9)

in 1948. Viscoelastic testing is conducted using TEG or rota-

tional thromboelastometry (ROTEM). TGAs are plasma-based

assays that can identify phenotypic differences in thrombin

generation that can contribute to altered hemostatic states and

coagulopathy (23–26) and provide more information beyond

the clotting end point. Wiegele et al. (27) showed a procoa-

gulant state in burn patients in the first 2 weeks following injury

reflected by TGA and ROTEM, while conventional assays

including PT, aPTT, and platelet count remained within refer-

ence ranges. The authors concluded that further studies corre-

lating TGA and ROTEM results and clinical outcomes are

needed to potentially develop patient-specific clinical inter-

ventions. A recent review in 2019 suggests that the use of

viscoelastography during intraoperative blood product resusci-

tation in burn surgery is associated with decreased transfusion

requirements (28).

The greater availability and array of laboratory and point of care

testinghas led to a deeper understanding of BIC. In turn, greater

understanding of BIC informs the selection of diagnostic tests. In

recent years user-friendly point-of-care viscoelastic devices have

enabled the development of treatment algorithms aimed at identi-

fying and managing coagulopathy (2, 28–31). Nonetheless, there

is no consensus on how best to diagnose BIC, potentially related to

an incomplete understanding of the pathophysiology.
MECHANISMS CONTROLLING HEMOSTATIC
BALANCE: INTERACTIONS BETWEEN
COAGULATION, FIBRINOLYSIS, AND

INFLAMMATION

There are two fundamental mechanisms for triggering a

coagulation, the exposure of blood to functional tissue factor



FIG. 2. Pathways to thrombin generation: Extrinsic pathway: Extravascular TF, exposed as a result of vascular injury, forms a complex with
circulating FVIIa forming the extrinsic tenase (‘‘1’’) which activates FIX and FX. Direct activation of prothrombin by FXa results in trace amounts of thrombin
which: rapidly activates the procofacors FVIII and FV to their functional forms, FVIIIa and FVa; and activates platelets Activated platelets provide separate binding
sites for the intrinsic tenase (‘‘2’’) and the prothrombinase complex (‘‘3’’). The intrinsic tenase provides the majority of FXa used to assemble the prothrombinase
complex while the prothrombinase complex is the primary source of thrombin needed to propagate the clotting reaction. The PTassay relies on the use of very high
concentrations of TF, thus eliminating the need for the intrinsic tenase production of FXa. Intrinsic pathway: Initiation of the intrinsic pathway to thrombin formation
requires the exposure of blood to materials capable of supporting FXII autoactivation. FXIIa then activates FXI; FXIa is an extremely efficient activator of FIX. FIXa
directly activates FX to FXa which then directly activates prothrombin as described above leading to the formation of both the intrinsic and prothrombinase
complexes. Both the PT (utilizing the extrinsic pathway) and the aPTT, (utilizing the intrinsic pathway) assays are ideal for detecting gross coagulation defects.
However, as the endpoint of these assays is the fibrin clot, these assays exclude over 95% of the thrombin generated in the complete reaction.
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(TF) (extrinsic pathway) and the exposure of blood to materials

capable of supporting FXII autoactivation (intrinsic/contact

pathway). Functional TF interactions with blood arise through

two primary routes: exposure of blood to extravascular cells

such as smooth muscle cells and fibroblasts (which constitu-

tively express TF on their surfaces); and intravascular display of

functional TF on the surface of white cells (monocytes) and/or

endothelial cells which occurs in response to agonists (i.e.,

inflammatory cytokines). In the first scenario, TF exposure is

coincident with the exposure of extracellular matrix proteins

that support the adhesion/activation of platelets thus localizing

platelets and TF at the injury site. With respect to a coagulant

response dependent on FXII activation, the mechanisms

include the release into the blood of bacterial products (sepsis)

and the presence of intracellular material such as DNA-histone

complexes due to physical disruption of cells or the induction of

apoptosis. Extravascular TF functions to initiate a localized

coagulant response upon vessel injury with the goal of forming

and maintaining a physical barrier (fibrin/platelet clot) that

restores the separation between the circulatory system and the

extravascular space. In contrast, the presence of initiators of
coagulation in circulating blood, whether molecules triggering

FXII activation or intravascular cells expressing TF, is often a

part of a secondary consequence of injury or is associated with

disease states.

The enzyme thrombin is the critical product of this response

to vascular injury, displaying procoagulant, anticoagulant, anti-

fibrinolytic, and cellular effects (32, 33). Figure 2 summarizes

the series of enzymatic events for each of the pathways leading

to thrombin generation. Key roles of thrombin in the initial

phase of the response to vascular injury include: formation of

fibrin from fibrinogen; activation of platelets; activation of

FXIII which crosslinks fibrin subunits improving the mechani-

cal stability of the fibrin matrix; and activation of thrombin

activatable fibrinolysis inhibitor (TAFI), a carboxypeptidase

that modifies fibrin making it more resistant to lysis.

Negative regulation of the coagulant response is primarily

accomplished by the activities of tissue factor pathway inhibi-

tor (TFPI), AT, protein S (PS), and the PC pathway (Fig. 3). In

combination, these inhibitory processes provide a threshold-

limited reaction system in which a stimulus of sufficient

magnitude must be provided if the reaction is to proceed. TFPI



FIG. 3. Pathways linking fibrin formation and fibrinolysis. Key proteins and pathways linking the onset of coagulation at an injury site to thrombin
formation, the formation of a crosslinked fibrin matrix and the process of fibrin lysis are shown. Key inhibitors and their targeted pathways are shown in red. a2-AP
indicates a2-antiplasmin; a2-MG, a2-macroglobulin; PLG, plasminogen; XL-Fibrin, cross-linked fibrin.
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is a multivalent Kunitz type plasma proteinase inhibitor func-

tioning as the principal inhibitor of the FVIIa-TF complex.

TFPI inhibits the FVIIa-TF complex in a FXa-dependent

manner and is a primary regulator of the initiation phase of

thrombin generation. AT is an abundant member of the serpin

proteinase inhibitory family and forms irreversible 1:1 com-

plexes with most of the proteinases participating in the coagu-

lant response including thrombin, FXa, FIXa, TF-FVIIa, and

FXIa. AT appears to be the primary inhibitor of thrombin and

deficiency is associated with increased thromboembolic events.

PS functions as an inhibitory cofactor, improving the efficiency

of TFPI inhibition of FVIIa-TF complex and activated PC

(APC) inactivation of FVa and FVIIIa. The PC pathway is

responsible primarily for limiting the conversion of prothrom-

bin to thrombin. Consistent with these activities, PS and PC

deficiency is associated with increased risk of thrombosis (34).

Key components of the PC pathway include two proteins

expressed on the luminal surface of endothelial cells: throm-

bomodulin (TM), which binds thrombin to form the PCase

complex, an efficient catalyst of PC conversion to APC, and the

endothelial cell PC receptor, which delivers PC to the throm-

bin–TM complex. APC has been shown to proteolytically

inactivate FV/FVa, FVIII/FVIIIa. The formation of APC

via the PC pathway is the central dynamic anticoagulant

mechanism limiting clot formation to the injury site.

The presence of fibrin triggers a complementary pathway,

the fibrinolytic system, which plays an important role in down

regulating the physical extension of the clot and in the ultimate

restoration of vessel structure and integrity (Fig. 3). Key

components of the fibrinolytic pathway include: plasminogen,

the zymogen precursor of the enzyme plasmin which degrades

fibrin, t-PA (tissue plasminogen activator), which catalyzes the
conversion of plasminogen to plasmin, PAI-1, (plasminogen

activator inhibitor 1), the primary plasma inhibitor of t-PA;

alpha-2-antiplasmin (AP), the primary plasma inhibitor of

plasmin; and TAFI, which in its activated form works to

suppress plasminogen activation on the fibrin surface. The

fibrin component of the blood clot acts as a cofactor for the

activation of plasminogen by t-PA, leading to efficient produc-

tion of plasmin only at the site of fibrin deposition.

The complex interplay of inflammation with coagulation

through an induced expression of TF has been described (35).

Interleukin-6 (IL-6) and interleukin-8 (IL-8) have been shown

to increase monocyte TF expression in vitro while other

inflammatory cytokines such as IL-1 and tumor necrosis fac-

tor-a (TNF-a) have been shown to induce the tethering of TF-

bearing micro-particles from monocytes at the endothelial

surface (36). This would augment the pre-existing pro-coagu-

lant effects of TF in the blood. A study of endotoxemia in

humans reported that TF mRNA expression increased 100-fold

following lipopolysaccharide injection (37). A rise in throm-

bin–antithrombin complex (TAT) and prothrombin fragment

1.2 (F1.2) closely followed the elevation in TF mRNA indicat-

ing a resulting increase in thrombin activity (37).

Inflammation also increases coagulation through the inhibi-

tion of fibrinolysis (35). PAI-1 is stimulated by IL-6 and TNF-

a, contributing to the inhibition of fibrinolysis (38). Further-

more, the down regulation of TM and PC by IL-1 and TNF-a

can promote the spread of coagulation beyond directly injured

tissue (38).

In subsequent sections, we will examine a more global

picture of burn injury to include studies that investigate

procoagulant, anticoagulant, fibrinolytic, and inflammatory

changes during the acute phase in the first 48 h and beyond.
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THE FIRST 48 HOURS: BURN SHOCK AND ACUTE
RESUSCITATION PHASE

The first 48 h of care for burn patients differ markedly from

that of other trauma patients due to myriad of factors including

fluid resuscitation, inhalation injury, and dysfunctional integu-

ment (Fig. 1). Derangements in coagulation and fibrinolysis can

manifest rapidly after injury, Figure 3 graphically depicts the

relationships between many of these factors. Given the acute

hyperinflammatory state of individuals with severe burns, the

inflammatory cascade likely contributes to coagulopathy.

Procoagulant factors

In the setting of thermal injury, the most commonly studied

components used to assess the level of hemostatic dysfunction

are platelets, fibrinogen, and two markers of in vivo thrombin

generation, the TAT complex and prothrombin activation frag-

ment 1.2, a noncatalytic peptide released during the conversion

of prothombin to thrombin (Table 1). More recently thrombin

generation potential has been measured using direct (TGA),

and indirect (TEG/ROTEM) measurements, as well as mecha-

nism based computational modeling (27, 39).

Overwhelmingly, platelet levels are found to be unchanged

by acute thermal injury (40–47). There are a few studies that

suggest platelet counts are elevated as early as admission in

thermally injured patients (47–49), which may reflect variabil-

ity in time to measurement following injury. Lawrence and

Atac (50) concluded that intravascular hemolysis and fragmen-

tation of erythrocytes can result in pseudothrombocytosis,

which may occur during the early resuscitation period. Throm-

bocytopenia on admission may reflect early disseminated

intravascular coagulation (DIC) (47). Growing use of visco-

elastic measurements has suggested that in the setting of normal

platelet counts, platelet function is diminished (27, 43, 45).

Fibrinogen levels increase in the first 48 h after burn injury

(40, 41, 48, 49), and in the preoperative period before excision

and grafting (43, 46, 51), although one study notes normal or

decreased levels in burn patients exhibiting severe coagulop-

athy and DIC (47). Levin and Egorihina (49) reported an

association between increasing fibrinogen levels in burn

patients and a decrease in the degree and velocity of platelet

aggregation, which would clearly impact clot formation.

TAT levels increase immediately post burn and peak within

48 h (44, 52–59). The time frame of the onset of this change has

been more consistent than for other markers, occurring within

the first 24 h (53, 56). Interestingly, TAT levels correlate with

burn severity. Two separate studies reported elevated TAT

levels in all patients, with significantly higher levels among
TABLE 1. Effects of burn injury on procoagulants

48 h >48 h

Platelets $(38–45) "(39, 40, 42, 46, 91)

Fibrinogen "(38, 39, 46, 47)"(41, 44)

Thrombin–antithrombin complex "(42, 50–57) "(52, 53)

Prothrombin fragment 1.2 "(43, 45, 56, 57)"(45)

Factor V $(38)

Factor VIIa "(52, 53) "(52, 53)

Factor VIII "(38, 43, 46) "(83)
nonsurvivors (54, 58). Consistent with data for TAT, several

studies have found F1.2 levels to be elevated within the first

24 h, often in proportion to TBSA. Burn patients who devel-

oped DIC exhibited even higher elevations (45, 47, 58, 59).

Increased F1.2 and TAT levels in the first 48 h post-burn,

suggest ongoing systemic thrombin generation. However, the

increased free thrombin levels do not appear sufficient to affect

the elevated level of fibrinogen. Independent of fibrinogen,

thrombin has numerous roles in coagulation homeostasis,

inflammation, and in cellular functions such as growth, migra-

tion, and regulation of protein synthesis and secretion (60).

Thrombin generation assays (27) and computational thrombin

modeling (39) have demonstrated a shift toward increased

thrombin generation potential following burn injury. This is

consistent with the data for the in vivo thrombin generation

surrogates F1.2 and TAT. If viewed in context with other

hemostatic markers, measuring F1.2 and TAT may help to

paint a more comprehensive picture of the progression of

coagulopathy in burns.

Several studies have investigated factors within the coagula-

tion cascade in the first 48 h after burn injury, including FV,

FVII, and FVIII. FV levels are normal within the first 48 h of

injury (40). This suggests that the observed increase in throm-

bin generation is not substantial enough to deplete FV levels.

Additionally, it may point to an underlying difference in the

mechanisms underlying hemorrhage risk in thermal versus

mechanical trauma. In TIC, reductions in the levels of FV

due to APC-mediated proteolysis have been advanced as an

important contributor to bleeding risk (61–63).

FVIIa activity appears elevated in the first 48 h after thermal

injury (54, 55). FVIIa may have use as a prognostic indicator.

Garcia-Avello et al. (54) found FVIIa levels to be higher in non-

survivors compared with survivors and controls within 24 h

after burn (post-burn day 1, PBD 1). The activity of FVIIa is

elevated in burn patients when compared with healthy controls,

indicating a hypercoagulable state (55). Increasing levels of

FVIIa correspond to the severity of injury in the acute phase

(54). Increased levels of FVII activating protease have been

reported in trauma patients, thus providing a potential mecha-

nism for the observed higher levels of FVIIa (64).

Lastly, FVIII rapidly increases in the first 48 h and remains

elevated above normal values up to 40 days postinjury (40, 45,

48). The extent of FVIII elevation in the acute phase correlates

with TBSA (45). FVIII is stored along with von-Willebrand

Factor (vWF) within endothelial cell Wiebel-Palade Bodies

(WPB) (65). The exocytosis of vWF from WPB into the

vascular lumen is an important initiator of primary hemostasis

in response to vascular endothelial injury (66). Elevated FVIII

levels may be a result of endothelial damage in burned tissue

and subsequent WPB exocytosis. In an environment of hemo-

static activation, as in burn injury, increasing concentrations of

FVIII may work to accelerate production of FXa and thrombin

(Fig. 2).

Anticoagulant system

Endogenous anticoagulants have been better characterized in

burn injury relative to procoagulants. Factors such as AT, PC,

and PS, TM, and TFPI inhibit coagulation by attenuating or



TABLE 2. Effects of burn injury on anticoagulants

48 h >48 h

Antithrombin #(41–43, 45, 46, 50–53, 56, 57, 65, 66) #(51, 56)

Protein C/S #(43, 52, 53, 56, 57, 67) #(43, 52, 53, 83)

Thrombomodulin (soluble) "(51) "(51)

Tissue factor pathway inhibitor $(75) $"(83)

TABLE 3. Effects of burn injury on fibrinolysis

48 h >48 h

Tissue plasminogen

activator

"(52, 56) "$(51–53)

Plasminogen #(39, 52, 53) #$(52)

Plasminogen activator

inhibitor

"(51–53, 56, 57, 75) $(56)

a2-Antiplasmin #(52, 75)

Plasmin- a2-antiplasmin

complex

$(56, 57) $(56, 57)

D-Dimer "(41–43, 45, 52–57, 75, 82) "(56)
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suppressing the effects of procoagulant factors (Fig. 3). In

burns, three of these factors (AT, PC, and PS) have been shown

to decrease during the first 48 h after injury, while the other two

(TM and TFPI) increase or remain at normal levels (Table 2).

AT is the primary inhibitor of key coagulation enzymes

including thrombin and FXa. Thus, decreased AT levels reflect

reduced capacity to suppress coagulation. Within 48 h of burn

injury, there is a marked decrease in AT levels (43–45, 47, 48,

52–55, 58, 59, 67, 68). Consistent with F1.2 and TAT level

increases after burn injury, the extent of AT level decrease

following burn injury is correlated with severity (52, 55). From

a prognostic side, survivors return to near normal levels while

non-survivors exhibit persistently depressed levels (55).

PC and PS are key components of the anticoagulant

response. The concentrations of PC and PS decrease immedi-

ately after thermal injury (45, 54, 55, 58, 59, 69). Loss of both

PC and PS following burn injury results in a simultaneous

reduction in the capacity to suppress coagulation, with poten-

tially increased thrombotic risk (55), and decreased inhibition

of inflammation (35). Levels of PC and PS have been investi-

gated as prognostic indicators; significant lower PC and PS

levels are found in non-survivors and with larger burns, as

compared with healthy controls (54, 58, 69, 70).

TM is a transmembrane glycoprotein expressed on the luminal

surface of endothelial cells (71). It functions as a high affinity

receptor for thrombin and the resulting complex is the primary

physiologic activator of PC. Assessment of TM following injury

generally depends on the measurement of fragments released by

the proteolysis of the TM extracellular domain (72), measured as

soluble TM. In a rabbit burn model, thermal injury was found to

produce shedding of TM from the endothelium (71), effectively

removing it from its anticoagulant role in the activation of PC. In

human patients, Aoki et al. (53) found TM plasma levels to

increase by 48 h after injury. Taken together, these findings

suggest endothelial activation or damage following burn, results

in shedding of TM from the endothelium and an increase in

plasma soluble TM. Burned integument and progression of the

zone of stasis may initially contribute to a hypercoagulable state

through proteolysis of TM. Elevated levels of soluble TM have

also been associated with TIC (61, 73).

TFPI, an inhibitor of the initiation phase of TF-mediated

thrombin generation, is present on endothelial cell surfaces and

circulates through plasma bound to lipoproteins. Association of

TFPI with the endothelial glycocalyx provides localized con-

trol to thrombin generation, which may have implications for

thrombotic complications in microvasculature adjacent to

burns (74). It has been shown in non-burn trauma that despite

markedly increased levels of thrombin 24 h after injury, there

are no compensatory increases in TFPI levels (75). One of the

few studies investigating TFPI levels in burns by Ravindranath
et al. (76) found TFPI levels in rats with 30% TBSA wounds to

be decreased significantly at 24 h after burn. In contrast, Kowal-

Vern et al. (77) found in humans that TFPI levels remain normal

during the acute and restorative phases after large burn injury,

consistent with observations in non-burn trauma patients. The

available data suggests TFPI is not significantly altered by

thermal injury in humans. A decrease in TFPI would be cause

for concern as it would add to a hypercoagulable state.

Fibrinolysis

After burn injury, pro-fibrinolytic enzymes increase in activ-

ity and concentration. The most frequently studied are t-PA and

plasminogen. t-PA concentration increases during the acute

phase of burn injury. When comparing survivors and non-

survivors, both Garcia-Avello et al. and Lavrentieva et al. found

t-PA levels to be elevated in both groups, with non-survivors

having higher levels immediately after burn injury (54, 58). It is

important to note that increased t-PA levels alone are not

indicative of increased fibrinolytic potential. Plasminogen lev-

els decrease immediately after burn, proportionately to the

severity of the injury (41, 54, 55). While there is a rapid

increase in pro-fibrinolytic activity following burn injury,

increases in anti-fibrinolytic factors are also observed. PAI-1

and AP are the most widely studied fibrinolytic inhibitors while

plasmin-a2-antiplasmin complex (PAP) is measured to infer

the amount of plasmin inhibition (Table 3). PAI-1 binds with t-

PA and urokinase plasminogen activator (u-PA) to prevent the

activation of plasminogen to plasmin. PAI-1 levels increase and

peak immediately after burn injury, then proceed to decrease in

concentration toward normal or near normal levels (53–55, 58,

59, 77). This trend is similarly exhibited by t-PA levels, several

studies have noted that both the fibrinolytic activator (t-PA) and

inhibitor (PAI-1) elevate in tandem correlating with burn size

and mortality (54, 55, 58). Aoki et al. (53) studied 15 patients in

a detailed analysis of PAI-1. An increase in free PAI-1 was

observed earlier and of greater magnitude (40 times healthy

control) than the elevation in t-PA. The authors suggested the

greater increase in PAI-1 compared with t-PA immediately after
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burn injury may be explained by the behavior of PAI-1 as an

acute-phase reactant. The authors go on to speculate that

immediate post-burn suppression of fibrinolysis may be neces-

sary to preserve coagulation homeostasis after thermal injury,

but that secondary activation of the fibrinolytic system in

response to fibrin deposition may lead to a paradoxical state

of hypofibrinolysis coexisting with targeted fibrinolysis (53).

Several phenotypes of fibrinolysis have been described follow-

ing traumatic injury. While the hyperfibrinolytic phenotype is

associated with a doubling of mortality, the subset of non-burn

trauma patients presenting with fibrinolytic shutdown also

experience poor outcomes (78, 79). These fibrinolytic pheno-

types are less well studied in the burn population.

AP is the primary inhibitor of activated plasmin; unlike PAI-

1, it is observed to decrease after burn injury (54, 77). From a

prognostic standpoint, various authors have found AP levels to

be low immediately post-burn, with non-survivors having lower

levels compared with survivors. However, AP levels eventually

normalized in both groups (54, 77). Interestingly, plasminogen

levels follow a similar trend to AP, in that both factors are

decreased within the first 48 h after injury (44, 54). This could

be explained by a progression of rapid conversion of plasmino-

gen to plasmin resulting in lowered levels of plasminogen. As

plasminogen is converted to plasmin, AP quickly complexes

and is consumed, resulting in depressed AP levels. This hypo-

thetical progression is further supported by evidence in other

studies that PAP complex levels increase immediately post burn

(53). However, PAP levels remained within normal physiologic

range for both survival and non-survival burn patients, despite a

marked increase in PAI and moderate increase in t-PA after

injury (58, 59). The lack of PAP increase in this more recent

data can be explained by a number of scenarios. Either AP and

activated plasmin are not complexing efficiently, AP produc-

tion is inhibited or depressed, or the higher increase of PAI-1

relative to t-PA is preventing excessive activation of plasmin

(80). Another alternative could simply be technical; the rapid

degradation or clearance of PAP after complex formation could

result in the lack of change observed within this data.

The last metric used to measure fibrinolytic activity is the

presence of fibrin degradation products (FDP), the most notable

being D-dimer (81, 82). D-Dimer is a marker that reflects

activation of coagulation and fibrinolysis, it is a sensitive but

not specific marker, with elevated levels found in a myriad of

disease states (83). Although various studies report that burn

patient’s D-dimer levels are elevated upon admission (43–45,

47, 54–59, 77, 84), further investigation is needed to determine

its clinical utility. Given local tissue damage and the resulting

hyperinflammatory state following burn injury, elevated D-

dimer levels are not surprising. As stated earlier, there seems to

be a greater increase of PAI-1 relative to t-PA during the acute

phase of injury suggesting an initial systemic hypofibrinolytic

state (53). In one study, eight of 36 patients showed no clot lysis

after 24 h when assessed using the euglobulin clot lysis time

assay and had a significantly lower plasma ratio of PAI-1/t-PA

complex to free PAI-1 (53). Elevated D-dimer may therefore be

due to an excessive amount of fibrin clot formation; the local

fibrin degradation at the site of burn injury raising the level of

FDPs (53, 54, 85).
INFLAMMATORY FACTORS

Burn injury causes both a local inflammatory response to

coagulative necrosis as well as a systemic inflammatory state

secondary to circulating cytokines (86). Many pro-inflam-

matory molecules are elevated in the acute phase in response

to burn injury (85, 87, 88). IL-1, IL-6, IL-12, and TNF-a are

elevated by 24 h and levels are significantly higher in burn

patients who die of their injuries at 48 h (85). Burn injury is

associated with a systemic inflammatory response that is

associated with injury severity and precedes a hypermetabolic

state (89). Cytokine derangements are more severe in adult

patients when compared with children and this heightened

immunoinflammatory response has been suggested as a con-

tributor to the increased morbidity and mortality observed in

adults (87). Matsuura et al. examined a cytokine network

including monocyte chemoattractant protein-1 (MCP-1), IL-

6, IL-8, and IL-10 and showed that cytokine derangements in

burn patients with > 20% TBSA compared with healthy con-

trols were correlated with burn injury severity and prognosis

(90). When compared with non-burn trauma patients, patients

with severe burns were found to have higher levels of IL-6 and

IL-8 as early as 24 h after injury (91). The inflammatory state,

specifically IL-6, IL-8, TNF-a, among other cytokines have

been shown to shift the hemostatic balance towards coagulation

(35). However, the interplay between the inflammatory

response to burn injury and its effects on BIC has not been

well studied.

Summary

Overall, in the first 48 h thermally-injured patients appear to

exhibit a net increase in pro-coagulant potential. Studies of the

components of the fibrinolytic cascade provide evidence of

both hyper- and hypofibrinolysis. Whether these changes are

part of a larger phenomenon unique to burn injury or rather, are

part of a general response to trauma is uncertain.

Caution must be taken when trying to define the first 48 h

after burn injury, as a hyper- or hypocoagulable state based

solely on the levels of individual markers. Indeed, studies have

demonstrated induction of both states following burn injury.

Global coagulation assays have the potential to better charac-

terize individual differences in the dynamics of clot formation

and lysis among patients. In a study on TEG measurements of

65 patients with > 15% TBSA injuries, Huzar et al. (92) found

60% of patients to be hypercoagulable on admission while 24%

were hypocoagulable. Identifying potential factors that predis-

pose patients to hyper- or hypocoagulability, such as severity of

injury, pre-existing conditions, or demographics, must be fur-

ther explored in future research.
FORTY-EIGHT HOURS AND BEYOND:
POST BURN SHOCK RESUSCITATION

Once a patient survives the acute phase of burn injury, he or

she moves into a period wherein infections, protracted hyper-

metabolism, and hospital convalescence impact outcomes.

During this period, excision and grafting is initiated to mitigate

the impact of sustained exposure to thermally damaged tissue
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(93, 94). During these surgeries burned and devitalized tissue is

excised and replaced with auto-, allo-, or xenografts to gain

temporary or permanent skin resurfacing. The ability to make

and sustain a clot plays a pivotal role in the ability to perform

safe operations. Of note, while levels of a few of the compo-

nents of coagulation discussed in the first 48 h of injury change

in this time frame, most remain abnormally elevated or

depressed. Longitudinal data studying BIC are limited.

Procoagulant

After 48 h, many studies identify an increase in platelet levels

(41, 42, 44, 48, 95). In the presence of infection, Housinger

et al. (96) determined falling platelet counts to be an indepen-

dent predictor of sepsis in severely burned pediatric patients.

Cowan et al. (40) noted mean platelet counts were significantly

lower in adult burn patients who developed sepsis, and that

development of dysfunctional platelet aggregation was more

reliably correlated with sepsis than lower count. Burn patients

generally present with normal platelet counts and develop a

thrombocytosis following the acute phase (Table 1). Dysfunc-

tional platelets at any point after burn injury correlate with poor

outcomes. TAT and FVII activity remain elevated in the week

following burn injury, suggesting hypercoagulability (54, 55).

While overall TAT values in burn patients return toward normal

over time, average levels are higher in larger TBSA injury (56)

and in non-survivors (54, 58). FVIII activity is elevated in the

days following burn injury during excision and grafting while

the activities of FII and FX are depressed (43). The differential

activity of FVIII has been rationalized by its function as an

acute phase reactant. Factor activities were shown to decrease

perioperatively reflecting a consumptive process secondary to

intraoperative blood loss (42, 43). FVIII activity is higher in

non-survivors and FII functional activity is lower with larger

burns (85). F1.2 remains elevated for 5 to 7 days but is not

significantly higher than on admission (47) or by mortality (58).

At 1 to 2 weeks following burn injury, the potential to generate

thrombin appears to increase (27). Fibrinogen levels peak

within the first week following burn injury and remain elevated

(27, 41). Consistent with factor activity, fibrinogen levels fall in

the perioperative period with blood loss (42, 43).

Anticoagulant

AT activity is depressed after thermal injury (53, 58). The

depression of AT activity tends to be more severe with increas-

ing TBSA (45, 77). Decreased AT activity correlated with poor

outcomes including increased length of stay and mortality (67).

The perioperative period further exacerbates AT activity

depression (43). Kowal-Vern et al. have published case reports

on systemic infusion of AT concentrate to reduce microvascular

thrombosis associated with burn wound progression (44, 68).

PC and PS levels tend to be decreased in the days after burn

injury (45, 54, 55, 85) (Table 2). PC and PS normalization

following burn injury has been associated with survival. All

patients had reductions in PC and PS on admission; survivors’

PC levels were normalized by day 5 and PS by day 7, while

PC/PS remained low in non-survivors (58). As discussed,

normalization of AT, PC, and PS after 48 h has been associated

with survival.
Soluble TM is typically elevated by 48 h and continues to be

elevated as far out as 7 days from injury (53). In addition,

soluble TM levels in humans have been shown to closely

parallel TNF-a increases after burn injury, suggesting TNF-

a stimulates TM production (97). Plasma TM levels were found

to be significantly higher in non-survivors, as well as those who

developed sepsis (97), perhaps reflecting an ongoing state of

endothelial activation or damage. TFPI levels are generally

within normal range following burns, however, TFPI levels are

elevated at later timepoints in non-survivors, and this increase

was shown to be significant at hour 60 (85). Again, this clinical

finding differs from TFPI activity described in a rat model of

sepsis following burn injury. TFPI activity levels were

decreased in animals subjected to either burn injury or sepsis

alone, with even lower activity when combinatory insults

occurred, this decrease was most pronounced at 24 h with a

rebound to near normal TFPI activity at 72 h (76). In humans,

TFPI levels are found to be increased in several disease states,

including sepsis (98, 99). However, interpretation of TFPI

levels as a biomarker of coagulopathy can be misleading, given

its various isoforms and distribution within the body, and varied

methods of measurement (100).

Fibrinolysis

Most studies describe an acute rise in tPA levels within 24 h

of burn injury that normalizes within the first week (53–55).

Mortality may influence tPA levels, in one study survivors were

within normal range and non-survivors had persistently ele-

vated levels (58). This survivor – non-survivor difference was

also observed for PAI-1, though not for PAP, which remained

normal throughout, or D-Dimer, which remained elevated (58).

It has been reported that plasminogen levels gradually increase

to normal or near normal physiologic levels by post-burn day 5.

When compared by mortality, the drop and subsequent return to

normal levels for plasminogen was comparable (54). When

plasminogen levels are compared by burn severity, larger burns

experienced a sharper decrease and the return to normal levels

was slower (55). Overall, it seems plasminogen levels are

sensitive to burn severity but are not indicative of mortality

(Table 3).

The relationship between plasminogen levels and burn

severity may be illustrating a ‘‘dose-dependent’’ activation

of fibrinolytic activity: greater severity burns result in more

fibrinolysis and drop in plasminogen. If evaluated in tandem

with observed t-PA activity, there is evidence that profibrino-

lytic factors increase their activity, as t-PA levels increase,

plasminogen levels fall. Circulating PAI-1 effectively inhibits

tPA. tPA is released locally in response to burned tissue as

microvasculature thrombosis develops. Relatively greater dis-

turbances in this homeostasis are observed in non-surviving

patients (53). It is possible that ineffective fibrinolysis contrib-

utes to burn wound progression or organ system dysfunction.
INFLAMMATORY FACTORS

The inflammatory and hypermetabolic state that develops

after burn injury persists following the acute phase (90, 101).

Nonsurvivors have significantly higher plasma levels of IL-1,
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IL-6, IL-10, IL-12, and TNF-a at 1 week from burn injury when

compared with survivors (85). Septic complications are devas-

tating sources of morbidity and mortality in burn patients. Burn

injury alone causes an inflammatory state, infection, and sepsis

compound this inflammatory response (102). Lantos et al. (103)

observed an acute and sustained elevation in both pro- and anti-

inflammatory cytokines in response to burn injury, consistent

with other studies. Furthermore, IL-10 which suppresses

immune function and predisposes patients to infection was

found to be significantly higher at admission and perimortem in

nonsurvivors (103). Sepsis has been associated with patterns of

gene expression such as increased concentrations of mRNA for

IL-10 and TNF-a (104). In pediatric patients, IL-8 levels were

correlated with injury severity, infection, and mortality and

were suggested as a sensitive and specific prognostic biomarker

(105). Sepsis can be associated with DIC characterized by

alterations in fibrinolysis that result in microvascular throm-

botic complications (106). Burn injury and subsequent injury-

specific complications such as infection and sepsis are inde-

pendently associated with the inflammatory state. Following

the acute phase of injury, the complex interplay between these

factors and their impact on coagulation homeostasis are not

well characterized.

Summary

Based on current studies, the period following acute burn

injury is characterized by either maintenance of admission

levels of coagulation factors or recovery to normal range values

of said factors. In general, a hypercoagulable state persists for

days to weeks. Derangements in biomarkers of coagulation are

often correlated with size of burn (TBSA), as well as mortality.

Excision and grafting impacts factor function, causing a con-

sumptive coagulopathy, which may underlie bleeding compli-

cations. Sepsis, a common complication of major burn injury,

further impacts coagulation causing platelet dysfunction as

well as increases in the release of the endogenous anticoagulant

TFPI. The hyperinflammatory state caused by burn injury

persists over time, and infection and sepsis further exacerbate

inflammation and may impact coagulation. Normalization of

fibrinolytic factors seems to be associated with survival, though

that data still needs to be explored. The paucity of longitudinal

data characterizing BIC outside of the acute phase underscores

the need for further research.
CLINICAL COMPLICATIONS OF BURN-INDUCED
COAGULOPATHY

The advances in the general understanding of BIC in the last

half-century have led to improvements in outcomes for burn

patients through targeted thrombotic prophylaxis and hemor-

rhage control. Applications of the understanding of BIC and

future directions that will be discussed in the following sections

arose from the foundations built by these pioneers in coagul-

opathy research and burn care.

Venous thromboembolism

Given the recognized hypercoagulable state and potential for

hypofibrinolysis after thermal injury, the development of deep
vein thrombosis (DVT) and venous thromboembolism (VTE)

in burn patients is a concern. Burn patients often meet all

criteria of Virchow’s triad for the pathogenesis of VTE—

endothelial injury, venous stasis, and hypercoagulability

(107). The actual incidence and significance of DVT and

VTE after burn injury, however, remains unclear.

In 2015, Meizoso et al. (108) published a comprehensive

review of VTE in burn patients. Through their review of over 50

studies, the authors discovered reported incidence of VTE from

0.2% to 25%. The wide range can be explained by varying

methodology among studies. Higher incidence is found in those

studies with autopsy or with sonographic screening of all

patients. Lower incidence is reported when investigating only

symptomatic patients. The incidence of potentially fatal con-

sequences of DVT like pulmonary embolism (PE) has been

reported to be as low as 0.001%, but this figure was derived

from a study that also included patients with minor injuries

(109). Others have reported rates of PE as high as 3.3% (110).

Given the wide range of reported incidence of thrombotic

events, it is not surprising to find disparate views on the use of

chemoprophylaxis for DVT and VTE in burn patients. In a

retrospective analysis of a burn registry data, Sikora and Papp

(111) determined that although burn severity was associated

with VTE complications, chemoprophylaxis did not prevent

VTEs. Other authors have proposed that bleeding risks associ-

ated with chemoprophylaxis, especially heparin, outweigh the

potential benefits (112).

In contrast, Ahuja et al. (113) published a randomized,

controlled trial in 2016 of 100 patients with 30% to 60% TBSA

burns that examined DVT risk factors and the use of chemo-

prophylaxis. In the control group of 50 patients that did not

receive chemoprophylaxis, four patients (8%) had sonographic

evidence of DVT, compared with none of the patients on

chemoprophylaxis. One patient in the treatment group devel-

oped epistaxis; no other complications associated with treat-

ment were noted. The authors concluded that the benefit of

DVT prevention outweighed bleeding risk in burn patients.

These findings should be validated in future studies to develop

consensus on chemoprophylaxis among providers.

Even when providers opt for chemoprophylaxis, studies have

shown that dosing may be inadequate given burn pathophysi-

ology. By monitoring anti-FXa levels, Lin et al. (114) found

that standard dosing of enoxaparin in burn patients failed to

achieve target anticoagulation. Thus, conflicting evidence on

incidence, clinical significance, and prevention of VTE in burn

patients obfuscates guidelines on chemoprophylaxis.

Disseminated intravascular coagulation (DIC)

DIC is a consumptive coagulopathy in which excessive,

systemic activation of coagulation results in depletion of

platelets and coagulation factors (115). Subsequently, diffuse

bleeding can occur and lead to poor outcomes. In a 2010 review,

Lippi et al. (116) examined the development of DIC in burn

patients. As with VTE, there was variability in reported preva-

lence and recognition of DIC in this population.

The rarity of DIC in burn injury was argued by Barrett and

Gomez in a retrospective review of 3,331 consecutive burn

patients admitted over 9 years (117). Of all patients, 454
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patients (13.6%) sustained burns greater than 20% TBSA. Only

three patients were diagnosed with DIC—0.09% of all study

patients and 0.66% of patients with TBSA > 20%. The authors

used discharge diagnoses of DIC and reviewed clinical/autopsy

data to identify other potential patients with DIC.

In contrast to these findings, Lavrentieva et al. (58) reported

that in patients with greater than 25% TBSA, the prevalence of

a DIC phenotype was 91%. Here, the authors used a scoring

system developed by the International Society of Thrombosis

and Hemostasis to identify patients with DIC that is based on

markers such as platelet count, fibrin split products, prolonged

PT, and decreased fibrinogen (118). The wide range of DIC

reported in the burn population highlights the need for uniform

definitions and large population studies.
INTRAOPERATIVE BLOOD LOSS

Intraoperative blood loss is a challenge in burn surgery and

coagulopathy with transfusion requirement is associated with

poor outcomes. Niemi et al. (43) studied perioperative hemo-

static parameters in burn patients and identified an intraoper-

ative depletion of factors, fibrinogen, and platelets with

resulting coagulopathy consistent with a consumptive process.

Several studies have described a similar phenomenon, where

burn patients typically show preoperative factor, platelet, and

fibrinogen levels above reference ranges that fall predictably

during excision and grafting (42, 95).

In a recent review, Welling et al. (28) concluded that

coagulopathy in burn patients is a heterogenous disease process

with a described hypercoagulable state following injury, but

that intraoperative hemorrhage, hypothermia, and hemodilu-

tion can lead to significant hemorrhage. On review of the data,

they suggested that a more protocolized use of viscoelastic

assays such as TEG and goal-directed blood product resuscita-

tion can reduce transfusion requirements and improve out-

comes (28). In a prospective study randomizing 30 severely

burned patients undergoing excision and grafting into a TEG-

based resuscitation algorithm versus standard of care, cumula-

tive blood product use was reduced by more than half (46). In

this study, the treatment algorithm was based on recommen-

dations for TIC, highlighting the need for burn-specific

protocols.
BURN WOUND CONVERSION

The zones of burn wounds were first described by Jackson in

1953. The central zone of coagulation is surrounded by a zone

of stasis, and an outermost zone of hyperemia (119). Burn

wound conversion is a significant source of morbidity with

further tissue loss over time within the zone of stasis, which is

characterized by coagulation, inflammation, and resulting

ischemia. Investigations into the use of anticoagulant and

anti-inflammatory agents to prevent burn wound progression

have been undertaken in animal models with varied results

(120). One study investigated the administration of t-PA to

prevent burn wound progression in a rat model. They found

significantly greater percentages of interspace viability (87.8%

vs. 31.8%) at 1 week in the t-PA treatment group (121). In a
similar rat burn model, Meyerholz et al. (122) studied the utility

of APC, and found that it increased burn depth severity, local

inflammation, and tissue damage.

Kowal-Vern et al. conducted a prospective trial on admin-

istration of human AT concentrate to burn patients with

injuries greater than 20% TBSA. AT plasma levels were

reduced on admission for all burn patients, treatment with

AT was initiated within 24 h of burn injury, and plasma levels

improved over the course of treatment in the first 4 days

following injury. The treatment group showed shorter time to

graft healing in all body regions, and this difference reached

significance for the hands. The authors concluded that human

AT concentrate infusion is safe and suggested clinical trials to

confirm the potential to improve clinical outcomes (77). More

recent reviews on the topic of AT therapy in burn care reaffirm

that AT has been shown in small human studies and animal

models to be safe with a positive effect on wound healing in

burns; however, well-designed prospective clinical trials are

required to establish its role as clinical adjunct in burn care

(123, 124).
CONCLUSIONS AND FUTURE DIRECTIONS

Overall, current understanding of BIC proposes that alter-

ations in the components of the coagulation, fibrinolytic, and

inflammatory systems yield functional changes in clot dynam-

ics after burn injury. These alterations differ from those seen in

TIC. However, focusing only on changes in the levels of these

markers may lead to erroneous conclusions about an individu-

al’s clotting dynamics and thus may lead to missed opportu-

nities for identifying (and preventing or treating) thrombotic or

hemorrhagic states. Attempts to capture these changes with

conventional assays of coagulation (PT, aPTT, platelet counts)

have proven to be generally insufficient in the characterization

of BIC. Assays that incorporate and combine more information

regarding a patient’s blood clotting phenotype into a single

profile will be more useful.

Many methods of identifying potential BIC have been

developed and continue to be optimized. Global and dynamic

assays of coagulation such as the viscoelastic assays (TEG/

ROTEM) and TGA provide more comprehensive and clinically

relevant assessments of coagulation homeostasis (27). The

availability of TEG/ROTEM parallels utilization at the

point-of-care, TGA, and computational thrombin modeling

show promise in characterizing procoagulant potential in burn

patients and may experience increased use with increasing

availability (27, 39). Research and development of new tech-

nologies to advance trauma and critical care is ongoing.

Application of these developments to burn patients is promising

in regards to diagnosis of BIC and clinical decision-making,

such as the management of resuscitation (92). In addition to

these laboratory tests, a consensus on an appropriate BIC

diagnostic scoring system will clarify the prevalence of this

phenomenon across institutions.

The clinical significance and approaches to prevention and

treatment of BIC continue to be debated. While this review

focused on coagulopathy after thermal injury, burn teams treat

injuries from a variety of mechanisms, including chemical and
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electrical. BIC studies often exclude these groups or include

them within the larger thermal injury population without regard

for potential disparities. Further studies should investigate

potential manifestations of coagulopathy unique to these

subgroups.

Severely-burned patients face innumerable challenges on

their journey to recovery. After the initial management and

resuscitation, these patients face prolonged hospital stays,

multiple surgeries, increased risk of infection and sepsis, and

a host of psychosocial obstacles. The addition of a progressive

or unrecognized coagulopathy can further complicate this

journey and lead to devastating consequences. By anticipating

and better understanding BIC, providers will be able to opti-

mize the care of their patients with reliable triage and targeted

interventions.
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