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DATA RESOURCES

Cervical spine injuries are a common form of traumatic in-
jury, affecting more than 3 million patients per year in 

North America (1). Cervical fractures can lead to substantial 
disability, as 10%–11% of all cervical spinal fractures result 
in spinal cord injury (2). In the United States alone, more 
than 1 million patients are evaluated for suspected cervical 
spine injury annually (3). Most of these cases are assessed in 
the emergent setting and, in the adult population, almost 
exclusively by using CT, because of its inherent improved 
quality and coverage relative to plain film radiography.

Interpretation of cervical spine CT can prove challeng-
ing, especially in the older population, as images are com-
monly confounded by superimposed degenerative disease 
and osteoporosis, making fracture detection more com-
plex. Given the relatively high incidence of cervical injury 
in trauma patients and the potential for high morbidity, 
there is a need for fast and accurate diagnosis. This provides 
an excellent clinical use case for the assistance of an artificial 
intelligence (AI) algorithm. Although a few cervical spine 
fracture algorithms have been developed (4–6), most have 
limited geographic representation within the training data, 
restricting model generalizability. Even a model trained on 
a multi-institution dataset (6) had very limited diagnostic 
accuracy when used in practice on external datasets (7). 
Additionally, the lack of publicly available, expertly an-
notated cervical spine fracture datasets hinders further 
improvements in model performance using recently devel-
oped machine learning algorithms.

The Radiological Society of North America (RSNA) 
collaborated with the American Society of Neuroradiology 

(ie, ASNR) and the American Society of Spine Radiology 
(ie, ASSR) to create the largest publicly available, multi-
institutional and multinational expert-labeled dataset of 
cervical spine fracture CT images for AI research, which 
was featured in the RSNA 2022 AI Challenge. This dataset 
is hosted publicly on a machine learning competition plat-
form to help develop machine learning algorithms that can 
assist in the detection of cervical spine fractures. A sum-
mary of how the dataset was constructed can be found in 
Appendix S1.

Dataset Description and Usage
The final dataset consisted of images of the cervical spine 
in Digital Imaging and Communications in Medicine 
(DICOM) format, two comma-separated values files, and 
pixel-level segmentation of the cervical spine in Neuroim-
aging Informatics Technology Initiative (NIfTI) format. 
The dataset included 3112 CT scans; demographics and 
frequency of fractures per cervical spine level and the num-
ber of studies from each institution are shown in Table 1. 
The dataset is composed of 1445 studies positive for frac-
ture (954 men, 491 women; mean age, 56.78 years ± 21.97 
[SD]), of which 235 were bounding box annotated. This 
is supplemented with 1667 studies negative for fracture 
(1022 men, 645 women; mean age, 50.61 years ± 21.29). 
Table 2 shows the data distribution used for the Kaggle 
competition, with 2019 cases in the training set, 304 cases 
in the public test set, and 789 cases in the private test set.

Image files were organized into folders according 
to values stored in the Study Instance UID DICOM 
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Figure 2. Without this information, there was a risk of hav-
ing the segmentations flipped in the z-axis and/or mirrored 
in the x-axis.

Discussion
We curated and created expert annotation of a large high-qual-
ity cervical spine fracture CT dataset from 12 institutions from 
six different continents, which, to our knowledge, represents 
the largest public dataset of cervical spine fractures currently 
available. Great care was also taken to ensure that data were 
distributed equally with respect to sex, age, contributing site, 
and fracture level across the training, validation, and test sets. 
This additional effort helped to mitigate against unexpected 
or untoward performance drops between training and exter-
nal or internal testing. The successful production of this data-
set is partially attributed to using unconventional annotation 
methods by means of prelabeling. Such labels were provided by 
contributing sites, which allowed for the redistribution of the 
annotation burden.

Given the size and complexity of the dataset, much time and 
consideration were devoted to developing an annotation strategy 
that maximized the use of the annotated data while avoiding 
overburdening our volunteer annotators. The depth of annota-
tions from patient level to pixel level was considered. Eventually, 
a hybrid schema was chosen in which images from each patient 
in the dataset were given a study-level annotation detailing each 
cervical spine level that was described as fractured in the origi-
nal radiologist’s report or tagged as no fracture in the control 
dataset. A smaller subset of patient images (approximately 16% 
of positive fracture cases) were assigned image-level annotations, 
including bounding boxes enclosing all the fractured vertebral 
elements on a given image. This was thought to be the best 
strategy to optimize the effort of the volunteers to provide “just 
enough” useful image-level annotations in the dataset along with 
the large number of additional studies with patient-level annota-
tions. Through trial and error, the most reproducible method for 
image-level annotations was to have the annotators draw bound-
ing boxes first on key sections where the fracture pattern reached 
a relative maximum or minimum cross-sectional area. Then the 
annotators skipped ahead through the image stack to the next 
relative maximum or minimum section and interpolated the 
bounding boxes in between these sections.

Establishing a strong overlap between the annotators 
proved to be challenging. Detailed initial instruction in-
cluded example bounding boxes, a document outlining the 
process with image examples, and an instructional video. To 
help ensure accurate annotation that adhered to the provided 
instructions, all annotators were provided practice examina-
tions to familiarize themselves with the tools. Performance 
during the practice phase was evaluated based on the ground 
truth bounding boxes defined by the committee, and an-
notators were retrained as needed. The final ground truth 
bounding box was calculated by taking the largest sum of 
all individual bounding boxes (Fig 1), which focuses on the 
sensitivity of fracture detection. An additional subset of cases 
containing segmentation masks of the vertebrae was also pro-
vided so that this could be used to help train the algorithm 

attribute, a unique study-level identifier. Individual image files 
within each folder were named according to their position 
within the stack of DICOM images via the Instance Number 
DICOM attribute.

The train.csv file contains study-level ground truth labels 
for the training set. Study Instance UID was the unique 
study-level identifier. The patient_overall column indicated 
if any cervical vertebrae were fractured, while the C1–C7 
columns specified each level of the cervical spine. A value 
of 0 indicates absence and 1 indicates presence of fracture 
at that level.

The train_bounding_boxes.csv file contains information 
regarding the fracture bounding boxes for a subset of the 
training set. Study Instance UID is the unique study-level 
identifier. The x and y columns specify the upper left-hand 
corner position of the bounding box, or the point closest 
to (0, 0). The width and height indicate the bounding box 
dimensions. The slice_number column indicates the im-
age number within the stack and can be concatenated with 
“.dcm” to generate the DICOM file name.

The segmentation files were named according to Study 
Instance UID and represent a subset of the training set. The 
segmentation labels have values of 1 to 7 for C1 to C7 (seven 
cervical vertebrae), 8 to 19 for the 12 thoracic vertebrae, 
and 0 for everything else. All segmented studies have C1 
to C7 labels with variable inclusion of thoracic labels. The 
provided NIfTI files consisted of segmentation in the sagit-
tal plane, while the DICOM files were provided in the axial 
plane. NIfTI header information was used to determine 
the appropriate orientation to ensure that the DICOM im-
age and segmentation planes matched, as demonstrated in 

Abbreviations
AI = artificial intelligence, DICOM = Digital Imaging and Com-
munications in Medicine, NIfTI = Neuroimaging Informatics 
Technology Initiative, RSNA = Radiological Society of North 
America

Summary
This dataset is composed of cervical spine CT images with annota-
tions related to fractures; it is available at https://www.kaggle.com/
competitions/rsna-2022-cervical-spine-fracture-detection/.

Key Points
 ■ This is, to our knowledge, the largest publicly available adult cervi-

cal spine fracture CT dataset, with contributions from 12 institu-
tions across nine countries and six continents.

 ■ This dataset includes medical images, segmentations, and expert 
annotations from a large cohort of radiologists with subspecialist 
expertise in spine imaging.

 ■ This dataset was used successfully for the Radiological Society of 
North America 2022 Cervical Spine Fracture Detection competi-
tion hosted on the Kaggle machine learning platform. The dataset 
is made freely available to the research community for noncom-
mercial use.

Keywords
CT, Informatics, Head/Neck, Spine, Feature Detection, Diagnosis, 
Segmentation
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was that the report generated at the point of care offers the most 
accurate assessment, as this is when the radiologist is delivering 
professional services and attention is most concentrated on the 
task at hand. Experience has shown that volunteer annotators, 
even under the best of circumstances, are not reviewing exami-
nations under the same level of scrutiny as they might in the 
clinical environment (12). Our goal was to redistribute and 

to detect the fracture level (Fig 2). Thus, this dataset provides 
multimodal annotation formats of different levels: patient 
level, vertebra level, bounding box, and segmentation.

The decision to request an abstraction of the radiology report 
from contributing sites was primarily to explore a different way 
to reduce the cognitive effort required in the time-consuming an-
notation process of an entire dataset from scratch. The rationale 

Table 1: Demographic Distribution and Number of Positive and Negative Studies for Fracture per Institution

Site

Sex

Age (y) Positive Cases Negative Cases

Fracture Level Distribution

M F C1 C2 C3 C4 C5 C6 C7

Site 1 212 115 61.37 ± 20.98
(19–97)

169 158 32 47 11 23 24 41 68

Site 2 68 67 52.74 ± 24.35
(18–101)

92 43 15 30 4 12 13 26 33

Site 3 175 112 58.57 ± 22.34
(18–97)

100 187 15 23 10 13 20 28 44

Site 4 245 108 45.86 ± 19.19
(18–92)

182 171 34 50 28 32 48 62 75

Site 5 223 133 51.03 ± 20.95
(18–95)

176 180 26 58 17 18 30 60 76

Site 6 37 29 47.83 ± 21.92
(18–92)

30 36 2 12 3 4 4 4 11

Site 7 234 188 60.22 ± 22.32
(18–104)

187 235 28 59 17 25 35 41 62

Site 8 176 60 42.91 ± 19.28
(18–92)

96 140 18 13 10 22 25 34 34

Site 9 31 8 44.1 ± 17.81
(19–72)

11 28 0 8 2 1 1 2 1

Site 10 94 55 47.38 ± 19.64
(20–90)

41 108 4 9 6 4 7 20 15

Site 11 207 80 50.83 ± 18.74
(18–93)

144 143 35 50 9 15 29 46 67

Site 12 274 181 57.17 ± 21.68
(18–99)

217 238 32 62 21 28 49 71 88

 Total 1976 1136 53.78 ± 21.83
(18–104)

1445 1667 241 421 138 197 285 435 574

Note.—Age data are reported as means ± SDs, with ranges in parentheses. The frequency of fracture(s) at each cervical spine vertebra level 
are tallied for the positive cases. A single study may contain multiple fractures, and thus, the sum of all fracture levels may be greater than 
the total number of positive cases.

Table 2: Demographic and Case Distribution among Training, Public Test, and Private Test Datasets Hosted on Kaggle

Site

Sex

Age (y) Positive Cases Negative Cases

Fracture Level Distribution

M F C1 C2 C3 C4 C5 C6 C7

Training 1278 741 53.65 ± 21.57
(16–104)

961 1058 146 285 73 108 162 277 393

Public test 189 115 52.51 ± 20.73
(18–101)

122 182 26 32 8 7 17 30 55

Private test 509 280 53.40 ± 22.86
(18–101)

362 427 69 104 57 82 106 128 126

Note.—Age data are reported as means ± SDs, with ranges in parentheses. The frequency of fracture(s) at each cervical spine vertebra level 
is tallied for the positive cases.

http://radiology-ai.rsna.org
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worldwide. This dataset is made freely available to all researchers 
for noncommercial use.
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“front-load” the annotation burden and use our volunteer an-
notators in more of a quality-control activity. This approach, in 
addition to the requirement of smaller batches to contribute and 
annotate, offered the best balance without overburdening either 
the data contributors or the volunteer annotators. The challenge 
to this method is annotator disagreement with the ground truth 
report. In response to this, annotators were allowed to dispute 
the ground truth labels, which were subsequently adjudicated by 
organizing committee members.

In the future, the current dataset may be optimized by in-
creasing the number and detail of image-level annotations or 
possibly by adding pixel-level annotations. The value of the da-
taset is not limited only to cervical spine fracture detection. For 
example, fractures outside of the cervical spine, including skull 
base, upper thoracic spine, and posterior rib fractures, were all 
commonly encountered and could be annotated as well to en-
hance the value of the dataset.

While the fracture-level distribution in the dataset is imbal-
anced, potentially affecting algorithm training and performance, 
the data distribution of fractures is similar to what has been de-
scribed in real-world scenarios. For example, a multicenter study 
evaluated blunt traumatic cervical spine fractures at 21 different 
institutions and found that the most frequently fractured verte-
brae were C2, C6, and C7, which together accounted for 63.3% 
of all cervical spine fractures (13). In the RSNA 2022 Cervical 
Spine Fracture Detection dataset, these three levels were also the 
most frequently fractured (with C7 being the most common) 
and accounted for 62.4% of all cervical spine fractures. A real-
world distribution of the data is useful for clinical implementa-
tion of a fracture detection algorithm trained on the dataset.

There are several limitations of this dataset. The strict inclusion 
criteria of axial noncontrast 1-mm-thick section images may limit 
its application to practices that have different section acquisitions 
or reformat their CT cervical spine scans from a postcontrast ac-
quisition. Additionally, the dataset treats acute and chronic frac-
tures the same; however, detection of chronic fractures may not 
be as clinically relevant when evaluating trauma patients. Further-
more, this dataset excluded patients who underwent prior surgery 
because of the challenges of streak artifacts and altered anatomy. 
As such, machine learning models trained using this dataset may 
underperform on postsurgical scans of the cervical spine. Finally, 
evaluation for cervical spine fractures can be challenging, especially 
in the setting of severe trauma, and some fractures were visualized 
that were not accounted for in the radiologist’s report. In these 
cases, the radiologist’s report was chosen to represent the ground 
truth because of the limitations of viewing these studies in retro-
spect on a web-based platform. This method is obviously limited 
compared with radiologists reading these studies in real time on 
high-resolution monitors within their picture archiving and com-
munication systems environment, with clinical history and prior 
imaging studies available to assist in image interpretation.

In summary, the RSNA 2022 Cervical Spine Fracture De-
tection dataset is, to our knowledge, the largest and most geo-
graphically diverse, publicly available expert annotated dataset 
of cervical spine fracture CT studies. The intent of this dataset 
is to inspire and enable advances in machine learning research 
to improve the quality, efficiency, and availability of patient care 

Figure 1: Axial noncontrast cervical spine CT image with bounding 
boxes surrounding the fractured vertebrae, annotated by individual neu-
roradiologists (red). Ground truth bounding box (cyan) was calculated by 
taking the largest sum of all individual bounding boxes, representing the 
largest bounding box.
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