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Abstract 

The current study undertakes refixation patterns on words in 
sentential reading. Utilizing a Linked Linear Mixed Model 
approach, the analysis focused on words with a single fixation 
and the first fixation from words with a double fixation. The 
model findings revealed a relationship between refixation 
probability and fixation locations, with initial fixations tending 
to occur closer to the beginning of a word in instances of higher 
refixation likelihood. Incorporating predicted and residual 
values of the fixation location models into the fixation duration 
models resulted in congruence in the observed fixation 
locations, durations, and residual values. Finally, the models 
revealed differences between progressive and regressive 
second fixations. 

Keywords: Linked Linear Mixed Models; reading; refixation; 
inverted optimal viewing position. 

Introduction 

The study of eye movements in attentive reading has been 

developed as a progressive research domain for the past 

several decades. The duration of fixations and their location 

(as identified by saccades) have led to a major research 

question in reading research: where and when to move the 

eyes. This question has been investigated by linear mixed 

model analyses, an extension of simple linear models 

allowing random and fixed effects, and computational 

models of oculomotor control. The computational models 

have exhibited high performance in predicting first-pass 

fixations, especially for words with short and medium length 

and low frequency (E-Z Reader by Reichle et al., 1998; 

Reichle et al., 2006; 2009; SWIFT by Engbert et al., 2002; 

2005; Richter et al., 2006; Schad & Engbert, 2012; Risse et 

al., 2014; Glenmore by Reilly & Radach, 2003, 2006). 

Nevertheless, the models revealed divergent results for long 

words (Richter et al., 2006) and high-frequency words 

(Reichle & Sheridan, 2015; Reichle et al., 2003, 2006). They 

also performed differently in predicting the Inverted Optimal 

Viewing Position (IOVP) effect (Reilly & Radach, 2006).  

The current study focuses on analyzing the IOVP effect in 

the context of refixation mechanisms. The effect is usually 

described in contrast to the Optimal Viewing Position (OVP) 

effect proposed by Rayner (1979). Briefly, the OVP effect 

states that a fixation landing around the center of a word tends 

to be shorter than a fixation on the edges of the word when 

presented without a text context (i.e., in isolation). The IOVP 

effect is the reversed OVP effect. It states that a fixation 

landing around the center of a word tends to be longer than a 

fixation on the edges of the word if they are embedded in the 

text. Accordingly, the effect is observed in sentences and 

larger text. A working explanation for the IOVP effect is that 

a fixation on the edge of a word is an undershoot or overshoot 

fixation (i.e., saccadic error assumption; Vitu et al., 2001). 

The IOVP effect is a robust phenomenon reported for 

numerous languages (Vitu et al., 2001; Kliegl et al., 2006 for 

German; Yan et al., 2014 for Uighur; and Hyönä, Yan, 

Vainio, 2018 for Finnish; Özkan et al., 2021 for Turkish). 

Oculomotor control models of reading, such as E-Z Reader 

and SWIFT, incorporate this assumption. These models 

effectively reproduce the IOVP effect in their simulations. 

More recently, Hohenstein et al. (2017) proposed Linked 

Linear Mixed Models (LLMM) to study the relationship 

between the duration and location of fixations on words. 

They studied the IOVP effect and saccadic error assumption 

using the Potsdam Sentence Corpus (PSC, German; Kliegl et 

al., 2004) with three LMMs: a model of relative fixation 

locations and two models of fixation durations for words with 

a single fixation. The fixation location model included factors 

such as launch site distance, previous word skipping, and 

characteristics of the previous and the fixated word. The first 

single fixation duration model included canonical variables, 

such as characteristics of the fixated word and that of its 

neighbors, and a second-order orthogonal polynomial for the 

fixation location (to capture IOVP curvature). The second 

model included the same variables regarding word 

characteristics. However, instead of the observed fixation 

locations, the model included second-order orthogonal 

polynomials for the predicted and residual values of the 

fixation location model in three steps (i.e., predicted values, 

residual values, and both; the study reported the last step).  

The rationale for using LLMM is to test a hypothesis: 

Using a fixation location model’s predicted and residual 

components as the fixation location component of a fixation 

duration model would reveal the saccadic error patterns. 

Specifically, by representing the saccadic error, the residual 

of the fixation location model would have a significant, 

negative IOVP curvature, which is assumed to be the result 

of saccadic error. On the other hand, the relationship between 

fixation duration and predicted values would show the pattern 

observed when words are presented in isolation (i.e., OVP 
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effect). Hohenstein et al. (2017) found a small but significant 

positive quadratic component, a more pronounced linear 

component of predicted values, and a significant negative 

quadratic component of residual values aligned with their 

expectations. Our goal in the present study is to investigate 

refixation patterns using the same rationale described in the 

following section. 

The Present Study 

Agglutinating languages, such as Turkish, provide an 

appropriate testbed to study refixation patterns, as they 

usually have long words. Turkish is a language read left to 

right, uses the Latin alphabet with specific Turkish 

characters, and has a shallow orthography. The present study 

uses a target-word dataset of eye movements in reading, 

namely the TURead dataset (Acartürk et al., 2023), to 

investigate the IOVP effect and refixation mechanisms. The 

TURead dataset comprises eye movement recordings during 

Turkish text reading silently and aloud (only silent reading 

instances included in the current study).  

The current study focuses on words with two fixations 

(henceforth, double fixation words) compared to words with 

a single fixation. The comparison would provide insight into 

understanding the extent of the saccadic error explanation of 

IOVP: Is it entirely the result of the saccadic error of the 

oculomotor system, or is there a strategy component? We 

explored the findings of Hohenstein et al. (2017) with two 

sets of models: (i) Single fixation cases and (ii) double 

fixation cases. We constructed three models for each set: a 

model for fixation locations and two for fixation durations. In 

the fixation location LMMs, we modeled single fixation 

locations (i.e., single fixation cases; the words when they 

received a single fixation) and first fixation locations in 

double fixation cases. We modeled single fixation durations 

and first fixation durations (in double-fixation cases) for the 

fixation duration models. We also assumed that fixation 

count probabilities like skipping and multiple fixation 

probabilities imply different mechanisms. The assumption 

posits that when readers tend to skip certain words, any 

fixations on these words are likely to occur on the right half, 

indicative of an undershoot in the saccadic movement. 

Conversely, when there is a high probability of multiple 

fixations on a word, with these fixations predominantly 

occurring on the first half of the word, it suggests a strategic 

approach to reading rather than simply being attributable to 

saccadic errors.  

Fixation probabilities were calculated over all instances in 

the dataset, including skipping cases. There were high 

correlations between skipping probabilities and multiple 

fixation probabilities: single fixation cases: r(7598) = -0.73, 

p < .001; double fixation cases (r(4605) = -0.57, p < .001. 

Including both in LLMs would result in a multicollinearity 

problem. Due to our focus on refixation strategies in the 
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current study, we have included multiple fixation 

probabilities in the fixation location models. We also 

incorporated the interaction between the multiple fixation 

probability and the length of the word n into the models. The 

interaction term was a control for word length’s impact on 

the probability of multiple fixations. 

We preserved the model structures of the original study for 

single fixation duration models (Hohenstein et al., 2017). We 

developed two versions of the linked model: one using the 

base model’s predicted and residual values and one with our 

version. We reported the latter. The details of the model that 

uses the base fixation location model’s outputs are provided 

as an online supplement1.  

In cases of double fixation, we anticipated that in instances 

where the second fixation is regressive, we would predict 

shorter first fixation durations if the first fixation was located 

toward the end of the word. This pattern is particularly 

expected among residual values. On the contrary, among 

progressive second fixations, we expected to observe a 

positive relationship between the first fixation location and 

first fixation duration among predicted values, implying a 

strategy for a refixation. Therefore, we have included the 

saccade direction and its interaction with the first fixation 

location values in our first fixation duration models for 

double fixation data. 

Method 

We use the silent reading data published in the TURead 

dataset of eye movements in reading (Acartürk et al., 2023). 

In the TURead dataset, a large set of oral reading and silent 

reading eye-movement metrics and several lexical and 

prelexical word characteristics are provided in two sets: (1) 

for all words and (2) for the target words of the texts (except 

for the predictability data which was available only for target 

words and their neighboring words in the target word set). In 

the present study, we selected the target word set to have 

analyses comparable to those of previous studies. Below is 

the basic information about the dataset.  

Participants 

The dataset included eye movement recordings of 196 

participants (M = 22.72, SD = 2.64 years old; 93 females) 

with their written consent. All included participants were 

native, monolingual Turkish speakers. The sessions had two 

parts, each lasting approximately 45 minutes. 

Materials 

The TURead dataset consists of eye movement recordings 

using EyeLink 1000 eye tracker system while reading 192 

short texts from a combination of the BOUN Corpus (Sak et 

al., 2008), the METU Turkish Corpus (Say et al., 2002), the 

Turkish National Corpus (Aksan et al., 2012), and search 

engine results for the suffixed forms of infrequent target 
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words (as the texts were not obtained from corpora due to 

unavailability of some infrequent words). Each text included 

a target word controlled for its length and frequency. 

Frequency values were extracted from the BOUN web 

corpus. A Laplace smoothing method was applied to zero-

frequency values (Brysbaert & Diependaele, 2013). The 

cutoff point for the high- vs. low-frequency target words was 

the mean of BOUN Corpus (0.75 fpm, SD = 35.50). Short 

words consisted of 4 characters of stem and 0-suffixed (4 

characters), 1-suffixed (6 characters), and 2-suffixed (8 

characters) variants. Long words consisted of 10 characters 

of stem and the suffixed variants, similar to the short words 

(i.e., 12 and 14 characters, respectively).  

In the present study, we applied transformations to the 

variables following Hohenstein et al. (2017), as explained 

below.  

 

Predictabilities were logit-transformed values of the raw 

predictions. There are two versions of the predictability data 

for the target words in TURead: 122 complete predictions and 

a randomly selected 35 predictions to enable logit 

transformations to be compatible with neighboring word 

predictabilities. That is because there are 35 predictions for 

the neighboring words. We selected the 35-prediction data for 

the target words to apply logit transformation. The following 

logit transformation was used to obtain Word Predictability 

(WP) values: WP = 1/2logit(p) where logit(p) = ln(p/(1-p)). 

The p values were calculated using the following equations 

(1-3). 

p = 1/(2 x n)    if p = 0  (1) 

p = ((2 x n) – 1)/ (2 x n)   if p = 1  (2) 

p     otherwise (3) 

where p stands for the raw predictability values, and n 

stands for the number of predictions, i.e., 35. 

 

Relative Fixation Locations were calculated using the 

formula (4), which returned 0 for the center of the words, 

negative values for the left half of the words, and positive 

values for the right half. 

R(F)FL = (FL / (WL +1)) – ½   (4) 

where R(F)FL stands for relative (first) fixation location as 

the number of characters from the beginning of the sentence, 

FL stands for fixation location, and WL stands for word 

length in character count. 

 

Word Length Word lengths were the reciprocal values of the 

number of characters in words (i.e., 1/WL). 

 

Fixation Durations were the log-transformed raw values in 

milliseconds, in natural logarithm. 

 

Launch-Site Distances were the log-transformed raw values 

(the number of characters between the last fixation and the 

beginning of the target word) with base-two logarithm. 

Linked Linear Mixed Models 

In the current study, we explored refixation strategies 

following Hohenstein et al. (2017), taking their models as the 

base models. We explored their findings with two sets of 

models with target word data of the TURead dataset 

(Acartürk et al., 2023): (i) Single fixation cases and (ii) 

double fixation cases. We constructed three models for each 

set: a model for fixation locations and two for fixation 

durations. The models were constructed using the lmer() 

function with the lme4 package (version 1.1-35.1; Bates et 

al., 2015) in the R environment (version 4.3.2, 64-bit build; 

R Core Team, 2023). The p values were obtained using the 

lmerTest package (version 3.1-3; Kuznetsova et al., 2017). 

Lines and 95% confidence bands in graphs were partial 

effects retrieved from LMM estimates by using the remef 

package (Hohenstein & Kliegl, 2015), and the graphs were 

constructed using the ggplot2 package (version 3.4.4; 

Wickham, 2009). 

 

Random Structure Initially, we constructed all the base 

models using the random structure of the models in 

Hohenstein et al. (2017). In their study, random slopes were 

the main effects for participants. Words and sentences were 

included in the model as intercept-only random factors. The 

data used in the current study included only the target word 

set of the TURead dataset. Since each target word appeared 

only once among all texts of TURead, each target word 

corresponded to one text. Therefore, we included only 

participants with slopes and words as the random factors.  

Additionally, we explored the random structure of the base 

models to control whether our dataset allows a random 

structure of the base model. We applied a parsimonious 

mixed models approach (Bates et al., 2015). Accordingly, 

even if it was in the base model, a random slope was removed 

if it exceeded the principal component count, cumulatively 

accounting for 100% of the variance. Once set, the random 

structure stayed the same as the base model for the 

exploratory models. 

 

Relative Fixation Location Models The fixation location 

model provided by Hohenstein et al. (2017) included the 

following variables as fixed effects: the skipping of word n-

1, the length, predictability, and frequency of word n and 

word n-1 (eight variables), and their interaction with the 

skipping of word n-1. 

Only 4.53% of our single fixation data (361 instances out 

of 7961 single fixation cases) and 4.56% percent of our 

double fixation data (220 instances out of 4827 double 

fixation cases) were instances of skipped word n-1. Skipping 

the word n-1 in our models would result in a model 

complexity not supported by data. On the other hand, leaving 

those instances in the data without including the variable in 

the model would ignore an essential effect on fixation 
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locations. Therefore, instead of including it as a variable in 

the model, we excluded instances with a skipped word n-1 

from our datasets. Upon constructing the base model and its 

random structure, we included our exploratory variables (i.e., 

multiple fixation probability and its interaction with length of 

word n) in the models. 

 

Fixation Duration Models Hohenstein et al. (2017) 

provided two models for single fixation durations: separate 

and linked models. The fixed effects included in the models 

were length, predictability, and frequency of word n, word n-

1, and word n+1 (nine variables), and Relative Fixation 

Location (RFL) as a second-order orthogonal polynomial. 

The observed RFL with linear and quadratic components 

was in the “separate model.” In the linked model, two RFL 

variables were included as second-order orthogonal 

polynomials: predicted RFL from the RFL model and 

residual of the RFL model. 

We modeled the single and first fixation durations using 

the same method. The formula provided in equation (5) was 

used for the separate model of the single fixation. 

SFD = poly(RFLobs, 2) + WC + RS  (5) 

where SFD stands for single fixation duration, RFLobs stands 

for the relative fixation location included as a second-order 

polynomial, WC stands for word characteristics (nine 

variables), and RS stands for random structure.  

The formula provided in equation (6) was used for the 

linked model. 

SFD = poly(RFLpred, 2) + poly(RFLres, 2) +  

WC + RS    (6) 

where RFLpred stands for the predicted values and RFLres 

stands for residual values obtained from the relative fixation 

location model, both included as second-order polynomials.  

The first fixation duration models were the same regarding 

first fixation locations, word characteristics, and random 

structure. Additionally, we included the direction of the 

saccade to the second fixation and its interaction with the 

length of word n in the first fixation duration models.  

 

Common LLMM Aspects Including the exploratory 

variables was theoretically important. Therefore, we included 

them in the model without testing the significance of their 

effect or their contribution to the model. The models were 

tested for the multicollinearity problem at each step by VIF 

calculations with the function vif.mer() (Lefcheck, 

2012), and the final models were tested for the normality of 

the residuals. None of the models violated model 

assumptions. 

Results 

Below is a summary of the results. For more detailed 

explanations and the model estimates, please see the online 

supplement.2 
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Relative Fixation Locations 

Single Fixations We have included multiple fixation 

probability and its interaction with the length of the target 

word in the single fixation location model. The results 

showed that fixations tended to be located on the first half of 

the word as multiple fixation probability on a word increased 

(b = -0.11, SE = 0.03, t = -3.51, p < .001). The result was 

expected regarding our assumptions about the relationship 

between multiple fixation probability and fixation locations: 

Fixations would fall in the first half of the words as a strategy 

for refixation. The interaction of multiple fixation probability 

and the length of word n significantly influenced relative 

single fixation location (b = 1.05, SE = 0.28, t = 3.77, p < 

.001). The influence of word length on relative fixation 

location tended to decrease for high multiple fixation 

probability cases (Figure 1). 

 

 
Figure 1: The effect of multiple fixation probability (top) 

and its interaction with word n length (bottom) on relative 

fixation location.  

Double Fixations We observed a tendency of first fixation 

locations towards the center of the words as the multiple 

fixation probability of the words increased to a multiple 

fixation value of 0.50. They were on the left half of the word 

if the multiple fixation probability was over 0.50. The effect 

was small but significant (b = 0.14, SE = 0.04, t = 3.8, p < 

.001). On the other hand, when the significant effect of its 

interaction with the length of the word n was considered, we 
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observed a tendency of first fixation locations towards the 

beginning of the word (b = 2.32, SE = 0.38, t = 6.1, p < .001). 

The result implies a dominating influence of word length on 

the multiple fixation probability. Figure 2 illustrates the 

opposing relationships between multiple fixation probability 

and relative first fixation location. 

 

 
Figure 2: The effect of multiple fixation probability (top) 

and its interaction with word n length (bottom) on relative 

first fixation location. 

Fixation Durations 

Single Fixations The relationship between residual relative 

fixation locations (RFL) and single fixation durations was 

similar to that of observed fixation locations with significant 

linear (residual: b = 4.65, SE = 0.4, t = 11.67, p < .001; 

observed: b = 4.33, SE = 0.45, t = 9.56, p < .001) and negative 

strong quadratic components (residual: b = -4.92, SE = 0.34, 

t = -14.65, p < .001; observed: b = -5.79, SE = 0.34, t = -

16.93, p < .001). However, we could not replicate the results 

of Hohenstein et al. (2017) regarding the relationship 

between predicted RFL and single fixation durations. 

Although we also observed a negative linear relationship 

between single fixation durations and predicted RFL values, 

the relationship was not significant (b = -0.05, SE = 0.62, t = 

-0.08, p = 0.94). Moreover, we observed a small but negative 

quadratic component instead of a positive one (b = -2.14, SE 

= 0.38, t = -5.62, p < .001). This was still the case when we 

modeled single fixation durations with the base model’s 

predictions (linear: b = -0.26, SE = 0.62, t = -0.42, p = 0.67; 

quadratic: b = -1.88, SE = 0.38, t = -4.89, p < .001). Figure 3 

illustrates the relationship between single fixation durations 

and observed, predicted, and residual RFL values. 

 

 
Figure 3: The effect of observed fixation locations, 

predicted fixation locations, and fixation location model 

residuals on Single Fixation Duration (SFD). 

 

Double Fixations The first fixation durations among double 

fixation cases showed a strong negative quadratic 

relationship between the observed relative first fixation 

locations (RFFL), together with a significant positive linear 

relationship (linear: b = 4.43, SE = 1, t = 4.43, p < .001; 

quadratic: b = -7.91, SE = 0.81, t = -9.81, p < .001). The 

relationship between the first fixation durations and the 

residual of the RFFL model showed a similar pattern with a 

significant positive linear component (b = 8.34, SE = 0.64, t 

= 13, p < .001) and a significant negative quadratic 

component (b = -3.58, SE = 0.61, t = -5.85, p < .001). 

However, the curvature was not as strong as observed in the 

separate model. 

Although the pattern for the relationship between the 

predicted RFFL components and first fixation durations of 

the linked model was similar to single fixation cases, the 

negative quadratic component of predicted RFFL was not 

significant (b = -0.01, SE = 0.67, t = -0.01, p = 0.99). On the 

other hand, the relationship between first fixation durations 

and the linear component of predicted RFFL was significant 

and positive (b = 3.66, SE = 0.74, t = 4.96, p < .001). Figure 

4 illustrates the relationship between first fixation durations 

and observed, predicted, and residual RFFL values. 

 

 
Figure 4: The effect of observed first fixation locations, 

predicted first fixation locations, and first fixation location 

model residuals on First Fixation Duration (FFD). 
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The direction of the saccade significantly influenced the 

first fixation durations among the double fixation cases in the 

linked model (b = -0.07, SE = 0.02, t = -3.55, p < .001). 

Although the direction of the effect was the same for the 

separate model, it was not significant (b = -0.01, SE = 0.02, t 

= -0.58, p = 0.56). The interactions between the saccade 

direction and RFFL values were significant (observed linear: 

b = -7.43, SE = 1.79, t = -4.15, p < .001; observed quadratic: 

b = 7.86, SE = 1.35, t = 5.83, p < .001; residual linear: b = -

12.03, SE = 1.3, t = -9.23, p < .001; residual quadratic: b = 

3.24, SE = 1.04, t = 3.12, p < .01; predicted linear: b = -2.65, 

SE = 1.02, t = -2.6, p < .01) except for the quadratic 

component of predicted RFFL values (b = -1.4, SE = 0.89, t 

= -1.57, p = 0.12). For both progressive and regressive second 

fixations, the relationship pattern between first fixation 

duration and observed RFFL was similar to that of residual 

RFFL: The quadratic component of RFFL was strong among 

progressive second fixation cases and was negligible among 

regressive second fixation cases. On the other hand, the linear 

component indicated a decrease in first fixation duration as 

observed, and residual RFFL values increased among 

regressive second fixation cases. The positive relationship 

between first fixation duration and predicted RFFL among 

progressive second fixation cases was lost among regressive 

second fixation cases. Figure 5 illustrates the relationship 

between the first fixation duration and predicted first fixation 

locations and first fixation location model residuals and the 

relationship between observed first fixation location and first 

fixation duration in the separate model. 

 

 
Figure 5: The effect of predicted first fixation locations 

and first fixation location model residuals and their 

interaction with saccade direction on first fixation duration 

and the separate model findings with observed values. 

Discussion and Conclusion 

In the investigation of the refixation patterns, we employed a 

Linked Linear Mixed Models approach to model target word 

data of TURead (Acartürk et al., 2023) following Hohenstein 

et al. (2017), which targeted the saccadic error explanation of 

the IOVP effect (Vitu et al., 2001). They modeled the fixation 

locations with oculomotor and linguistic variables. The 

fixation duration model included the predicted and residual 

values from that model as representations of saccade target 

selection and saccadic error. They found that the relationship 

between fixation duration and residual values of the fixation 

location model was similar to that of observed fixation 

locations, which complied with their expectations. Besides, 

they observed a mild OVP effect of predicted fixation 

locations on fixation durations.  

To investigate whether refixations are completely saccadic 

errors or have a strategy aspect, we modeled single fixation 

and double fixation cases of the TURead dataset. Including 

multiple fixation probabilities revealed that as the multiple 

fixation probability increased, the fixations tended to fall on 

the right half of the words. The pattern was reversed for the 

first fixation locations of the double fixation cases. However, 

considering its interaction with the word length, the 

relationship was negative, implying a strong influence of 

word length on multiple fixation probabilities. 

Our fixation duration models (i.e., single fixation and 

double fixation) revealed a similar pattern to those provided 

by Hohenstein et al. (2017) regarding residual components. 

In other words, we observed that with the significant and 

large negative quadratic components, the effect of residual 

values on fixation durations showed a similar pattern to the 

effect of observed values on fixation durations. However, we 

could not replicate the positive quadratic components for the 

models that include predicted fixation location values. 

Instead, we observed a small negative linear relationship that 

was not significant and a small but significant negative 

quadratic relationship between the predicted single fixation 

locations and durations. On the other hand, we observed a 

positive significant linear influence of predicted first fixation 

locations for the first fixation durations of double fixation 

cases. The slight negative quadratic component was not 

significant. When the direction of the saccade was 

considered, the pattern remained the same for progressive 

saccades. The negative relationship implied a corrective 

saccade for the regressive second fixation instances. 

There were several limitations to our study. Firstly, the 

dataset was small and included only the target words of the 

TURead dataset. That might have limited the observation of 

refixation patterns in a text. Another limitation related to the 

first one was that we could not utilize the agglutinative nature 

of Turkish. The inclusion of suffix count into the models 

would increase the model complexity to the point that data 

did not support it, and the word lengths of the target words in 

the TURead dataset were a confounding factor for the suffix 

counts. Follow-up studies using a corpus analytical approach 

would overcome these limitations and provide more insight 

into the refixation patterns.  
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