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PERSPECTIVE OPEN ACCESS

How should the advancement of large language models
affect the practice of science?
Marcel Binza,b,1,2 ID , Stephan Alanizb,c,d,2 ID , Adina Roskiese, Balazs Aczelf ID , Carl T. Bergstromg ID , Colin Allene ID , Daniel Schadh ID ,
Dirk Wulffi,j, Jevin D. Westg ID , Qiong Zhangk, Richard M. Shiffrinl ID , Samuel J. Gershmanm ID , Vencislav Popovn ID ,
Emily M. Benderg,3 ID , Marco Marellio,3 ID , Matthew M. Botvinickp,q,3, Zeynep Akatab,c,d,4 ID , and Eric Schulza,b,3,4

Edited by David Kellen, Syracuse University, Syracuse, NY; received February 23, 2024; accepted October 21, 2024 by Editorial Board Member
Elke U. Weber

Large language models (LLMs) are being increasingly
incorporated into scientific workflows. However, we have
yet to fully grasp the implications of this integration.
How should the advancement of large language models
affect the practice of science? For this opinion piece, we
have invited four diverse groups of scientists to reflect
on this query, sharing their perspectives and engaging
in debate. Schulz et al. make the argument that working
with LLMs is not fundamentally different from working
with human collaborators, while Bender et al. argue
that LLMs are often misused and overhyped, and that
their limitations warrant a focus on more specialized,
easily interpretable tools. Marelli et al. emphasize the
importance of transparent attribution and responsible
use of LLMs. Finally, Botvinick and Gershman advocate
that humans should retain responsibility for determining
the scientific roadmap. To facilitate the discussion, the
four perspectives are complemented with a response
from each group. By putting these different perspectives
in conversation, we aim to bring attention to important
considerations within the academic community regarding
the adoption of LLMs and their impact on both current and
future scientific practices.

large language models | AI | science

Language models are statistical models of human language
that can be used to predict the next token (e.g., a word
or character) for a given text sequence. Even though these
models have been around for decades (1, 2), they have
recently experienced an unprecedented renaissance: By
training enormous neural networks with billions of param-
eters on datasets with trillions of tokens, researchers have
observed the emergence of models whose abilities can go
beyond mere text generation and conversational skills (3).

Modern large language models (LLMs) are, among other
things, able to solve selected university-level math problems
(4) by writing the code that calculates the solution, support
language translation (5), or answer questions in a bar exam
with high accuracy (6), out of the box and without additional
training. Given the range of these capabilities, it seems
possible that these systems will have an enormous impact
on our society, leaving their mark on the labor market (7),
the education system (8), and many other parts of our daily
lives.

We—as scientists—may therefore wonder how will the
advancement of LLMs affect the practice of science (9).

Finding answers to this question is urgent as LLMs are al-
ready starting to permeate the academic landscape (10–17).
For instance, in 2022, MetaAI released the first science-
specific LLM (under the name Galactica) aimed to support
researchers in the process of knowledge discovery (18). Even
more recently, Terence Tao, a Fields Medal-winning mathe-
matician, proclaimed (19) that “the 2023-level AI can already
generate [. . .] promising leads to a working mathematician
[. . .]. When integrated with tools such as formal proof veri-
fiers, internet search, and symbolic math packages, I expect,
say, 2026-level AI [. . .] will be a trustworthy co-author [. . .].”

Yet while there have been claims of immense potential
for this technology for the advancement of science, there
are also considerable concerns that need to be taken into
account. For instance, the aforementioned Galactica model
had to be taken offline after just three days because it was
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heavily criticized by researchers for fabricating information,
such as “fake papers (sometimes attributing them to real
authors), and [...] wiki articles about the history of bears in
space” (20). Furthermore, even though LLMs often achieve
state-of-the-art performance on existing benchmarks, it
remains debated whether this reflects genuine understand-
ing, or whether they are merely acting like stochastic parrots
(21). It has been, for instance, repeatedly demonstrated
that even the most capable models at present fail at basic
arithmetic problems such as multiplying two four-digit num-
bers (22) when directly asked for the answer as opposed to
writing code. Flaws like these are especially concerning if
we intend to utilize LLMs for research purposes and could
endanger the integrity of science if we act carelessly.

The objective of the present article is to provide re-
searchers with different opinions and a forum to voice and
discuss their perspectives on if and how we should make use
of LLMs in the context of science. To facilitate this discussion,
the following section will first highlight a few applications
where LLMs have the potential to positively impact science,
followed by pointing out some of the issues that come with
them.

Background: Applications of LLMs in Science

LLMs find their most obvious use case as a supporting
tool for scientific writing. For example, they could provide
starting points for letters of recommendation or evaluation,
search for and summarize relevant research, and review
or edit journal submissions. When used as proofreaders of
manuscript drafts, they can aid in rectifying grammatical
errors, improving the writing style, and ensuring adherence
to editorial guidelines. Beyond scientific writing, LLMs could
prove valuable for data acquisition and analysis in domains
that were traditionally reliant on manual human work (23,
24). Researchers have even suggested using LLMs as poten-
tial substitutes for human participants, as proxies (25) or
for pilot studies (26). In such settings, it has been argued
that LLMs could augment human data or help to gauge the
effects of intended experimental manipulations before con-
ducting the study in the wild, thereby saving time and money
(27). In computational fields, LLMs could speed up prototyp-
ing by proposing code (28), while a human-in-the-loop would
guide these processes, correct LLM-generated errors, and
ultimately decide which ideas warrant further pursuit. More-
over, researchers might experiment with employing LLMs
at certain stages of research with progressively reduced su-
pervision (29), potentially leading to increased automation
in some aspects of scientific exploration and discovery.

While the potential influence of LLMs on the practice of
science is immense, there are pressing issues that come
with the use of LLMs in the context of science. When an
LLM helps us to write text, who ensures that its output
is not subject to plagiarism issues (30)? LLMs learn from
web-sourced text data, acquiring inherent biases (31–33)
and—in some cases—replicate excerpts from their training
data (34). The New York Times, for instance, recently filed
a lawsuit against Microsoft and OpenAI for unlawful use of
its articles to create LLMs, thereby highlighting legal issues
surrounding such practices (35). When an LLM is used for
data analysis, what happens when it makes up or changes

data? The content generated by LLMs can contain errors or
fabricated information, presenting a potential threat to the
integrity of scientific publishing (13). When an LLM suggests
an idea, who gets credit for it? The general consensus within
the scientific community seems to indicate that LLMs are
not eligible for (co-)authorship (36) as they cannot be held
accountable for upholding scientific precision and integrity.
Leading AI conferences such as ICML* and ACL†—as well
as journals such as Science,‡ Nature§ and PNAS¶—have
already adopted policies to limit the involvement of LLMs.
However, it remains an open question how strong these
regulations should be and if and how the usage of LLMs
should be acknowledged.

These—and many other—issues raise the questions:
How should the advancement of LLMs affect the practice
of science? Do LLMs actually improve our scientific output
or are they rather hindering good scientific practice? To
what extent should they be used given the ethical and legal
issues that come with them? We believe these to be highly
non-trivial questions without an obvious answer and have
therefore invited four groups of researchers to provide their
perspectives on them. These perspectives were selected to
cover a broad spectrum of opinions in order to spark a
constructive discussion. Each of the perspectives is accom-
panied by a response from each group. We conclude this
article with a short general discussion in which we attempt
to identify common themes.

Perspective—LLMs: More Like a Human
Collaborator than a Software Tool

Contributors. Eric Schulz, Daniel Schad, Marcel Binz, Stephan
Alaniz, Ven Popov, and Zeynep Akata.

Most researchers in our labs already frequently employ
LLMs in their everyday work. They use them, among other
things, to finetune and revise their drafts, as a supporting
tool for programming, to suggest formulations for research
items such as questionnaires or experimental instructions,
and to summarize research papers. We have observed a
significant increase in quality in all of these areas after the
widespread adoption of these models. While our personal
experience may be biased, there are several studies sup-
porting the idea that LLMs can facilitate writing (37), coding
(38), and knowledge extraction (39). In the future, we expect
these models to be even more deeply integrated into the
scientific process, taking on roles similar to a collaborator
with whom one can develop and discuss ideas.

Indeed, we believe that working with LLMs will not be
fundamentally different from working with other collabora-
tors, such as research assistants or doctoral students. LLMs
are not perfect and have limitations and biases that could
affect their performance and output. However, humans are
also subject to some of the same flaws, such as errors,
plagiarism, fabrication, or discrimination. If we take this
perspective, it seems appropriate to view current LLMs less
*https://icml.cc/Conferences/2023/llm-policy.
†https://2023.aclweb.org/blog/ACL-2023-policy/.
‡https://www.science.org/content/page/science-journals-editorial-policies.
§https://www.nature.com/nature-portfolio/editorial-policies/ai.
¶https://www.pnas.org/author-center/editorial-and-journal-policies#authorship-and-
contributions.
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as traditional software tools and more as knowledgeable
research assistants: They can do phenomenal work but we
need to be aware that they can make mistakes.
Protecting the past. It is our chief responsibility to ensure
the quality and integrity of our work. There are already
rules and norms about scientific practice in place to ensure
this, and many of them also apply to LLMs. For instance,
we should always check the accuracy and validity of the
information and data we obtain, no matter the source, as
well as correctly cite the sources and methods we use.
That means that we should not blindly trust or rely on
LLMs, but rather use them as a complement to our own
expertise and judgment. Furthermore, our work can only be
criticized appropriately if all information about its method-
ology is transparently communicated. We should therefore
acknowledge the contributions of LLMs to our research, just
as we would do for any other tool. Ultimately, it is—and
will remain—the authors’ responsibility to ensure that the
appropriate scientific standards are followed, regardless of
whether we use LLMs or not.

Ensuring that our research is reproducible is one of the
cornerstones of modern science. However, as many LLMs
are proprietary, working with them poses a threat to this
ideal. Nobody guarantees that OpenAI, Google, or other
providers will not make changes to their models (in the worst
case, without informing the user). In fact, this happened
to us during the revision process of one of our papers,
where, at some point, we could not reproduce our initial
results, likely due to changes on the provider side. Likewise,
this has been observed by Yax et al. (40) who tested the
reasoning capabilities of LLMs, and found that the results
of proprietary LLMs, i.e., ChatGPT and GPT4, could not
be replicated three months after the initial experiments.
Their analyses also found that, surprisingly, the scores
for some of the tests significantly decreased, exemplifying
the reliability issues with proprietary LLMs. Inconsistencies
like this can be an issue when analyzing the behavior of
such models. How should we deal with cases like this?
We believe that the obvious solution to this problem is
to rely on open-source models (41, 42) where one has full
control over all aspects of the model, i.e., they can be run
locally and are clearly identified by their release version to
ensure reproducibility. Following a recent call for action
to the European Parliament (43), we therefore strongly
advocate for the development of such models, such that
they can become the primary tool for scientific inquiry as
they are rapidly catching up with state-of-the-art proprietary
models (42).
Welcoming the future. Paper reviewing is another area where
LLMs could improve our scientific pipeline. In a recent
study, Liang and colleagues (44) demonstrated this po-
tential by systematically evaluating the quality of LLM-
generated reviews. They invited researchers to submit their
own papers and asked them—after having received an
LLM-generated review—to judge its helpfulness relative to
reviews they had received from human researchers. Their
result indicates that “more than half (57.4%) of the users
found GPT-4 generated feedback helpful or very helpful
and 82.4% found it more beneficial than feedback from
at least some human reviewers.” Not only does this result
allow scientists—especially early career researchers—to

receive high-quality, instantaneous feedback (similar to that
one could get from a critical colleague with an unlimited
amount of time) but it also has implications for the peer
review process. Yet, the use of LLMs in the peer review
process also presents one major legal obstacle: Manuscripts
under review are typically confidential, and hence should
not be entered into proprietary LLMs. To prevent such
breaches of confidentiality, the NIH and other institutions
have rules in place that prohibit the use of LLMs for peer
review.# Locally hosted, open-source models are again a
solution to this issue, as they provide control about which
information is shared with external sources and which
is not.

We also would like to point out that LLMs are a moving
target, constantly evolving and becoming more capable and
autonomous. This may raise new challenges and questions
for the scientific community in the future, such as how to
evaluate, interpret, and communicate the results generated
by LLMs, or how to ensure their transparency and account-
ability. We welcome these challenges as an opportunity to
advance our understanding and methods of science. We
also encourage researchers to collaborate with each other
and with LLM developers to address these issues and ensure
that LLMs improve at frequently criticized skills such as
providing truthful sources or acknowledging ignorance.
Conclusion. In conclusion, LLMs are a valuable asset for
science and should be embraced rather than feared or
restricted. It becomes apparent that they are not infallible
machines once we start thinking about them as knowl-
edgeable research assistants instead of traditional software
tools. Furthermore, since rules for good scientific practice
are already in place, and since it is the authors’ obligation
to take responsibility for adhering to these rules, there is no
need for novel rules with the use of LLMs. We believe that
strengthening the development of open-source alternatives
should be one of our top priorities, as they “offer enhanced
security, explainability, and robustness due to their trans-
parency and the vast community oversight” (43). Finally,
being conscious about the current limitations of LLMs and
embracing them, will allow us to grow with the technology as
LLM research finds remedies and develops complementary
tools. We hope that by adopting this liberal perspective, we
can foster a positive and fruitful relationship between hu-
mans and LLMs in science. As an illustration of the way LLMs
can be used productively as an “assistant,” the first draft of
our perspective was written by an LLM (GPT-4; accessed on
September 22, 2023) based on our meeting notes.

Perspective—Science Is a Social Process That
Cannot Be Autocompleted

Contributors. Emily M. Bender, Carl T. Bergstrom, and Jevin
D. West.

When deciding whether to use an LLM, it is important to
recognize that LLMs are simply models of word form distri-
butions extracted from text—not models of the information
that people might get from reading that text (45). Despite
the attendant excitement, these systems aren’t any closer
to replicating human intelligence than the systems Dreyfus

#https://grants.nih.gov/grants/guide/notice-files/NOT-OD-23-149.html.
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critiqued (46). Originally, language models were used to rank
or classify text. In automatic transcription, for example, an
acoustic model provides a set of possibilities and the lan-
guage model helps determine the most likely next word (47).
Today, however, LLMs are vaunted for their ability to extrude
synthetic text by repeatedly selecting a next likely token.

Trained on sufficiently large datasets and with sufficiently
well-tuned architectures and training processes, LLMs ap-
pear to produce coherent text on just about any topic,
including scientific ones. Moreover, we are vulnerable to
mistaking it for useful or informative text because our
linguistic processing capabilities are instinctual and reflexive
(48). In other words, we are ill-positioned to effectively eval-
uate LLM output because we can’t help but make sense of it.

Proponents argue that LLMs are useful in three domains:
1) navigating science, by searching and synthesizing pub-
lished literature, 2) doing science, in the sense of designing
or conducting experiments or generating data, and 3)
communicating science, by drafting text for publication.
While certain machine approaches may be useful in each,
we believe that LLMs are unlikely to outperform alternative
technologies. Furthermore, we have serious concerns about
the downstream potential for harms to science if their use
is widely embraced.
Navigating science. Natural language processing (NLP) has
proven useful in sorting through an ever-growing body
of scientific literature. Information retrieval and extraction
techniques, as implemented in academic search engines
(e.g. ref. 49), have helped researchers discover relevant
prior work. Will LLMs supplant other NLP approaches? We
doubt it. The inappropriateness of LLMs as text generators
and synthesis machines was highlighted in Meta’s Galactica
debacle. That system—taken off-line after three days in
response to intense criticism for its abysmal performance—
had been trained on scientific text and promoted as a
tool to “summarize academic papers, solve math prob-
lems, generate Wiki articles, write scientific code, annotate
molecules and proteins, and more” (20). But training an LLM
on scientific papers doesn’t guarantee that it will output
scientifically accurate information. As Meta discovered, the
use of LLMs yields text ungrounded in any communicative
intent or accountability for accuracy.

One might hope that LLMs could at least be used to sum-
marize a set of papers. Extractive summarization systems
(50) already do this; will LLMs perform better? Will people
tend to overrely on system output rather than using it as
a starting point? What are the costs of false negatives, i.e.,
important points not included in the generated summary?
How will errors generated by LLMs, which then become
training data for future LLMs, get amplified?
Doing science. LLMs are just one of many technologies
dubbed “AI,” but their surprising capacity to perform what
amounts to a fancy parlor trick has drawn outsized at-
tention. That’s a mistake. LLMs may be adequate for
specific linguistic tasks such as grammar checking, auto-
matic transcription, and machine translation (including code
generation), but we anticipate that they will not prove as
effective as other tools for most tasks involved in hybrid
human-machine science. Even where they do appear to
be moderately effective, they are known to be brittle to
input variation (51). We envision the future of machine-

aided science not as a massive, one-size-fits-all, universal
application of LLMs, but rather an ensemble of bespoke and
often lightweight models that have been designed explicitly
to solve the specific tasks at hand—and, crucially, evaluated
in terms of those specific tasks. Such approaches also have
a major advantage where interpretability is concerned. If
researchers want to understand output variation, let alone
find ways to fine-tune the architecture to generate better
results, they need to steer away from technologies as
opaque as LLMs. But instead, the ongoing hype around
LLMs is drawing funding and brainpower away from more
promising, targeted approaches.

Not only are LLMs being explored as aides to researchers;
numerous proposals suggest that they can stand in for test
subjects (52), survey participants (53), or data annotators
(54). Such arguments derive from a failure to understand
that LLMs output sequences of linguistic tokens, not con-
cepts, meanings, or communicative intent (45). If we are
looking to study the opinions or behavior of human beings,
we need to work with actual people.
Communicating science. By design LLMs generate form with-
out substance. The synthetic text that systems output
constitutes neither ideas, nor data—and it certainly is not
a reliable information source. This notion of generating
statements that no one intended is anathema to the spirit of
scientific inquiry. Automatically generating something that
looks like a manuscript is very different from the iterative
process of actually writing a manuscript. Yet the output
can be difficult to distinguish, particularly in a cursory read
or by inexpert readers. Some proponents argue that LLMs
can relieve scientists of the drudgery of writing papers and
free them up to get on with the serious business of “doing
science” (55). This false dichotomy between communication
and investigation reflects a fundamental misunderstanding
of the nature of science (56) that devalues the communica-
tive aspects of science and ignores the role of writing in the
process of formulating, organizing, and refining ideas.

Downstream, LLMs threaten the notion of scientific
expertise, shift incentive structures (57), and undermine
trust in the literature. Notions of systematic review are
undercut by the randomness inherent in LLM output. And
most importantly, when someone uses an LLM to generate
a literature review, the claims generated are not directly
derived from the manuscripts cited. Rather, the machine
creates textual claims, and then predicts the citations
that might be associated with similar text. Obviously, this
practice violates all norms of scholarly citation. At best, LLMs
gesticulate toward the shoulders of giants.

Driven by quantitative metrics and the strong incentive to
publish, researchers may opt to trade off quality for speed
by letting LLMs do much of their writing. Widespread use
of one or a few LLMs could undercut epistemic diversity in
science. When asked to provide a hypothesis, experiment,
or mode of explanation, LLMs may repeatedly offer similar
solutions, instead of leveraging the parallel creativity of an
entire science community.

Worse still, opportunistic or malicious actors could use
LLMs to generate nonsense at scale with minimal cost. (This
is not an argument against using LLMs appropriately, but we
need to be prepared for such behavior.) Lazy authors could
boost their publication counts by shotgunning machine-
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generated papers to low-quality journals. Predatory pub-
lishers could feign peer review using LLM output. Bad actors
could overwhelm the manuscript submission system of a
target journal (or even a target field) with a massive volume
of fake papers. Or an investigator’s work could be targeted
with a deluge of spurious machine-generated critiques on
postpublication peer review platforms such as Pubpeer.

Finally, LLMs may cause considerable collateral damage
to science education. For example, as LLMs slash the cost
of generating seemingly authoritative text, the web will be
flooded with low-quality, error-ridden tutorials designed to
capture advertising revenue. At present, search engines’
ability to discriminate is more or less the only line of defense.
That’s worrisome.
Conclusion. In conclusion, LLMs are often mischaracterized,
misused, and overhyped, yet they will certainly impact the
way we do science, from search to experimental design to
writing. The norms that we establish now around their use
will determine the consequences far into the future. We
should proceed with caution—and evaluate at every step.

Perspective—LLMs in Scientific Practice: A
Matter of Principles, Not Just Regulations

Contributors. Marco Marelli, Adina Roskies, Balazs Aczel,
Colin Allen, Dirk Wulff, and Qiong Zhang.

A moderate perspective on the potential impact of LLMs
on scientific practice holds that, while it is important to
be mindful of the dangers, their application seems largely
beneficial insofar as they offer much needed support in
day-to-day research activity and may alleviate major obsta-
cles to scientific advancement. This is evident when LLMs
are applied as editing tools: They provide a writing aid
that leaves researchers with more time for brainstorming
ideas and analysis, may help mitigate disparities between
different scientific communities, and remedy some of the
disadvantages for researchers who are not native speakers
of English (58). Also, LLMs can access a broader range of
literature than any individual researcher could, potentially
offering valuable support for literature analysis and hypoth-
esis generation (59), with a reach that, biases aside, goes
beyond one’s research specialization.

However, although any new technology may be harmful
or helpful, some technologies afford opportunities for harm
or help more than others. The reliance on LLMs has
disruptive potential that is ever more evident, and such
disruption must be kept at bay if the goal is to prevent
“evil drifts.” One perspective might hold that strict regulation
is required, limiting the application of such systems at
different points of the research endeavor, but regulation
carries with it many costs that might be best avoided if kept
moderate. A preferable approach may be to adopt clear
principles guiding the way this technology should be used,
principles that cannot just focus on efficiency and overall
utility. Such principles include transparency, accountability,
and fairness.
A matter of transparency. In science, transparency is of indis-
pensable value. When used as writing tools, researchers
must acknowledge the reliance on LLMs so that readers are
on notice that the text is (at least partially) AI-generated.
Authors should make explicit which LLMs were applied
and how, as part of the method sections or in a separate

dedicated statement. This could be achieved by relying
on already existing solutions; for example, the CrediT
taxonomy|| could also be used to code the nature of AI
contribution, even if AI is not to be recognized as a coauthor.
Ideally, in the spirit of open science, when possible and
feasible, authors shall publicly release their prompts along
with the corresponding LLM responses as supplementary
materials, and reference such archives in the manuscript.
One might question the value of doing so given that authors
are already required to take responsibility for the content
of their articles. But given the opacity of the relationship
between an LLM’s training data and its outputs, no author
can fully verify that LLM-generated text is properly sourced.
Readers deserve to be warned. One might further question
our suggestion on the grounds that it could stigmatize
authors who are not native speakers. However, indicating
how the LLM was used, whether merely to clean up text
supplied by authors or generate text from other kinds of
prompts, would mitigate this concern and provide readers
with important source information.

Importantly, transparency does not only pertain to the
way we exploit LLMs, but to the systems themselves.
LLMs are not, strictly speaking, anything new. Models
that are analogous to current LLMs in structure, spirit,
and basic mechanisms have been part of the scientific
debate for decades (60). However, such older models were
unambiguous about their architecture and training, if not
openly released. Current LLMs are often not held to the
same scientific standards as their ancestors, being widely
applied even when their inner workings and training data
remain undisclosed. This makes it difficult to estimate
the actual performance of such models [and, importantly,
the possibility of data contamination (61)]. As a scientific
community valuing greater transparency, we should favor
systems taking steps in that direction (62).
Amatter of accountability. It must be acknowledged that LLMs
are instruments of human agency, and researchers should
be held accountable for any scientific product they present
to the community, irrespective of the extent to which this
was obtained through the application of automatic systems.
The Association for the Advancement in AI has released
clear guidelines in this respect: “Attribution of authorship
carries with it accountability for the work, which cannot be
effectively applied to AI systems . . . Ultimately, all authors
are responsible for the entire content of their papers,
including text, figures, references, and appendices.” For
example, LLMs are known to “hallucinate” and produce fac-
tually incorrect responses (63). They fabricate bibliographic
citations, omit important references when summarizing
literature, and potentially plagiarize text written by another
researcher. Even if this scenario is rapidly changing, and
factuality is a central issue in current developments, the
burden to verify that LLM-produced texts are accurate and
that LLM-proofread texts are consistent with the original
message remains with the individual authors. Similarly,
LLMs’ performance in logic and deductive tasks is often
poor (64, 65), so using them for analysis may lead to false
conclusions. The onus is on the user to ensure that what
LLMs produce is worth pursuing. Researchers must hence
have strategies for the assessment of AI-related content;

||https://credit.niso.org/.
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a good practice would be to have clear quality criteria
and verification methods defined before using LLMs, as it
is already standard practice in the programming industry.
Scientists should not underestimate the time and effort that
such vetting will take and should weigh the efficiency of
LLM application against these costs. The time saved in text
generation might be offset by the time required to verify the
text generated.
A matter of fairness. The diffusion of AI systems in general
and LLMs in particular have the potential to deeply affect
us at a societal level. Science, as any human endeavor, is
not immune to this. As a community, we must make all
possible efforts to guarantee that reliance on LLMs does not
violate basic fairness principles. Indeed, current language
models reflect mostly WEIRD (Western Educated Industri-
alized Rich Democratic) populations and cannot easily be
prompted to represent non-WEIRD communities (66, 67).
This leads to biases in writing and annotation, potentially
reinforcing distortions in citations and marginalization of
already marginalized scientists. It also could lead to biases
in communicating and interpreting results relevant to social,
ethical, and political values that impact individual and public
decision-making (68). Moreover, the wide application of
LLMs may have negative consequences in terms of equitable
research; in fact, such systems are also more accessible to
WEIRD populations and, even within WEIRD countries, there
could be a lot disparities in the ability to access the best
versions of such technology, which are typically behind a
paywall. These systematic patterns must be recognized and
taken into account, to avoid unprincipled biases affecting
the direction of research and possibly the relative success
of careers. More generally, being aware of such biases (by,
for example, adapting LLM prompts) can help alleviate their
impact on society as a whole.
Conclusion. The impact that LLMs are having on scientific
practice cannot be understated. Given the current trend,
at the time you are reading these words, such impact will
likely be much larger than it is as we write this piece. How the
advancement of LLMs will influence the practice of science
in the future cannot be entirely predicted; countering such
a revolution with strict, preconceived norms is a losing
battle. Rather, establishing principles and shared values in
the scientific community constitute the ideal foundation for
managing these rapidly changing technologies. A healthy
skepticism is a pillar of any scientific enterprise. We need to
train students and each other to build upon these principles
in order to become appropriately skeptical toward LLMs and
their outputs.

Perspective—AI Can Help, But Science Is for
People

Contributors. Matthew M. Botvinick and Samuel J. Gersh-
man.

Like many forms of technology, AI can substitute for
human work. With the advancement of LLMs, the relevant
kinds of work begin to overlap with high-level human
cognitive work, including the activities involved in science
(15). As LLMs improve, their ability to substitute for human
scientific work will be a major boon. However, we argue here
that two core aspects of scientific work should be reserved
to human scientists.

AI and scientific work. Over time, the work involved in sci-
entific research has become progressively more onerous,
sometimes now bordering on the intractable. Assimilat-
ing current knowledge has become more difficult in the
face of increasingly voluminous literatures. Generating new
questions, hypotheses, and experimental tests has become
more challenging, as the search problem entailed by each
has become more complex. Drawing conclusions from
experimental results has become harder as the size and
complexity of datasets has exploded. And communicating
and debating scientific conclusions has become more chal-
lenging for reasons including an overtaxing of peer review
systems (69). Given the increasing costs of scientific work on
these fronts, it’s no surprise that progress across multiple
scientific fields appears to have slowed (70).

In the long run, AI may help us cope with the increasing
demands of scientific work. Through the kinds of application
detailed in the introductory essay above, AI may help us
scale up, by making each step in the research cycle cheaper.
In some cases, AI may eventually perform some forms of
scientific work better than human scientists, including the
work of generating new hypotheses (71). Even in present-
day forms, AI may be useful on some fronts, as reviewed
in the introduction. Of course, as widely discussed, current
systems are too unreliable to deploy without caution and
oversight (see accompanying commentaries), and only time
will tell how feasible it may be to overcome current limita-
tions.

However, in addition to addressing present-day short-
comings, it’s equally important to look into the future and
consider what kind of AI tools we actually want for science
in the long run. Given that AI can be applied to all phases of
scientific work, one aim might be to build a full-fledged AI
scientist, one that can do everything a human scientist now
does: a full-spectrum replacement for human scientists. To
us, this prospect is deeply unappealing. Why? Because there
are particular aspects of science that we simply would not
want to delegate to AI, even in a scenario where technical
limitations presented no barrier. In particular, there are two
core aspects of science that should be left to people. As
we now explain, one of these is normative and the other
epistemic.
The normative aspect of science. Any scientific discipline must
continually ask, What problems shall we work on? How
this question gets answered, both within individual labs
and across whole research communities, is a complex
affair, but it centers on judgments concerning the ‘interest’
and ‘significance’ of candidate problems, as well as their
‘timeliness,’ including their amenability to study under pre-
vailing material and ethical constraints. Such judgments are
informed by hard data; we obviously cannot reduce them
to purely social constructions. However, at the same time,
judgments of interestingness, significance, and timeliness
are inherently tied to culturally and historically grounded
sensibilities and mores. This is not a corruption or impurity
in scientific thought and procedure. Cultural sensibilities
and patterns of thought are fundamental to scientific
prioritization.

This point will be especially salient to students of the
history of science, because the sensibilities and mores
that inform science evolve over time. Just as scientific
theory changes over the years, so do the ethical com-
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mitments and intellectual priorities that underlie science.
This is evident in the fact that we no longer approach
homosexuality as a disorder (72), or study genetics through
the lens of eugenics. It shows in growing restrictions on
animal experimentation (73). And it shows in the attention
that Western climatologists now pay to regions historically
neglected (74).

We argue that the normative aspect of science should
not be ceded to AI systems, no matter how capable those
systems become. People should stay in the driver’s seat,
determining the direction of travel for science. Certainly, AI
systems may be helpful partners in deliberation, especially
as techniques for AI value alignment improve (75). However,
aligning a system to currently prevailing human views is
different from allowing that system to govern the evolution
of human views. In science, the ultimate driving force in that
evolution should remain human. We are the moral agents
in the room, and we shouldn’t forget it.
The epistemic aspect of science. A central goal of basic science
is understanding the natural world. If we are going to
do science with AI tools, the question arises: “whose”
understanding matters? Would it be satisfactory to have
AI systems that successfully model aspects of nature—as
reflected, for example, in accurate predictions—but which
do not directly advance human knowledge concerning the
underlying principles or mechanisms? From an engineer-
ing standpoint that might be fine. However, if it’s basic
science we’re talking about, we shouldn’t let go of the
core objective, which is not just practical but epistemic. We
cannot cede understanding to artificial systems. We should
insist on human understanding remaining a core goal of
science.

Of course, it may be that because of limitations on human
cognition, AI systems may someday be able to represent
some aspects of nature that we cannot, just as existing AI
systems master aspects of complex board games that elude
even highly skilled human players (76). Even in these cases,
however, we should strive to extract as much human insight
from AI systems as possible (77). We shouldn’t lose track of
what basic science is for. This doesn’t preclude the use of AI
advances in prediction for aiding human insight; prediction
systems like AlphaFold are currently being used to advance
basic science. Our point is that the intrinsically human
objective of basic science cannot be entirely subsumed by
predictive technology.
Conclusion. AI promises to deliver great value in science, just
as in many other domains. We believe its potential should
be embraced. However, at the same time that we strive
to break through the current limitations of AI to access
its benefits, we should also think through our long-term
goals in developing this technology. In the end, the two
areas of science we’ve proposed to protect—one normative,
the other epistemic—are two reflections of a more general
bound on AI’s proper domain. We might call this the
subjective limit. Unlike AI systems, people have a ‘point of
view,’ which cannot be automated because it’s inherently
subjective (78). This point of view includes knowledge that
is meaningful to us (the epistemic view) and values that are
meaningful to us (the normative view). Machines might have
their own knowledge or values, and these might be aligned
with ours, but the alignment problem is fundamentally

yoked to our subjective views. This principle applies in
science, as in all human-centered activities.

Response by Eric Schulz, Daniel Schad, Marcel
Binz, Stephan Alaniz, Ven Popov, and Zeynep
Akata

We have argued that one should think of working with
LLMs less as using a traditional software tool and more as
working with a human collaborator and that this perspective
allows us to better understand their shortcomings. This view
actually resonates with many of the points raised in the
other perspectives. For example, Marelli et al. write that
“we should not blindly trust or rely on LLMs, but rather
use them as a complement to our own expertise and
judgment,” and Bender et al. argue that collaboration in
science means iterating over outputs many times. Like
working with a human collaborator, working with LLMs is
an iterative process in which we constantly check for facts
and logical consistency, revise arguments, and identify new
connections. This process takes time and is more than just
booting up an LLM and copy-pasting its outputs; as nicely
put by Marelli et al., we “should not underestimate the time
and effort that such vetting will take, and should weigh the
efficiency of LLM application against these costs.”

However, we would also like to stress that the notion
that “LLMs are simply models of word form distributions
extracted from text” oversimplifies both their capabilities
and the additional engineering effort involved in modern
LLMs. If one takes steps like reinforcement learning from
human feedback (79) or instruction tuning (80) out of the
equation, the outputs produced by such models are rather
uninspiring (anyone who has ever worked with a plain LLM
can attest to this). Yet, with those ingredients included,
LLMs do not just mimic language patterns; they can also
synthesize concepts, critically evaluate their own outputs,
and assist in problem-solving by processing vast amounts
of data.

Bender et al. argue that the future of machine-aided
science will not be “a massive, one-size-fits-all, universal
application of LLMs, but rather an ensemble of bespoke and
often lightweight models that have been designed explicitly
to solve the specific tasks at hand [...].” We believe LLMs are
widely adopted precisely because they are a universal tool
to accomplish many tasks. Not only does that remove the
need to build specialized tools for each application, but it
also eradicates the time it takes to learn and adopt them.
Like human collaborators, who bring a diverse range of skills
to a project, LLMs offer a breadth of knowledge that can be
tailored to specific needs, e.g., as shown with the finetuning
of coding LLMs (28). There are—of course—applications that
benefit from purposefully designed tools, but we believe
that the percentage of such applications is modest once we
take the time required to develop and adopt such tools into
account.

Finally, there is the question of how much autonomy we
want to transfer to LLMs or other AI systems. Botvinick and
Gershman advocated that people should retain control over
certain aspects of the scientific pipeline, such as deciding
which topics to work on. We do not think that such a
constraint is necessary. For example, if in the future, we can
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employ an LLM (or any other AI system) to work on a topic
that it deems interesting, and this LLM has proven itself to
select topics in a very fruitful and productive manner, should
we refrain from it? We do not think so as long as ethical and
legal guidelines are followed. Deciding on scientific topics
is hard, and it is often not a priori known which research
directions will be fruitful. Therefore, we should take any
help we can get. Human researchers and AI systems bring
complementary strength to the table, and acknowledging
this collaborative spirit enables us to leverage the best out
of both worlds.

Response by Emily M. Bender, Carl T.
Bergstrom, and Jevin D. West

Science is a social process. It cannot be autocompleted. Its
agents—real scientists—are as much the product of this
process as the results recorded in papers.

LLM optimists envision a new world, where machines
write, review, and even do much of the science. Even the
less extreme narrative wherein LLMs simply aid researchers
suffers from a misplaced and almost Taylorist (81) optimism
regarding production efficiency. Science is not a factory,
churning out widgets or statistical analyses wrapped in
text. For a factory, producing one more car per day is
progress. For science, the goals are to understand our
world—not to produce more artifacts that look like scientific
papers. If science were a paper factory, we too would
indulge in LLM euphoria and might even claim a significant
resulting improvement in quality coming out of our labs.
But we cannot equate papers and progress. Papers are
but messages that we send one another to coordinate our
collective quest for scientific understanding.

We don’t, however, believe that any new mandates are
required prohibiting the use of LLMs. All ill-advised use
cases are already contrary to the norms of science: Using
LLMs as stand-ins for human subjects (82) amounts to
fabricating data; using LLMs to write first drafts runs afoul of
prohibitions against plagiarism, as it is impossible to discern
the source of any string produced by an LLM; treating LLMs
as co-authors contravenes norms around authorship, since
LLMs are not the sort of thing that can be accountable
for paper contents; using LLMs to produce peer reviews
is tantamount to abrogating our responsibility to deeply
evaluate the methods, reasoning, and conclusions of our
peers’ work.

When contemplating how LLMs will affect science, we
should not underestimate the temptation to use them
under deadline pressure or in response to publish-or-
perish threats to job security. Nor should we underestimate
the time needed to fact-check all LLM output—not only
for the inevitable and frequent errors but also to assess
whether citations are accurate. We note that there are no
published user studies that quantify just how much effort
this checking process is, nor how accurately researchers can
carry it out, especially while working under pressure. Norms
of plagiarism and the weight of reputation will hopefully
counterbalance the unfettered use of this new technology.

To reason appropriately about when LLMs are suitable
within science, it is critical to avoid anthropomorphizing

them. These models aren’t research assistants. They are
tools. They don’t make mistakes like junior (or senior!)
researchers do: People can take responsibility for, and learn
from, mistakes. Tools produce errors; thus people using the
tools have a responsibility to understand their affordances
and use them with care.

Similarly, understanding LLMs as tools positions us to
ask: Is this the best tool for this task? Often, we expect, LLMs
are not. Even setting aside the closed proprietary models,
their attendant failures of transparency, and the stochastic
nature of LLM output, we expect that bespoke models de-
signed for specific tasks will be more efficient, performant,
interpretable, and easier to fix when not functioning well.

Ultimately, science is a conversation and the interlocu-
tors are the scientists. Synthetic text-extruding machines,
designed only to produce plausible-sounding prose, are
not fit participants in that conversation and should not be
treated as such.

Response by Marco Marelli, Adina Roskies,
Balazs Aczel, Colin Allen, Dirk Wulff, and Qiong
Zhang

We think that LLMs can be profitably incorporated into
scientific practice (in line with Schulz et al.), but we also
recognize that there are causes for reservation (in line with
Bender et al.).

We disagree with the view that LLMs should be consid-
ered collaborators or research assistants (Schulz et al.). One
can instruct students or research assistants, address their
mistakes, and anticipate that they will learn from them.
One may also question their reasons or reasoning and get
answers and expect accountability. Finally, one may also
get insight into their values and their motivations, and trust
or distrust them accordingly. LLMs are not introspective,
lack metacognition, and have no values, at least not in the
way humans do. Indeed, our inability to understand why
they make the errors they do or when they will make them
impairs our ability to understand their limits, especially
on the edges of knowledge, where their training corpus
is arguably less robust (83, 84). Moreover, although LLMs
move from the same foundations of previous language
models (Schulz et al.), they are significantly more opaque
and complex. As a result, maintaining the ever-important
scientific value of transparency can be challenging and ne-
cessitates further development of practices and strategies
to ensure its preservation.

Nevertheless, we agree that such concerns should not
prevent scientific applications of LLMs. It is unrealistic to
presume that LLMs won’t be used because of the risks
involved, and not permitting their use could do more harm
than good: Given the current trend, if prohibited, they would
likely be used covertly, exacerbating the already-worrying
transparency issues. Certainly, we need to pursue a critical
and not starry-eyed understanding of LLMs and maintain a
clear-eyed assessment of the potential risks of use. How-
ever, there are ways of employing them that can improve
the quality of science as long as the researcher is kept at the
center of the process. LLMs are tools and, as such, must
be carefully evaluated in their applications. This applies
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to any tool, including the existing alternatives discussed
by Bender et al., which, although optimized for specific
scientific purposes, are not immune from mistakes and
whose degree of reliability always needs careful scrutiny.
At the end of the day, the responsibility falls upon the
shoulders of the researchers who use the tools. It is, hence,
crucial to establish principles and values that guide our
decisions—whether one applies LLMs or any other method.

Ultimately, we mostly concur with Botvinick and Gersh-
man: The impact of LLMs on the future practice of science
cannot be fully predicted, but science is a humanistic and
human enterprise and must remain so, motivating curbs
to LLM use. Our perspective highlighted the normative
aspects in terms of core values that should guide their use
today, while Botvinick and Gershman seek to identify the
principles and values for the future, deciding what should
remain exclusively human even when AI becomes fully
capable of performing every step of scientific inquiry as well
as upholding values such as accountability, transparency,
and fairness. The two perspectives complement each other
in stimulating discussions about what should guide how we
integrate AI into our scientific practices.

Response by Matthew M. Botvinick and
Samuel J. Gershman

We see significant common ground across the other per-
spectives. We will focus here on one issue that gets to
the heart of our perspective. Schulz et al. characterize
LLMs as closer to collaborators than to tools. This raises
critical issues of accountability, as pointed out by Bender
et al. and Marelli et al. Some of these issues are currently
being grappled with, while others will become more salient
in the future as the technology advances. In particular,
accountability is a fundamentally human concept: Humans
are the only currently existing agents that are accountable
in the sense that they have ultimate control over their own
actions and voluntarily submit to a system that regulates
these actions. Extending this concept to artificial agents
would entail a profound shift in our attitudes, essentially
requiring us to acknowledge the personhood of such agents.

This shift, if it ever happens, will have ramifications far
beyond science. Policymakers are already starting to wrestle
with the question of how accountability should operate in a
world where AI systems are increasingly autonomous, and
the issues can get quite complex. The difficulties can be
bounded, however, in domains where humans are able to
draw clear boundaries around what role they will permit
AI systems to play. In science, we believe these boundaries
should be firm and restrictive, limiting key decisions—and
thus accountability—to human scientists.

Ultimately, we are interested in the limit case where the
limits imposed on AI are sociological, moral, and juristic,
rather than technological. To regard LLMs as genuine
collaborators rather than sophisticated tools, we would
need to acknowledge attributes of personhood that go far
beyond the mere practice of science. Our view is that AI, no
matter how intelligent, should remain a tool, because ceding
personhood to artificial agents would have undesirable
consequences. It’s one thing for an AI scientist to tell us

that there is a better way to fold proteins or design nuclear
reactors, but it’s quite another thing for it to tell us that it
would rather be studying some other problem. It would also
be quite a shock to be told by an AI scientist that it’s solved
an important problem but that it doesn’t feel like trying to
explain it to a human. As we argued in our perspective, the
choices of what to study and which explanations count are
irreducibly human.

Conclusion

We have presented four different perspectives centering
around the question “how should the advancement of LLMs
affect the practice of science?” Schulz et al. argued that
“working with LLMs will not be fundamentally different
from working with other collaborators, such as research
assistants or doctoral students.” Bender et al. described
a suite of problems with using LLMs in scientific activity
and argued that many uses of LLMs are “contrary to the
norms of science.” Marelli et al. called for “clear principles
guiding the way this technology should be used,” including
transparency, accountability, and fairness. Finally, Botvinick
and Gershman advocated that “two core aspects of scientific
work should be reserved to human scientists,” namely
deciding on what problems to work on and that human
understanding remains the goal of science.

A major point of contention in the context of doing
science was the question of what systems like LLMs are
capable of. Measuring and pinpointing these capabilities is
a very hard problem. Typically, machine learning research
does so through the use of benchmarks. It remains unclear,
however, whether such benchmarks can be established for
scientific workflows and whether success in such bench-
marks would translate to meaningful scientific output in
the real world. Yet, even though there was substantial
disagreement, there were also important common themes.
In particular, all parties emphasized the social nature of
science and the importance of protecting scientific integrity
and standards. In modern times, these core values are more
important than ever before, and we—as a community—will
have to continuously reevaluate how to protect them.

While most of the presented perspectives have focused
on LLMs in their state, many of the raised points, e.g.,
transparency, accountability, and fairness, apply to the use
of AI tools more broadly. We believe that based on the rapid
development of this field, now is the time to establish norms
about how we want to use such tools in contexts like optimal
experimental design (85, 86), theory discovery (87, 88), and
prediction (59, 89).

Data, Materials, and Software Availability. There are no data
underlying this work.
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