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ABSTRACT OF THE DISSERTATION
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by
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Professor Cho-Jui Hsieh, Chair

As machine learning models grow much larger nowadays, recent research found that

advances to improve accuracy might not be able to make neural networks applicable to all

situations due to size and speed constraints. To make machine learning more applicable to

all real-world applications, there is a need to obtain a small model size and faster inference

speed. There are many explicit information and hidden data dependent distributions in

the underlying data mining and machine learning problems. However, past research often

focused on model parameters directly without considering the contextual information in the

underlying problem. In this dissertation, we demonstrate how we can obtain a much more

efficient machine learning systems via leveraging data dependent information. Specifically,

we will show how both explicit and implicit data dependent information can be combined

with many existing methods to obtain a much smaller model size and faster inference time.

In addition, this data dependent information is ubiquitous and we can find it in many

applications such as data mining, natural language processing, information retrieval and

recommender system problems.
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CHAPTER 1

Introduction

1.1 Motivations

We have witnessed a wave of machine learning development in the past decade. With the

advent of neural networks [84], machine learning models have been increasingly applied in

various domains such as computer vision [17, 122], natural language processing [15, 17, 36],

information retrieval [3, 23] and data mining [8, 123]. However, in addition to using more

training data to get a better accuracy, recent research found that advances to improve

accuracy might not be able to make networks more efficient with respect to size and speed

of models [63, 126]. In other words, to make machine learning models applicable to some

applications, these models are required to be tailored into a more efficient forms. In literature,

three aspects attracted most attention: model size, inference time and energy used. Let’s

dive into each of these aspects to see why they are important when deploying machine

learning models in real world applications.

1.1.1 Model Size

As the machine learning models become more ubiquitous, we can observe that more and

more machine learning models are deployed on devices. As shown in Figure1.1(a), there

are many popular edge devices in our daily life. These edge devices might not have a large

storage on device, so it’s not uncommon that the storage is full as shown in Figure1.1(b).

As noted in literature that modern neural network size grows in orders, it’s presumable that

these models won’t be able to fit into all edge devices [24]. Thus, the wish to universally
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deploy machine learning models drive the need to make the model size smaller.

(a) Illustration that many emerging edge de-
ployment of machine learning models. Im-
ages sources.

(b) Illustration that out of memory situation
is not uncommon in modern daily life when
accessing edge devices.

Figure 1.1: Illustration of importance of machine learning model size. Im-
age sources for (a) https://www.google.com/glass/start/;https://home.google.com/
welcome/; https://en.wikipedia.org/wiki/Pepper_(robot); https://www.apple.com/
watch/. Image sources for (b) https://appleinsider.com/articles/19/08/15/

how-to-stop-getting-the-storage-full-message-on-your-iphone.

1.1.2 Inference Time

In certain applications such as self-driving car or computer vision driven mobiles APPS,

the image recognition tasks need to be carried out in a timely fashion on a resource-limited

platform (e.g., a low-end MCU chip). As shown in Figure 1.2, in our daily mobile phone

usage, we might use translate to communicate with others or use auto-complete when typing.

We certainly want the responsive time to be negligible when using such services. In e-

commercial scenario, servers need to respond to search request in milliseconds [46]. These

application scenarios all require machine learning models to complete the inference step in

a rather short period of time.

Moreover, in some machine learning classification tasks, the output space is in million

scale. For example, in modern neural recommendation systems, users and items are rep-

resented by embedding vectors [83]. To find a recommendation, we have to perform an

inner-product between each user and item. However, both users and items are in million-
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scale [164] such that even a full inference computation between all pairs of users and items

becomes very challenging. In order to make such large-scale recommender systems practical,

we have to accelerate the inference time of the machine learning models.

Figure 1.2: Illustration of fast inference requirement in daily mobile phone usages.

1.1.3 Energy Used

In our daily life usage, it’s easy to meet out of battery situation as shown in Figure 1.3. As

mobile APPs incorporate much more powerful machine learning models, we can expect the

energy consumption will increase and that will cause the mobile usage duration to decrease.

On a larger scale, there is no doubt that reducing energy costs and CO2 emissions has become

the most important task globally [1]. Many information and communications technology

companies are constantly installing more servers, and each server draws far more electricity

than its earlier models [2]. These expansions will greatly harm the goal to ease the greenhouse

effect. A plausible way to control this is to have the model consumes less energy so overall

the whole server consumes less.
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Figure 1.3: Illustration of why reducing energy consumption is an import task. It will
influence both our daily life and industrial server deployment. Image source: https://

stanfordmag.org/contents/carbon-and-the-cloud

1.1.4 Efficient Machine Learning

Based on the previous discussion, we can use Figure 1.4 to summarize what efficient machine

learning is. We define efficient machine learning to be the union of the above mentioned three

domains: machine learning model size, inference speed of machine learning models, and the

energy consumed during usages of machine learning models. In the previous sections, we have

motivated why these factors posted challenges to the current machine learning development.

Consequently, achieving efficient machine learning becomes an important research topic and

it’s the main focus of this thesis. Before moving on, we point out two important aspects

regarding efficient machine learning.

First, despite that these factors are correlated, they are not necessarily aligned with each

other. Improving one factor might not contribute the improvement of another factor; even

worse, for some cases to achieve one goal will actually be at the cost of another factor.

For example, Sparse pruning [59], a very effective model compression approach, can greatly

reduce the model size by setting some neuron connections to zero. However, once the links

are pruned, the original model is no longer a dense matrix. This pruned structure won’t
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Figure 1.4: Definition of Efficient Machine Learning (EML). EML is composed of model size
reduction, inference time speedup and less energy consumption.

be able to enjoy speedup brought by the well optimized BLAS matrix computation library.

Thus, in practice, we will observe a longer inference time. On the other hand, low-rank

based methods [125] try to approximate the original dense matrix by finding two low-rank

matrices with smaller dimensions. It can simultaneously reduce the model size and keep the

model matrices dense. As a result, we can observe a speedup ratio appropriate to the model

size reduction ratio. Overall, there are some trade-offs we need to consider when designing

efficient machine learning algorithms.

Second, in this thesis, we will focus on model compression and inference speedup only.

The thesis will not discuss the energy consumption. One major reason is that the energy

consumption of edge devices is highly related to its data-flow design [160]. This is more of

how the hardware components arrange the data . Given the same dataflow structure, energy

consumption will be highly dependent on number of processor cycles. Thus, we can effectively

use inference time to approximate the energy consumption. Another reason is that measuring

energy consumption requires special hardware equipment. It’s not an easy task to measure
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energy consumption on CPUs or GPUs. In literature, most experimental comparisons were

done on FPGA [151]. A straightforward way to measure energy consumption is to use Xilinx

XPE toolkit [35] which will report the energy usage in a few seconds. However, this will limit

our computations and models only be performed on FPGA, and this will set many restrictions

. In sum, we focused more on algorithmically aspects of efficient machine learning, and use

inference time and model size as an indicator of energy consumption.

1.2 Approach

In this thesis, we will demonstrate how we could incorporate data distributions into differ-

ent existing compression methods in order to achieve efficient machine learning for different

application scenarios. Traditional efficient machine learning methods focused on the model

parameters directly. Most if not all methods neglected semantic or contextual information of

the underlying data but only work with model parameters directly. For example, canonical

low-rank SVD methods set a rank hyper-parameter of the weight matrix without considering

how the matrix would be used in inference time. Similar situations happen in many inference

speedup scenarios. A popular method to accelerate classification tasks is to approximate the

computation of output softmax matrix, where each column vector in the matrix corresponds

to the representation of an output class. Most classification model also use straightforward

apply approximate top-k maximal inner-product search of the full softmax matrix directly.

These methods all serve as generic methods which could be applied on all models in various

machine learning tasks. However, there are more information hidden in the underlying data

which can be very useful to achieve efficient machine learning. For example, frequency infor-

mation is easily accessible in the training corpus of natural language processing application.

As each column vector in the softmax matrix corresponds to a word in the corpus, we could

use this frequency information to further process the matrix. And by saying data distribu-

tion, we are referring to a wide range of input data dependent features. In particular, we

will heavily rely on the usage of hidden structures of output latent space of certain layer

of neural networks in this thesis. These features can be detected by some machine learning
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techniques. And these structural information can eventually be used to accelerate the infer-

ence stage of large-scale machine learning problems. Most if not all of these ”structures” in

the underlying problem are not explored before in machine learning research. In this the-

sis, the main approach to study efficient machine learning. We will demonstrate that these

structures in the distribution could greatly help to reach efficient machine learning.

1.3 Thesis Contributions

The contributions of this thesis are summarized as follows:

• We showed that many modern Machine Learning problems have special structures in

their problem setup. Specifically, there are many data or distribution related infor-

mation hidden inside the problem which can be leveraged to achieve efficient Machine

Learning.

• We demonstrated that this problem-specific data distribution information can be ap-

plied in combination to many different techniques to achieve machine learning. In

particular, we will demonstrate that there are explicit information which can calculate

from the data and there are implicit information which we can extract by some ma-

chine learning techniques. Both information could benefit existing efficient algorithms

to further achieve a better performance.

• We will analyze some hardware software co-design issues in efficient machine learning.

We will illustrate that not all methods could achieve both model reduction and infer-

ence time speedup simultaneously due to hardware and software acceleration issues. In

addition, we will demonstrate that low-rank approximations in general could preserve

the underlying computational model such that it could reduce the model memory usage

while obtaining faster inference speed.

• We demonstrate that data distribution information could greatly help various appli-

cation domains. We will show experimentally that on data mining, natural language
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processing, information retrieval and recommender systems problems, using data de-

pendent features could achieve much efficient machine learning systems.

1.4 Thesis Structure

The outline of the thesis is as follows. In first two chapters, we will focus on machine

learning model size reduction problems. Specifically, we will use explicit information from

the training corpus and propose simple observations from the data which can greatly help to

obtain a much smaller model. In chapter 2, we will focus on combining data information with

low-rank approximation methods, and in chapter 3, we will combine data information with

compsotional methods. In chapter 4 and chapter 5, we will study the inference time speedup

problems. In this two chapters, we switch directions toward using implicit data dependent

information. We will show that on natural language processing tasks and recommender

systems, these hidden structures in latent vectors spaces exist and we can learn an effective

screening model to leverage the information in order to achieve a much faster inference time.

In chapter 6, we will demonstrate a data-aware low-rank approximation method which can

achieve both model compression and inference time speedup at the same time. A major

contribution of chapter 6 is that this is a fairly generic method and it’s applicable to any

application regardless the characteristics of the underlying data format. In chapter 7, we

will propose another generic tool which can achieve a much fast approximate top-K nearest

neighbor search by using local data information. Last in chapter 8, we make a final remark

on contributions, limitations and some interesting future directions.
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CHAPTER 2

Low-rank Model Compression Methods by Leveraging

Word Frequency Information.

2.1 Introduction

As we mentioned in the introduction, deep neural nets with a large number of parameters

have a great capacity for modeling complex problems. However, the large size of these

models is a major obstacle for serving them on-device where computational resources are

limited. As such, compressing deep neural nets has become a crucial problem that draws an

increasing amount of interest from the research community. Given a large neural net, the

goal of compression is to build a light-weight approximation of the original model, which can

offer a much smaller model size while maintaining the same (or similar) prediction accuracy.

We focused on some important Natural language processing (NLP) tasks such as language

modeling (e.g., next word prediction) and machine translation. A modern neural language

model often consists of three major components: one or more recurrent layers (often using

LSTM), an embedding layer for representing input tokens, and a softmax layer for generating

output tokens. The dimension of recurrent layers (e.g., LSTM), which corresponds to the

hidden state, is typically small and independent of the vocabulary size of input/output

tokens. In contrast, the dimension of the embedding and the softmax layers grow with the

vocabulary size, which can easily be at the scale of hundreds of thousands. As a result, the

parameter matrices of the embedding and softmax layers are often responsible for the major

memory consumption of a neural language model. For example, DE-EN Neural Machine

Translation task has roughly a vocabulary size around 30k and around 80% of the memory
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is used to store embedding and softmax matrices. Furthermore, the One Billion Word

language modeling task has a vocabulary size around 800k, and more than 90% of the

memory footprint is due to storing the embedding and softmax matrices. Therefore, to

reduce the size of a neural language model, it is highly valuable to compress these layers,

which is the focus of our paper.

There have been extensive studies for compressing fully connected and convolutional

networks [34, 58, 59, 64, 125, 155, 165]. The mainstream algorithms from these work such as

low-rank approximation, quantization, and pruning can also be directly applied to compress

the embedding and softmax matrices. However, these methods only focused on the model

parameters itself. They didn’t consider the underlying task to perform inference. One

important aspect that has not been well explored in the literature is that the embedding

matrix has several specific properties that do not exist in a general weight matrix of other

types of machine learning models. Each column of the input embedding and softmax matrix

represents a token, which implies that on a given training or test set the parameters in that

column are used with a frequency which obeys Zipf’s law distribution.

By exploiting these structures, we propose GroupReduce, a novel method for compressing

the embedding and softmax matrices using block-wise, weighted low-rank approximation.

Our method starts by grouping words into blocks based on their frequencies, and then refines

the clustering iteratively by constructing weighted low-rank approximation for each block.

This allows word vectors to be projected into a better subspace during compression. Our

experiments show that GroupReduce is more effective than standard low-rank approximation

methods for compressing these layers. It is easy-to-implement and can handle very large

embedding and softmax matrices.

2.2 Related Work

In this section, we will firstly review some general model compression techniques on compress-

ing convolutional neural networks (CNN) in computer vision applications. These techniques
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provide some basic baselines which can be applied to NLP tasks too. Next we will review

some prior experimental results on applying these general techniques to NLP tasks.

2.2.1 General Model Compression Methods

Low-rank matrix/tensor factorization. To compress a deep net, a natural direc-

tion is to approximate each of its weight matrices, W , by a low-rank approximation of the

matrix using SVD. Based on this idea, [125] compressed the fully connected layers in neu-

ral nets. For convolution layers, the kernels can be viewed as 3D tensors. Thus, [34, 66]

applied higher-order tensor decomposition to compress CNN. In the same vein, [63] devel-

oped another structural approximation. [79] proposed an algorithm to select rank for each

layer. More recently, [165] reconstructed the weight matrices by using sparse plus low-rank

approximation.

Pruning. Algorithms have been proposed to remove unimportant weights in deep neural

nets. In order to do this, one needs to define the importance of each weight. For example,

[88] showed that the importance can be estimated by using the Hessian of loss function.

[59] considered adding ℓ1 or ℓ2 regularization and applied iterative thresholding approaches

to achieve very good compression rates. Later on, [58] demonstrated that CNNs can be

compressed by combining pruning, weight sharing and quantization.

Quantization. Storing parameters using lower precision representations has been used

for model compression. Recently, [64] showed that a simple uniform quantization scheme

can effectively reduce both the model size and the prediction time of a deep neural net.

[95] showed that non-uniform quantization can further improve the performance. Recently,

several advanced quantization techniques have been proposed for CNN compression [32, 159].
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2.2.2 Model Compression for RNN/LSTM

Although model compression has been studied extensively for CNN models, less works have

focused on the compression for recurrent neural nets (RNNs), another widely-used category

of deep models in NLP applications. Since RNN involves a collection of fully connected

layers, many of the aforementioned approaches can be naturally applied. For example, [64]

applied their quantization and retraining procedure to compress a LSTM (a popular type

of RNN) language model on Penn Tree Bank (PTB) dataset. [145] applied a matrix/tensor

factorization approach to compress the transition matrix of LSTM and GRU, and tested their

algorithm on image and music classification problems (which does not need word embedding

matrices). [99, 118] proposed pruning algorithms for LSTM models compression.

Among the previous work, we found only [64, 99] tried to compress the word embedding

matrix in NLP applications. [64] showed that the quantization-plus-retraining approach can

only achieve less than 3 times compression rate on PTB data with no performance loss.

[99] showed that for word-level LSTM models, the pruning approach can only achieve 87%

sparsity with more than 5% performance loss. This means roughly 26% parameters over the

original model since this approach also needs to store the index for non-zero locations. Very

recently, [86] compressed the word embeddings computed by the word2vec algorithm and

applied to similarity/analogy task and Question Answering. [134] applied compositional cod-

ing to compress the input embedding matrix of LSTM, but it is challenging to compress the

softmax (output) layer matrix using the same algorithm. As a result, the overall compressed

model from this approach is still large. One main issue of the approach is that multiple

words share the same coding, which makes these words indistinguishable in the output layer

during inference.

These previous results indicate that compressing embedding matrices in natural language

tasks is a difficult problem—it is extremely challenging to achieve 4 times compression rate

without sacrificing performance. In this paper, we will show that instead of only treating the

embedding or the softmax parameters as a pure matrix, by exploiting the inherent structure

of natural languages, GroupReduce algorithm could achieve much better compression rates.
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Table 2.1: The size of each layer in the model. The number in parenthesis shows the ratio
respective to the entire model size.

Models vocabulary size dimension model size embedding layer(s) softmax layer LSTM cell
PTB-Small 10k 200 17.7MB 7.6MB(42.9%) 7.6MB(42.9%) 2.5MB(14.2%)
PTB-Large 10k 1500 251MB 57MB(22.7%) 57MB(22.7%) 137MB(54.6%)

NMT: DE-EN 30k 500 195 MB 115 MB (59.0%) 47MB(24.1%) 33MB(16.9%)
OBW-BigLSTM 793k 1024 6.8GB 3.1GB (45.6%) 3.1GB(45.6%) 0.6GB(8.8%)

2.3 Problem Statement

Assume the word embedding matrix has size N -by-D, where N is the vocabulary size and D

is the embedding dimension. We will use A ∈ RN×D to denote the embedding matrix (either

input or softmax layer), and each row of A corresponds to the embedding vector of a word,

i.e., the vector representation of the word. Our goal is to compress the embedding matrix

A so that it uses less memory while achieving similar prediction performance. For a typical

language model, especially the one with a large vocabulary size, the large memory size of the

model is mostly due to the need to store the input and output word embedding matrices. In

Table 2.2, we show an anatomy of memory consumption for several classic models trained

on the publicly available datasets. We can see that for three out of four setups, embedding

matrices contribute more than 75% of the overall memory usage. For example, in bigLSTM

model that achieved start-of-the-art performance on OBW, more than 90% of memory is

used to store two (input and output) word-embedding matrices. Thus, for deep neural net

models alike, the main challenge to serve them on-device is to store tremendous memory

usage of word embedding matrices. As such, it is highly valuable to compress these word

embedding matrices.

2.4 Methods

2.4.1 Conventional Low-rank Approximation

Given a word embedding matrix A, a standard way to compress A while preserving the

information is to perform low-rank approximation over A. A low-rank approximation can
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(a) Frequency (b) Eigenvalues (c) Reconstruction error

Figure 2.1: Illustration on Penn Treebank (PTB) dataset with the vocabulary size to be 10k
and the model’s embedding dimension to be 1500. (a): log of word frequency vs rank of
the word. One word’ rank is defined as the log of number of words that occurs less than
it. We can clearly observe the power law distribution of the word frequency; (b) x-axis
shows the rank of approximatiion, and y-axis shows the eigenvalues. Here eigenvalues for
two embedding matrices are from the input embedding layer and softmax layer; we can see
the eigenvalues are very large. (c) low-rank reconstruction error based on singular value
decomposition for the two embedding matrices. This in other way shows that the vanilla
SVD may not work well for the embedding matrix.

be acquired by using singular value decomposition (SVD), which achieves the best rank-k

approximation:

A ≈ USV T , (2.1)

where U ∈ RN×k, V ∈ RD×k where k < min(D,N) is the target rank, and S is a diagonal

matrix of singular values. After the rank-k low-rank approximation, the memory footprint

for A reduces from O(ND) to O(Nk + Dk).

There are two issues for using vanilla SVD to compress an embedding matrix. First, the

rank of the SVD is not necessarily low for an embedding matrix. For example, Figure 2.1b

shows that all the eigenvalues of the PTB word embedding matrices are quite large, which

leads to poor reconstruction error of low-rank approximation in Figure 2.1c. Second, the

SVD approach considers A as a regular matrix, but in fact each row of A corresponds to the

embedding of a word, which implies additional structure that we can further exploit under

the language model case.
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Table 2.2: The size of each layer in the model. The number in parenthesis shows the ratio
respective to the entire model size.

Models vocabulary size dimension model size embedding layer(s) softmax layer LSTM cell
PTB-Small 10k 200 17.7MB 7.6MB(42.9%) 7.6MB(42.9%) 2.5MB(14.2%)
PTB-Large 10k 1500 251MB 57MB(22.7%) 57MB(22.7%) 137MB(54.6%)

NMT: DE-EN 30k 500 195 MB 115 MB (59.0%) 47MB(24.1%) 33MB(16.9%)
OBW-BigLSTM 793k 1024 6.8GB 3.1GB (45.6%) 3.1GB(45.6%) 0.6GB(8.8%)

2.4.2 The Word Frequency

One important statistical property of natural languages is that the distribution of word

frequencies can be approximated by a power law. That means a small fraction of words

occur many times, while many words only appear few times. Figure 2.1a shows the power-

law distribution of word frequency in the PTB datasets.

In the previous compression methods, none of them takes the word frequency into con-

sideration when approximating the embedding matrix. Intuitively, to construct a good com-

pressed model with low-rank approximation under the limited memory budget, it is impor-

tant to enforce more frequent words to have better approximation. Thus, we considered

two strategies to exploit the frequency information in low-rank approximation: weighted

low-rank approximation and block low-rank approximation.

2.4.3 Improved Low-rank Approximation by Exploiting Frequency

In this subsection, we introduce GroupReduce: a Block-Wise Low-Rank Approximation for

Neural Language Model compression method that incorporates word frequency information

into the compressing process.

Weighted low-rank approximation. Firstly, we introduce a weighted low-rank approx-

imation to compress the embedding matrix A. This will be used to replace original SVD

and serves as the basic building block of our proposed algorithm. The main idea is to

assign a different weight for each word’s approximation and penalize more for the higher

frequency words when constructing low-rank approximation. Mathematically, for the i-th
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word’s frequency to be qi, we want to approximate the embedding A by minimizing

min
U∈RN×k,V ∈RD×k

N∑
i=1

D∑
j=1

qi(Aij − UiV
T
j )2 (2.2)

where k is the reduced rank; Aij is i-th word’s j-th feature; U ∈ RN×k, V ∈ RD×k; Ui and

Vj are i-th and j-th row of U and V respectively. Note that here we do not require U, V to

be orthonormal.

Although it is known that weighted SVD with element-wise weights does not have a

closed-form solution [139], in our case elements in the same row of A are associated with the

same weights, which leads to a simple solution. Define Q = diag(
√
q1, . . . ,

√
qN), then the

optimization problem of (2.2) is equivalent to

min
U∈RN×k,V ∈RD×k

∥QA−QUV T∥2F . (2.3)

Therefore, assume all the qi are nonzeros, we can solve (2.2) by conducting low-rank approxi-

mation of QA. Assume [Ū , S̄, V̄ ] = svd(QA), then (U∗, V ∗) = (Q−1Ū S̄, V̄ ) will be a solution

of (2.2). Therefore solving Eq.(2.2) is easy and the solution can be immediately computed

from SVD of QA.

Block low-rank approximation. As can be seen from Figure 2.1b, the embedding matrix

is in general not low-rank. Instead of constructing one low-rank approximation for the

entire matrix, we can consider block-wise low-rank approximation–each block has its own

approximation to achieve better compression. A similar strategy has been exploited in [135]

for kernel approximation (symmetric PSD matrix). Mathematically, suppose we partition

the words into c disjoint blocks V1, · · · ,Vc, and each Vp contains a set of words. For each

block Vp and its corresponding words’ embedding AVp in A, we can generate a low-rank

approximation with rank kp as AVp ≈ Up(V p)T for AVp . Then block low-rank approximation

for A is represented as:

A = [AV1 , AV2 , · · · , AVc ] ≈ [U1(V 1)T , U2(V 2)T , · · · , U c(V c)T ]. (2.4)
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The challenges for Eq (2.4) is on how to construct the clustering structure. Intuitively, we

want similar frequency words to be grouped in the same block, so we can assign different ranks

for different blocks based on their average frequency. For higher frequency words’ clusters, we

can provide more ranks/budget for better approximation. Meanwhile, we want to make sure

the approximation error to be small for words under the same memory budget. Therefore,

in this paper we consider two factors, word frequency and reconstruction performance, when

constructing the partition. Next, we will explain how to construct the partition.

Block weighted low-rank approximation. To take both matrix approximation as well as

frequency information into account when forming the block structure in Eq (2.4), we propose

to refine the blocks after initializing the blocks from frequency grouping to achieve lower

reconstruction error. In the refinement stage, we move the words around by simultaneously

learning a clustering structure as well as low-rank approximation inside each cluster for the

word embedding matrix.

Mathematically, given an embedding matrix A, we first initialize the blocks by frequency

grouping, and then jointly learn both the clustering V1,V2, · · · ,Vc and low-rank embeddings

for each block Up, V p simultaneously by minimizing the following clustering objective:

min
{Vp}cp=1,{Up}cp=1,{V p}cp=1

c∑
p=1

∥QVpAVp −QVpU
p(V p)T∥2F , (2.5)

where QVp = diagj∈Vp
(
√
q1, . . . ,

√
qj). Intuitively, the inner part aims to minimize the

weighted low-rank approximation error for one cluster, and outer sum is searching for the

partitions so as to minimize the overall reconstruction error.

Optimization: Eq.(2.5) is non-convex. In this paper, we use alternating minimization to

minimize the above objective. When fixing the clusters assignment, we use weighted SVD

to solve for Up and V p for each AVp . To solve for Up and V p, as mentioned above in Eq(2.2),

we can perform SVD over QVpAVp to obtain the approximation. The time complexity is the

same with traditional SVD on AVp .

To find the clustering structure, we first initialize the clustering assignment by frequency,
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Figure 2.2: Illustration of our method. Given an embedding matrix A in (a), we first group
the words by their frequency (step (b)), and then perform weighted-SVD inside each group
as shown in Eq.2.2(step (c)). Finally we refine the clustering by considering the low-rank
reconstruction error of words as in Eq.2.5(step (d)).

and then refine the block structure by moving words from one cluster to another cluster if

the moves can decrease the reconstruction error Eq (2.5). To compute the reconstruction

error reduction, we will project each Ai into each basis V p and see how much reconstruction

error will improve. So if

∥Ai − V p(V p)TAi∥ > ∥Ai − V p̄(V p̄)TAi∥, (2.6)

then we will move i-th word Ai from the p-th cluster to the p̄-th cluster. By this strategy,

we will decrease the restructure error.

The overall algorithm, GroupReduce is in Figure (2.2) illustrates our overall algorithm.

First, we group the words into c blocks based on frequency. After that, we perform weighted

lowrank approximation Eq (2.2) for each block, and then solve Eq (2.5) to iteratively refine

the clusters and obtain block-wise approximation based on reconstruction error.

There are some implementation details for Algorithm A.1. After initial grouping, we

assign different ranks to different blocks based on the average frequency of words inside that

cluster—the rank kp for block p is proportional to the average frequency of words inside that

cluster. Suppose the block with smallest frequency is assigned with rank r, then the rank of

cluster p is fp
fc
r, where fc is the average frequency for the block with least frequency words. r
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Algorithm 2.1: GroupReduce: Block-Wise Low-Rank Approximation for Neural
Language Model Shrinking

Input: Embedding matrix A; number of clusters c; the smallest rank r; the
maximal number of iterations tmax; minimal size of the candidate set mmin;

Output: Compact representation Ā
1 Initialize clusters of words as V1,V2, · · · ,Vc by clustering on the frequency of words;
2 Compute the desired rank for each cluster based on the average frequency for that

cluster and r;
3 for p = 1, · · · , c do
4 Compute the rank-kp weighted lowrank for each sub-matrix AVp as

AVp ≈ Up(V p)T ;

5 for t = 1, · · · , tmax do
6 M = [];
7 for i = 1, · · · , N do
8 Compute the reconstruction error for i-th word Ai,

ei = minp=1···c∥Ai − V p(V p)TAi∥22 ;
9 Find the cluster with smallest reconstruction error gi : minp=1···ce

i
p;

10 if gi ̸= πi (πi is the original cluster index for i-th word) then
11 put i into the candidate set M ;

12 Choose the top m words in M that with least reconstruction error;
13 move m words (we choose 10% in the paper) into clusters with smallest

reconstruction error;
14 if m < mmin then
15 Stop and output;

16 for p = 1, · · · , c do
17 if Cluster Vp changes then
18 Compute the rank-kp weighted lowrank from Eq (2.2) for each sub-matrix

AVp as AVp ≈ Up(V p)T ;

19 Output: Ā = [U1(V 1)T , · · · , U c(V c)T ]

is related to the budget requirement. This dynamic rank assignment can significantly boost

the performance, as it assigns more ranks to high-frequency words and approximates them

better.

In Table 2.3, we compare the effectiveness of different strategies in our algorithm. We

test on PTB-Small setting with statistics shown in Table 2.2. Every method in the table

has the same compression rate, and we report perplexity number. We compare using vanilla

SVD, weighted SVD, weighted SVD for each block (10 blocks), assigning different ranks for
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Table 2.3: PTB-small with 5 blocks and 5 times compression rate. We add the proposed
strategies one-by-one to see the effectiveness of each of them using the perplexity as the
performance metric. Notice that in practice, when applying GroupReduce, we will keep
certain percentage of most frequent words uncompressed. But numbers in this table is
obtained without preserving any frequent words.

vanilla SVD weighted-SVD block SVD block weighted-SVD block weighted-SVD with dynamic rank refinement

161.44 155.10 143.88 135.19 129.63 127.26

different blocks, and refining the blocks. We can see that all the operations involved can

improve the final performance and are necessary for our algorithm. The overall memory

usage to represent A after our algorithm is O(Nk + ckD), where N is the vocabulary size; c

is the number of clusters; k the average rank of each cluster.

2.5 Experiments

2.5.1 Datasets and Pretrained Models

We evaluate our method (GroupReduce) on two tasks: language modeling (LM) and neural

machine translation (NMT). For LM, we evaluate GroupReduce on two datasets: Penn

Treebank Bank (PTB) and One-billion-Word Benchmark (OBW). OBW is introduced by

[21], and it contains a vocabulary of 793,471 words with the sentences shuffled and the

duplicates removed. For NMT, we evaluate our method on the IWSLT 2014 German-to-

English translation task [19]. On these three benchmark datasets, we compress four models

with the models details shown in Table 2.2. All four models use a 2-layer LSTM. Two of

them (OBW and NMT) are based on exiting model checkpoints and the other two (based

on PTB) are trained from scratch due to the lack of publicly released model checkpoint.

We train a 2-layer LSTM-based language model on PTB from scratch with two setups:

PTB-Small and PTB-Large. The LSTM hidden state sizes are 200 for PTB-Small and 1500

for PTB-Large, so are their embedding sizes. For OBW, we use the ”2-LAYER LSTM-8192-

1024” model shown in Table 1 of [76]. For NMT, we use the PyTorch checkpoint provided by

OpenNMT [82] to perform German to English translation tasks. We verified that all these
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four models achieved benchmark performance on the corresponding datasets as reported in

the literature. We then apply our method to compress these benchmark models.

For experiments using BLEU scores as performance measure, we report results when the

BLEU scores achieved after compression is within 3 percent difference from original score.

For experiments using perplexity (PPL) as measure such as PTB dataset, we target 3 percent

drop of performance too. For OBW dataset, since it has larger vocaburary size, we report

results within 10 percent difference from original PPL. For each method in Table 2.4, 3.3

and 2.6, we tested various parameters and report the smallest model size of the compression

fulfilling above criteria. Certainly, the compression rate and corresponding performance will

be a spectrum. The more we compress, the larger the performance drop. We plot this trade-

off on PTB-Large in the supplementary. Number of clusters will impact the compression

rate. In the experiment, we set the number of clusters to be 5 for PTB and IWSLT datasets,

and 20 for the OBW dataset. We show the performance of GroupReduce with different

numbers of clusters under the PTB-Large setting in the supplementary.

Note that the goal of this work is to compress an existing model to a significantly-reduced

size while maintaining accuracy (e.g., perplexity or BLEU scores), rather than attempting

to achieve higher accuracy. It is possible that there are models that could achieve higher

accuracy, in which case our method can be applied to compress these models as well.

2.5.2 Comparison with Low-Rank and Pruning

We compare GroupReduce with two standard model compression strategies: low-rank ap-

proximation and pruning.These two techniques are widely used for language model com-

pression, such as [99, 100, 118] We compress both input embedding and softmax matrices.

For the low-rank approximation approach, we perform standard SVD on the embedding and

softmax matrices and obtain the low-rank approximation. For pruning, we set the entires

whose magnitude is less than a certain threshold to zero. Note that storing the sparse ma-

trix requires to use the Compressed Sparse Row or Compressed Sparse Column format, the

memory usage is thus 2 times the number of non-zeros in the matrix after pruning. After
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Table 2.4: Embedding compression results on three datasets comparing our method
GroupReduce with Low-rank and Pruning. Compression rate is compared to both input
embedding and softmax layer. For example, 10x means approximated embedding uses 10
times smaller memory compared to original input layer and softmax layer.

Model Metric Original Low-rank Pruning GroupReduce

PTB-Small Embedding Memory 1x 2x 2x 5x
PPL(before retrain) 112.28 117.11 115.9 115.24

PPL(after retrain) – 113.83 113.78 113.77
PTB-Large Embedding Memory 1x 5x 3.3x 10x

PPL(before retrain) 78.32 84.63 84.23 82.86
PPL(after retrain) – 80.04 78.38 79.16

OBW-bigLSTM Embedding Memory 1x 2x 1.14x 6.6x
PPL(before retrain) 31.04 39.41 128.31 32.47

PPL(after retrain) – 38.03 84.11 32.50

NMT: DE-EN Embedding Memory 1x 3.3x 3.3x 10x
BLEU(before retrain) 30.33 29.65 25.96 29.48

BLEU(after retrain) – 29.96 29.34 29.96

approximation, we retrain the rest of parameters by SGD optimizer with initial learning

rate 0.1. Whenever, the validation perplexity does not drop down, we decrease the learning

rate to an order smaller. As shown in Table 2.4, GroupReduce can compress both the in-

put embedding and softmax layer 5-10 times without losing much accuracy. In particular,

GroupReduce compress 6.6 times on the language model trained on OBW benchmark, which

saves more than 5 GB memory.

Notice that GroupReduce achieves good results even before retraining. This is important

as retraining might be infeasible or take a long time to converge. We experimented with

different learning rates and retrained for 100k steps (about 3 hours), but we observe that all

the retraining scheme of OBW-bigLSTM model after approximation do not lead to significant

improvement on accuracy. One reason is that to retrain the model, we need to keep the

approximated embedding matrices fixed and re-initialize other parameters, and train these

parameters from scratch as done in [134]. On OBW-bigLSTM, it will take more than 3 weeks

for the retraining process. It is not practical if the goal is to compress model within a short

period of time. Therefore, performance before retraining is important and GroupReduce in

general obtains good results.
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2.5.3 Comparison with Quantization

As noted in the related work, quantization has been shown to be a competent method in

model compression [64]. We implement b-bit quantization by equally spacing the range of

a matrix into 2b intervals and use one value to represent each interval. For example, 4-bit

quantization will transform original matrix into matrix with 16 distinct values.

We need to point out that quantization is not orthogonal to other methods. In fact,

GroupReduce can be combined with quantization to achieve a better compression rate.

We firstly approximate the embedding or the softmax matrices by GroupReduce to obtain

low rank matrices of each block, and then apply 4 or 8 bits quantization on these low

rank matrices. After retraining, quantized GroupReduce could achieve at least 26 times

compression for both input embedding and softmax matrix in OBW as shown in Table 3.3.

In addition, comparisons to other coding schemes including deep compositional coding [134]

and dictionary coding [29] are shown in the supplementary.

2.5.4 Overall Compression

Results above have shown GroupReduce is an effective compression method when the fre-

quency information is given. We need to point out that part of the model (e.g., LSTM cells)

cannot leverage this information as the transition matrices in LSTM cell do not correspond to

the representation of a word. We adopt simple quantized low-rank approximation of LSTM

to compress this part. Specifically, we first compute SVD of LSTM matrix to obtain 2 times

compression, and quantize the entries of low-rank matrices by using only 16 bits. In total the

model would be 4 times smaller. However, we found out for OBW-bigLSTM model, LSTM

matrix does not have a clear low-rank structure. Even slight compression of LSTM part

will cause performance significantly drop. Therefore, we only apply 16-bit quantization on

OBW-bigLSTM to have a 2 times compression on LSTM cells. Overall compression rate is

shown in Table 2.6. With the aid of GroupReduce, we can achieve over 10 times compression

on both language modeling and neural machine translation task.
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Table 2.5: Embedding compression results on three datasets comparing our method Quan-
tized GroupReduce with traditional Quantization. 10x means approximated embedding uses
10 times smaller memory compared to original input embedding layer and softmax layer.

Model Metric Original Quantization Quantized GroupReduce

PTB-Small Embedding Memory 1x 8x 40x
PPL(before retrain) 112.28 132.5 146.59

PPL(after retrain) – 112.94 112.45
PTB-Large Embedding Memory 1x 8x 40x

PPL(before retrain) 78.32 116.54 88.67
PPL(after retrain) – 80.72 80.68

OBW-bigLSTM Embedding Memory 1x 4x 26x
PPL(before retrain) 31.04 32.63 34.43

PPL(after retrain) – 33.86 33.60
NMT: DE-EN Embedding Memory 1x 8x 24x

BLEU(before retrain) 30.33 27.41 29.29
BLEU(after retrain) – 30.19 29.65

Table 2.6: Compression rate of overall model compression using Quantized GroupReduce.
Compression rate shown in the column 4-6 is compared to the corresponding part of the
model.

Models Original PPL/BLEU PPL/BLEU after approximation input layer softmax layer LSTM cell Overall Compression

NMT: DE-EN 30.33(BLEU) 29.68(BLEU) 24x (45.9%) 24x(31.8%) 4x(22.3%) 11.3x

OBW-BigLSTM 31.04(PPL) 33.61(PPL) 26x (45.6%) 26x(45.6%) 2x(8.8%) 12.8x

2.6 Summary

In this section, we demonstrate the power of leveraging data information to achieve the

efficient machine learning. Specifically, we propose a novel compression method for neural

language models by incorporating the statistical property of words in language to form

block-wise low-rank matrix approximations for embedding and softmax layers. Experimental

results show that our method can significantly outperform traditional compression methods

such as low-rank approximation and pruning. In particular, on the OBW dataset, our method

combined with quantization achieves 26 times compression rate for both the embedding and

softmax matrices, which saves more than 5GB memory usage. It provides practical benefits

when deploying neural language models on memory-constrained devices, which is a very

important property of efficient machine learning.
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CHAPTER 3

Multiplicative Multi-way Model with Frequency

Information for Further Model Compression

3.1 Introduction

In chapter 2, we demonstrated that data information, specifically frequency information,

could help to greatly improve the performance of vanilla low-rank method. In fact, the

power of this information is that it can be combined with various other efficient model

compression methods. In addition to the computationally inspired low-rank method, there

are some semantically meaningful compositional methods such as deep compositional mod-

els [28, 134] which has shown to be an effective model compression method. In this section,

we propose MulCode, a novel and effective deep neural compressor which combines the

good part of compositional method and frequency data information. MulCode uses a mul-

tiplicative composition instead of addition. The multiplicative factors introduce a larger

capacity empowering the encoding of more complicated semantic. From the perspective of

semantic composition, this allows introducing new information to the base codebook vectors

(sub-elements to compose a word vector), taking frequency information of each token into

consideration. Technically, MulCode embraces the research line of dense matrix decompo-

sition that has been investigated in many applications [111, 121]. It trains the composition

with weighted loss proportional to the frequency of each word. MulCode also adopts an

adaptive way of constructing codebooks based on the frequency of each word.
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3.2 Related Work

This section also focused on model compression. Thus, a majority of related literature survey

is basically the same as the related work section in chapter 2. Please refer to section 2.2

for a complete review of existing model compression methods. The remaining of the section

will review the literature on neural compositional models. In essence, neural compositional

models represent the original word vector with a set of discrete pseudo words and thus

decompose the word vector to the addition of the corresponding pseudo word vectors learned

in an end-to-end manner. These methods are seen as embracing the long-existing yet still,

the most popular assumption [42] on compositionality of semantics which states that the

meaning of an element (e.g., a word, phrase, or sentence) can be obtained by taking the

addition of its constituent parts.

Additive Composition One of the most popular assumptions about the composition of

semantics is called the additive composition stating that the meaning of a unit (e.g., word,

phrase, or sentences) can be obtained by summing up the meaning of its constituents. At the

word level, a word might be decomposed into a set of subword units. For example, “disagree”

= “dis”+“agree”. Alternatively, a word can also be represented by a set of relevant words,

e.g., “king” = “man” + “crown”. [51] has validated this particular assumption for a popular

word embedding approach (i.e., Skip-Gram [112]).

Based on this assumption, [29] created a codebook by splitting the vocabulary into two

disjoint sets based on the word frequency: the most frequent words and the rest. Less

frequent words are represented using a sparse linear combination of the vectors of more

frequent words. Instead of using an explicit set of words, [134] designed the codebooks

in a more data-driven fashion where the selection of pseudo words and code vectors are

learned automatically using the Gumbel-Softmax trick [67]. Following the same approach,

[28] propose additional training objective to integrate the learning of discrete codes with the

training of the language model. Our method, based on the multiplicative composition rather

than addition, follows this research line. The effectiveness of multiplicative composition is
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Figure 3.1: Overall architecture of the multi-way multiplicative compressor

verified in some language modeling tasks [113, 114].

3.3 Method

3.3.1 Multi-way Multiplicative Codes

Compositional models start with defining a set of dm dimensional vectors, which serve as basic

codes to compose the targeted embedding matrix. These vectors could further be separated

into M groups and each group contains K vectors. We call each group a codebook, and each

dm dimensional vector in the codebook a codeword.

An 1-way codebook then is defined as a R1×M×K×dm tensor. Correspondingly, we define

N -way codebooks as U ∈ RN×M×K×dm , where each of the N ways consists of a set of M

codebooks, each codebook contains K words, and each codeword is associated with a dm

dimensional vector representing its semantics.

Since U is a high-order tensor which is not memory-friendly, we model the composition

of U as applying a customized multiplicative operator on two tensors C ∈ RM×K×dm and

S ∈ RN×M×dm as

U = C ⊙ S,
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where ⊙ is a multiplicative operator defining that

Ui,j,k = Cj,k ◦ σ(Si,j),

∀i ∈ [1, N ], j ∈ [1,M ], and k ∈ [1, K],

σ(·) stands for the tangent hyperbolic function, and ◦ is the Hadamard product (entry-

wise product). Tensor C is referred to as the base codebook, consisting of M codebooks

where each codebook contains K codeword vectors of dm dimensions. S is called rescaling

codebooks. Each codeword in the base codebook is injected with new meanings by a code

vector in the rescaling codebook.

Despite rescaling codebook uses much less memory (O(NMdm)) than simply creating

a N times larger set of vectors (O(NMKdm)), using rescaling codebook still introduces

additional costs of the memory. We propose to further reduce the cost by allowing rescaling

code vectors to be shared. We replace S with a S̃ ∈ RN×dm . That is, for each of the N

way codebook, we use only one dm-dimensional vector to rescale the base codebook C. The

number of parameters in S can thus be reduced and the computation of U becomes

Ui,j,k = Cj,k ◦ σ(S̃i),

∀i ∈ [1, N ], j ∈ [1,M ], and k ∈ [1, K].

Now, with the N -way codebook defined by C and S̃, given an embedding matrix E with V

vocabularies (i.e. E ∈ RV×dm), we could represent E by finding an encoding Q ∈ RV×N×M

to compose E from C and S̃. Qi contains encoding of corresponding vocabulary Vi. From

each of N -way n, and each of M codebooks m, Qi,n,m indicates which codeword to compose.
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Let the word vector for the ith word be ei. We could construct ei by

ei ≈ êi =
N∑

n=1

M∑
m=1

Un,m,Qi,n,m

=
N∑

n=1

M∑
m=1

Cm,Qi,n,m
⊙ σ(S̃n).

The N -way discrete code could be learned in an end-to-end manner by using the Gumbel-

Softmax trick [67]. We first compute an encoding vector for the original word vector ei by

feeding it to a neural network

ai = Softmax(σ(W⊤ϕ(W ′⊤ei + b) + b′)),

where W , W ′, b and b′ are the parameters of the network, and ϕ is the softplus function.

ai represents a real value tensor in a shape N ×M ×K, which is then fed to the Gumbel-

Softmax to generate a continuous approximation of drawing discrete samples with respect

to the last dimension

D̂i = Softmax((log ai + g)/τ),

where g is a random noise vector sampled from Gumbel distribution, and τ is the Softmax

temperature controlling how close is the sample vector to a uniform distribution. D̂i is an

approximately one-hot out of K drawing for each way N and codebook M . We can then

compute approximation of each dimension of ei as

êi,d = U:,:,:,d ⊙ D̂i

Note that during training D̂i is generated as a continuous approximation of the N -way

discrete code. At the testing phase, the fixed encoding Qi of vector ei is directly computed

as Qi,n,m = arg maxk an,m,k. More details on Gumbel-trick could be found in [67].
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3.3.2 Group Adaptive Coding

Given the rescaling codebooks S̃ is small, the memory consumption mainly consists of two

parts: code vectors C and discrete codes Q. On the one hand, the code vectors normally

account for the major memory usage when dealing with relatively smaller vocabulary size.

On the other hand, the size of discrete codes grows linearly with the size of vocabulary

and the logarithm of K. To further reduce the memory usage, we propose to use codes of

adaptive length and dimensions to deal with the linear dependency with vocabulary size.

The intuition is to encode frequent words with a longer code length to achieve a relative

lower reconstruction loss while representing rare words with fewer codes. To achieve this,

we first sort the words according to their frequency and then split words into fixed number

of groups G. The ith group could access only γGi
= M × (1− i−1

|G| ) codebooks.

In the same time, we store the low-rank version of code vectors for some codebooks that

were mainly used for representing rare words.

Ci,j = WGi
ci,

where ci ∈ RdGi and WGi
∈ Rdm×dGi is the linear transformation matrix to be shared by

all the codebooks in the ith group. We resolve rank dGi
in an intuitive way as shown in

Algorithm 3.1.

In practice, high frequency words tend to get accesses to codebooks with higher rank

while less frequent words can only access codebooks of lower dimension. Thanks to the long

tail of rare words, this could actually help save considerable memory space. Normally, using

a low compression rate results in dGi
≪ γGi

× K so that it is guaranteed to reduce the

number of parameters in the base codebook.

3.3.3 Prior-weighted Reconstruction Loss

According to Zipf’s law, the frequency of words conforms to a power law distribution. It

means that word which falls to the long tail may rarely appear in the sentence. It motivates
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Algorithm 3.1: Algorithm to resolve the dimension of adaptive codebooks towards
achieving a targeted compression rate.

1 Sort set G according to frequency;
2 d’: the minimum dimension ;
3 δ : targeted compression rate;
4 fGi

: frequency of group Gi;
5 oGi

: bits consumed by discrete code matrix Q for each word in Gi;
6 n ←δ × V × dm × 32(bits) ;
7 for i← 1 to |G| do
8 compute a ratio based on frequency ∆Gi

← fGi∑|G|
i=1 fGi

;

9 calculate the dimension;
10 dGi

← (n− oGi
)×∆Gi

/(γGi
+ dm);

11 ensure dimension is valid within (d′, dm);
12 dGi

← min(max(dGi
, d′), dm);

13 update n by subtracting used bits;
14 n← n− oGi

− (γGi
− γGi+1

+ dm)× dGi

15 end

the modification on the learning objective so that the compressor will be more focused on

words with high frequency. In this paper, we use the distribution of the words in the training

set as a prior knowledge to guide the learning of the compressor. In addition, similar to [96]

we also want to let each of the N way encoding focus on different aspects of the original

word embedding. The proposed training objective function then becomes

L =
V∑
i=1

(− log p̂i∥êi − ei∥22

+ λ∥v̂iv̂⊤i − I∥22 + λ∥v̂⊤i v̂i − I∥22),

where p̂i represents the empirical distribution of word Vi in the training set, ei is original

word vector, êi is the reconstructed vector and v̂i ∈ RN×dm is a compilation of reconstrcuted

vectors from all N -way codebooks in a matrix form (i.e. v̂i,n =
∑M

m=1Cm,Qi,n,m
⊙ σ(S̃n) is

the reconstructed vector from nth-way codebook). The new objective function thus focuses

on high-frequency words and in the meanwhile allows the N-way coding to encode different

information.
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Table 3.1: Statistics of data sets. The number in parenthesis shows the ratio of embedding
layers (input plus Softmax) respective to the entire model size

Models Vocab. Size Dimension Model Size

PTB-small 10k 200 17.7MB(85.8%)

PTB-large 10k 1500 251MB(45.4%)

OBW 793k 1024 6.8GB(91.2%)

NMT: DE-EN 30k 500 195MB(83.1%)

3.4 Experiment

3.4.1 Data Sets and Models

Following the experimental protocol of [25], we evaluate our proposed method with two

important NLP tasks: language modeling and machine translation. Table 3.1 summarizes

the key characteristics of the four data sets and models. PTB-small is using 2-layer LSTM-

based language model built on Penn Tree Bank (PTB) data set. The vocabulary size is 10k.

Input embedding layer and output Softmax layer are both set to 200 dimensions. PTB-

large is trained on the same PTB data set as PTB-small except the dimensions for input

and output are increased to 1500. Neural machine translation (NMT: DE-EN) is a Seq2seq

model initialized using Pytorch checkpoints provided by Open-NMT [81]. The model is

to perform German to English translation tasks on IWSLT-14 [19] data set. One billion

words (OBW) uses a 2-layer LSTM (referred to as ”2-LAYER LSTM-8192-1024” by [76])

trained on the OBW data set and the vocabulary size is 793,471. For LSTM-based language

models, the input embedding matrix and Softmax embedding matrix account for the major

memory usage (up to 91.2%). Therefore, we target compressing both the input and Softmax

embedding matrices.

3.4.2 Implementation Details

We compress both input embedding and Softmax matrices. We trained MulCode by using

Adam optimizer with learning rate 0.001. For PTB data set, we group the vocabulary using

3 groups and 8 groups for OBW. To resolve the dimension of codebooks for adaptive coding,
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we use targeted compression rate δ = 0.2 for PTB-small and δ = 0.05 for the rest three

models1.

After approximation, we retrain the rest of parameters by SGD optimizer with initial

learning rate 0.01. Whenever the validation perplexity does not drop down, we decrease the

learning rate to an order smaller. We did not include results of fine-tuning on OBW for that

the re-training process takes too long (few days) which is not compliant with our motivation

to compress the given pre-trained embeddings.

The compression rate and corresponding performance could certainly be plotted as a

spectrum graph. The more we compress, the larger the performance drop. In this paper,

as far as BLEU score is concerned, we report results of compressed models when the BLEU

falls within 3 percent difference from the original score. For PTB data set, we target 3

percent drop of perplexity (PPL) after retrain. For OBW data set, since it has a larger

vocabulary size, we report results within 10 percent difference from the PPL achieved by the

uncompressed model. For each method we tested various parameters and report the smallest

model size of the compression fulfilling above criteria.

Notice that some previous methods compress model directly during training phase [78,

153]. In contrast, our problem setup follows [25, 28, 134] that given a pre-trained model, we

want to compress the model with limited fine-tuning.

3.4.3 Comparison with Baseline Models

We refer to our proposed method as MulCode (Mul stands for both multi-way and multi-

plicative composition). We mainly compare with two state-of-the-art baseline compressors

targeting compressing the embedding layer.

1. GroupReduce We refer to the results reported in [25]. Also note that GroupReduce

is the method introduced in chapter 2.

1The original language models can be downloaded from https://github.com/mayktian/MulCode.git
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2. DeepCode The additive composition model by [134]. We use the pytorch code2 re-

leased by [134] to produce the results.

Table 3.2: Compressed model evaluation with 3 language models and 1 machine translation
model. Memory usage is reported as compared with the original input embedding and
Softmax embedding. For example, 30x means the compressed embeddings use only 1/30 the
memory space of the original embedding.

Model Metric Original GroupReduce DeepCode MulCode

PTB-small
Memory 1X 4X 3.9X 6.5X

PPL(before retrain) 112.28 115.38 120.05 115.38
PPL(after retrain) - 113.81 115.57 113.34

PTB-large
Memory 1X 8X 3.8X 17.1X

PPL(before retrain) 78.32 84.79 84.73 83.85
PPL(after retrain) - 79.83 81.80 79.89

NMT:
DE-EN

Memory 1X 8X 5.7X 17X
BLEU(before retrain) 30.33 29.31 26.58 29.48
BLEU(after retrain) - 29.96 29.37 30.08

OBW
Memory 1X 6.6X 5.7X 18.2X
PPL 31.04 32.47 99.59 32.66

Table 3.2 summarizes the comparison between the proposed methods and state-of-the-

art baselines for the four benchmark data sets and LSTM models. MulCode manages to

compress the input embedding layer and Softmax embedding layer 6 to 18 times without

suffering a significant loss in the performance.

In comparison, all the baseline models achieve much lower compression rate with PTB-

small which has only 200 dimensions. It is reasonable since embedding layers of PTB-small

contains less redundant information and thus can be hardly compressed. As compared

with DeepCode, MulCode achieves much higher compression rate3 for all the four models.

MulCode also consistently and significantly outperforms GroupReduce.
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Table 3.3: Results of compressing all input and Softmax embedding layers on three data
sets. 28.2x means approximated embedding uses 28.2 times smaller memory compared to
original input embedding layer and Softmax layer..

Model Metric Original Quantization Quantized MulCode

PTB-
small

Memory 1X 6.4X 16.3X
PPL(before retrain) 112.28 115.81 116.33
PPL(after retrain) - 114.14 113.34

PTB-
large

Memory 1X 6.4X 28.2X
PPL(before retrain) 78.32 81.69 81.55
PPL(after retrain) - 79.22 78.91

NMT:
ED-EN

Memory 1X 6.4X 41.38X
BLEU(before retrain) 30.33 27.41 29.32
BLEU(after retrain) - 30.19 29.94

OBW
Memory 1X 6.4X 30.8X

PPL(before retrain) 31.04 32.63 34.36

3.4.4 Comparison with Quantization

Quantization has been proven to be a strong baseline. In fact, the discrete coding of MulCode

can be considered equivalent to a trainable quantization. On the other hand, we need to

point out that quantization is not orthogonal to MulCode. MulCode could be combined

with quantization to achieve better performance. Specifically, the M ×K base codebooks as

well as the rescaling codebook could be quantized to further reduce the memory usage. We

summarize the results in Table 3.3. Quantized MulCode could achieve more than 30.8 times

compression for both input embedding and Softmax matrix in OBW. In addition, on machine

translation task, it achieves 41.38X with BLEU score drops around only 1% after retraining.

In particular, we observe that the effect of retraining is more prominent for MulCode and

simple quantization compared to GroupReduce. This implies that local precision lost for

low-rank basis in GroupReduce is more difficult to be recovered. In contrast, the collective

information of MulCode due to the compositional property is more robust when imprecise

local vectors present.

2https://github.com/zomux/neuralcompressor

3Aligned with what has been mentioned by [134] in their rebuttal, we found the DeepCode unable to
work with the Softmax layer of OBW no matter how hard we have tuned it (99.5 as shown in Table 3.2).
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3.4.5 Selection of M ,N and K
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Figure 3.2: Influence of M,N,K for PTB-small.

To understand how the choices of M,N,K would affect the performance of the compressed

model, we test the proposed model for PTB-small with varying setting of M , N , and K.

The departure point of this experiment is using M = 32, K = 32, N = 8. We then adjust

the three parameters one at a time while fixing the other two. In order to plot the results

in a single figure, we set the x-axis as the memory usage instead of different values of the

three parameters. As shown in Figure 3.2, adjusting the values of M , N , and K have similar

effects on the PPL when the compression rate is low (≤7X). With a larger compression rate,

the performance becomes much more sensitive to the change of K. It suggests that it is

safer to maintain a high value for K while tuning the rest two parameters for the purpose

of securing a reasonable performance of the compressed model.

3.4.6 Understanding Composed Codes

At the core of our approach is the multiplicative composition from two sets of codebooks.

Hence, it is interesting to investigate what has been encoded in the N -way codebooks. One
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assumption is that each code in the base codebooks encodes a mix of information which can

be disentangled by the rescaling codebook. We encode all the words of OBW corpus by a

32 × 8 × 4 codes. We compute the hamming distance of example query words (shown in

Table 3.4) for each of the N -way codes. We select the top ones with the smallest hamming

distance from the 10,000 most frequent words that are likely to have low reconstruction

errors.

Word 1 2 3 4

tomorrow today Sunday prompt Tuesday
beautiful elegant iconic great fields
soccer football hockey Ghana basketball
where when experiencing who learn
bank company police companies banks
halt stop halted afternoon cover
like just Like such is

Table 3.4: Most similar word computed using Hamming distance for each of the N-way
codings.

Since the N -way codings are generated by selecting from the base codebooks and modified

by rescaling codebooks, each channel can be seen as meaningful subspace. It shows that each

of the N -way codings might have encoded a different subspace of the original meaning of

words, including tenses (e.g., halt v.s. halted), plurals (e.g., bank v.s. banks), synonyms

(e.g., soccer v.s. football), co-occurrence (like v.s. just), topical relatedness (soccer v.s.

hockey). It verifies that the multiplicative composition used in our approach is able to

introduce new information to the base codebook.

3.5 Summary

In this section, we propose MulCode, a novel compression method for neural language models.

MulCode applies multiplicative factors on end-to-end learned codebooks. MulCode considers

the frequency information in the corpus by adding weighted loss according to the importance.

At the same time, the coding scheme is made adaptive based on the frequency information.

Experimental results show MulCode outperforms the state-of-the-art compression methods
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by a large margin. In particular, on the IWSLT-14 data set, MulCode combined with

quantization achieves 41.38 times compression rate for both the embedding and Softmax

matrices. MulCode is yet another demonstration that frequency information could greatly

help to improve the compression results. Data information will facilitate deployment of large

neural language models on memory-constrained devices.
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CHAPTER 4

Fast Softmax Inference on Large Vocabulary Neural

Networks via Learning to Screen Latent Distribution

4.1 Introduction

In this section, we will switch gear to discuss another important factor of efficient machine

learning: inference time. In particular, we will demonstrate the usefulness of ”hidden input

structure” in this section. In previous sections, we achieve a much smaller model size by a

simple yet powerful observation: frequency information is significant in achieving efficient

machine learning. It’s an explicit statistic related to the underlying data, and we can

easily compute it. However, there are other types of ”structures” in the data distribution,

which doesn’t have an explicit meaning. But it’s related to the input variations and could

be captured by some method such as clustering. In this section, we will show how clustering

can be used to find this ”input structure” hidden inside the model in order to achieve

faster inference time.

In previous sections, we mentioned that neural networks have been widely used in many

natural language processing (NLP) tasks, including neural machine translation [143], text

summarization [124] and dialogue systems [91]. In these applications, a neural network

(e.g. LSTM) summarizes current state by a context vector, and a softmax layer is used

to predict the next output word based on this context vector. The softmax layer first

computes the “logit” of each word in the vocabulary, defined by the inner product of context

vector and weight vector, and then a softmax function is used to transform logits into

probabilities. For most applications, only top-k candidates are needed, for example in neural
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machine translation where k corresponds to the search beam size. In this procedure, the

computational complexity of softmax layer is linear in the vocabulary size, which can easily

go beyond 10K. Therefore, the softmax layer has become the computational bottleneck in

many NLP applications at inference time.

Our goal is to speed up the prediction time of softmax layer. In fact, computing top-k

predictions in softmax layer is equivalent to the classical Maximum Inner Product Search

(MIPS) problem—given a query, finding k vectors in a database that have the largest in-

ner product values with the query. In neural language model prediction, context vectors

are equivalent to queries, and weight vectors are equivalent to the database. MIPS is an

important operation in the prediction phase of many machine learning models, and many

algorithms have been developed [7, 55, 119, 133, 161]. Surprisingly, when we apply recent

MIPS algorithms to LSTM language model prediction, there’s not much speedup if we need

to achieve > 98% precision (see experimental section for more details). This motivates our

work to develop a new algorithm for fast neural language model prediction.

In natural language, some combinations of words appear very frequently, and when some

specific combination appears, it is almost-sure that the prediction should only be within a

small subset of vocabulary. This observation leads to the following question: Can we learn a

faster “screening” model that identifies a smaller subset of potential predictions based on a

query vector? In order to achieve this goal, we need to design a learning algorithm to exploit

the distribution of context vectors (queries). This is quite unique compared with previous

MIPS algorithms, where most of them only exploit the structure of database (e.g., KD-tree,

PCA-tree, or small world graph) instead of utilizing the query distribution.

We propose a novel algorithm (L2S: learning to screen) to exploit the distribution of both

context embeddings (queries) and word embeddings (database) to speed up the inference time

in softmax layer. To narrow down the search space, we first develop a light-weight screening

model to predict the subset of words that are more likely to belong to top-k candidates, and

then conduct an exact softmax only within the subset. The algorithm can be illustrated in

Figure 4.1.
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Figure 4.1: Illustration of the proposed algorithm.

In sum, we propose a screening model L2S to exploit the clustering structure of context

features. All the previous neural language models only consider partitioning the embed-

ding matrix to exploit the clustering structure of the word embedding to achieve prediction

speedup. On the other hand, we consider the hidden space generated by neural network

models. To make prediction for a context embedding, after obtaining cluster assignment

from screening model, L2S only needs to evaluate a small set of vocabulary in that clus-

ter. Therefore, L2S can significantly reduce the inference time complexity from O(Ld) to

O((r + L̄)d) with L̄ ≪ L and r ≪ L where d is the context vector’ dimension; L is the

vocabulary size, r is the number of clusters, and L̄ is the average word/candidate size inside

clusters. We propose to form a joint optimization problem to learn both screening model

for clustering as well as the candidate label set inside each cluster simultaneously. Using the

Gumbel trick [68], we are able to train the screening network end-to-end on the training

data.

4.2 Related Work

We summarize previous works on speeding up the softmax layer computation.
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4.2.1 Algorithms for Speeding up Softmax in the Training Phase

Many approaches have been proposed for speeding up softmax training. [70, 115] proposed

importance sampling techniques to select only a small subset as “hard negative samples”

to conduct the updates. The hierarchical softmax-based methods [54, 116] use the tree

structure for decomposition of the conditional probabilities, constructed based on external

word semantic hierarchy or by word frequency. Most hierarchical softmax methods cannot be

used to speed up inference time since they only provide a faster way to compute probability

for a target word, but not for choosing top-k predictions as they still need to compute

the logits for all the words for inference. One exception is the recent work by [54], which

constructs the tree structure by putting frequent words in the first layer—so in the prediction

phase, if top-k words are found in the first layer, they do not need to go down the tree. We

provide comparison with this approach in our experiments.

4.2.2 Algorithms for Maximum Inner Product Search (MIPS)

Here, we only briefly review some important aspects of MIPS. More detailed discussion can

be found in chapter 7. Given a query vector and a database with n candidate vectors, MIPS

aims to identify a subset of vectors in the database that have top-k inner product values

with the query. Top-k softmax can be naturally approximated by conducting MIPS. Here

we summarize existing MIPS algorithms:

• Hashing: [119, 133] proposed to reduce MIPS to nearest neighbor search (NNS) and then

solve NNS by Locality Sensitive Hashing (LSH) [65].

• Database partitioning: PCA tree [138] partitions the space according to the directions

of principal components and shows better performance in practice. [7] shows tree-based

approaches can be used for solving MIPS but the performance is poor for high dimensional

data.

• Graph-based algorithm: [102, 103] recently developed an NNS algorithm based on small

world graph. The main idea is to form a graph with candidate vectors as nodes and
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edges are formed between nearby candidate vectors. The query stage can then done by

navigating in this graph. [168] applies the MIPS-to-NNS reduction and shows graph-based

approach performs well on neural language model prediction.

• Direct solvers for MIPS: Some algorithms are proposed to directly tackle MIPS problem

instead of transforming to NNS. [55, 156] use quantization-based approach to approximate

candidate set. Another Greedy MIPS algorithm is recently proposed in [161], showing

significant improvement over LSH and tree-based approaches.

4.2.3 Algorithms for Speeding up Softmax in Inference Time.

MIPS algorithms can be used to speed up the prediction phase of softmax layer, since we can

view context vectors as query vectors and weight vectors as database. In the experiments,

we also include the comparisons with hashing-based approach (LSH) [65], partition-based

approach (PCA-tree [138]) and Greedy approach [161]. The results show that they perform

worse than graph-based approach [168] and are not efficient if we want to keep a high

precision.

For NLP tasks, there are two previous attempts to speed up softmax layer prediction

time. [131] proposed to approximate the weight matrix in the softmax layer with singular

value decomposition, find a smaller candidate set based on the approximate logits, and then

do a fine-grained search within the subset. [168] transformed MIPS to NNS and applied

graph-based NNS algorithm to speed up softmax. In the experiments, we show our algo-

rithm is faster and more accurate than all these previous algorithms. Although they also

have a screening component to select an important subset, our algorithm is able to learn

the screening component using training data in an end-to-end manner to achieve better

performance.
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4.3 Problem Formulation

Softmax layer is the main bottleneck when making prediction in neural language models.

We assume L is the number of output tokens, W ∈ Rd×L is the weight matrix of the softmax

layer, and b ∈ RL is the bias vector. For a given context vector h ∈ Rd (such as output of

LSTM), softmax layer first computes the logits

xs = wT
s h + bs for s = 1, · · · , L (4.1)

where ws is the s-th column of W and bs is the s-th entry of b, and then transform logits

into probabilities ps = exs∑L
l=1 e

xl
for s = 1, · · · , L. Finally it outputs the top-k candidate set by

sorting the probabilities [p1, · · · , pL], and uses this information to perform beam search in

translation or predict next word in language model. The efficient machine learning challenge

is to speed up this sfotmax process.

4.4 Method

To speedup the computation of top-k candidates, all the previous algorithms try to exploit

the structure of {ws}Ls=1 vectors, such as low-rank, tree partitioning or small world graphs [54,

131, 168]. However, in NLP applications, there exists strong structure of context vectors

{h} that has not been exploited in previous work. In natural language, some combinations

of words appear very frequently, and when some specific combinations appear, the next

word should only be within a small subset of vocabulary. This hidden structure is also

data dependent and thus we can treat it as a function of data distribution. However, this

structure does not have an explicit meaning as we did in previous sections. Consequently

there is no simple way to calculate the statistic of such information. A intuitive yet powerful

tool to explore structure in data is clustering. The motivation to use clustering to exploit

such input dependent structure is illustrated below.

The Prediction Process. Suppose the context vectors are partitioned into r disjoint
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clusters and similar ones are grouped in the same partition/cluster, if a vector h falls into one

of the cluster, we will narrow down to that cluster’s label sets and only compute the logits of

that label set. This screening model is parameterized by clustering weights v1, . . . , vr ∈ Rd

and label candidate set for each cluster c1, . . . , cr ∈ {0, 1}L. To predict a hidden state h, our

algorithm first computes the cluster indicator

z(h) = arg max
t

vTt h, (4.2)

and then narrows down the search space to C(h) := {s | cz(h),s = 1}. The exact softmax

is then computed within the subset C(h) to find the top-k predictions (used in language

model) or compute probabilities used for beam search in neural machine translation. As we

can see the prediction time includes two steps. The first step has r inner product operations

to find the cluster which takes O(rd) time. The second step computes softmax over a subset,

which takes O(L̄d) time where L̄ (L̄ ≪ L) is the average number of labels in the subsets.

Overall the prediction time for a context embedding h is O((r+ L̄)d), which is much smaller

than the O(Ld) complexity using the vanilla softmax layer. Figure 4.1 illustrates the overall

prediction process.

However, how to learn the clustering parameter {vt}rt=1 and the candidate sets {ct}rt=1?

We found that running spherical kmeans on all the context vectors in the training set can

lead to reasonable results, but can we learn even parameters to minimize the prediction

error? In the following, we propose an end-to-end procedure to learn both context clusters

and candidate subsets simultaneously to maximize the performance.

Learning the clustering. Traditional clustering algorithms such as kmeans on Eu-

clidean space or cosine similarity have two drawbacks. First, they are discrete and non-

differentiable, and thus hard to use with back-propagation in the end-to-end training process.

Second, they only consider clustering on {hi}Ni=1, without taking the predicted label space

into account. In this paper, we consider learning the partition through Gumbel-softmax

trick. We will briefly summarize the technique and direct the reader to [68] for further

details on these techniques. In Table 4.4, we compare our proposed method to traditional
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spherical-kmeans to show that it can further improve the performance.

First, we turn the deterministic clustering in Eq(4.2) into a stochastic process: the prob-

ability that h belongs to cluster t is modeled as

P (t|h) =
exp(vTt h)∑r
j=1 exp(vTj h)

, ∀t, and z(h) = arg max
t

P (t|h). (4.3)

However, since argmax is a discrete operation, we cannot combine this operation with final

objective function to find out better clustering weight vectors. To overcome this, we can

re-parameterize Eq(4.3) using Gumbel trick. Gumbel trick provides an efficient way to draw

samples z from the categorical distribution calculated in Eq(4.3):

m(h) = one hot(arg max
j

[gj + logP (j|h)]), (4.4)

where each gj is an i.i.d sample drawn from Gumbel(0, 1). We then use the Gumbel softmax

with temperature = 1 as a continuous, differentiable approximation to argmax, and generate

r-dimensional sample vectors p = [p1, · · · , pr] which is approximately one-hot m(h) with

pt =
exp(log(P (t|h)) + gt)∑r
j=1 exp(log(P (j|h)) + gj)

,∀t ∈ {1, . . . , r}. (4.5)

Using the Straight-Through (ST) technique proposed in [68], we denote p̄ = p+(one hot(arg maxj pj)−
p) as the one-hot representation of p and assume back-propagation only goes through the

first term. This enables end-to-end training with the loss function defined in the following

section.

Learning the candidate set for each cluster. For a context vector hi, after getting

into the partition t, we will narrow down the search space of labels to a smaller subset. Let

ct be the label vector for t-th cluster, we define the following loss to penalize the mis-match

between correct predictions and the candidate set:

ℓ(hi, yi) =
∑

s:yis=1

(1− cts)
2 + λ

∑
s:yis=0

(cts)
2, (4.6)
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where yi ∈ {0, 1}L is the ’ground truth’ label vector for hi that is computed from the exact

softmax. We set y to be the label vector from full softmax because our goal is to approximate

full softmax prediction results while having faster inference (same setting with [131, 168]).

The loss is designed based on the following intuition: when we narrow down the candidate

set, there are two types of loss: 1) When a candidate s (yis = 1) is a correct prediction

but not in the candidate set (cts = 0), then our algorithm will miss this label. 2) When

a candidate j (yis = 0) is not a correct prediction but it’s in the candidate set (cts = 1),

then our algorithm will waste the computation of one vector product. Intuitively, 1) is much

worse than 2), so we put a much smaller weight λ ∈ (0, 1) on the second term.

The choice of true candidate set in y can be set according to the application. Throughout

this paper, we set y to be the correct top-5 prediction (i.e., positions of 5-largest xs in Eq(4.1).

yis = 1 means s is within the correct top-5 prediction of hi, while yis = 0 means it’s outside

the top-5 prediction.

Final objective function: We propose to learn the partition function (parameterized

by {vt}rt=1) and the candidate sets ({ct}rt=1) simultaneously. The joint objective function will

be:

minimize
v1,··· ,vr
c1,··· ,cr

N∑
i=1

(
∑

s:yis=1

(1− cp̄(hi),s)
2 + λ

∑
s:yis=0

(cp̄(hi),s)
2) (4.7)

s.t. ct ∈ {0, 1}L ∀t = 1, . . . , r

L̄ ≤ B ∀i = 1, . . . , N

,where N is the number of samples, L̄ is the average label size defined as L̄ =
(
∑N

i=1

∑L
s=1 cp̄(hi),s)

N
,

p̄(hi) is the index for where p̄t = 1 for t = 1, · · · , r; B is the desired average label/candidate

size across different clusters which could be thought as prediction time budget. Since L̄ is

related to the computation time of proposed method, by enforcing L̄ ≤ B we can make sure

label sets won’t grow too large and desired speed-up rate could be achieved. Note that p̄(hi)

is for clustering assignment, and thus a function of clustering parameters v1, · · · , vr as shown

in Eq(4.3).
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Optimization. To solve the optimization problem in Eq (4.7), we apply alternating

minimization. First, when fixing the clustering (parameters {vt}) to update the candidate

sets (parameters {ct}), the problem is identical to the classic “Knapsack” problem—each

ct,s is an item, with weight proportional to number of samples belonging to this cluster, and

value defined by the loss function of Eq(4.7), and the goal is to maximize the value within

weight capacity B. There is no polynomial time solution with respect to r, so we apply

a greedy approach to solve it. We sort items by the value-capacity ratio and add them

one-by-one until reaching the upper capacity B.

When fixing {ct} and learning {vt}, we convert the cluster size constraint to objective

function by Lagrange-Multiplier:

minimize
v1,··· ,vr

N∑
i=1

(
∑

j:yis=1

(1− cp̄(hi)s)
2 + λ

∑
j:yis=0

(cp̄(hi)s)
2) + γ max(0, L̄−B) (4.8)

s.t. ct ∈ {0, 1}L ∀t = 1, . . . , r,

and simply use SGD since back-propagation is available after applying Gumbel trick. To

deal with L̄ in the mini-batch setting, we replace it by the moving-average, updated at each

iteration when we go through a batch of samples. The overall learning algorithm is given in

Algorithm A.1.

4.5 Experiments

We evaluate our method on two tasks: Language Modeling (LM) and Neural Machine Trans-

lation (NMT). For LM, we use the Penn Treebank Bank (PTB) dataset [108]. For NMT,

we use the IWSLT 2014 German-to-English translation task [19] and IWSLT 2015 English-

Vietnamese data [101]. All the models use a 2-layer LSTM neural network structure. For

IWSLT-14 DE-EN task, we use the PyTorch checkpoint provided by OpenNMT [82]. For

IESLT-15 EN-VE task, we set the dimension of hidden size to be 200, and the rest follows

the default training hyperparameters of OpenNMT. For PTB, we train a 2-layer LSTM-

based language model on PTB from scratch with two setups: PTB-Small and PTB-Large.
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Algorithm 4.1: Training Process for Learning to Screen (L2S)

Input: Context vectors {hi}Ni=1 (e.g., from LSTM); trained network’s softmax
layer’s weight W and basis vector b.

Output: Clustering parameters vt and candidate label set ct for each cluster for
t = 1, · · · , r.

1 Hyperparameter: Number of clusters r; prediction time budget B; regularization
terms λ and γ; number of iterations T .

2 Compute ground true label vector {yi}Ni=1 with only top-k non-zeros entries. The
top-k labels for each context vector hi are generated by computing and then
sorting the values in xi = W Thi + b;

3 Initialize cluster weights {vt}rt=1 using spherical kmeans over {hi}Ni=1 ;
4 Initialize the label set for each cluster {ct}rt=1 to be zeros;
5 for j = 1, · · · , T do
6 Fixing {ct}rt=1 and learning the clustering parameters {vt}rt=1 in Eq(4.8) by SGD

with Gumbel trick;
7 Fixing {vt}rt=1 and learning the labels set ct t = 1, · · · , r by solving the

”Knapsack” problem using Greedy approach;

8 return ct,vt for all t = 1, · · · , r.

The LSTM hidden state sizes are 200 for PTB-Small and 1500 for PTB-Large, so are their

embedding sizes. We verified that all these models achieved benchmark performance on the

corresponding datasets as reported in the literature. We then apply our method to accelerate

the inference of these benchmark models.

4.5.1 Competing Algorithms

We include the following algorithms in our comparisons:

• L2S (Our proposed algorithm): the proposed learning-to-screen method. Number of clus-

ters and average label size across clusters will be the main hyperparameters affecting

computational time. We could control the tradeoff of time and accuracy by fixing the

number of clusters and varying the size constraint B. For all the experiments we set

parameters λ = 0.0003 and γ = 10. We will show later that L2S is robust to different

numbers of clusters.

• FGD [168]: transform the softmax inference problem into nearest neighbor search (NNS)

and solve it by a graph-based NNS algorithm.
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• SVD-softmax [131]: a low-rank approximation approach for fast softmax computation.

We vary the rank of SVD to control the tradeoff between prediction speed and accuracy.

• Adaptive-softmax [54]: a variant of hierarchical softmax that was mainly developed for fast

training on GPUs. However, this algorithm can also be used to speedup prediction time

(as discussed in Section 2), so we include it in our comparison. The tradeoff is controlled

by varying the number of frequent words in the top level in the algorithm.

• Greedy-MIPS [161]: the greedy algorithm for solving MIPS problem. The tradeoff is

controlled by varying the budget parameter in the algorithm.

• PCA-MIPS [7]: transform MIPS into Nearest Neighbor Search (NNS) and then solve NNS

by PCA-tree. The tradeoff is controlled by varying the tree depth.

• LSH-MIPS [119]: transform MIPS into NNS and then solve NNS by Locality Sensitive

Hashing (LSH). The tradeoff is controlled by varying number of hash functions.

We implement L2S, SVD-softmax and Adaptive-softmax in numpy. For FGD, we use the

C++ library implemented in [14, 104] for the core NNS operations. The last three algo-

rithms (Greedy-MIPS, PCA-MIPS and LSH-MIPS) have not been used to speed up softmax

prediction in the literature and they do not perform well in these NLP tasks, but we still

include them in the experiments for completeness. We use the C++ code by [161] to run

experiments for these three MIPS algorithms.

Since our focus is to speedup the softmax layer which is known to be the bottleneck of

NLP tasks with large vocabulary, we only report the prediction time results for the softmax

layer in all the experiments. To compare under the same amount of hardware resource, all

the experiments were conducted on an Intel Xeon E5-2620 CPU using a single thread.

4.5.2 Performance Comparisons

To measure the quality of top-k approximate softmax, we compute Precision@k (P@k) de-

fined by |Ak ∩ Sk|/k, where Ak is the top-k candidates computed by the approximate algo-

rithm and Sk is the top-k candidates computed by exact softmax. We present the results for

k = 1, 5. This measures the accuracy of next-word-prediction in LM and NMT. To measure
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Table 4.1: Comparison of softmax prediction results on three datasets. Speedup is based on
the original softmax time. For example, 10x means the method’s prediction time is 10 times
faster than original softmax layer prediction time. Computation of full softmax per step is
4.32 ms for PTB-Large, 0.32 ms for PTB-Small and 4.83 ms for NMT: DE-EN.

PTB-Small PTB-Large NMT: DE-EN
Speedup P@1 P@5 Speedup P@1 P@5 Speedup P@1 P@5

L2S (Our Method) 10.6x 0.998 0.990 45.3x 0.996 0.982 20.4x 0.989 0.993
FGD 1.3x 0.980 0.989 6.9x 0.975 0.979 6.7x 0.987 0.981

SVD-softmax 0.8x 0.987 0.99 2.3x 0.988 0.981 3.4x 0.98 0.985
Adaptive-softmax 1.9x 0.972 0.981 4.2x 0.974 0.937 3.2x 0.982 0.984

Greedy-MIPS 0.5x 0.998 0.972 1.8x 0.945 0.903 2.6x 0.911 0.887
PCA-MIPS 0.14x 0.322 0.341 0.5x 0.361 0.326 1.3x 0.379 0.320
LSH-MIPS 1.3x 0.165 0.33 2.2x 0.353 0.31 1.6x 0.131 0.137

Figure 4.2: Precision@1 versus speed-up rate of PTB Large Setup.

Figure 4.3: Precision@1 versus speed-up rate of PTB Small Setup.
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Figure 4.4: Precision@1 versus speed-up rate of NMT:DE-EN Setup.

Figure 4.5: Precision@5 versus speed-up rate of PTB Large Setup.

Figure 4.6: Precision@5 versus speed-up rate of PTB Small Setup.
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Figure 4.7: Precision@5 versus speed-up rate of NMT:DE-EN Setup.

the speed of each algorithm, we report the speedup defined by the ratio of wall clock time

of the exact softmax to find top-k words divided by the wall clock time of the approximate

algorithm.

For each algorithm, we show the prediction accuracy vs speedup over the exact softmax in

Figure 4.2, 4.3, 4.4, 4.5, 4.6, 4.7. We do not show the results for PCA-MIPS and LSH-MIPS

in the figures as their curves run outside the range of the figures. Some represented results

are reported in Table 4.1. These results indicate that the proposed algorithm significantly

outperforms all the previous algorithms for predicting top-k words/tokens on both language

model (next word prediction) and neural machine translation.

Next, we measure the BLEU score of the NMT tasks when incorporating the proposed

algorithm with beam search. We consider the common settings with beam size = 1 or 5, and

report the wall clock time of each algorithm excluding the LSTM part. We only calculate

log-softmax values on reduced search space and leave probability of other vocabularies not

in the reduced search space to be 0. From the precision comparison, since FGD shows better

performance than other completing methods in Table 4.1, we only compare our method

with state-of-the-art algorithm FGD in Table 4.2 in terms of BLEU score. Our method can

achieve more than 13 times speed up with only 0.14 loss in BLEU score in DE-EN task with

beam size 5. Similarly, our method can achieve 20 times speed up in EN-VE task with only

0.08 loss in BLEU score. In comparison, FGD can only achieve less than 3-6 times speed up
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Table 4.2: Comparison of BLEU score results vs prediction time on DE-EN and EN-VE
task. Speedup is based on the original softmax time.

Model Metric Original FGD Our method

NMT: DE-EN Speedup Rate 1x 2.7x 14.0x
Beam=1 BLEU 29.50 29.43 29.46

NMT: DE-EN Speedup Rate 1x 2.9x 13.4x
Beam=5 BLEU 30.33 30.13 30.19

NMT: EN-VE Speedup Rate 1x 6.4x 12.4x
Beam=1 BLEU 24.58 24.28 24.38

NMT: EN-VE Speedup Rate 1x 4.6x 20x
Beam=5 BLEU 25.35 25.26 25.27

Table 4.3: L2S with different number of clusters.

Number of Clusters 50 100 200 250

Time in ms 0.12 0.17 0.14 0.12
P@1 0.997 0.998 0.998 0.994
P@5 0.988 0.99 0.99 0.98

over exact softmax to achieve a similar BLEU score. We also compare our algorithm with

other methods using perplexity as a metric in PTB-Small and PTB-Large as shown in Table

4.5. We observe more than 5 times speedup over using full softmax without losing much

perplexity (less than 5% difference).

4.5.3 Selection of the Number of Clusters

Finally, we show the performance of our method with different number of clusters in Ta-

ble 4.3. When varying number of clusters, we also vary the time budget B so that the

prediction time including finding the correct cluster and computing the softmax in the can-

didate set are similar. The results indicate that our method is quite robust to number of

clusters. Therefore, in practice we suggest to just choose the number of clusters to be 100

or 200 and tune the “time budget” in our loss function to get the desired speed-accuracy

tradeoff.
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Table 4.4: Comparison of L2S to spherical-KMEANS clustering.

PTB-Small PTB-Large NMT: DE-EN
Speedup P@1 P@5 Speedup P@1 P@5 Speedup P@1 P@5

Our Method 10.6x 0.998 0.990 45.3x 0.999 0.82 20.4x 0.989 0.993
Sphereical-kmeans 4x 0.988 0.992 6.9x 0.992 0.971 13.8x 0.991 0.993

FGD 1.3x 0.980 0.989 6.9x 0.975 0.979 6.7x 0.987 0.981

4.5.4 Comparison to Spherical-KMEANS initialization

Since we firstly initialize parameters in our method by Shperical-KMEANS, we also show in

Table 4.4 that L2S can further improve over the baseline clustering methods. Notice that

even the basic Spherical-KMEANS can outperform state-of-the-art methods. This shows

that clustering structure of context features is a key to perform fast prediction.

4.5.5 Perplexity Results

Finally, we go beyond top-k prediction and apply our algorithm to speed up the perplexity

computation for language models. To get perplexity, we need to compute the probability of

each token appeared in the dataset, which may not be within top-k softmax predictions. In

order to apply a top-k approximate softmax algorithm for this task, we adopt the low-rank

approximation idea proposed in [131]. For tokens within the candidate set, we compute the

logits using exact inner product computation, while for tokens outside the set we approximate

the logits by W̃h where W̃ is a low-rank approximation of the original weight matrix in

the softmax layer. The probability can then be computed using these logits. For all the

algorithms, we set the rank of W̃ to be 20 for PTB-Small and 200 for PTB-Large. The

results are presented in Table 4.5. We observe that our method outperforms previous fast

softmax approximation methods for computing perplexity on both PTB-small and PTB-large

language models.
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Table 4.5: Comparison of Perplexity results vs prediction time on PTB dataset.

Model Metric Original SVD-softmax Adaptive-softmax FGD Our method

PTB-Small Speedup Rate 1x 0.84x 1.69x 0.95x 5.69x
PPL 112.28 116.64 121.43 116.49 115.91

PTB-Large Speedup Rate 1x 0.61x 1.76x 2.27x 8.11x
PPL 78.32 80.30 82.59 80.47 80.09

4.5.6 Qualitative Results

We select some translated sentences of DE-EN task shown in Table 4.6 to demonstrate that

our algorithm can provide similar translations but with faster inference time.

4.6 Summary

In this section, we proposed a new algorithm for fast softmax inference on large vocabulary

neural language models. The main idea is to use a light-weight screening model to predict a

smaller subset of candidates, and then conduct exact search within that subset. By forming

a joint optimization problem, we are able to learn the screening network end-to-end using

the Gumbel trick. Notice that the clustering screening process is done on the output of

the LSTM neural model instead of the softmax matrix, which demonstrated that hidden

structures are presented in the LSTM output space, which is data-dependent. Therefore,

we again demonstrate the usefulness of data distribution to further achieve efficient machine

learning.
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Table 4.6: Qualitative comparison of our method to full softmax computation. The acceler-
ated model used is the same as reported in Table 4.2.

Full-softmax Our method

you know , one of the great <unk>
at travel and one of the pleasures
at the<unk> research is to live with
the people who remember the old
days , who still feel their past in
the wind , touch them on the rain
of <unk> rocks , taste them in the
bitter sheets of plants .

you know, one of the great <unk>
at travel and one of the joy of the
<unk> research is to live together
with the people who remember the
old days , who still feel their past in
the wind , touch them on the rain
of <unk> rocks , taste them in the
bitter sheets of plants.

it ‘s the symbol of all that we are ,
and what we’re capable of as aston-
ishingly <unk> species .

it‘s the symbol of all of what we
are , and what we’re capable of as
astonishingly <unk> species .

when any of you were born in this
room , there were 6,000 languages
talking on earth .

when everybody was born in this
room , there were 6,000 languages
spoken on earth .

a continent is always going to leave
out , because the idea was that in
sub-saharan africa there was no reli-
gious faith , and of course there was
a <unk> , and <unk> is just the
remains of these very profound re-
ligious thoughts that <unk> in the
tragic diaspora of the <unk> .

a continent is always going to leave
out , because the presumption was
that in sub-saharan africa there was
no religious faith , and of course
there was a <unk> , and <unk>
is just the cheapest of these very
profound religious thoughts that
<unk> in the tragic diaspora of
<unk> <unk> .

so , the fact is that , in the 20th
century, in 300 years , it is not go-
ing to be remembered for its wars or
technological innovation , but rather
than an era where we were present ,
and the massive destruction of bi-
ological and cultural diversity on
earth either on earth is either ac-
tive or <unk>. so the problem is
not the change .

so , the fact is that , in the 20th
century , in 300 years , it is not go-
ing to be remembered for its wars
or technological innovation , but
rather than an era where we were
present , and the massive destruc-
tion of biological and cultural diver-
sity on earth either on earth is either
<unk> or passive. so the prob-
lem is not the change .
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CHAPTER 5

Faster Recommender Systems via User Latent

Structures

5.1 Introduction

In the previous section, we showed that hidden data distribution can help to achieve faster

inference time by learning a clustering structures on top of latent space generated by neural

network models. In this section, we wan to demonstrate that such a hidden/latent struc-

ture is ubiquitous. In particular, this structure also exists in latent spaces learned in the

recommender systems, the most important application in today’s e-commerce applications.

Building large-scale personalized recommender systems has already become a core problem

in many online applications since the explosive growth of internet users in the recent decade.

For example, user-item recommender systems achieve many successes in e-commerce mar-

kets [97] while link prediction in social networks can be treated as a variant of recommender

systems [8, 144]. To establish recommender systems, latent factor models for collaborative

filtering have become popular because of their effectiveness and simplicity. More precisely,

each user or item can be represented as a low-dimensional vector in a latent space so that the

inner products between user and item vectors are capable of indicating the user-item prefer-

ences. Furthermore, these latent vectors can then be learned by optimizing a loss function

with sufficient training data. For instance, matrix factorization [83] has been empirically

shown to outperform conventional nearest-neighbor based approaches in a wide range of

application domains [40].

After obtaining user and item latent vectors, to make item recommendations for each
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user, recommender systems need to calculate the inner products for all user-item pairs. Al-

though learning user and item latent vectors is efficient and scalable for most existing models,

recommender systems can take an enormous amount of time in evaluating all user-item pairs.

More specifically, the time complexity of learning latent vectors is only proportional to the

number of user-item pairs in the training data which is a small subset of all possible user-

item pairs, but finding the top recommendations entails examining all O(mn) inner products

between all m users and n items. As a result, the quadratic complexity becomes a hurdle

for large-scale recommender systems. For example, it can take more than a day to compute

and rank all preference scores, and consequently the systems cannot be updated on a daily

basis [41]. In order to make large-scale recommender systems practical, it is critical to ac-

celerate the process of computing and ranking the inner products of user and item latent

vectors, in order to efficiently obtain the top-K recommendations for all users.

To accelerate the computation of inner products, the maximum inner product search

(MIPS) [119, 133, 162] is one of the feasible approaches. Locality sensitive hashing (LSH) [65]

and PCA tree [138] may be applied to solve MIPS after reducing the problem to nearest-

neighbor search. To reduce the computation for making recommendations for a given user,

one may find a small group of candidate items whose latent vectors have large inner products

with the user’s latent vector using clustering algorithms [28], or sort entries of each dimension

in the latent vectors separately by some greedy algorithms [41, 162]. In essence, most of the

existing MIPS algorithms adopt a two-stage strategy, decomposing the computation into a

preparation process and a prediction process. In the preparation stage, these methods will

construct suitable data structures [162] or reduce the number of ranking candidates [28], and

these prepared data structures are used to conduct efficient maximum inner product search

for query vectors in the inference stage. However, most of these existing MIPS algorithms

have the following two weaknesses, making them often impractical for real applications: (1)

they only focus on optimizing the inference speed for a given user at the cost of considerable

preparation time, but for recommender systems, the overall execution time (including both

preparation and inference time) matters more because the system needs to be re-trained
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frequently as new data arrive. (2) All the MIPS approaches aim to quickly identify the top

item set for any query vector. However, in recommender systems queries are not arbitrary

vectors. They are user latent factors and usually have very strong clustering structure, which

is ignored in most of the MIPS algorithms.

In order to speed up the overall execution time, our main idea is to exploit the relation-

ships between users. More precisely, users with similar latent factors are more likely to share

similar item preferences which may be reflected by their high inner products. However, ex-

isting methods for accelerating recommender systems do not consider user relationships and

the distribution of user latent vectors. For instance, existing greedy strategies [41, 162] only

consider the values of item latent vectors. Some studies based on proximity graphs [105, 168]

and clustering algorithms [28] also solely reduce the search space of items. In the inference

stage, these approaches treat the recommendation to each user as an independent query to

the data structures and algorithms. As a consequence, it can be extremely time-consuming,

especially with myriad users and enormous spaces of candidate items.

We propose a novel model for clustering and navigating for top-K recommenders (CANTOR)

that leverages the knowledge of user relationships to accelerate the process of generating rec-

ommendations for all users with a given latent factor model. CANTOR consists of two stages:

preparation and prediction. In the preparation stage, we aim to cluster users sharing similar

interests into affinity groups and compute a small set of preferred items for each affinity

group. More specifically, the user vectors (generated from a given latent factor model) are

used in clustering affinity groups. To further accelerate the preparation time, a user coreset

of few representative vectors are derived for each affinity group, and are used to obtain a

small set of preferred items for users in this group by an efficient approximate nearest neigh-

bor search algorithm. Finally, in the prediction stage, the top-K recommendations for each

user can be retrieved by ranking these preferred items of the corresponding affinity group,

which can be done much more efficiently than evaluating and ranking all items.

Our contributions are three-fold: (1) To the best of our knowledge, this is the first work

to focus on the preparation time and user relationships for accelerating the prediction pro-
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cess of large-scale top-K recommender systems. (2) Clustering users into affinity groups

based on the distribution of user latent vectors provides significant speedup of the prediction

process, compared to conventional approaches that independently deal with each user. The

representative vectors of the affinity groups offer a theoretically guaranteed precision for

users with similar preferences. Approximate nearest neighbor search is applied to efficiently

retrieve the satisfactory recommendations for each user from a small set of candidate items.

(3) Experiments conducted on six publicly available datasets demonstrate that CANTOR

can significantly accelerate large-scale top-K recommender systems for both item recommen-

dation and personalized link prediction. An in-depth analysis then indicates the robustness

and effectiveness of the proposed framework.

5.2 Problem Statement

In this section, we first introduce the notations and then formally define the objective of this

work. Suppose that we have an incomplete m× n one-class matrix R = {Rij} ∈ {0, 1}m×n,

where m and n are the numbers of users and items in the system. Rij = 1 if user i prefers

item j in the training data; otherwise, Rij = 0. Based on R, a matrix factorization based

algorithm learns d-dimensional user and item latent vectors, denoted by P ∈ Rm×d and

Q ∈ Rn×d respectively, where R̂ = PQT ∈ Rm×n reflects the underlying preferences. To

compute top-K recommendations for each user, we need to find items with the K highest

scores among R̂(i) = {R̂ij′ | j′ ∈ 1 . . .m}. Note that m = n for personalized link prediction

in social networks, where the goal is to suggest other users as recommended items.

Although matrix factorization models can be learned expeditiously when R is sparse,

inferring the top-K recommendations requires computing and sorting the scores R̂ij of all

items j for each user i. As a result, the inference process can be time-consuming with an

O(nmd) time complexity which becomes intractable when n and m are large. To address

this problem, our goal is to speed up the inference time of top-K recommenders with a

high precision. More specifically, given the trained matrices P and Q, we aim to propose an

efficient approach that approximates the top-K recommended items for each user.
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5.3 Constructing User Coresets for Top-K Recommender Systems

In this section, we present CANTOR for accelerating top-K recommender systems, starting

with several key preliminary ideas.

5.3.1 Preliminary

In order to leverage the relationship between users, we first formally define the affinity groups

of users in recommender systems as follows:

Definition 5.1. (Affinity Group) An affinity group At is a set of users sharing similar

interests in items. Even though any similarity metrics may be used, we adopt cosine similarity

as the metric to define the affinity groups.

By this definition, the sets of satisfactory recommendations should be similar for users in the

same affinity group. This suggests that the top recommendations for all users in an affinity

group are confined to a small subset of the items and such item subset can be learned by

examining only a few carefully selected users in the group, leading to the following definition

of the preferred item set.

Definition 5.2. (Preferred Item Set) A preferred item set c for an affinity group is a set of

(potentially) satisfactory items for the users in the group, and the size of the preferred item

set is usually much smaller than the total number of items, i.e., | c | ≪ n.

Therefore, we only need to examine the preferred item set to generate top recommendations,

leading to significant time saving overs the alternative of examining all items.

In order to robustly generate the preferred item set for each affinity group, we generate

a few representatives from the group to compute the preferred item set. This is statistically

more robust than using only the “centroid” user in the latent space, and is more computa-

tionally efficient than using all users in the group.

Definition 5.3. (User Coreset of an Affinity Group) A δ-user coreset st of an affinity group

At is a (small) set of latent representative vectors to preserve the item preference of the users
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in At such that ∀q ∈ Q, i ∈ At:

∣∣piqT −Nst (pi) q
T
∣∣ ≤ δ,

where Nst (pi) ∈ st is the nearest coreset representative for pi; δ > 0 is a small enough

constant.

The user interests in the affinity group can be well captured by the representative vectors in

the user coreset. Note that the representative vectors do not have to be identical to actual

user latent vectors in the group.
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Figure 5.1: The general framework of the proposed clustering and navigating for top-K
recommenders (CANTOR).
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5.3.2 Framework Overview

Figure 5.1 shows the general framework of CANTOR. The framework consists of two stages:

preparation and prediction. In the preparation stage as shown in Algorithm 5.1, the m user

latent vectors P are first sub-sampled as P̂ and clustered into r affinity groups At with a

centroid vector vt computed from the corresponding user vectors Pt, where t = 1 . . . r. For

each affinity group At, we aim at deriving a small user coreset st. To do so, we propose an

adaptive representative selection method (Algorithm 5.2) to greedily construct a set cover of

user latent vectors for each affinity group after mathematically proving that the set covers

can be the coresets of affinity groups. Finally, a small preferred item set ct can be obtained

by approximate nearest neighbor search using its coreset st for each affinity group. In the

prediction stage (Algorithm 5.4), CANTOR first locates the corresponding affinity group At

for each user and then ranks the small number of items in the preferred item set ct, thereby

efficiently providing satisfactory recommendations.

5.3.3 Preparation Stage

To overcome the hurdle of extremely long preparation time experienced by conventional

methods, we propose to exploit similarities between user vectors in the latent space for

acceleration as shown in Algorithm 5.1.

Affinity Group Modeling by User Clustering. Most of the conventional algorithms only

rely on similarities of item latent vectors [131] and proximity graphs [54, 168] to accelerate

the recommendation, and have not used the relationships between users and the distributions

of user latent vectors in this endeavor. To exploit the knowledge of user relationships, we

propose a clustering based framework to model user affinity groups.

Let r be the number of affinity groups for all m users, where r is a hyperparameter in

CANTOR. We partition all m users into r disjoint clusters as the affinity groups A = {At |
t = 1 . . . r} based on the user latent vectors P = {pi | i = 1 . . .m}. In addition, each affinity

group At has a centroid vector vt ∈ Rd in the latent space. Each user i with the latent vector
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Algorithm 5.1: Preparation Process for CANTOR

Input: User latent vectors P; item latent vectors Q; degree of each user degmi=1; the
number of desired recommendation K

Output: Centroid vectors vt and preferred item sets ct for each affinity cluster At

for t = 1 . . . r.
1 Hyperparameter: Number of affinity groups r; small world graph search size efs.;

number of sub-sampled users u;

2 P̂ = Multinomial Sampling(P, degmi=1, u); P̂ ∈ Ru×d ;
3 v1, · · · , vr = 0; I = 0, I ∈ Ru×1 ;
4 repeat
5 for i = 1, · · · , r do

6 vi =
∑

j∈{j|I[j]=i} P̂[j] ;

7 vi = vi / ∥vi∥2 ;

8 I = arg maxt v
T
t P̂ ;

9 until Convergence;
10 G = CreateProximityGraph(Q, efs);
11 c1, . . . , cr = ∅, . . . , ∅ ;

12 I = arg maxt v
T
t P̂ ;

13 for i = 1, · · · , r do

14 P̂i =
{
pj | pj ∈ P̂, I[j] = i

}
;

15 si = AdaptiveClustering(P̂i, ϵ, w) ;
16 for q ∈ si do

17 Îi = QueryProximityGraph(G, s, K) ;

18 ci = ct ∪Îi ;

19 return ct,vt for all t = 1, · · · , r.

pi belongs to Az(pi), where z(pi) is the affinity group indicator represented as:

z(pi) = arg max
r

vTr pi. (5.1)

Let C(pi, K) be the top-K preferred items for user i which is defined as:

{j | pTi qj ≥ pTi qj′ ,∀j′ /∈ C(pi, K) and |C(pi, K)| = K},

where qj ∈ Q is the latent vector of item j. Intuitively, if users i and k are in the same affinity

group, their preferred sets C(pi, K) and C(pk, K) may have substantial overlap because of
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their similar interests. This motivates us to compute a preferred item set ct for users in

the same affinity group At so that each ct contains only a small subset of all n items, i.e.,

| ct | ≪ n. Instead of computing the inner products between pk and all item latent factors

q ∈ Q, we can narrow down the candidate set to be ct, and only evaluate the items in ct to

find the top-K predictions for user k.

Since our task is to accelerate the maximum inner product search, the centriod vector vt

for each affinity group At can then be updated by the maximum cosine similarity criteria as:

vt =

∑|Pt |
i=1 Pti

∥∑|Pt |
i=1 Pti ∥2

, (5.2)

where Pt = {pi | z(pi) = t} contains the latent vectors of users that belong to the affinity

group At. Therefore, each affinity group At can obtain a centroid vector vt by iteratively

running Equations (5.1) and (5.2). However, iteratively performing Equations (5.1) and (5.2)

can still cost a long computational time when the number of users m is large. To address

this issue, we propose to sub-sample a portion of the m user latent vectors to learn the

centroid vectors. Moreover, we sample the latent vectors based on the degree distribution

in the one-class matrix R. For example, Figure 5.2a shows that degree distribution of users

usually follows a power-law distribution. Hence, instead of using a uniform sampling, we

sample user i with a probability proportional to a log function of its degree as:

P (X = i) ∝ log
n∑

j=1

Rij, (5.3)

where X denotes the random variable of the target sampling process. We will later show

in Theorem 5.2 that error of approximation based on sub-sampling will be asymptotically

bounded.

After learning the centroids v1, · · · , vr ∈ Rd and the corresponding user latent vectors

P1, · · · ,Pr for r affinity groups A1, · · · ,Ar, the preferred item set ct for each group At can

be constructed so that user vectors Pt only need to search over this set of preferred items

for top recommendations. However, the näıve approach to generate ct would require O(nd)
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Figure 5.2: The distributions of users and items over different degrees in the Amazon dataset.

operations to examine all n items in order to derive the top candidates for each user in At.

Each affinity group At would need O(|Pt |nd) operations for considering all |Pt | users in the

group to construct the preferred item set ct.

Coreset Construction as Finding a Set Cover. To accelerate the process of constructing

the preferred item set ct for an affinity group At, we want to find a δ-user coreset of At, and

use it only instead of whole At to construct ct. We achieve this by first defining the idea of

ϵ-set cover, and then show that each ϵ-set cover corresponds to a δ-coreset.

Definition 5.4. (ϵ-Set Cover) st is an ϵ-cover of Pt if ∃Nst(p) ∈ st so that Nst(p)pT ≥ ϵ for

all p ∈ Pt, where ϵ is a real number, and Nst (pi) ∈ st denotes the nearest vector in st of pi.

Theorem 5.1. Given an ϵ-cover st of At, there exists a δ such that ϵ-cover st is a δ-user

coreset of the affinity group At.

Proof. Without loss of generality, we assume that vectors in At, Q, and st have unit norms.
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∀q ∈ Q, i ∈ At, we have:

|piqT −Nst (pi) q
T | =

∣∣(pi −Nst(p))q
T
∣∣

(a)

≤
√
d∥pi −Nst(pi)q

T ∥2 ≤
√
d∥pi −Nst(pi)∥2 ≤

√
d∥pi −Nst(pi)∥22

=
√
d
(
∥pi∥22 + ∥Nst(pij )∥22 − 2Nst(pi)p

T
i

) (b)

≤
√
d [2− 2ϵ] = δ,

where we define δ =
√
d [2− 2ϵ]. (a) follows from the fact that ∥ · ∥1 ≤

√
d∥ · ∥2, where d is the

dimension of the vector. (b) follows from the condition of theorem.

Therefore, we could construct a user coreset with an arbitrarily small δ by finding a cover

with a greater ϵ.

Another nice property is that we could find an ϵ-set cover on sampled subset of P and

generalize asymptotically with bounded error. Denote PAt to be same sampling process of P

generating user vectors pi belonging to At. We will have following result:

Theorem 5.2. For an affinity group At, given any query q, an ϵ-cover of k samples {pi}
drawn from PAt would satisfy following inequality with probability at least 1− γ:

min
i

(∣∣Nst (pi) q
T − ptq

T
∣∣) ≤ δ +

√
2 log (1/γ)

k
.

Proof. Since st is a ϵ set cover of pis, there exist a δ such that st is a δ-user coreset of pis.

Therefore, for any given query q and vector pt sampled from PAt , we have

|Nst(pi)q
T − ptq

T | = |Nst(pi)q
T − piq

T + piq
T − ptq

T |

≤ |Nst(pi)q
T − piq

T |+ |piqT − ptq
T | ≤ δ + |piqT − ptq

T |

Since pi and pt follow the same distribution, pi and pt will have same expectation value and
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we have:

E[|Nst(pi)q
T − ptq

T |] ≤ E[δ + |piqT − ptq
T |]

= δ + E[|piqT − ptq
T |]

(a)

≤ δ + |E[piq
T ]− E[ptq

T ]|

= δ,

where (a) follows the Jensen’s inequality. Therefore, by Hoeffding’s inequality, with proba-

bility at least 1 - γ,

1

k

k∑
i=1

∣∣Nst (pi) q
T − ptq

T
∣∣ ≤ δ +

√
2 log (1/γ)

k
.

By the fact that for any set S, min(S) ≤ mean(S), we will have:

min
i

(∣∣Nst(pi)q
T − ptq

T
∣∣) ≤ 1

k

k∑
i=1

∣∣Nst(pi)q
T − ptq

T
∣∣

≤ δ +

√
2 log(1/γ)

k
,

Theorem 5.2 indicates that we could construct an ϵ-cover of sub-sampled vectors to have

an asymptotically guaranteed difference of inner-product values to true distributions within

the same affinity group. Consequently, our task becomes finding an ϵ-cover of all Ats and

constructing the preferred item set ct of it. Hence, we propose a fast adaptive representative

selection method to efficiently construct an ϵ-cover with sub-sampled user latent vectors

for each affinity group as summarized in Algorithm 5.2. For each affinity group At, the

adaptive representative selection method is applied to obtain a few representative ϵ-cover

st. If there exists at least one user whose latent vector has cosine similarity lower than ϵ

to all representative vectors, the algorithm iteratively generates more representatives until

every user has high cosine similarity to at least one representative vector. As a result, the
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Algorithm 5.2: Adaptive Representative Selection

Input: User latent vectors for an affinity group P, the number of iterations T , the
threshold ϵ, the number of new representatives w ;

Output: Representative vectors s.
1 Initialize s = ∅ ;
2 I = arg maxt sT P ;
3 repeat
4 for i = 1 . . . | s | do
5 si =

∑
j∈{j|I[j]=i} P[j] ;

6 si = si / ∥ si ∥2 ;

7 I = arg maxt sT P ;
8 Outliers = {j| sTI[j] Pj < ϵ} ;

9 for j ∈ Outliers do
10 Draw i from 1 . . . w ;
11 I[j] = | s | + i ;

12 if Outliers ̸= ∅ then
13 Append w vectors to s ;

14 until Outliers = ∅;
15 Outliers = {j| sTI[j] Pj < ϵ} ;

16 Append POutliers to s ;
17 return s.

number of ϵ-cover | st | must be less than or equal to the number of user vectors in the cluster

|Pt |, and in practice, | st | ≪ |Pt | in most cases. Note that the adaptive representative

selection method is applied on each affinity group At independently. Next, the ϵ-cover st

will be utilized to construct the preferred item set to reduce complexity from O(|Pt |nd) to

O(| st |nd).

Proximity Graph Navigation for Preferred Item Set Construction. To avoid ex-

amining all n items (O(nd) complexity) in preferred item set construction, we apply an

approximate nearest neighbor search (ANNS) method to accelerate the computation. We

adopt a model based on proximity graphs [105, 168] which has shown the state-of-the-art

performance in ANNS. Specifically, a proximity graph is generated in which item vectors are

nodes and nodes of similar item vectors are connected by edges. Since the item degree in

recommender systems tends to follow a power-law distribution as illustrated in Figure 5.2b,

this proximity graph has the small world properties [13] with sparse edges that offer high
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Algorithm 5.3: QueryProximityGraph

Input: Hierarchical small world graph G; the query vector q; the number of the
output approximate nearest neighbors K

Output: K nearest vectors in G
1 p = Randomly select an entry node in G ;
2 for l = 1 to L do
3 p = arg maxr∈{p′|p′ E(p,l)} q

Tr;

4 return K Nearest Nodes in E(p, L) to q ;

reachability between nodes. Hence, we apply the model of hierarchical navigable small world

graphs [103, 105] to obtain the preferred item set ct for each affinity group At.

To construct the proximity graph of item vectors Q as a hierarchical small world graph G,

we iteratively insert the item vectors into the graph, where each node q has a list E(q) of at

most efs approximate nearest neighbors that could be dynamically updated when inserting

other item vectors, where efs is a hyperparameter. In addition, the edges in the graph are

organized as a hierarchy so that edges connecting items that have a high inner product

value of their corresponding item vectors are at the bottom layers and edges connecting

items whose vectors have low inner product values are at the top layers, thereby shrinking

the search spaces for nearest neighbors. Let L(e) denote the corresponding layer of edge

e. Given two edges ei and ej, if L(ei) > L(ej), then the nodes connected by edge ei has

a smaller inner product score than that of edge ej. For simplicity, let E(q, l) denote the

list of nodes connected to node q by edges in the l-th layer. Finally, the hierarchical small

world graph G of item vectors Q can be constructed in O(dn log n) [105, 168], where n is the

total number of items; efs is treated a constant hyperparameter. Note that efs controls the

trade-off between efficiency and accuracy for searching nearest neighbors because it decides

the size of search space and the potential coverage of real nearest neighbors.

The hierarchical small world graph G provides the capability of efficiently querying K

nearest neighbors of a vector q with a hierarchical greedy search algorithm. More specifically,

we can greedily traverse the graph G by navigating the query vector from the bottom layer

to the top layer to derive K approximate nearest neighbors to q as shown in Algorithm 5.3
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Algorithm 5.4: Prediction Process for CANTOR

Input: User latent vectors pi; item latent vectors Q; Number of top
recommendations K

Output: The indices of estimated top-K recommendations for the user i.
1 z(pi) = arg maxt v

T
t pi ;

2 logits = pTi Q
[
cz(pi)

]
;

3 topIndices = argsort(logits, K) ;
4 return topIndices.

with a O(d log n) time complexity for each query. For each affinity group At, we perform a

small world graph query to approximate C(st,i, K) for each representative vector st,i ∈ st.

The preferred item set ct can then be constructed by taking the union operation to individual

top-k sets as

c
t

=

|st|⋃
i=1

C(st,i, K). (5.4)

5.3.4 Prediction Stage

To predict top recommendations for a user with the latent vector pi, CANTOR relies on the

clustering model parameterized by the centroid vector vt ∈ Rd and the preferred item set ct

for each affinity group At. More precisely, we first compute the affinity group indicator z(p)

as:

z(pi) = arg max
r

vTr pi, (5.5)

and evaluate full vector matrix product pT QI over the corresponding item vectors of the

preferred item set QI , I = {j|j ∈ cz(pi)}. The computed results are then sorted to provide

the final top-K recommendations for the user. Algorithm 5.4 shows the procedure of the

prediction process.
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Table 5.1: The statistics of six experimental datasets. Note that the personalized link
prediction problem can be mapped to an item recommendation problem by treating each user
as an item and recommending other users to a user in a similar way to that of recommending
items to a user, and in this case the numbers of users and items are equal.

Task Item Recommendation

Dataset MovieLens Last.fm Amazon

#(Users) 138,493 359,293 2,146,057

#(Items) 26,744 160,153 1,230,915

Task Personalized Link Prediction

Dataset YouTube Flickr Wikipedia

#(Users) 1,503,841 1,580,291 1,682,759

#(Items) 1,503,841 1,580,291 1,682,759

5.4 Experiments

In this section, we conduct extensive experiments and in-depth analysis to demonstrate the

performance of CANTOR.

5.4.1 Experimental Settings

Experimental Datasets. We evaluate the performance in two common tasks: item recom-

mendation and personalized link prediction, using six publicly available real-world large-scale

datasets as shown in Table 5.1. For the task of item recommendation, the MovieLens 20M

dataset (MovieLens) [60] consists of 20-million ratings between users and movies; the Last.fm

360K dataset (Last.fm) [18] contains the preferred artists of about 360K users; the dataset

of Amazon ratings (Amazon) includes ratings between millions of users and items [85]. For

the task of personalized link prediction, we follow the previous study [41] to construct three

social networks among users: YouTube, Flickr, and Wikipedia [85]. Note that four of the

six experimental datasets, Amazon, YouTube, Flickr, and Wikipedia, are available in the

Koblenz Network Collection [85].

Evaluation Metrics. To measure the quality of an approximate algorithm for top-K

recommendation we evaluate the top-K approximated recommendations with Precision@K
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(P@K), which is defined by
1

m

∑
i

|Y i
K ∩ Si

K |
K

,

where Y i
K and Si

K are the top-K items computed by the approximate algorithm and full

inner-product computations for user i; m is the number of users. To measure the speed of

each algorithm, we report the speedup defined by the ratio of wall clock time consumed by

the full set of O(mn) inner products to find the top-K recommendations divided by the wall

clock time of the approximate algorithm.

Baseline Methods. To evaluate our proposed CANTOR, we consider the following five

algorithms as the baseline methods for comparison.

• ϵ-approximate link prediction (ϵ-Approx) [41] sorts entries of the latent factor for each

dimension to construct a guaranteed approximation of full inner products.

• Greedy-MIPS (GMIPS) [162] is a greedy algorithm for solving the MIPS problem with a

trade-off controlled by varying a computational budget parameter in the algorithm.

• SVD-softmax (SVDS) [131] is a low-rank approximation approach for fast softmax com-

putation. We vary the rank of SVD to control the trade-off between prediction speed and

accuracy.

• Fast Graph Decoder (FGD) [168] directly applies small world graph on all items Q and

navigates to derive recommended items with user latent vectors as queries on the proximity

graph. It also serves a direct baseline of only using proximity graph navigation.

• Learning to Screen (L2S) [28] is the first clustering-based method on fast prediction in NLP

tasks with the state-of-the-art results on inference time but suffers from long preparation

time. CANTOR is inspired by the clustering step in L2S, thus L2S serves as a direct

baseline. In our implementation, random sub-sampling is applied to choose a subset of

users for training L2S.

Note that [162] has shown that Greedy-MIPS outperforms other MIPS algorithms includ-

ing LSH-MIPS [119, 133], Sampling MIPS [9] and PCA-MIPS [7], so we omit those other
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MIPS algorithms in our comparisons. Although bandit-based methods [49, 92, 93] have el-

egant mathematical properties and theoretical bounds, we did not include them originally

because they generally perform worse than other methods in practical cases. For example,

SCLUB [93], which is one of the state-of-the-art bandit-based approaches, only achieves 0.81x

and 0.62x speedups on the Amazon and Wikipedia datasets with the official implementa-

tions. This is because bandit-based methods independently manipulate each dimension and

cannot benefit from low-level optimization for linear algebra operations.

Implementation Details. For each dataset, the LIBMF library [31] is used to train a

non-negative MF (NMF) model. More specifically, the number of dimensions for latent

vectors is 10 while the models are trained with all data for 100 iterations. Note that we

adopt NMF models because of the restrictions of ϵ-Approx, but CANTOR does not have

any limitation on matrix types. We implement CANTOR in Python with NumPy optimized

by BLAS [12]. For the baseline methods, the implementations of GMIPS, SVDS, FGD, and

L2S are provided by the original authors and highly-optimized while we utilize an efficient

C++ implementation of ϵ-Approx. All experiments were run on a 64-bit Linux Ubuntu 16.04

server with 512 GB memory and single thread regime on an Intel® Xeon® CPU E5-2698 v4

2.2 GHz.

5.4.2 Performance Comparison

To fairly compare the performance, for each dataset, we tune the parameters such that

each method can roughly achieve 0.99 P@1 accuracy. Table 5.2 shows the efficiency and

the precision scores of CANTOR and all baseline methods on six datasets. Note that since

the open-sourced library of GMIPS does not provide the breakdown of execution time into

preparation and prediction time, the reported time includes both preparation and prediction

processes. Among the baseline methods, FGD performs the best because it exploits the state-

of-the-art algorithm for approximate nearest neighbor search to retrieve recommendations

for each user. Although L2S is the most efficient baseline in the inference process, its

preparation process is slow so that the overall speedup is further degraded. SVDS can
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Table 5.2: Comparisons of top-K recommendation results on six datasets in two tasks.
Note that P@K measures the precision of approximating the top-K recommendations of
full inner-product computations. SU indicates the ratio of speedup based on the original
full inner product time of inferring top-K recommendations. For example, 9.4x means the
computation time of the method is 9.4 times faster than the full inner product computation
time. PT means the preparation time and IT represents the inference time in prediction
process. The time units of seconds, minutes, and hours are represented as s, m, and h,
respectively. Computation time of the full inner product method for each dataset is 71s
(MovieLens), 1,017s (Last.fm), 92,828s (Amazon), 56,824s (Youtube), 71,653s (Flickr), and
72,723s (Wikipedia).

Task Item Recommendation
Dataset MovieLens Last.fm Amazon
Method SU PT IT P@1 P@5 SU PT IT P@1 P@5 SU PT IT P@1 P@5
ϵ-Approx 0.7x 0.19s 99.00s 0.753 0.671 0.5x 1.40s 36.78m 0.378 0.467 0.2x 23.42s 107.34h 0.529 0.559
GMIPS 3.9x N/A 18.41s 1.000 0.972 2.3x N/A 7.55m 0.997 0.966 1.8x N/A 14.57h 0.993 0.952
SVDS 1.0x 0.10s 69.00s 1.000 1.000 0.9x 0.10s 19.25m 0.984 0.984 1.3x 5.32s 19.46h 0.952 0.953
FGD 2.8x 4.94s 20.10s 1.000 0.999 10.9x 0.49m 1.07m 0.997 0.988 19.7x 42.76m 35.83m 0.986 0.977
L2S 3.0x 22.15s 1.72s 1.000 1.000 9.0x 1.77m 0.12m 0.993 0.980 21.2x 71.02m 1.86m 0.988 0.979

CANTOR 9.4x 6.17s 1.36s 1.000 0.999 37.1x 0.37m 0.09m 0.999 0.998 29.0x 52.13m 1.26m 0.994 0.991

Task Personalized Link Prediction
Dataset YouTube Flickr Wikipedia
Method SU PT IT P@1 P@5 SU PT IT P@1 P@5 SU PT IT P@1 P@5
ϵ-Approx 0.1x 0.3m 129.2h 0.364 0.432 0.4x 0.29m 53.44h 0.545 0.581 0.2x 0.39m 130.61h 0.374 0.480
GMIPS 1.4x N/A 11.12h 0.987 0.965 2.0x N/A 10.10h 0.987 0.962 3.6x N/A 5.64h 0.991 0.974
SVDS 1.0x 0.03m 15.30h 0.965 0.963 1.4x 0.03m 14.00h 0.952 0.946 1.4x 0.03m 14.83h 0.949 0.944
FGD 44.8x 10.28m 10.85m 0.989 0.981 37.5x 17.61m 14.25m 0.985 0.980 93.7x 4.18m 8.76m 0.990 0.985
L2S 6.9x 135.93m 0.79m 0.984 0.968 8.3x 142.84m 0.58m 0.989 0.980 22.4x 53.38m 0.84m 0.988 0.968

CANTOR 112.7x 7.75m 0.65m 0.993 0.985 54.7x 21.31m 0.53m 0.994 0.990 355.1x 2.45m 0.97m 0.995 0.991

efficiently decompose the preference matrix as its preparation process, but it still requires

to examine all items many times to achieve sufficient accuracy so that the acceleration is

unsatisfactory. In addition, it is worth noting that, although ϵ-Approx theoretically needs

fewer multiplications than the full evaluation, it actually does not provide any acceleration in

practice. Similar to bandit-based methods, this is because each dimension is independently

processed so that the model cannot benefit from any low-level optimization for linear algebra

operations.

Our approach CANTOR significantly outperforms all of the baseline methods in accel-

erating the overall execution time to provide top-K recommendations in all datasets. More

specifically, CANTOR has similar inference time for the prediction process to that of L2S

(that also reduces the candidate item sets for less computation) but the preparation process

of CANTOR is much faster. This is because similarities between user latent vectors are well

leveraged to avoid unnecessary and redundant computation.
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5.5 Summary

In this chapter, we demonstrated that the implicit data dependent information could also be

found in other applications. We proposed a new method for accelerating large-scale top-K

recommender systems by generalizing the clustering methods in order to capture the implicit

information in user latent space. The proposed method tried to find the implicit information

by first clusters users into affinity groups, and for each group there are only a limited number

of preferred items need to be examined for the users in the affinity group. In particular, the

proposed method achieves 355x and 29x speedup on the largest Wikipedia and Amazon

datasets in two tasks while the accuracy scores still remain to be 99% for both P@1 and

P@5. These results show that implicit data dependent information also exist in recommender

system, and the proposed method CANTOR can leverage this implicit information to achieve

efficient machine learning.
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CHAPTER 6

Data-aware Low-rank Approximation: When Model

Compression meets Inference Time Speedup

6.1 Introduction

In previous chapters, we introduced two ways to leverage data distributions. For explicit

information such as word frequency, we can use low-rank or compositional methods to obtain

a much better model compression. For implicit information hidden in a latent space, we learn

a screening to select more pertinent groups to accelerate the inference step. However, these

methods in general can’t achieve both desiderata at the same time. For compression scenario,

compostional coding needs time to reconstruct the approximated embedding vectors, so

it won’t be able to accelerate the inference. For fast inference applications, we need to

store the additional screening model, which apparently won’t reduce the model size. The

only exception is the GroupReduce method. GroupReduce builds multiple clusters over the

softmax matrix, and for each cluster GroupReduce combines frequency information with low-

rank methods, which has the potential to speed up inference simultaneously. In particular,

we know that BLAS library has greatly optimized linear algebra computation, and low-

rank methods preserve this attribute and it achieved superior inference speed over sparse

methods. However, the biggest problem with GroupReduce is that it requires existence of

explicit information such as frequency information. This method cannot be applied to any

given matrices. In this chapter, we introduce an idea of data-aware low-rank approximation,

which combines both ends of model compression and inference time speedup. We resorts to

the low-rank method since it’s a method which can achieves these two goals simultaneously.
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We also bring the implicit data distribution into the low-rank method. Specifically, we

observe that the learned representation of each layer lies in a low-dimensional space. Based on

this observation, we propose a provably optimal low-rank decomposition of weight matrices,

which has a simple closed form solution that can be efficiently computed.

To deal with efficiency issues, most existing work resorts to adjusting the model structure

or distillation. For instance, [80] used locality-sensitive hashing to accelerate dot-product

attention, [87] used repeating model parameters to reduce the size and [167] applied a pre-

defined attention pattern to save computation. A large body of prior work focused on

variants of distillation has also been explored [22, 72, 98, 127, 141, 142, 142, 158, 170]. These

methods require a specific design of model architecture, or a long training stage and thus it

is less straightforward to combine these methods with each other.

We explore a simpler acceleration method to speed up inference time which can be applied

to most existing architectures. As shown in Figure 6.1, matrix multiplication (feed-forward

layer) is a fundamental operation which appears many times in the Transformer [146], the

backbone architecture of the BERT model. In fact, the underlying computation of both

multi-head attention layers and feed-forward layers is matrix multiplication. Therefore,

instead of resorting to the complex architecture redesign approaches, we aim to investigate

whether low-rank matrix approximation, a classical and simple model compression approach,

can be used to accelerate Transformers. Despite its successful application to CNNs [132,

137, 165], at first glance, low-rank compression does not appear to work for BERT since the

matrices in both feed-forward layers and attention layers are not low rank (see Figure 6.2).

Therefore, even the optimal low-rank approximation (e.g., by SVD) will lead to very large

reconstruction error. This is probably why low-rank approximation has not been successfully

used in BERT compression.

In this paper, we propose a novel low-rank approximation algorithm to compress the

weight matrices even though they are not low-rank. The main idea is to exploit the data

distribution. In NLP applications, the latent features (features fed into each matrix mulitpli-

cation layer) usually indicate some information extracted from natural sentences, and they
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Figure 6.1: Illustration of the BERT-base computational model. |V | (at bottom of the
Parameter Size column) denotes the number of tokens in the model. #Classes (at top of
the Parmeter Size column) denotes the number of classes in the down-stream classification
task. Input encoding, Feed-forward 3 and Feed-forward 4 are computed only once and thus
do not contribute much to overall time. The inference time (in milliseconds) listed here is
based on the inference time measured on a CPU.

Figure 6.2: Illustration of the empirical observation that weight matrices in BERT model are
not low-rank. The X-axis represents what percentage of singular values; the Y-axis represents
sum of singular values connected to the selected ranks divided by sum of all singular values.
Ideally, a low-rank structure will have a larger area under the curve, meaning that a small
percentage of the singular values can explain their total sum. We observe that the sum of
the top 50% of the ranks only accounts about 60% of all singular values for matrices in the
BERT model. This shows that the matrices do not have a clear low-rank structure.

often lie in a subspace with a low intrinsic dimension [28, 114, 132]. Therefore, in most of

the matrix-vector products, even though the weight matrices are not low-rank, the input
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vectors lie in a low-dimensional subspace, allowing dimension reduction with minimal de-

graded performance. We mathematically formulate this generalized low-rank approximation

problem which includes the data distribution term and provide a closed-form solution for the

optimal rank-k decomposition of the weight matrices. By leveraging the data distribution

idea, we propose DRONE (data-aware low-rank compression). Our decomposition signifi-

cantly outperforms the SVD under the same rank constraint, and can successfully accelerate

the BERT model without sacrificing too much test performance. In addition to compressing

standard models, DRONE can also be used on distilled BERT models to further improve the

compression rate. For example, DRONE alone achieves 1.92x speedup on the MRPC task

with only 1.5% loss in accuracy, and when combined with distillation, DRONE achieves over

12.3x speedup on various natural language inference tasks.

6.2 Related Work

Fast inference is important for deploying NLP models in various applications. Generally

speaking, inference efficiency can be enhanced by hardware [130] or lower-level instruction

optimization [120]. On the other hand, the main focus of the current research is on using

algorithmic methods to reduce computational complexity. These methods can be mainly

categorized into two aspects: attention complexity reduction and model size reduction.

Attention Complexity Reduction

Attention mechanism is the building block of transformer models and has attracted the

most attention of researchers recently in the NLP field [146]. Pre-training on large corpus

of BERT, a transformer-based model, has contributed to state-of-the-art performance on

various tasks after fine-tuning [36]. Attention on sequences of length L is O(L2) in both

computational and memory complexity, which yields long inference time when the sequence is

long. Thus, researchers have focused on reducing the complexity of the attention module. [80]

used locality-sensitive hashing to reduce the complexity to O(L logL). [30, 167] pre-defined

an attention map to have a constant computational time. [53] progressively eliminated the
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redundant context vectors within the attended sequence to improve efficiency of attention in

the last few layers of the model. [150] proposed to train the low-rank attention by choosing

a rank r ≪ L. This is similar to our work in the sense of leveraging low-rank structures. But

our method does not require training the model from scratch and can be applied to different

modules other than attention. In fact, most of the above methods require special modules

and thus need to train the proposed models from scratch. This prohibits the usage of a large

body of publicly available open models for faster research progress. More importantly, these

methods mainly focus on the long sequence scenario. As shown in Figure 4.1, we have found

out that attention module is actually not the main inference bottleneck of inference time in

common usage. In most, if not all, models of common usages, two layers of large feed-forward

layer are appended after the attention module which incurs much more computational time.

Attention complexity reduction only works when a long sequence is used but in current

practice this is unusual. Thus, in many tasks accelerating the attention module itself does

not contribute to a significant reduction of overall inference time.

Model Size Reduction

Inference speed is also related to model compression. In principle, smaller models lead to

reduction in the number of operations and thus faster inference time. [128] explored pruning

methods on BERT models to eliminate redundant links, and there is a line of research on

pruning methods [27, 52, 58, 59]. Quantization methods [38, 64, 95, 166] convert the 32 bits

float models into fewer-bits fixed-point representation and make model prediction faster with

fixed point accelerator. [87] reduce the model size by sharing encoder parameters. A large

body of prior work focused on variants of knowledge distillation [22, 72, 98, 127, 141, 142,

142, 158, 170]. These methods use different strategies to distill information from a teacher

network and reduce the number of layers [127] or hidden dimension size [72]. Further,

a hybrid compression method by combining matrix factorization, pruning and knowledge

distillation is proposed by [106]. Notice that [106] performed SVD for some components

and in this paper we propose an improvement over SVD by leveraging input distribution

to each layer. Idea of using input distribution to compress model has also been explored
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in PCN method [147], which is perhaps the closest to our work. However, DRONE differs

from PCN in following three aspects. First, PCN only considers input distribution but not

weight matrix and thus it’s a special case of DRONE (i.e., W be an identity matrix in

equation (6.3)). Second, PCN merely does dimension reduction whereas our formulation

achieves dimension reduction and low-rank approximation simultaneously. Last, PCN does

not guarantee the obtained transformation is the optimal; whereas, DRONE formulates an

approximation optimization problem and we provide the optimal solution. Other forms of

low-rank learning strategies including initialization and structure pruning were also explored

in the literature [77, 152], and we will compare to these baseline methods. Among the

above-mentioned methods, quantization requires hardware accelerator to maximally reduce

the inference time. Pruning methods can only reduce the model size, but the inference time

might not be reduced due to the limitation of sparse operations. Only algorithmic methods

such as distillation serve as a more generic inference time accelerating method. We want to

emphasize that our method is orthogonal to these distillation methods. In fact, the proposed

method is an acceleration method that is applicable to all components in most NLP models.

In Section 6.4, we show that DRONE can be combined with the distilled models to further

improve the performance.

6.3 Proposed Method

We now introduce an algorithm for improving efficiency of matrix multiplication. The com-

putation of feed-forward (FF) layer in the attention models can be described as:

h = Wx + b, (6.1)

o = σ(h), (6.2)

where W ∈ Rd2×d1 and b ∈ Rd2 are model parameters, x ∈ Rd1 is the latent representation of

a token, and h ∈ Rd2 is the intermediate representation before the activation function, σ(·)
is the activation function, and o ∈ Rd2 is the output. Assuming the sequence length is L,
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all the token representations x1, . . . , xL ∈ Rd1 will pass through this same operation, so in

practice the whole FF layer can be computed by a matrix-matrix product W [x1, . . . xL] + b,

and the computation of the bias term b would be broadcast to all L input tokens. In practice

we will normally have L ≪ max(d1, d2) (e.g., L = 128, d2 = 3072). Notice that applying

σ(·) on h element-wisely costs O(Ld2), which is much smaller than the cost of computing

Wx (O(Ld2d1)). Therefore, in this paper we focus on reducing the cost of computing Wx

to accelerate the computation. A standard way to accelerate this computation is to perform

low-rank approximation on W . A low-rank approximation can be obatined by using singu-

lar value decomposition (SVD), which achieves the best rank-k approximation in terms of

Frobenius norm and we can write W as:

W = USV T ≈ UW,kVW,k
T ,

with orthogonal matrices U ∈ Rd2×d2 , V ∈ Rd1×d1 and a diagonal matrix S ∈ Rd2×d1 . UW,k ∈
Rd2×k and VW,k ∈ Rd1×k are the rank-k approximation matrices by taking UW,k = US

1
2
k ,

VW,k = V S
1
2
k , where S

1
2
k is the square-root of the first k entries of the diagonal matrix S.

Given such an approximation, we can simplify the computation in (6.1) by

h = Wx + b ≈ UW,kVW,k
Tx + b.

After conducting rank-k approximation, the computational complexity reduces from O(d2d1)

to O((d1 + d2)k). When k is small enough, low-rank approximation not only accelerates the

computation [132] but also compresses the model size [125]. However, as shown in Figure

6.2, matrices in FF layer of BERT do not show obvious low-rank structures. We observe

that choosing top 50% rank (e.g., k = 0.5 min(d1, d2)) can only achieve around 60% of the

accumulation ratio of singular values, which implies large matrix approximation error. In

the meantime, the complexity is still about O(d2d1) and there is no enhancement of speed.

Even though the matrices in the model are not low-rank, we now provide an illustrative

example to show that a low-rank computation could still exist when data distribution lies in
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a lower intrinsic dimension. Suppose we have a matrix W defined as below and the input x

lies in a subspace:

W =



7 0 2 3 1

9 6 7 5 0

6 1 8 0 3

4 3 2 1 4

1 2 2 1 2


, x ∈ span





2

2

5

5

4


,



1

1

2

2

6




.

In this case, W is a full-rank matrix so there is no lossless low-rank approximation of W . On

the other hand, the input data x lies in a 2-dimensional subspace so that we could construct

the following low-rank approximation:



7 0 2 3 1

9 6 7 5 0

6 1 8 0 3

4 3 2 1 4

1 2 2 1 2


︸ ︷︷ ︸

W



2 1

2 1

5 2

5 2

4 6


a
b



︸ ︷︷ ︸
x

=



43 23

90 39

66 41

45 37

29 21


︸ ︷︷ ︸

U

 −1 −1 0.5 0.5 0

−0.5 0 0 0 0.25


︸ ︷︷ ︸

V T



2 1

2 1

5 2

5 2

4 6


a
b



︸ ︷︷ ︸
x

,

which gives a rank-2 matrix UV T where W ̸= UV T but Wx = UV Tx for any x in the low

dimensional space. This shows that even if W cannot be approximated, it is still possible

to construct a good low-rank decomposition, and the key is to exploit the space of input

vectors.
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6.3.1 DRONE: Data-aware Low-rank Compression

Assuming the input x of the FF layer follows some distribution, instead of minimizing the

approximation error of the weight matrix (for which SVD is optimal), we want to minimize

the approximation error of the outputs. Denoting X as the Rd1×n matrix where columns

of X capture the empirical distribution of the input (when n is large), our goal is to find

projection matrix VX,k ∈ Rd1×k and recovery matrix UX,k ∈ Rd2×k such that the output is

well approximated. We rewrite (6.1) as:

h = WX + b ≈ WUx,kVx,k
TX + b

= (WUx,k)Vx,k
TX + b = WX,kVx,k

TX + b,

where WX,k = WUx,k. Intuitively, when X lies in a lower-dimensional space, we could find

such a pair by PCA decomposition on X to project X onto the subspace that explains the

most variance. In this way, instead of considering the decomposition of W , we leverage the

distribution of X to complete the low-rank approximation.

However, the best way is to consider the properties of both W and X simultaneously,

and we can mathematically present this desideratum by the following optimization problem:

min
M
∥WX −WMX∥2F , s.t. rank(M) = k, (6.3)

where M is the desired rank-k transformation which maximally preserves the results of the

matrix multiplication. In the theorem below, we show that there exists a closed-form, optimal

solution for the above optimization problem. Before stating the theorem, we first introduce

some notation. Assuming rank(W ) = r and rank(X) = t, we can write W = UWSWV T
W and
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X = UXSXV
T
X such that

UW =
[
UW,r ŪW,r

]
, SW =

SW,r 0

0 0

 , VW =
[
VW,r V̄W,r

]

UX =
[
UX,t ŪX,t

]
, SX =

SX,t 0

0 0

 , VX =
[
VX,t V̄X,t

]
.

In other words, the decomposition UWSWV T
W and UXSXV

T
X are the full-SVD decompositions

of W and X, respectively. The matrices UW,r,VW,r, UX,t,VX,t denote corresponding row spaces

and column spaces, while ŪW,r , V̄W,r, ŪX,t and V̄X,t are null spaces. With this notation, we

are ready to state the theorem.

Theorem 6.1. Assume rank(W ) = r and rank(X) = t. The closed form solution M∗ of the

optimization problem (6.3) is

M∗ = VW,rS
−1
W,rZkS

−1
X,tU

T
X,t, (6.4)

where Zk is the rank-k truncated SVD of Z = SW,rV
T
W,rUX,tSX,t.

Proof. We firstly consider the unconstrained problem:

M∗ = argmin
M

∥WX −WMX∥2F

= argmin
M

∥UT
WWXVX − UT

WWMXVX∥2F

= argmin
M

∥SWV T
WUXSX − SWV T

WMUXSX∥2F ,

where the second equality holds due to the fact that UW and VX are orthonormal matrices.
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Note that we could expand the term SWV T
WUXSX as:

SWV T
WUXSX =

SW,r 0

0 0

V T
W,r

V̄ T
W,r

[
UX,t ŪX,t

]SX,t 0

0 0


=

SW,rV
T
W,r 0

0 0

UX,tSX,t 0

0 0


=

SW,rV
T
W,rUX,tSX,t 0

0 0

 .

Similarly, we will have

SWV T
WMUXSX =

SW,rV
T
W,rMUX,tSX,t 0

0 0

 .

Therefore, we continue above unconstrained problem as:

M∗ = argmin
M

∥SWV T
WUXSX − SWV T

WMUXSX∥2F

= argmin
M

∥

SW,rV
T
W,rUX,tSX,t − SW,rV

T
W,rMUX,tSX,t 0

0 0

 ∥2F
= argmin

M
∥SW,rV

T
W,rUX,tSX,t − SW,rV

T
W,rMUX,tSX,t∥2F .

= argmin
M

∥Z − SW,rV
T
W,rMUX,tSX,t∥2F .

The above minimization problem obtains the optimal value if SW,rV
T
W,rMUX,tSX,t equals the

rank-k truncated SVD of Z by the fundamental property of SVD decomposition. Thus, we

will have:

Zk = SW,rV
T
W,rM

∗UX,tSX,t

=⇒ M∗ = VW,rS
−1
W,rZkS

−1
X,tU

T
X,t.

88



We note that since Zk is the rank-k truncated SVD of Z, we could also write Zk as

UZ,kV
T
Z,k by distributing the top-k singular values of Z into left or right singular matrices.

Thus the original computation can be rewritten as:

WX ≈ (WVW,rS
−1
W,rUZ,k)(V T

Z,kS
−1
X,tU

T
X,t)X = U∗V ∗TX, (6.5)

where U∗ = WVW,rS
−1
W,rUZ,k and V ∗T = V T

Z,kS
−1
X,tU

T
X,t are two rank-k matrices, and we will

replace W by U∗V ∗T .

6.3.2 Extension to Dot-product Attention

Although the optimization problem in (6.3) is proposed for feed-forward computation, in this

section we show that it can also be applied to the dot-product part of the attention module.

The key computation in the attention layer is to compute pairwise similarity between queries

and keys of the sequence:

O = (QȲ )T (KY ), (6.6)

where Ȳ ∈ Rd1×n is the batch query data, Q ∈ Rd2×d1 is the query transformation matrix,

Y ∈ Rd1×m is the batch key data, K ∈ Rd2×d1 is the key transformation matrix and n,m

are query and key batch sizes, respectively. We can again see that the desired low-rank

approximation is the solution of the following optimization problem:

min
M
∥(QȲ )T (KY )− (QȲ )TM(KY )∥2F , s.t. rank(M) = k. (6.7)

With QȲ = W and KȲ = X, we get the following corollary from Theorem 6.1 directly.

Corollary 6.1. Assume rank(QȲ ) = r and rank(KY ) = t. Let QȲ = UWSWV T
W and

KY = UXSXV
T
X be the SVD decomposition of QȲ and KY respectively. The closed form
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solution M∗ of the optimization problem (6.7) is given by

M∗ = VW,rS
−1
W,rZkS

−1
X,rU

T
X,r, (6.8)

where Zk is the rank-k truncated SVD of Z = SW,rV
T
W,rUX,tSX,t .

Proof. By denoting W = (QȲ )T and X = KY , and Theorem 1 could be applied to obtain

the optimal solution M∗.

6.3.3 Overall Algorithm

We have shown that the proposed DRONE method is a generic acceleration module appli-

cable to all parts of neural language models. We summarize the DRONE on feed-forward

layer in Algorithm A.1. Since in practice we don’t have the exact distribution of X, we

use training data to calculate the low-rank approximations as described in Algorithm A.1.

The attention map calculation can be done by the same procedure with W = (QȲ )T and

X = KY as given by the Corollary 6.1.

To accelerate the whole model, we need to select appropriate ranks for each compo-

nent. However, since the approximation of one component affects the distribution of overall

representations, the optimal rank for the model requires a complete search of all possible

combinations of rank values, which is infeasible in practice. We thus resort to a simpli-

fied approach as shown in Algorithm 6.2. A more detailed description is provided in the

Appendix A.2. In short, as the changes of lower layer parameters will cause the distribu-

tion of representation shifts in upper layers, we approximate each component one-by-one in

their topological order of the model. In another words, we approximate the model from the

lower layers toward the higher layers. Within each layer, we follow the topological order

of underlying modules. We provide a total allowed increase of loss ratio r as an input to

the Algorithm 6.2. The hyper-parameter r depends on the efficiency and efficacy trade-off

which users are willing to pay. The larger the value r, the faster approximation we get at

the cost of lower accuracy. We then distribute r into each module Rl,i (allowed loss increase
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Algorithm 6.1: Data-Aware Low-rank Compression of feed-forward layer.

Input: rank k, training data Dtrain, Original weight matrix W , Prediction Model
M .

Output: Low-rank Approximation U∗, V ∗.
1 X = {}
2 for all batches xb in Dtrain do
3 Feed the batch of training data xb into M and extract the representation x. x is

the representation which will be multiplied with W as in (6.1).
4 Append x to X.

5 Given X,k and W , solve the optimal low-rank matrices U∗,V ∗ by (6.5).

ratio of i-th module of l-th layer in Algorithm 6.2). The distribution from r to each Rl,i

is based on the observed inference time of each module El,i (observed empirical inference

time of i-th module of l-th layer in Algorithm 6.2). The longer a module takes to compute,

the more budget is allocated. Overall, total allowed loss r and the distributed loss ratio

for each module Rl,i fulfil the equality (1 + r) =
∏

l

∏
i(1 + Rl,i). For each module, if the

approximation with certain rank used won’t increase the loss over the ratio (1 + Rl,i), we

will use that rank to approximate the module and move on to the next module. The pseudo

code is also provided in the Appendix to illustrate the process.

6.4 Experimental Results

6.4.1 Experimental Setup

We evaluate DRONE on both LSTM and transformer-based BERT models. For LSTMs, we

train a 2-layer LSTM-based language model from scratch with hidden sizes 1500 on Penn

Treebank Bank (PTB) dataset. For BERT models, we evaluate the pre-trained BERT models

on GLUE tasks. Various pre-trained models are offered in the open source platform [154].

For BERT models, we use BERT-base models and it contains 12 layers of the same model

structure without sharing parameters. Each layer contains an attention module with hidden

size 768 and 12 channels, a small 768× 768 Feed-forward (FF) layer followed by 2 larger FF

layers (768× 3072 and 3072× 768). As shown in Figure 4.1, these four components consume

the most computational time in the BERT-base models.

91



Algorithm 6.2: Overall Low-rank Model Approximation Algorithm.

Input: training data Dtrain, original weight matrix W . prediction Model M , total
allowed loss increase ratio r, Observed inference time E, Search grids of
ranks for each module G, original Training loss L.

Output: Low-rank Approximation U∗, V ∗.
1 # Distribute allowed ratio r into each module by E
2 Emin ← argminl,i El,i

3 El,i ← El,i

Emin

4 Eb ← exp( log(1+r)∑
l,i El,i

)

5 Rl,i ← E
El,i

b − 1
6 for l = 1, · · · , total layers do
7 for module mi ∈Ml do
8 Wl,i ← l-th layer parameter of module mi

9 (e.g., 2nd feed-forward matrix in first layer.)
10 for i = 1, · · · , |Gl,i| do
11 k ← Gl,i

12 U, V ← Algorithm A.1 (k,Dtrain,Wl,i,M)

13 M̂ ←M with Wl,i replaced by U, V .

14 Evaluate new loss Lnew = M̂(Dtrain)
15 if Lnew/L < 1 + Rl,i then

16 M ← M̂
17 break;

For the baseline methods, most of the existing work pertaining to low-rank approximation

[106, 132] leverages SVD in part of the compression procedure. Therefore, our baseline

comparison will be the SVD approximation, and our work aims to provide an improvement

over SVD. We also include the state-of-the-art distillation methods TinyBERT [72] in the

comparison and show that the proposed method can be combined with it to further improve

the performance. TinyBERT reduces the model into 4 layers of attention dimension 312 with

12 channels, and the FF layers are downsized to 312× 1200. As we mentioned above, all the

approximation methods need to consider efficiency and efficacy trade-off. In this paper, we

follow previous literature [28, 72] and report the approximation results with about 3% loss

in accuracy to compare the performance of all methods.

In real-world applications, NLP models are mostly evaluated on mobile devices or servers

with multiple hardware accelerators. Thus, we measure the inference speed on both CPU
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Table 6.1: The experimental results of running pret-rained BERT-base model on natural
language inference tasks (Glue dataset). Each task has its own metric for performance mea-
surement. Accuracy (SST-2, QNLI, RTE and WNLI), F1/Accuracy (MRPC and QQP),
Matthew’s correlation (CoLA), Matched accuracy/Mismatched accuracy (MNLI) and Per-
son/Spearman correlation (STS-B) are used respectively. All the DRONE results are within
3% accuracy loss and show that DRONE can accelerate the whole BERT model across dif-
ferent tasks and devices.

Methods MNLI QQP SST-2 QNLI MRPC RTE CoLA STS-B
Original 84.3 90.9 92.3 91.4 89.5 72.6 53.4 87.8

SVD 74.4 50.8 73.1 52.2 63.8 47.3 12.4 33.6
DRONE 82.0 89.4 90.0 88.5 86.7 70.0 52.5 85.8

DRONE-Retrain 82.6 90.1 90.8 89.3 88.0 71.5 53.2 87.8
CPU Speedup Ratio 1.60x 1.25x 1.64x 1.20x 1.92x 1.31x 1.33x 1.52x
GPU Speedup Ratio 1.28x 1.38x 1.45x 1.28x 1.56x 1.33x 1.29x 1.57x

(Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz) and GPU (GeForce GTX 1080 Ti) devices.

All the experiments are repeated 10 times. The average single sequence prediction inference

time in milliseconds is reported in the results. We want to emphasize that unlike many of

the literature [30, 80, 150], which reported speedup only in the attention layers, our results

reflect end-to-end speedup including both attention module and feed-forward layers. To

perform the approximation, empirically we found randomly sub-sample 10% of the training

data suffices to provide good results. Using more data can only provide limited performance

boost but comes at a higher cost of longer preprocessing time. Thus, we will use 10% random

sample of the training data to perform the experiments. After the proposed data-aware low-

rank distribution, we slightly fine-tune the model to further improve the performance. We

use a relatively smaller learning rate 10−7 and retrain 1 epoch on the sub-sampled training

data to complete the fine-tuning procedure.

6.4.2 Results of BERT Models on GLUE Dataset

We summarize the results of DRONE on GLUE tasks in Table 6.1. Detailed inference time

of each component of the compressed Transformer model is listed in the Appendix. Detailed

inference time of an uncompressed BERT-BASE model can be found in Figure 4.1. We

observe that each task exhibits different difficulty. The best acceleration we can achieve is

nearly twice as fast (1.92x) with less than 2% accuracy loss after retraining (on the MRPC).

In addition, DRONE achieves 1.52x acceleration without accuracy loss on the STS-B task.
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By applying the same selected rank for each module with SVD method, we can observe

that the performance drops significantly. This shows that the matrices within the model

is generally not low-rank; thus the direct low-rank approximation without considering data

distribution does not work. On GPU, we see that the acceleration is more or less the same

as on CPU except MNLI and MRPC tasks. This is due to the fact that GPU uses massive

parallelism and low-rank approximation introduces a sequential computation which might

hinder the speedup depending on the size of the matrices and ranks used. To resolve this

problem, low-level cuda code optimization is needed and system researchers have studied

the problem [129], which is out of the scope of the present work. Despite this, we can

still observe that DRONE performs better on QQP, RTE and STS-B and it provides about

1.5x acceleration for various tasks on GPU. An example of ranks used in SST-2 is listed in

Appendix A.5.

6.4.3 Combination with Model Size Reduction Methods

Our proposed DRONE is a general low-rank approximation technique, and it is complemen-

tary to many other model compression methods. To illustrative its power, we now demon-

strate that DRONE can be combined together distillation. The discussion of combination

with Quantization is left in the Appendix. Distillation methods compress the underlying

model into a smaller one without losing much accuracy. Distilled models are much smaller

in number of layers or hidden dimension, resulting in a smaller model size and faster infer-

ence time. As shown in the Table 6.2, TinyBERT, one of the most competitive distillation

methods, indeed achieves good performance within 3% accuracy loss for some of the GLUE

tasks. Due to the fact that the computation inside the distilled model is still full matrix

computation, DRONE can be applied to find data-aware low-rank approximation of these

smaller matrices. Results are summarized in Table 6.2. As we can see combining DRONE

with the distillation method further reduces the inference time without sacrificing accuracy.

In particular, on the SST-2 task DRONE + TinyBERT speeds the inference time from 11.7x

to 15.3x on CPU while achieving the same accuracy as the TinyBERT. Similarly, DRONE
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+ TinyBERT speedups GPU results with 10.9x STS-B and 9.7x on SST-2 with competitive

performance. These results again show that the proposed method has the potential to be

applied under various scenarios and hardware devices to achieve a better model inference

time speedup.

Table 6.2: The average inference time (in milliseconds) in comparison to distilled models
on CPU and GPU. The unit is in millisecond. The results show that DRONE can be
combined with distillation to further improve the performance. Compared to the state-of-
the-art distillation method, the speedup ratio increases from 11.4x to 14.2x on STS-B and
from 11.7x to 15.3x on SST-2.

Tasks Models CPU-speedup GPU-speedup Accuracy (%)
BERT 1x 1x 87.8

STS-B TinyBERT 11.4x 8.6x 86.9
DRONE +TinyBERT 14.2x 10.9x 87.0

BERT 1x 1x 72.6
RTE TinyBERT 1.8x 1.9x 70.8

DRONE +TinyBERT 2.1x 2.2x 71.7
BERT 1x 1x 89.5

MRPC TinyBERT 11.6x 7.8x 86.3
DRONE +TinyBERT 12.3x 8.6x 86.7

BERT 1x 1x 92.3
SST-2 TinyBERT 11.7x 8.4x 90.7

DRONE +TinyBERT 15.3x 9.7x 90.7

Table 6.3: Illustration of SVD fine-tuning on MRPC, RTE, CoLA and STS-B. Using the
same rank as the proposed DRONE method, SVD accuracy will drop significantly after the
approximation. After fine-tuning done on the SVD approximation, the accuracy could be
recovered for some tasks (e.g., MRPC), but SVD + Retrain still perform much worse than
DRONE across all the tasks.

Models MRPC RTE CoLA STS-B
BERT 89.5 72.6 53.4 87.8

DRONE-Retrain 88.0 71.5 53.2 87.8
SVD 63.8 47.3 12.4 33.6

SVD-Retrain 85.8 63.5 24.4 66.3

6.4.4 Comparison to Structured Pruning Methods.

Instead of compressing model after training to accelerate inference time, another line of

research called Structured Pruning tried to learn the low-rank structure during training of

the model to save both training and inference time simultaneously. This raises the question

if post-processing such as DRONE is necessary if no further compression is required once we
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can get a small model after training. Thus, it’s worth comparing DRONE with the state-of-

the-art Structure Pruning method [152]. In [152], attention modules are not approximated

by low-rank matrices. To make the comparison fair, we apply DRONE on base models

except the attention module and keep others the same. For MRPC, DRONE achieves 1.58x

speedup with performance drop from 89.5 to 89.4. [152] achieves 1.43x with performance

88.61. For SST-2, DRONE achieves 1.41x speedup without sacrificing performance (92.3).

[152] also achieves about 1.41x speedup with the performance 92.09. Thus, we can see that

DRONE performs better than structured pruning.

One further question is that if we can use the idea of DRONE to do fast training?

We conducted DRONE on the pre-trained RTE task before fine-tuning to get a low-rank

structure, and then apply the regular end-to-end training over this compressed model. We

found out this procedure with directly using the same rank as in our experiments ( with

1.38x speedup) can only achieve 68.2 accuracy. But if we reduce the compression ratio into

1.2x training time speedup, this procedure can give us 72.9 accuracy. On the other hand,

the same procedure with SVD as the initilialization of low-rank structure can only get 52.1

accuracy. This preliminary experiment shows that in addition to inference time acceleration,

DRONE also has the potential to be applied in the training, but directly transport DRONE

into training can not lead to the optimal result. How to improve low-rank training is an

interesting future direction.

6.4.5 Additional Experiments on Large-Scale Models and Language Generation

Tasks

Concerns might be raised that if DRONE can also be generalized to other scenarios such

as larger models or other NLP tasks. To validate DRONE on larger models. We conduct

experiments on RTE dataset with BERT-LARGE model. BERT-LARGE doubled number

of layers and the dimension is increased from 768 to 1024. Average inference time for a data

increased to 1405ms and it achieves accuracy 74. The overall result is 72.9 with inference

time 1018ms (1.38x speedup). This result is comparable to our BERT-BASE result (1.31x

96



speedup). To validate DRONE on other NLP tasks, We conducted the method on the

machine translation task via OpenNMT. It provides a 2-layer transformer model on en-

de translation. On the transformer part, DRONE achieves 1.76x speedup with BLEU from

33.47 to 33.26. Through these two additional experiments, we can validate that the proposed

DRONE is generic in the sense that so long as the underlying model is composed of matrix

computation, DRONE can compress the model regardless of model sizes and target tasks.

6.4.6 Can we directly learn low-rank structures by end-to-end training?

From an optimization perspective, a natural question to ask is whether the same optimal

low-rank structure could be learned by end-to-end fine-tuning once the rank is decided. We

conduct experiments on 4 tasks to verify this, and the results are summarized in Table 6.3.

We start by performing DRONE on the task to achieve the desired accuracy, and perform

SVD with the same set of ranks. Accuracy of SVD drops significantly for all tasks. We then

fine-tune hyper-parameters as in [154]4 to fine-tune the above SVD results. After fine-tuning,

the accuracy improves across all tasks, but none of it can reach the same performance as

DRONE. This shows that due to the difficulty of optimizing a non-convex objective function,

fine-tuning the SVD result may not achieve the best low-rank result. On the other hand,

the proposed DRONE method under the the optimization problem (6.3) can obtain the

provably optimal low-rank approximation at a much lower computational cost than the fine-

tuned SVD.

6.4.7 Pre-processing of DRONE is not too costly

DRONE accelerates inference speed at the cost of a pre-processing step. Thus, It’s natural to

ask if DRONE will take long pre-processing time. Given the rank, prep-rocessing of DRONE

has a one-time distribution extraction plus low-rank solving of equation (6.3). Depending

on training data size, first stage takes 2 mins (RTE) to 20 mins (MNLI). Second stage has

4https://huggingface.co/transformers/v2.1.1/examples.html#glue
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2 SVD computations and is about 5-10 mins. The matrix size involved is limited as we

subsample training data. SVD costs about 3 mins and retrain costs from 5 mins to 2 hours

depending on training data size. Thus, pre-processing of DRONE is about the same order as

SVD but with much better performance. Distillation such as TinyBERT firstly has a general

distillation of BERT-base on large data used to train original BERT, followed by task-specific

distillation. Despite task-specific one is rather fast (15 mins to 2hrs), first stage takes a few

days for a single GPU. Overall, DRONE is not costly compared to other methods.

6.5 Summary

In this chapter, we propose DRONE, a data-aware low-rank approximation, to achieve a

better low-rank approximation in BERT models. DRONE leverages the fact that data dis-

tribution in NLP tasks usually lies in a lower-dimensional subspace. By considering the

data distribution, we propose a data-aware low-rank approximation problem and provide a

closed-form solution. Empirical results validate that DRONE can significantly outperform

the vanilla-SVD method, and can achieve at least 20% acceleration with less than 3% accu-

racy loss. When DRONE is combined with distillation methods, it further achieves up to

15.3 times acceleration with less than 2% accuracy loss. Most importantly, this is a low-rank

based method so it enjoys the model compression and inference time speedup simultaneously.
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CHAPTER 7

Fast Graph-base Approximate Nearest Neighbor

Search by Local Data Information

7.1 Introduction

In previous sections, we mostly focused on processing machine learning models directly. We

demonstrated that through using both explicit and implicit information, machine learning

models can be greatly compressed and the inference step could be largely accelerated. On the

other hand, in modern e-commerce system or recommender systems, finding top-K elements

within a database is an important step in the whole search pipeline. This operation is

so generic that it also appears in many computer vision, natural language processing and

machine mining applications. In addition, once the representation of the underlying objects

are determined, it’s no longer related to the model. Therefore, we also need to consider

this case of processing ”representations vectors” directly instead of processing models. In

this chapter, we will show that data distribution can again help to accelerate this process

directly.

K-Nearest Neighbor Search (KNNS) is a fundamental problem in machine learning [11],

and is used in various applications in computer vision, natural language processing and data

mining [28, 110, 123]. Further, most of the neural embedding-based retrieval and recom-

mendation algorithms require KNNS in the inference phase to find items that are nearest

to a given query [169]. Formally, consider a dataset D with n data points {d1, d2, ..., dn}
where each data point has m-dimensional features. Given a query q ∈ Rm, KNNS algo-

rithms return the K closest points in D under a certain distance measure (e.g., L2 distance
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Figure 7.1: Comparison of state-of-the-art graph-based libraries on three benchmark
datasets. Throughput versus recall@10 curve is used as the metric, where a larger area
under the curve corresponds to a better method. We can observe no single method outper-
forms the rest on all datasets.

∥ · ∥2). Despite its simplicity, the cost of finding exact nearest neighbors is linear in the

size of a dataset, which can be prohibitive for massive datasets in real time applications.

It is almost impossible to obtain exact K-nearest neighbors without a linear scan of the

whole dataset due to a well-known phenomenon called curse of dimensionality [65]. Thus,

in practice, an exact KNNS becomes time-consuming or even infeasible for large-scale data.

To overcome this problem, researchers resort to Approximate K-Nearest Neighbor Search

(AKNNS). An AKNNS method proposes a set of K candidate neighbors T = {t1, · · · , tK}
to approximate the exact answer. Performance of AKNNS is usually measured by recall@K

defined as |T∩A|
K

, where A is the set of ground-truth K-nearest neighbors of q in the dataset

D. Most AKNNS methods try to minimize the search time by leveraging pre-computed data

structures while maintaining high recall [69]. There is a large body of AKNNS literature

[16, 110, 148]; most of the efficient AKNNS methods can be categorized into three categories:

quantization methods, space partitioning methods and graph-based methods. In particular,

graph-based methods receive extensive attention from researchers due to their competitive

performance. Many papers have reported that graph-based methods are among the most

competitive AKNNS methods on various benchmark datasets [5, 16, 47, 148].

Graph-based methods work by constructing an underlying search graph where each node

corresponds to a data point in D. Given a query q and a current search node c, at each

step, an algorithm will only calculate distances between q and all neighboring nodes of c.
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Once the local search of c is completed, the current search node will be replaced with an

unexplored node whose distance is the closest to q among all unexplored nodes. Thus,

neighboring edge selection of a data point plays an important role in graph-based methods

as it controls the complexity of the search space. Consequently, most recent research is

focused on how to construct different search graphs or design heuristics to prune edges in a

graph to achieve efficient searches [47, 69, 105, 140]. Despite different methods having their

own advantages, there is no clear winner among these graph construction approaches on all

datasets. Following a recent systematic evaluation protocol [5], we evaluate performance

by comparing throughput versus recall@10 curves, where a larger area under the curve

corresponds to a better method. As shown in Figure 7.1, many graph-based methods achieve

similar performance on three benchmark datasets. A method (e.g., PyNNDescent [37]) can

be competitive on a dataset (e.g., GIST-1M-960) while another method (e.g., HNSW [105])

performs better on the other dataset (e.g., DEEP-10M-96). These results suggest there

might not be a single graph construction method that works best, which motivates us to

consider the research question: Other than improving an underlying search graph, is there

any other strategy to improve search efficiency of all graph-based methods?.

In this chapter, instead of proposing yet another graph construction method, we show

that for a given graph, part of the computations in the inference phase can be substan-

tially reduced. Specifically, we observe that after a few node updates, most of the distance

computations will not influence the search update. This suggests the complexity of dis-

tance calculation during an intermediate stage can be reduced without hurting performance.

Based on this observation, we propose FINGER, Fast INference for Graph-based approxi-

mated nearest neighbor sEaRch, which reduces computational cost in a graph search while

maintaining high recall. Main contributions of this chapter are summarized as follows:

• We provide an empirical observation that most of the distance computations in the preva-

lent best-first-search graph search scheme do not affect final search results. Thus, we can

reduce the computational complexity of many distance functions.

• Leveraging this characteristic, we propose an approximated distance based on using local
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data distribution. Specifically, we model angles between neighboring vectors using low-

rank bases. In addition, angles of neighboring vectors in a graph tend to be distributed

as a Gaussian distribution, and we propose a distribution matching scheme to achieve a

better distance approximation.

• We provide an open source efficient C++ implementation of the proposed algorithm FIN-

GER on the popular HNSW graph-based method. HNSW-FINGER outperforms many

popular graph-based AKNNS algorithms in wall-clock time across various benchmark

datasets by 20%-60%.

7.2 Related Work

There are three major directions in developing efficient approximate K-Nearest-Neighbours

Search (AKNNS) methods. The first direction is still to traverse all elements in a database

but reduce the complexity of each distance calculation; quantization methods represent this

direction. The second direction is to partition search space into regions and only search data

points falling into matched regions. This includes tree-based methods [136] and hashing-

based methods [20]. The third direction is graph-based methods which construct a search

graph and convert the search into a graph traversal.

Quantization Methods compress data points and represent them as short codes. Com-

pressed representations consume less storage and thus achieve more efficient memory band-

width usage [56]. In addition, the complexity of distance computations can be reduced by

computing approximate distances with the pre-computed lookup tables. Quantization can

be done by random projections [94], or learned by exploiting structure in the data distribu-

tion [107, 117]. In particular, the seminal Product Quantization method [71] separates data

feature space into different parts and constructs a quantization codebook for each chunk.

Product Quantization has become the cornerstone for most recent quantization methods

[39, 56, 109, 157]. There is also work focusing on learning transformations in accordance

with product quantization [48]. Most recent quantization methods achieve competitive re-
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sults on various benchmarks [56, 74].

Space Partition Methods includes hashing-based and tree-based methods. Hashing-based

Methods generate low-bit codes for high dimensional data and try to preserve the similar-

ity among the original distance measure. Locality sensitive hashing [50] is a representative

framework that enables users to design a set of hashing functions. Some data-dependent

hashing functions have also been designed [62, 149]. Nevertheless, a recent review [16] re-

ported the simplest random-projection hashing [20] actually achieves the best performance.

According to this review, the advantage of hashing-based methods is simplicity and low

memory usage; however, they are significantly outperformed by graph-based methods. Tree-

based Methods learn a recursive space partition function as a tree following some criteria.

When a new query comes, the learned partition tree is applied to the query and the distance

computation is performed only on relevant elements falling in the same sub-tree. Repre-

sentative methods are KD-tree [136] and R∗-tree [10]. It is observed in previous studies

that tree-based methods only work for low-dimensional data and their performances drop

significantly for high-dimensional problems [16].

Graph-based Methods date back to theoretical work in graph theory [6, 33, 89]. However,

these theoretical guarantees only work for low-dimensional data [6, 89] or require expensive

(O(n2) or higher) index building complexity [33], which is not scalable to large-scale datasets.

Recent works are mostly geared toward approximations of different proximity graph struc-

tures to improve nearest neighbor search. There is a series of works on approximating

K-nearest-neighbour graphs [44, 57, 61, 73]. Most recent works approximate monotonic

graph [45] or relative neighbour graph [4, 105]. In essence, these methods first construct an

approximated K-nearest-neighbour graph and prune redundant edges by different criteria

inspired by different proximity graph structures. Some other works mixed the above criteria

with other heuristics to prune the graph [47, 69]. Some pruning strategies can even work

on randomly initialized dense graphs [69]. According to various empirical studies [5, 16, 61],

graph-based methods achieve very competitive performance among all AKNNS methods.

Despite concerns about scalability of graph-based methods due to their larger memory usage
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[39], it has been shown that graph-based methods can be deployed in billion scale commer-

cial usage [45]. In addition, recent studies also demonstrated that graph-based AKNNS can

scale quite well on billion-scale benchmarks when implemented on SSD hard-disks [26, 69].

In this work, we aim at demonstrating a generic method to accelerate the inference speed of

graph-based methods so we will mainly focus on in-memory scenarios.

7.3 Methods

7.3.1 Observation: Most distance computations do not contribute to better

search results

Once a search graph is built, graph-based methods use a greedy-search strategy (Algorithm

7.1) to find relevant elements of a query in a database. It maintains two priority queues:

candidate queue that stores potential candidates to expand and top results queue that stores

current most similar candidates (line 1). At each iteration, it finds the current nearest point

in the candidate queue and explores its neighboring points. An upper-bound variable records

the distance of the furthest element from the current top results queue to the query q (line

4). The search will stop when the current nearest distance from the candidate queue is larger

than the upper-bound (line 5), or there is no element left in the candidate queue (line 2).

The upper-bound not only controls termination of the search but also determines if a point

will present in the candidate queue (line 11). An exploring point will not be added into the

candidate queue if the distance from the point to the query is larger than the upper-bound.

Thus, upper-bound plays an important role as we need to spend computational resources

on distance calculation (dist function in line 11) but it might not influence search results

if the distance is larger than the upper-bound. Empirically, as shown in Figure ??, we

observe in two benchmark datasets that most of the explorations end up having a larger

distance than the upper-bound. Especially, starting from the mid-phase of a search, over 80

% of distance calculations are larger than the upper-bound. Using greedy graph search will

inevitably waste a significant amount of computing time on non-influential operations. [90]
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also found this phenomenon and proposed to learn an early termination criterion by an ML

model. Instead of only focusing on the near-termination phase, we propose a more general

framework by incorporating the idea of reducing the complexity of distance calculations

into a graph search. The fact that most distance computations do not influence search

results suggests that we don’t need to have exact distance computations. A faster distance

approximation can be applied in the search.

Figure 7.2: Illustration of the empirical observation that most points in a database will have
distance to query larger than the upper-bound. (a) FashionMNIST-60K-784 dataset (b)
Glove-1.2M-100 dataset. Starting from the 5th step of greedy graph search (i.e., running
line 2 in Algorithm 7.1 five times), both experiments show more than 80% of data points
will be larger than the current upper-bound.
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Algorithm 7.1: Greedy Graph Search

Input: graph G, query q, start point p, distance dist(), number of nearest points to

return efs

Output: top results queue T

1 candidate queue C = {p} , currently top results queue T = {p} , visited V = {p}
2 while C is not empty do

3 cur ← nearest element from C to q (i.e., current nearest point to expand)

4 ub ← distance of the furthest element from T to q (i.e., upper bound of the

candidate search)

5 if dist(cur, q) > ub then

6 return T

7 for point n ∈ neighbour of cur in G do

8 if n ∈ V then

9 continue

10 V.add(n)

11 if dist(n, q) ≤ ub or |T | ≤ efs then

12 C.add(n)

13 T .add(n)

14 if |T | > efs then

15 remove furthest point to q from T

16 ub ← distance of the furthest element from T to q (i.e., update ub)

17 return T

7.3.2 Modeling Distribution of Neighboring Residual Angles

Given a query q and the current nearest point to q in the candidate queue c, in Line 7 of

Algorithm 7.1, we will expand the search by exploring neighbors of c. Consider a specific

neighbor of c called d, we have to compute distance between q and d in order to update
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the search results. Here, we will focus on the L2 distance (i.e., Dist = ∥q − d∥2). The

derivations of inner-product and angle distance are provided in the Supplementary A. As

shown in the previous section, most distance computations will not contribute to the search

in later stages, we aim at finding a fast approximation of L2 distance. A key idea is that we

can use local data distribution to represent the neighboring node. Specifically, we can use

the center node c to represent q (and d) as a vector along c (i.e., projection) and a vector

orthogonal to c (i.e., residual):

q = qproj + qres, qproj =
cT q

cT c
c, qres = q − qproj. (7.1)

In other words, we treat each center node as a basis and project the query and its

neighboring points onto the center vector so query and data can be written as q = qproj +qres

and d = dproj + dres respectively. With this formulation, the squared L2 distance can be

written as:

Dist2 = ∥q − d∥22 = ∥qproj + qres − dproj − dres∥22 = ∥(qproj − dproj) + (qres − dres)∥22
= ∥(qproj − dproj)∥22 + ∥(qres − dres)∥22 + 2(qproj − dproj)

T (qres − dres)

(a)
= ∥(qproj − dproj)∥22 + ∥(qres − dres)∥22
= ∥(qproj − dproj)∥22 + ∥qres∥22 + ∥dres∥22 − 2qTresdres, (7.2)

where (a) comes from the fact that projection vectors are orthogonal to residual vectors

so the inner product vanishes. For dproj and dres, we can pre-calculate these values after

the search graph is constructed. For qproj, notice that center node c is extracted from the

candidate queue (line 3 of Algorithm 7.1). That means we must have already visited c before.

Thus, ∥q − c∥2 has been calculated and we can get qT c by a simple algebraic manipulation:

qT c =
∥q∥22 + ∥c∥22 − ∥q − c∥22

2
.

Therefore, the only uncertain term in Eq. (7.2) is qTresdres. If we can estimate this
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term with less computational resources, we can obtain a fast yet accurate approximation

of L2 distance. Since we don’t have direct access to the distribution of q and thus qres,

we hypothesize we can instead use the distribution of residual vectors between neighbors

of c to approximate the distribution of qTresdres term. The rationale behind this is as we

only approximate qTresdres when q and c are close enough (i.e., c is selected in line 3 of

Algorithm 7.1), both q and d could be treated as near points in our search graph and thus

interaction between qres and dres might be well approximated by d′res
Tdres, where d′ is another

neighbouring point of c and d′res is its residual vector. Empirically, as shown in the left column

of Figure 7.3, angles between residual vectors of sampled neighbors (i.e., d, d′ ∈ neighbor(c))

distributes like a Gaussian. In particular, compared to the distribution of direct inner-

product d′res
Tdres (right column of Figure 7.3), the distribution cos(d′res, dres) is less-skewed

and thus more alike Gaussian. This motivates us to design an efficient approximator of

cos(qres, dres) and obtain qTresdres by ∥qres∥2∥dres∥2cos(qres, dres).

7.3.3 FINGER: Fast Inference by Low-rank Angle Estimation and Distribution

Matching

Low-rank Estimation Motivated by the above derivations, we aim at finding an efficient

estimation of angles between all pairs of neighboring residual vectors. In AKNNS literature,

a popular method for estimating this is Locality Sensitive Hashing (LSH) and its variants. In

particular, Random Projection-based LSH (RPLSH) [20] is reported to achieve good average

performance on various benchmark datasets [16]. RPLSH samples r random vectors from

Normal distribution to form a projection matrix P ∈ Rr×m, where m is the dimension of

data and query. L2 distance between two vectors x, y ∈ Rm can be approximated by the

distance in projected space, and the error,

∥∥∥Px− Py∥22 − ∥x− y∥22
∥∥
2
,

is bounded probabilistically [75]. We can further binarize the projection results to form a

compact representation, and the angle between x and y can be approximated by hamming
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Figure 7.3: Illustration of the empirical observation that normalized cosine values of neighboring
residual vectors distribute as a Gaussian distribution on FashionMNIST-60K-784 and SIFT-1M-
128. Left column (a) and (c): angles of neighbouring residual pairs distribute alike Gaussian. Right
column (b) and (d): un-normalized inner-product values between neighbouring residual pairs are
more skewed.
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distance of the signed results: hamm(sgn(Px),sgn(Py))π
r
. However, there is an immediate

disadvantage with this approach. Random projection guarantees worst case performance

[43] and it is oblivious of the data distribution. Since we can sample abundant neighboring

residual vectors from the training database, we can leverage the data information to obtain

a better approximation. Formally, given an existing search graph G = (D,E) where D are

nodes in the graph corresponding to data points and E are edges connecting data points,

we collect all residual vectors into Dres ∈ Rm×N , where N is total number of edges in G

(i.e., |E|); and we assume Dres spans the whole space which residual vectors lie in. The

approximation problem can be formulated as the following optimization problem:

argmin
P∈Rr×m

Ex,y∼Dres

∥∥∥Px− Py∥22 − ∥x− y∥22
∥∥
2
, (7.3)

where we aim at finding an optimal P minimizing the approximating error over the residual

pairs Dres from training data. It’s not hard to see that the Singular Value Decomposition

(SVD) of Dres will provide an answer to the above optimization problem, and thus we can

use SVD to find better r lower-dimensions to estimate the angle of neighboring residual

vectors.

Proposition 7.1. Given a residual vector matrix Dres ∈ Rm×N , and denoting Dres = USV T

as the Singular Value Decomposition of Dres. U1:r, the first r columns of U is an optimal

solution of optimization problem Eq. (7.3).

Proof. We can firstly construct all possible pairs of N(N−1)
2

combinations of sample of vectors

x, y from Dres and compile all N(N−1)
2

pairs into two matrices X and Y . With this notation,

we can rewrite the original optimization into matrix form:

argmin
P∈Rr×m

Ex,y∼Dres∥∥Px− Py∥22 − ∥x− y∥22∥2

= argmin
P∈Rr×m

∥∥PX − PY ∥2F − ∥X − Y ∥2F∥22

= argmin
P∈Rr×m

(∥PX − PY ∥2F − ∥X − Y ∥2F )2,
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where ∥ · ∥F denotes matrix frobenius norm. By introducing the matrix notation, we then

explicitly write out the overall objective function without the sampling. We can further

denote Z = X − Y . Z matrix then denotes all possible pairs of vector difference from our

original distribution. The objective function can then further be written into:

argmin
P∈Rr×m

(∥PX − PY ∥2F − ∥X − Y ∥2F )2

= argmin
P∈Rr×m

(∥PZ∥2F − ∥Z∥2F )2

= argmin
P∈Rr×m

(∥PUzSzV
T
z ∥2F − ∥UzSzV

T
z ∥2F )2,

where UzSzV
T
z denotes the SVD decomposition of Z. By the basic properties of SVD de-

composition, we know that ∥UzSzV
T
z ∥2F = ∥Sz∥2F as Uz and Vz are unitary matrices. ∥Sz∥2F

equals sum of square of singular values of Z. Similarly, ∥PUzSzV
T
z ∥2F = ∥PUzSz∥2F . Thus

it’s not hard to see that the objective function is to find a projection direction which will

result the minimal difference between the projected Sz and full sum of squared eigenvalues

of Sz. Thus, the optimal answer is the top r directions as of columns of matrix Uz as it will

cancel out the top r square of eigenvalues of Sz which happens to be the largest ones.

The remaining thing is to show that SVD of Z is essentially the same as SVD of Dres.

Notice that both X and Y are just duplicating and re-ordering of Dres. So both X,Y share

the same basis of Dres. Denote SVD results of Dres = USV T . We can then represent

X = USV T
x and Y = USV T

y . Consequently, we can also represent the SVD of Z as Z =

X − Y = USV T
x − USV T

y = US(Vx − Vy)
T so we can see that it shares the same basis as

Dres and the proof is complete.

Distribution Matching In addition to efficient low-rank estimation of angles, we further

propose a distribution matching method to improve the performance. Despite as discussed in

Section 7.3.2 that angles between neighbouring residual vectors tend to be distributed alike

Gaussian, this attribute only partially transfers to the distribution of angles approximated
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Figure 7.4: Illustration of Distribution Matching. In the left column, we show correct angle
distributions of FashionMNIST-60K-784 and SIFT-1M-128. In the right column, we show angles
of neighbouring residual pairs calculated by low-rank approximation (r = 16). Our goal is to
transform approximated results (in red) into real ones (in green).

by low-rank computations as shown in Figure 7.4. Although the approximated distribution

still looks alike Gaussian, its distribution is slightly skewed. Furthermore, its mean is shifted

and its variance is larger than the real data distribution. To mitigate this, we propose to

transform the approximated distributions into real data distributions by matching their mean

and variance. Formally, assume angles of neighboring residual vectors follows a Gaussian

distribution N (µ, σ), and the approximated angles distributes as N (µ̂, σ̂). Given a residual

pair x and y with a low-rank projection matrix P , we can calculate the approximated angle

t̂ = cos(Px, Py). Under our assumption that it comes from a draw of N (µ̂, σ̂), the value

can be transformed by t = (t̂ − µ̂)σ
σ̂

+ µ. The transformed angle estimation t then follows

N (µ, σ) as desired. Parameters µ, σ, µ̂, σ̂ can be estimated by using training data.
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Overall Algorithm Construction of FINGER can be summarized in Algorithm 7.2. Our

aim is to provide a generic acceleration for all graph-based search. Thus, we can build the

search index from any existing graph G. FINGER first iterates through all nodes in the

graph. For each node, FINGER samples a pair of distinct nodes from its neighbors. In

addition, we also calculate the residual vector of one sampled point and store it for later

usage. We hypothesize the collected residual vectors Dres spans the residual space, and we

can find its optimal low-rank approximation by SVD. Once the low-rank projection P is

ready, we can estimate the mean and variance of angle distribution and approximated distri-

bution respectively (i.e., line 9, 10 in Algorithm 7.2). Certainly, this distribution matching

scheme would still produce error. We further compute the average L1 error between real

and approximated angles to serve as an error correction term. With this information saved

in a search index, Algorithm 7.3 approximates the distance between a query q and a data

point d. Notice that we explicitly write out the projection matrix P and center node c in

Algorithm 7.3 to make it easier to understand the full approximation workflow. In practice,

the projected residual vector Pdres can be pre-computed and stored.

Detailed computation of Approximate Distance As mentioned in the main text,

we explicitly write out the projection matrix P and center node c in Algorithm 7.3 to make

it easier to understand the full approximation workflow. In practice, the projected residual

vector Pdres can be pre-computed and stored in the search index to save inference time.

Pqres can also be easily calculated by

Pqres = P (q − qproj) = Pq − Pqproj = Pq − cT q

cT c
Pc.

Pq needs only be calculated once for whole graph search so the cost is limited when the rank

r is not large. As we point out in Section 7.3.1, cT q must already be calculated when we

explore neighbours of c. cT c and Pc can again be pre-computed and stored. Thus, the cost of

Pqres is limited to a low-dimensional vector subtraction. To apply FINGER, we only need to

slightly modify Algorithm 7.1. Specifically, we replace distance function dist(n,q) in line 5 of

113



Figure 7.5: Experimental results of graph-based methods. Throughput versus Recall@10 chart
is plotted for all datasets. Top row presents datasets with L2 distance measure and bottom row
presents datasets with angular distance measure. We can observe a significant performance gain of
FINGER over all existing graph-based methods.

Algorithm 7.1 with the approximation (i.e., Algorithm 7.3). If the approximated distance is

larger than the upper-bound variable, the search continues. Otherwise, we calculate precise

distance between q and d and update the candidate queue correspondingly. This will make

sure that all distance information in candidates set C is correct so the algorithm won’t

terminate too early. The complete modified algorithm is listed in the Supplementary B.2,

and the selection of rank r is discussed in Supplementary B.4.

7.4 Experimental Results

7.4.1 Experimental Setups

Baseline Methods We compare FINGER to the most competitive graph-based and

quantization methods. We include different implementations of the popular HNSW methods

such as NMSLIB [105], n25, PECOS [163] and HNSWLIB [105]. Other graph construction

5https://github.com/kakao/n2/tree/master
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methods include NGT-PANNG [140] , VAMANA(DiskANN) [69] and PyNNDescent [37].

Since our goal is to demonstrate FINGER can improve search efficiency of an underlying

graph, we mainly include these competitive methods with good python interface and docu-

mentation. For quantization methods, we compare to the best performing ScaNN [56] and

Faiss-IVFPQFS [74]. In experiments, we combine FINGER with HNSW as it is a simple

and prevalent method. The implementation of HNSW-FINGER is based on a modification

of PECOS as its codebase is easy to read and extend. Pre-processing time and memory

footprint are discussed in the Supplementary B.5.

Algorithm 7.2: Construction of FINGER

Input: graph G = (D,E), rank r

Output: projection matrix P and distribution parameters µ, σ, µ̂, σ̂, ϵ

1 Dres = {}, S = {} for c ∈ D do

2 Sample d,d′ ∈ neighbors of c and add it to S

3 Calculate dres, Dres.add(dres)

4 Calculate SVD U, S, V = SVD(Dres)

5 P = UT
1:r, X = {}, Y = {}

6 for pair d, d′ ∈ S do

7 X.add(cos(d,d′)), Y.add(cos(Pd,Pd′))

8 N = size of X,

9 µx = 1
N

∑
x∈X

x, σx = 1
N

∑
x∈X

(x− µx)2 ,

10 µy = 1
N

∑
y∈Y

y, σy = 1
N

∑
y∈Y

(y − µy)
2

11 ϵ = 1
N

N∑
i=1

∣∣∣(Yi − µy)
σx

σy
+ µx −Xi

∣∣∣
12 return P , µ, σ, µ̂, σ̂,ϵ
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Figure 7.6: Results of ablation studies on FashionMNIST-60K-784 and GLOVE-1.2M-100. (a)
and (b) show approximation error(%) vs effective number of full distance calls. FINGER achieves
smaller error than RPLSH. (c) and (d) show recall@10 vs effective number of full distance calls.
FINGER achieves higher recalls.

Algorithm 7.3: Approximate Distance Function

Input: query q, projection matrix P , center node c, data point d ∈ neighbors of c,

distribution parameters µ, σ, µ̂, σ̂, ϵ

Output: t, the approximated distance between q and d

1 compute qres and dres with c and Eq. 7.1

2 compute t̂ = cos(Pqres, Pdres)

3 t = (t̂− µ̂)σ
σ̂

+ µ, t = t + ϵ, return t

7.4.2 Improvements of FINGER over HNSW

In Figure 7.5, we demonstrate how FINGER accelerates the competitive HNSW algorithm

on all datasets. Since FINGER is implemented on top of PECOS, it’s important for us to

check if PECOS provides any advantage over other HNSW libraries. Results verify that

across all 6 datasets, the performance of PECOS does not give an edge over other HNSW

implementations, so the performance difference between FINGER and other HNSW imple-

mentations could be mostly attributed to the proposed approximate distance search scheme.

We observe that FINGER greatly boosts the performance over all different datasets and

outperforms existing graph-based algorithms. FINGER works better not only on datasets

with large dimensionality such as FashionMNIST-60K-784 and GIST-1M-960, but also works

for dimensionality within range between 96 to 128. This shows that FINGER can accelerate

the distance computation across different dimensionalities. Results of comparison to most
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Figure 7.7: Comparisons to competitive quantization methods. Throughput versus Re-
call@10 chart is plotted for three datasets. We can observe each method has its pros and
cons and there is no single method which performs best on all datasets.

competitive graph-based methods are shown in Figure B.1 of the Supplementary B.3. Briefly

speaking, HNSW-FINGER outperforms most state-of-the-art graph-based methods except

FashionMNIST-60K-784 where PyNNDescent achieves the best and HNSW-FINGER is the

runner-up. Notice that FINGER could also be implemented over other graph structures

including PyNNDescent. We chose to build on top of HNSW algorithm only due to its sim-

plicity and popularity. Studying which graph-based method benefits most from FINGER is

an interesting future direction. Here, we aim at empirically demonstrating approximated dis-

tance function can be integrated into the greedy search for graph-based methods to achieve

a better performance.

7.4.3 Ablation Study

We conduct an ablation study to see the effectiveness of each component of FINGER. First,

we compare FINGER to the popular random projection locality hashing (RPLSH) for angle

estimation. Since we have greatly optimized C++ implementation of FINGER, a direct

comparison on wall-clock time won’t be fair. Instead, we compare two schemes by counting

the effective number of distance function calls. We collect the number of full distance calls

and approximate distance calls separately, and combine them into an effective number of

distance calls. For example, if we call full m-dimensional distance a times and b times

of r-dimensional approximate computations, we would have an effective distance calls of
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a + b r
m

times. We firstly analyze estimation quality by approximation error defined as |t−t̂|
|t|

where t is the true cosine angle value and t̂ is the approximated value. Ideally, we could

expect a better approximation scheme results in a smaller approximation error. Certainly,

a smaller approximation doesn’t necessarily yield better recall. Thus, we will also analyze

the performance based on recall. Results of trade-off between approximation error (%) and

effective number of distance calls are shown in Figure 7.6(a) for FashionMNIST-60K-784

and 7.6(b) for GLOVE-1.2M-100. Corresponding results of recall vs effective distance calls

are shown in Figure 7.6(c) and 7.6(d). We can see FINGER achieves smaller approximation

errors compared to RPLSH on both datasets, which shows that FINGER is indeed a better

low-rank approximation given data distribution. We also observe smaller approximation

error transfers to higher recalls on both datasets. In addition, we apply distribution matching

on RPLSH and found out this will greatly improve RPLSH. This shows distribution matching

is a generic method that improves the performance of all different angle estimation methods.

But even with the aid of distribution matching, RPLSH cannot achieve similar performance

as FINGER and this shows the superiority of SVD results. Since FINGER consists of a

low-rank approximation module plus a distribution matching module, we are interested in

studying their own effectiveness. We conduct similar analysis on full method and low-rank

only version of FINGER shown in Figure 7.6. Low-rank approximation alone still provides a

much better angle estimation compared to RPLSH. Even without the distribution matching

scheme, low-rank angle estimation outperforms RPLSH with distribution matching. We also

observe limited difference between FINGER and FINGER without distribution matching

in FashionMNIST-60K-784. However, the difference is more significant when it comes to

GLOVE-1.2M-100 which still shows effective distribution matching.

7.4.4 Comparison to Quantization Results

In addition to graph-based method, we are also interested in seeing the performance of

HNSW-FINGER compared to the state-of-the-art quantization methods. Results of com-

parisons to quantization methods are shown in Figure 7.7. As we can observe, there is no
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single method achieving the best performance over all tasks. Faiss-IVFPQFS performs well

on NYTIMES-290K-256 but fails on DEEP-10M-96. ScaNN performs consistently well on all

datasets but it doesn’t achieve top performance on anyone. HNSW-FINGER performs com-

petitively on GIST-1M-960 and DEEP-10M-96 but worse on NYTIMES-290K-256. These

results showed that quantization provides some advantages over graph-based methods but

the advantage is not consistent across datasets. Studying how to combine the advantage

of quantization methods with FINGER and graph-based methods is an interesting future

direction.

7.5 Summary

In this work, we propose FINGER, a fast inference method for graph-based AKNNS. FIN-

GER approximates distance function in graph-based method by estimating angles between

neighboring residual vectors. FINGER constructs low-rank bases to estimate residual angles

and use distribution matching to achieve a better precision. The approximated distance can

be used to bypass unnecessary distance evaluations, which translates into a faster searching.

Empirically, FINGER on top of HNSW is shown to outperform all existing graph-based

methods.

This work mainly focuses on accelerating existing models with approximate computa-

tions. It doesn’t directly touch any controversial part of the data and thus it’s unlikely

providing any negative social impact. When used correctly with positive information to

spread. It can help to accelerate the propagation as the work accelerates the inference

speed.
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CHAPTER 8

Conclusion

8.1 Summaries

This thesis focused on two pillars of efficient machine learning, namely model size reduction

problem and inference time speedup problem. This thesis explores a number methods to

achieve fundamental efficient machine learning. These methods share certain similarities

and thus We can draw some general conclusions and summarize as follows.

Firstly, data distribution is extremely useful to tackle the efficient machine learning

problem. In particular, ”data distribution” doesn’t restrict to using underlying data in-

put directly, it refers to various type of features dependent on the input so the applicability

Through the thesis, we have shown both explicit distribution such as frequency information,

and implicit information such as clusters learned from latent vector spaces.

Second, efficient machine learning is hardware dependent. The design of efficient ma-

chine learning will require a software hardware co-design. We illustrated in this thesis that

many operations are algorithmically simple but require special hardware to achieve the de-

sired speed. On the other hand, certain methods such as sparse pruning will destruct the

computational structure such that certain hardware related acceleration will become unavail-

able. Therefore, we have to understand the characteristic of the underlying hardware before

choosing the tool to solve the efficient machine learning problem.

Third, we might not be able to achieve both model reduction and inference time speedup

simultaneously. We have illustrated this important conclusion in chapter 6. Thus, it’s

important to consider the most important factor in advance when solving efficient machine
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learning problems. We also provide a generic method to achieve both attributes in the same

time: the low-rank based methods. By using data-aware low-rank approximation, we can

get the model size greatly reduced and enjoy the corresponding speedup in inference stage.

Last, the applicability of data distribution based methods is fairly general. We demon-

strated that the technique can be applied to various scenarios including data mining, infor-

mation retrieval, natural language processing and recommender systems. We could expect

that more domains have this characteristics.

8.2 Limitations

Despite that we have discussed many aspect of efficient machine learning, there are still

certain parts of the topics we didn’t cover. In addition, some of the discussed methodologies

are not immediately applicable to all situations. We summarize some limitations of the thesis

as follows.

First, this thesis doesn’t discuss the energy consumption issues. Although, energy usage

is greatly related to the inference time, there is no guarantee that a faster inference would

always leads to a small energy consumption. In addition, energy consumption is mostly

measured at a larger scale (e.g., server clusters), the effect of inference time speedup might

only be one of influencing factors so we can’t simply draw any conclusions just based on the

inference time results.

Second, this thesis mostly focused on inference stage only. In modern machine learning

community, using tens or hundreds of GPUs to train the model is not uncommon. Even

worse, many models are based on hyper-parameter tuning which is build on multiple rounds

of trail-and-error. This leads to a significant training time and energy consumption. To really

achieve the efficient machine learning, we also need to consider the training time usage. But

this topic is not covered in the thesis which is a great limitation.

Third, most part of the thesis requires data dependent information. To obtain this

information, we might have to add many codes in the state-of-the-art implementations of
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latest machine learning libraries. This task is challenging and currently there is no automated

way of obtaining this. Therefore, the applicability is limited as to apply these methods, it

requires some experts who are good at both machine learning libraries and machine learning

algorithms. This might not be practical for certain industries or application domains.

8.3 Future Work

Following issues are plans for immediate future works which could either resolve above lim-

itations or push the existing methods further.

First and foremost, I plan to expand the methods into training phase. As we mentioned

above, the training phase usually costs a lot of energy. To really achieve efficient machine

learning, considering the training energy preservation is also important. Could we leverage

the latent structures appeared in the early phase of training becomes an interesting direction

to explore in future.

Second, it’s interesting to keep exploring different types of compressing methods. In

particular, tensor-based decomposition methods, a generalization of low-rank approximation,

could be an interesting object to study. We could be expecting tensor-based method to

possess similar properties as low-rank methods which enjoy both compression and speedup.

Tensor-based methods also have the potential to achieve a much better compression due to

its more compact representation.

Third, the thesis focused on the discussion of efficient machine learning ”models”. Whereas,

data is assumed to be fixed once it’s given. It’s possible that within data, there are already

rich structures that we could exploit. Discussion of efficient machine learning via data com-

pression is also an attractive way to resolve the problem. The interactions between exploiting

data and exploiting model could also lead to better solutions to achieve efficient machine

learning.
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APPENDIX A

Appendix in Data-aware Low-rank Approximation

A.1 An algorithm to Search of Ranks under DRONE

The input to Algorithm 6.2 consists of training data, the model with all parameters of weight

matrices and original training loss. In addition, a pre-defined search grid is also necessary.

Taking W ∈ R768×768 as an example, we can perform a grid search for a proper low rank

k over [1, 768] such as {96, 192, 288, 384, . . . , 768}. The finer the grid, the more compressed

model we could get at the cost of longer running time of the DRONE method. With these

input parameters, we firstly distribute the total allowed loss into each individual module.

We then iteratively apply Algorithm A.1 following the computational sequence illustrated

in Figure 4.1. For each module, we search the rank k by going through the grid. If the

approximated result will not increase the allowed loss increase ratio of the component, we

will end the search and tie the found rank to the component and move on. The procedure

will continue until all components are compressed. The whole process could guarantee us

that the final loss L′ of the compressed model M̂ would not be greater than (1 + r)L, where

L is the original loss before approximation.

A.2 Efficiency and Efficacy Trade-off Graph

In this paper, we mentioned that we report the result of 3% accuracy drop as the perfor-

mance of the baseline methods and DRONE. However, as we mentioned above that all the

approximation methods need to consider efficiency and efficacy trade-off. 3% is chosen ac-

cording to the literature. Here, we show two exemplar graph on MRPC and SST-2 task to
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Algorithm A.1: Overall Low-rank Model Approximation Algorithm

Input: training data Dtrain, original weight matrix W . prediction Model M , total
allowed loss increase ratio r, Observed inference time E, Search grids of
ranks for each module G, original Training loss L;

Output: Low-rank Model M̂
1 # Distribute allowed ratio r into each module by E ;
2 Emin ← argminl,i El,i ;

3 El,i ← El,i

Emin
;

4 Eb ← exp( log(1+r)∑
l,i El,i

) ;

5 Rl,i ← E
El,i

b − 1 ;
6 for l = 1, · · · , total layers do
7 for module mi ∈Ml do
8 Wl,i ← l-th layer parameter of module mi ;
9 (e.g., 2nd feed-forward matrix in first layer.) ;

10 for i = 1, · · · , |Gl,i| do
11 k ← Gl,i ;
12 U, V ← Algorithm A.1 (k,Dtrain,Wl,i,M) ;

13 M̂ ←M with Wl,i replaced by U, V . ;

14 Evaluate new loss Lnew = M̂(Dtrain) ;
15 if Lnew/L < 1 + Rl,i then

16 M ← M̂ ;
17 break; ;

demonstrate two facts. First, it’s indeed a trade-off between the efficiency and efficacy as the

speedup ratio goes higher at the cost of lower accuracy. Second, we want to point out that

this trade-off relationship is not linear, and different task might have different characteristics.

Thus, in the real application, users need to decide what’s the best cutoff to use. We also

want to point out that this 3% accuracy drop comparison is fair to all baseline methods. We

could have chose another cutoff like 1% accuracy with lower speedup ratio to report, but

this won’t help too much when comparing different baseline methods.

Figure A.1: Illustration of efficiency and efficacy trade-off. Each point in this graph repre-
sents a specific ratio of training loss increase after approximation.
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A.3 Detailed results

A.3.1 LSTM result

A 2-layer LSTM model is composed of two large matrices layers and one large softmax

layer. Additional processing time includes applying activation functions, softmax function

and computing the updated hidden representation. The detailed inference time in each layer

is summarized in Table A.1. We could observe that the overhead of the computation will be

greatly incurred on GPU. Thus, despite the matrix is much smaller and well approximated

by DRONE, the overall acceleration on GPU is less.

A.3.2 Transformer result

For BERT models, we use BERT-base models and it contains 12 layers of the same model

structure without sharing parameters. Each layer contains an attention module with hidden

size 768 and 12 channels, a small 768× 768 Feed-forward (FF) layer followed by 2 larger FF

layers (768× 3072 and 3072× 768). As shown in Figure 4.1, these four components consume

the most computational time in the BERT-base models. The detailed average inference time

of each module is summarized in Table A.2 for CPU and Table A.3 for GPU. There are two

important points to note.

Firstly, we could see that attention module is not the bottleneck at all under the normal

size of context (128). Therefore, many works on accelerating attention module alone would

not improve the overall inference time of the module except a very long sequence appears.

The necessity of the long sequence is out of the domain of this paper and what we want to

show is that the proposed DRONE would work on both attention and feed-forward layer,

which collectively could accelerate the real(overall) inference time.

Secondly, we could observe that the FF2 layer could be accelerated most. A plausible

reason could be that the input dimension to the FF2 layer is in a larger dimension (3072)

than all the other layers (64 or 768). When the input distribution actually lies in a lower-

dimensional space, there is much more room for FF2 layer to be compressed and accelerated
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by the data-aware low-rank method.

Table A.1: The average inference time of each component in the model of 2-layer LSTM
model. Both proposed methods and SVD use same ranks so the inference time is approxi-
mately the same. The unit is in millisecond and the number in parenthesis shows the ratio
respective to the overall inference time.

Device Models LSTM-1 LSTM-2 Softmax Others Total Time Perplexity
PTB-Large 1.27ms 1.30ms 1.09ms 0.13ms 3.79ms 78.32

PTB-Large-SVD - - - - - 81.09
CPU PTB-Large-SVD-Retrain - - - - - 80.89

PTB-Large-FINGER - - - - - 80.87
PTB-Large-FINGER-Retrain 0.24ms 0.34ms 0.42ms 0.11ms 1.11ms(3.4x) 79.01

PTB-Large 0.019ms 0.018ms 0.015ms 0.32ms 0.11ms 78.32
PTB-Large-SVD - - - - - 81.09

GPU PTB-Large-SVD-Retrain - - - - - 80.89
PTB-Large-FINGER - - - - - 80.87

PTB-Large-FINGER-Retrain 0.01ms 0.01ms 0.015ms 0.055ms 0.09ms(1.2x) 79.01

Table A.2: The detailed average inference time (in milliseconds) on CPU of each component
in the model by retrained DRONE.

Tasks Self-Attention Feed-Forward 0 Feed-Forward 1 Feed-Forward 2 Others Total Time
MNLI 122.7 19.5 78.5 46.1 4.2 271.0
QQP 131.5 29.9 99.2 66.5 5.8 333.0
SST-2 100.5 24.7 79.3 54.5 4.5 263.5
QNLI 128.3 28.4 111.0 79.0 5.9 352.6
MRPC 82.6 12.8 89.4 38.2 2.4 225.4
RTE 116.0 25.6 85.4 62.3 3.4 292.7
CoLA 108.2 22.7 93.1 70.8 3.4 298.2
STS-B 109.1 19.3 90.8 53.0 4.0 276.2
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Table A.3: The detailed average inference time (in milliseconds) on GPU of each component
in the model by retrained DRONE.

Tasks Self-Attention Feed-Forward 0 Feed-Forward 1 Feed-Forward 2 Others Total Time
MNLI 0.94 0.26 0.76 0.60 0.003 2.56
QQP 0.92 0.24 0.64 0.52 0.001 2.32
SST-2 0.85 0.25 0.59 0.52 0.005 2.22
QNLI 0.91 0.25 0.72 0.60 0.001 2.48
MRPC 0.89 0.22 0.57 0.43 0.001 2.11
RTE 1.02 0.29 0.60 0.59 0.008 2.51
CoLA 0.93 0.25 0.68 0.61 0.002 2.47
STS-B 0.83 0.2 0.57 0.42 0.002 2.02

A.4 Combination with Quantization Methods

Distillation in practice achieves the STOA without extra hardware accelerator, so it serves

as a good target to show how DRONE can be combined with other methods. The benefit of

quantization/pruning can only be shown when a ASIC/FPGA accelerator is provided. Since

we don’t have one, we can’t only use the software to simulate. We can apply any Quantization

scheme and empirically show combined method can achieve a competitive accuracy with

lower bit bandwidth. Algorithmically, we combine DRONE with vanilla quantization with

fixed precision which gets 87.5 (vs 89.5 on MRPC) and 51.0 (vs 53.4 on CoLA) with 12

bits(vs 32 bits). Thus we can hypothesize that with the hardware accelerator, there could

be at least further 3x speedup when DRONE is combined with Quantization methods.

A.5 An example of ranks used in SST-2

Below are the ranks obtained by performing DRONE in SST-2 dataset. The order is from

the bottom layer to the top layer. Full rank of all the matrices are 768.

Attention layer: [192, 384, 192, 768, 768, 192, 768, 768, 192, 192, 768, 192],

Feed-Forward 0 : [288, 768, 96, 192, 288, 192, 768, 768, 96, 96, 288, 96],

Feed-Forward 1: [96, 96, 768, 768, 288, 288, 768, 768, 96, 96, 288, 96],
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Feed-Forward 2 : [192, 192, 768, 288, 768, 768, 768, 192, 96, 192, 96, 96].
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APPENDIX B

Appendix in Fast Graph-base Approximate Nearest

Neighbor Search by Local Data Information

B.1 Formulation of Inner-product

In the main text, we presented derivation of L2 distance, and in this section we will derive

the approximation for inner-product distance measure. Notice that angle measure can be

obtained by firstly normalizing data vectors and then apply inner-product distance and thus

the derivation is the same. For a query q and data point d, inner-product distance measure

is Dist = qTd. Similar to L2 distance, we can apply the same decomposition to write

q = qproj + qres and d = dproj + dres. substituting the decomposition into distance definition,

we have

Dist = qTprojdproj + qTresdres.

As in L2 case qproj and dproj can be obtained by simple operations and the remaining un-

certainy term is again qTresdres. Therefore, in inner-product case, angle between neighboring

residual vectors is still the target to approximate.
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B.2 Approximate Greedy Search Algorithm

Algorithm B.1: Approximate Greedy Graph Search

Input: graph G, query q, starting point p, distance function dist(), appxoaimate

distance function appx(), number of nearest points to return efs

Output: top candidate set T

1 candidate set C = {p}
2 dynamic list of currently best candidates T = {p}
3 visited V = {p}
4 while C is not empty do

5 cur ← nearest element from C to

6 ub ← distance of the furthest element from T to q (i.e., upper bound of the

candidate search)

7 if dist(cur, q) > ub then

8 return T

9 for point n ∈ neighbour of cur in G do

10 if n ∈ V then

11 continue

12 V.add(n)

13 if #updates of cur ¿ 5 times then

14 e = appx(n, q)

15 else

16 e = dist(n, q)

17 if e ≤ ub or |T | ≤ efs then

18 update distance to be dist(n,q)

19 C.add(n)

20 T.add(n)

21 if |T | > efs then

22 remove furthest point to q from T

23 ub ← distance of the furthest element from T to q (i.e., update ub)

24 return T
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Figure B.1: Experimental results of graph-based methods. Throughput versus Recall@10
chart is plotted for all datasets. Top row presents datasets with L2 distance measure and
bottom row presents datasets with angular distance measure. We can observe a significant
performance gain of HNSW-FINGER over existing graph-based methods.
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B.3 Complete Comparison of Graph-based Methods

Complete results of all graph-based methods are shown in Figure B.1. HNSW-FINGER

basically outperforms all existing graph-based methods except on FashionMNIST-60K-784

where PyNNDescent performs extremely well. In principle, FINGER could also be applied

on PyNNDescent to further improve the result. Results show that currently no graph-based

methods completely exploits the training data distribution. This reflects the importance of

the inference acceleration methods as FINGER that can create consistently faster inference

on all underlying search graph. Making a search graph maximally suitable for applying

FINGER is also an interesting future direction.

B.4 Selection of Rank Parameter r

Under ANN-benchmark protocol, we could have made the selection of rank r in FINGER

as a hyper-parameter to search in order to achieve best performance. But this might be

time-consuming for real applications. Instead, here we provide a practical rule of thumb for

choosing r by calculating the correlation coefficient of X, Y in Algorithm 7.2. X stores true

angles between neighboring pairs and Y stores approximated angles. We start r to be 8 in

order to maximally leverage SIMD. Specifically, AVX2 SIMD allows a single instruction with

8 parallel floating point computation. Increase the rank in a multiple of 8 will maximally

leverage the capability of SIMD instructions. Now, if the correlation is smaller than 0.7, we

enlarge r by 8 and redo Algorithm 7.2 again with increased r until correlation between X

and y is larger than 0.7. In this work, to show the effectiveness of applying FINGER in read

world applications, we use this search scheme and ranks learned in FashionMNIST-60K-784:

16, SIFT-1M-128: 16, GIST-1M-960: 16, NYTIMES-290K-256: 48, GLOVE-1.2M-100: 32

and DEEP-10M-96: 24.
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Table B.1: Construction statistics of HNSW-FINGER and HNSW. Pre-processing time in
second is shown in the table. Numbers in parentheses represent the memory footprint in
GB.

Dataset M HNSW-FINGER HNSW(PECOS)

SIFT-1M-128
12 291.5s (2.8G) 215.4s (1G)
48 521.4s (9.2G) 433.9s (2.4G)

GLOVE-1.2M-100
12 386.2s(4.8G) 300.1s (1.1G)
48 1409.8s (18G) 1317.3s (2.7G)

B.5 Pre-processing Time andMemory footprint of HNSW-FINGER

and HNSW

Examples of pre-processing time and memory footprint of HNSW-FINGER and HNSW is

shown in Table B.1. FINGER requires additional linear scan of training data, so it will add

some additional processing time to the base method. The difference is around 90 seconds

which is not significant compared to the pre-processing time of base HNSW method. Memory

usage of HNSW is approximately memory of data plus number of edges |E| × sizeof(int). For

a selected low-rank dimension r, FINGER requires additional (r + 2) ×—E— × sizeof(float)

to store the pre-computed values.
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[19] M. Cettolo, J. Niehues, S. Stüker, L. Bentivogli, and M. Federico, “Report on the 11th

iwslt evaluation campaign, iwslt 2014,” in Proceedings of the International Workshop

on Spoken Language Translation, Hanoi, Vietnam, 2014. 20, 32, 48

[20] M. S. Charikar, “Similarity estimation techniques from rounding algorithms,” in

STOC, 2002, pp. 380–388. 102, 103, 108

[21] C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Koehn, and T. Robinson,

“One billion word benchmark for measuring progress in statistical language modeling,”

arXiv preprint arXiv:1312.3005, 2013. 20

[22] D. Chen, Y. Li, M. Qiu, Z. Wang, B. Li, B. Ding, H. Deng, J. Huang, W. Lin,

and J. Zhou, “AdaBERT: Task-adaptive BERT compression with differentiable neural

architecture search,” arXiv preprint arXiv:2001.04246, 2020. 79, 82
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