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Abstract

Electrical Transport in Nanoscale Semiconductors: A Quantum Transport Approach

by

Sangwook Kim

Doctor of Philosophy in Engineering - Materials Science and Engineering

University of California, Berkeley

Professor Ramamoorthy Ramesh, Chair

As predicted by the International Roadmap for Semiconductors, III-V metal-oxide semi-
conductor field-effect transistors(MOSFETs) are the prime candidates for the 7-nm node
and beyond owing to their high mobilities. However, several challenges need to be overcome
before III-V materials can replace silicon in extremely scaled devices. As the size of semi-
conductor devices enters into the nanoscale regime, it is important to understand quantum
mechanical effect in electron transport because quantum mechanical effects such as micro-
scopic scattering, quantum mechanical tunneling, carrier confinement and interference effects
play a crucial role. We have investigated quantum transport properties of III-V and silicon
in nano-scale devices using the non-equilibrium Greens function (NEGF) formalism coupled
with a 20 orbital sp3d5s∗-SO tight-binding model. A mode space NEGF approach combined
with the full-band WKB model has been introduced to calculate band-to-band tunneling
current under the valence band where an atomistic full-band NEGF approach provides a
zero current. Self-energy functions for carrier scattering have been implemented within the
mode space NEGF formalism to instigate the influence of microscopic scattering effects on
quantum transport. This approach has been benchmarked by comparing the scattering rates
obtained from Fermis golden rule which is widely used in traditional semi-classical calcula-
tions. The scattering model is used to study the role of phonon scattering and surface rough-
ness scattering on the carrier transport characteristics of Si and III-V channel devices. In
the presence of the electron-phonon interactions, the drain current decreases compared with
its ballistic limit, and the current reduction ratio increase as the channel length increases.
Effects of indium mole fraction and source/drain doping density (NSD) on the performance
of nanoscale III-V MOSFETs are explored and their performance is compared with that of
Si transistors. For III-V’s, we have found an optimum indium mole fraction and NSD that
maximize the Ion/Ioff ratio and Ion by balancing injection velocity and short channel effect.
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Chapter 1

Introduction

1.1 Overview

Outstanding progress in information technology is attributed to the development of the
silicon-based complementary metal oxide semiconductor (CMOS) field-effect transistor(FET)
technology [1]. For more than 40 years, continuous transistor scaling has continued pushing
towards smaller and smaller devices in an effort to obtain higher computing power and lower
power consumption of integrated circuits. However, as scaling of metal-oxide-semiconductor
FETs (MOSFETs) approaches the 10 nm-node, it faces fundamental technical issues regard-
ing power consumption, fabrication (especially lithography), physics and chip costs [2, 3].
Among them, high power consumption owing to high leakage current and saturated supply
voltage at around 0.8 - 0.9 V is the largest problem of Si based CMOS technology [4]. In
order to continue the scaling of MOSFETs and maintain the historic progress in informa-
tion processing and transmission, new strategies such as innovative device structures, new
materials and new device operation mechanisms are required. Among the various candidate
material for the next-generation CMOS technology, III-V compound semiconductors have
found significant interest due to their high mobility [5, 6] (Fig. 1.1a). Since the On-current
for nanoscale FETs is determined by the product of the injection velocity and the charge den-
sity, the high injection velocity of III-V materials could provide high on-current at a lowered
supply voltage compared Si FETs (Fig. 1.1b). Since experimental research of various III-V
materials in nanoscale MOSFETs is extremely vast and complex, modeling and simulation
could help predict important design guidelines and understanding. So, the objective of this
dissertation is to develop a simulation framework capable of handling quantum transport
to understand and exploit the electrical transport properties of nanoscale semiconductor
devices. We also include effects of scattering in the simulation framework to study the influ-
ence of microscopic scattering mechanisms. We compare the electrical performance of III-V
materials with Si MOSFETs for future technology nodes. In section 1.2, the motivation for
III-V devices, current research and challenges are presented. In Sec. 1.3, quantum transport
models based on Non-equilibrium Greens function (NEGF) approach are reviewed. In Sec.
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(a) (b)

Figure 1.1: (a) Room temperature mobility of electrons (red) and holes (blue) in inversion
layers and quantum wells is shown as a function of the actual semiconductor lattice constant.
Ref. [5]. (b) Qualitative comparison of the influence of the channel materials. To achieve
the same Ion, the III-V MOSFET can be operated at a lower VDD,I I I−V than VDD,Si of the
supply voltage for Si MOSFET.

1.4, the outline of this thesis is presented.

1.2 Nanometer-scale III-V MOSFETs

For many years, III-V compound semiconductors have been used as channel materials for
high electron-mobility transistors (HEMTs) for high-speed and high-frequency applications
[5, 7]. For logic applications, however, the mature HEMTs intrinsically suffer from high
gate leakage because they use modulation doping in heterojunctions instead of using the
metal-oxide-semiconductor structure [8, 9]. On the other hand, there are two crucial issues
of InGaAs MOSFETs to achieve required performance: Fermi-level pinning and the high
parasitic resistance. The high interface trap density (Dit) caused by non-ideal bonding
or other defects at the semiconductor-oxide interface results in ‘Fermi-level pinning’ which
prohibits modulation of the electrostatic potential inside the semiconductor and generates
stability issues [10, 11]. So, research on III-V MOSFETs has been focused on improving
the channel-dielectric interface. Unlike Si-SiO2 interfacial states that can be passivated by
hydrogen, compound semiconductor surface states are not affected by such an approach.
Especially, oxidation of GaAs in an air environment generates near mid-gap interface state.
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(a) (b)

Figure 1.2: Performance comparison of inversion-type InGaAs MOSFETs and HEMTs versus
year. (a) Transconductance gm and (b) ON-resistance Ron. Ref. [7].

Density functional theory (DFT) simulations showed that surface oxidation in GaAs can
create non-ideal bonding such as As-As bonds, As dangling bonds, Ga vacancies resulting
in increased Dit [12, 13]. In 1995, Passlack, M. et al. showed that a low Dit was achieved
by in situ deposition of Ga2O3(Gd2O3) on GaAs with the molecular beam epitaxy (MBE)
technique [14]. This result suggested that III-V MOSFETs with unpinned Fermi level were
indeed possible and led many researchers to fabricate high quality dielectric/III-V interfaces
and understand Fermi-level pinning. Major progress occured in 2003 by using the atomic
layer deposition (ALD) technique. Ye, P. D. et al. showed that ex situ Al2O3 deposition
on GaAs with ALD also could reduce Dit [15]. This result was unexpected because ex
situ method usually creates a low-quality native oxide when GaAs exposed to the air. It
was found that most native surface oxides are eliminated during the early stages of the
ALD process, which is so-called “self-cleaning effect” [16]. Furthermore, subsequent high-k
dielectric deposition does not regrow the GaAs oxides. However, according to computational
simulation and analytical characterization, the interface between GaAs and ALD high-k
dielectrics still had several interfacial defects such as As-As dimer and Ga dangling bonds,
and their high defect density deteriorated device performance [13,17,18]. In order to deal with
this problem, there were various approaches such as pre- or post- deposition treatments, the
use of interfacial layers, modifications of the deposition chemistry and in situ ALD [19–22].
Another challenge to further improve III-V MOSFET performance is to reduce parasitic
resistance. First, silicide-like contacts have been investigated because they are promising
for device integration. Ni, Co, or Pd metals were alloyed with InGaAs at relatively low
temperature [23,24]. However, this approach showed inferior contact resistance values when
compared with silicide contacts. When InAs composition of InGaAs is higher than 70 %, the
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Fermi level location pins close to the conduction band edge resulting in very good contacts
with small contact resistances [25,26]. The ohmic contacts to n+ InGaAs using a refractory
metal such as Pd, Mo, and W also show low contact resistivity of around 1-2 Ωµm2. By
the efforts mentioned above, it has been observed that the InGaAs MOSFET characteristics
improved significantly as shown in Fig. 1.2 [7].

1.3 Quantum transport based on NEGF

Electron transport in semiconductors has received much attention since semiconductor de-
vices operate by controlling the flow of the electrons and holes through a device. Classically,
electrons and holes are treated as semi-classical particles with an effective mass in solids, and
transport properties of electrons in semiconductors were understood by the drift-diffusion
(DD) equation which is represented by J = nqµnE + qDn∇n [27]. When the device size is
smaller than 1 µm, the DD equation cannot predict non-local and hot-carrier effects owing
to rapid change of large electric field inside the semiconductor. So, it is necessary to use
the hydrodynamic model, which includes an additional balance equation for the average
carrier energy and modifies the current expression to be proportional to the gradient of the
carrier temperature. When the device size is smaller than 100 nm, moment-based solutions
to Boltzmann transport equation (BTE) start to lose validity with increase in electric field
strength and could result in spurious velocity peaks due to truncation of moments [28].
Therefore, we have to rely on the microscopic transport models. Within semi-classical ap-
proaches, the particle-based Monte Carlo method or solving the full-blown BTE itself are

Figure 1.3: Schematic of a one-dimensional device connected to two semi-infinite contacts.
Since the periodicity is broken by potential changes in the device, the wave function in the
device should be obtained by solving through NEGF formalism instead of eigenvalue problem
posed by the Schrödinger equation.
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the most popular approaches [29]. However, with the device size close to the thermal de

Broglie wavelength (λB = h/
√
(3m∗kBT) ≈ 10 nm for Si), the Boltzmann transport equation,

which treats electrons as semi-classical particles, is generally not valid anymore because esti-
mating the particle’s position exactly is impossible. Furthermore, in order to understand the
electronic transport problem properly, transport models should have the ability to capture
quantum effects such as interference effects, quantum mechanical tunneling and microscopic
scattering. Therefore, accurate and efficient simulation tools based on a quantum mechanical
formalism are necessary to interpret experimental results. All quantum transport models are
based on the Schrödinger equation, but directly solving the Schrödinger equation for a many
particle system is almost impossible. So, several methods have been introduced to address
this problem [30]. Among them, the Non-equilibrium Greens function method appears to
be appropriate for treating quantum transport in nanoscale semiconductors. The NEGF
formalism was developed in the 1960s by the works of Keldysh [31] and others [32–34] using
the methods of many body perturbation theory (MBPT) to solve nonequilibrium problems
in statistical physics. In the early 1970s, the general NEGF formalism for device current was
first presented [35,36]. The partitioning of an infinite system into device, and contacts, and
the derivation of the open boundary self-energies was presented in Ref. [37]. Datta, S. intro-
duced a different approach starting with the one-electron Schrödinger equation, which is used
by many in the nanoelectronics community [38, 39]. Within his approach [40], the NEGF
approach starts from the time-independent Schrödinger equation E{ψ} = H{ψ} and add two
terms representing the outflow and inflow from the contacts as E{ψ} = H{ψ} + Σ{ψ} + {S}.
These two terms arise from imposing open boundary conditions on the Schrödinger equation
with an incident wave from the contact. Using this modified Schrödinger equation, the wave
function can be written as {ψ} = [EI − H − Σ]−1{S}. The Greens functions can be defined
as G = [EI − H − Σ]−1. Device Hamiltonian H consists of kinetic energy (H0), reperesented
in some basis of choice and potential energy (U). The Greens function gives the response
of a system to a perturbation {S} in the Schrödinger equation. So, this NEGF approach is
identical to solving the Schrödinger equation for open quantum system.

In the NEGF formalism, the microscopic scattering processes can be taken into account
by self-energies which describe the potential felt by a carrier due to interaction with the
phonon bath [39]. Fig. 1.4 shows the schematic NEGF model with coupling to the phonon
bath. In the self-consistent field (SCF) regime, U in the Greens function can be calculated
through the self-consistent solution of the NEGF equations and Poisson’s equation. The
calculation procedure of this type of simulation using the NEGF formalism is summarized in
Fig. 1.5. From converged U, charge density and electrical current relations can be obtained
from the Greens function and self-energy of the contacts by using relations of ρ ∼ {ψ}{ψ}†

and I = q
dN
dt
= qTr

[
d
dt
ψψ†

]
[41].
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1.4 Outline of the dissertation

This dissertation is organized as follows. Chapter 2 describes necessity of atomistic modeling
for bandstructure and certain aspects related to using the tight-binding method including the
history of model development and the assumptions. The choice of an appropriate basis set to
accurately predict the full bandstructure for nanoscale semiconductors is discussed. We show
how the bandstructure changes when we confine a system within an ultra-thin-body (UTB)
geometry. Then, the non-parabolic effect of III-V semiconductors in the nanoscale structure
is explored. In Chapter 3, we show that commonly used quantum transport calculations using
the NEGF method could significantly underestimate the band-to-band tunneling current in
III-V MOSFETs. We show how failing to account for proper boundary conditions could
lead to insufficient filling of the body in a MOSFET under a typical Off condition. We
propose a numerically efficient method to include this leakage current. In chapter 4, we
present a 2D simulation framework for quantum transport including phonon and surface
roughness scattering. The scattering-NEGF framework is benchmarked with Fermi's golden
rule. Device simulation results of InAs UTB MOSFETs using NEGF with scattering models
for different device sizes are presented. The scattering effect on quantum transport in III-V
MOSFETs is analyzed and the scattering-limited low-field mobility and mean free path for
different scattering mechanisms are calculated. Chapter 5 looks into the bandstructure effect
and the effect of phonon scattering in Si UTB MOSFETs. We also obtain the phonon-limited
low field mobility by calculating total resistance with respect to different gate lengths. In
chapter 6, we investigate InxGa1−xAs short channel MOSFETs within the scattering-NEGF
framework. The effects of indium mole fraction and source/drain doping concentration are
explored. We also perform benchmarking against the same size Si MOSFET. A summary
and possible future work are discussed in chapter 7.

Figure 1.4: Schematic of NEGF model with coupling to the phonon bath.
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Figure 1.5: Flow chart illustrating the simulation procedure of the quantum transport in-
cluding scattering.
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Chapter 2

Electrical bandstructure of nanoscale
semiconductors

2.1 Introduction

The microscopic behavior of carriers in semiconductors is governed inherently by their band-
structure. Real part of bandstructure provides information on how the carriers are dis-
tributed in the energy and momentum space and how the carriers react to the external
electric fields. The imaginary part of bandstructure gives the rate at which wavefunction of
an electron decays within the bandgap [16]. The effective mass approximation (EMA) with
parabolic E-k relationship has been widely employed both in the semiclassical transport
model [42] [43] and in some studies employing a quantum transport treatment [44] [45] due
to the computational efficiency. However, in treating nanoscaled structure such as thin films
and nanowires, the traditional EMA starts to lose validity. The quantum size effect along
the confined direction generates discrete subbands with higher energies than the bulk band
edges and the bandstructure non-parabolicities increase the effective mass with decreasing
channel thickness (especially for the III-V semiconductor). Furthermore, the single band
model does not model the imaginary part of bandstructure that helps us to understand
the tunneling process of carriers between the conduction and valence bands. Thus, more
accurate electronic bandstructure calculation methods should be utilized to satisfy several
requirements to accurately capture nanoscale device physics. Among the variety of band-
structure calculation methods, we used a semi-empirical atomistic tight-binding approach
with 20 orbitals consisting of an sp3d5s∗ basis with spin-orbit coupling. This model is a
powerful atomistic model which can provide information about atomistic and orbital distri-
bution of charge in the semiconductor, non-parabolicity, subband energy levels as functions
of quantization, accurate E-k dispersion with different transport and growth orientation,and
complex bandstructures of nanoscale semiconductors [46] [47].

In this chapter, we will describe the features of the sp3d5s∗ nearest neighbor TB model
and show how the bandstructure changes when we confine a system within thin film. Then
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we will study the non-parabolic effect of III-V semiconductor in the nanoscale structure.
Finally, we discuss spin-orbit coupling and its effect on the energy levels in semiconductors

2.2 Semi-empirical Tight-binding model

There are two main categories of electronic band structure calculation methods: ab-initio
methods and semi-empirical methods. While the ab-initio methods such as Hartree-Fock or
Densitiy Functional Theory (DFT) are first principle calculations that do not need empirical
fitting parameter, the main drawback of ab-initio method is that they are computationally
expensive for even simple properties such as the electronic band gap. In contrast to ab-
initio method, the semi-empirical methods involve empirical parameters to fit experimental
data. They are easier to implement but their accuracy depends upon the number of fitting
parameters. The most popular methods of semi-empirical bandstructure calculation are
the empirical pseudopotential method, the k·p method and the tight-binding (TB) method.
Among the variety of semi-empirical bandstructure calculation methods, the TB method has
received considerable attention because it offers an intuitively simple accurate description
of the bandstructure in terms of chemical bonds and is appropriate for treating disorder
and strain at the atomic level. Contrary to pseudopotential approach, TB method starts
with assumption that the electrons are tightly bound to their nuclei as in the atoms. When
separations between atoms are close enough in solid, wave functions of electrons overlap
and can be approximated by linear combinations of the atomic wave functions. So, the
eigenstates of Hamiltonian can be expanded in a linear combination of atomic-like orbitals
(LCAO). In this method, the bandstructure can be defined in terms of overlap parameters
and these overlap parameters represent interactions between electrons on adjacent atoms [48].
When we expand the crystal Hamiltonian in the Bloch sum basis, there are three types of
Hamiltonian matrix elements: 1. On-site matrix element: Both orbitals and the potential
are located on the same atom. 2. Two-center matrix element (hopping integral): Two
orbitals located on different atoms and the potential is on one of these two atoms. 3. Three-
center matrix element: Each of the two orbitals and the potential are located at different
atoms. Slater and Koster [49] showed that general form of matrix element can be simply
expressed with two-center overlap energies for σ, π, or δ type and direction cosines of the
displacement vector between nearest atoms by assuming three-center matrix is much smaller
than two-center matrix element (two-center integral assumption).

In this work, we will not look at the mathematical details for the formalism of the
tight-binding theory. Readers interested in gaining further knowledge on the TB theory
should consult Ref. [39] and [48] for the detailed mathematics. Eventually, from Bloch’s
theorem, considering any particular lattice point n connected to its neighboring point m
with a coupling matrix [Hnm], the bandstructure can be calculated by solving a matrix
eigenvalue equation of the form

E(φ0) = [h(®k)](φ0) (2.1)
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where
[h(®k)] =

∑
m

[Hnm]ei®k ·( ®dm− ®dn) (2.2)

The size of matrix [h(®k)] is (b × b), where b is the number of basis orbitals per a primitive
unit cell. The summation over m in Eq.2.2 runs over all neighboring lattice points including
itself. For a simple example, we calculate the band structure of graphene sheet. The carbon
atoms of graphene layer are arranged in a hexagonal pattern as shown in the Fig. 2.1. The
two carbon atoms A and B are the crystal basis of primitive unit cell of graphene. The
periodicity of each lattice point can be described by ®R = m′ ®a1 + n′ ®a2 where m'and n'are
integers, ®a1 and ®a2 are the unit vectors which are defined as

®a1 = a

(
3

2
,

√
3

2

)
, ®a2 = a

(
3

2
,−

√
3

2

)
(2.3)

where a = 2.46Å is the lattice constant of graphene.

Figure 2.1: Schematic of a graphene’s hexagonal lattice. Each Bravais lattice unit cell
includes two nonequivalent sites, which are denoted by A and B. For the unit cell 1, there
are four neighboring unit cells (from 2 to 5).

Then, [h(®k)] is determined from Eq.2.2 as

[h(®k)] = H11 + H12ei®k · ®a1 + H13ei®k · ®a2 + H14ei®k ·(− ®a2) + H15ei®k ·(− ®a1) (2.4)

where H11 is the on-site block Hamiltonian of the unit cell 1 and H1x are the coupling block
Hamiltonian between the unit cell 1 and x. Since the levels involving 2s, 2px, 2py orbitals
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are far away from the Fermi energy level due to the sp2 hybridization, the conduction and
valence band states can be described only with one orbital (2pz orbital) [50]. Then, the
Hamiltonian matrix can be simply written down with the overlapping energy of pz (−t),

[h(®k)] =
[

0 −t
−t 0

]
+

[
0 −t
0 0

]
ei®k · ®a1 +

[
0 −t
0 0

]
ei®k · ®a2 +

[
0 0
−t 0

]
ei®k ·(− ®a2) +

[
0 0
−t 0

]
ei®k ·(− ®a1) (2.5)

By calculating eigenvalues of [h(®k)] with different 2D momentum(kx, ky), the energy disper-
sion of graphene can be shown as Fig. 2.2.

(a)

KK'

(b)

Figure 2.2: (a) Conduction bandstructure through the whole region of the Brillouin zone.

The coordinates of high symmetry points are Γ = (0, 0), K =
2π

3a
(1,

1
√

3
), and M =

2π

3a
(1, 0).

(b) Energy dispersion of graphene. The lower and the upper surfaces denote the valence π
and the conduction π∗ energy bands, respectively.

The calculation of the band structure of other semiconductors proceeds through a pro-
cess almost similar to the band structure of the graphene described above. The Hamiltonian
matrix for the bandstructure should be carefully constructed according to a primitive unit
cell and the crystalline translation symmetry depending on crystal structure and broken
periodicity with different crystal dimensionality. For physically confined structures such as
thin films and nanowires, the surface states should be passivated with the sp3 hybridization
scheme, otherwise dangling bonds will create spurious energy states in the bandgap of the
device as an artifact. The sp3 hybridization proceeds in the following order [51]
1. Taking the s & p components of the onsite Hamiltonian for atoms on the edges
2. Rotating to the basis of the sp3 hybridized molecular orbitals
3. Adding a large energy (∼30eV) to the orbitals corresponding to dangling bonds
4. Rotating back to the atomic orbital basis
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2.3 The choice of orbitals

sp3d5s∗

The choice of right orbital basis is important due to trade-off relationship between computa-
tion efficiency and accuracy. Over the last decades, there have been a series of improvements
to the pioneering work of Slater and Koster to achieve a more accurate band structure.
Slater and Koster [49] describe energy dispertion with a minimal sp3 basis. Their model
is acceptable for describing the valence band. However, sp3 basis model is not enough to
reproduce the indirect gap of semiconductors correctly, especially at the X point. Contrary
to a TB description in the sp3 basis, several theoretical studies showed that the lowest con-
duction state at X is not entirely anti-bonding and unoccupied atomic d orbitals contribute
the charge densities of the first conduction band at the X, and L points [46] [52] [53]. To
mimic the influence of the excited d states, Vogl et al. added the excited s-like orbital, s*,
which yielded better reproduction of the lowest conduction band of diamond and zinc blende
semiconductors at X and L [54]. However, transverse masses at these points and the second
conduction band show poor agreement with experimental measurement [55]. Boguslawsky
et al. showed the necessity of including the full d symmetry near the X point by comparing
pseudopotential calculations with TB models [56]. In Ref. [46], Jancu et al. reproduced su-
perior transverse masses of the indirect bands by adding the full excited d orbitals(sp3d5s∗).
Fig. 2.3 describes the bulk bandstructure of Si, Ge, InAs and GaAs. The sp3d5s∗ model with
spin-orbit coupling is plotted in blue solid line and compared to sp3s∗ model with spin-orbit
coupling which is plotted in red dashed lines. The material parameters for sp3d5s∗ were
obtained from Ref. [54] and the parameters of sp3d5s∗ model for IV group (Si and Ge) and
III-V group (InAs and GaAs) semiconductors were obtained from Ref. [57] and Ref. [58],
respectively. While the sp3s∗ and sp3d5s∗ models show relatively good agreement between
their energies and curvatures at the Γ point, the deviation between the two models become
significant away from the Γ point. In addition, the sp3s∗ model fail to reproduce the conduc-
tion band energies for indirect valleys as well as the transverse effective mass at those point
because of d symmetry. The inaccuracies of these sp3 models becomes more pronounced in
the nanoscale structure as shown in Fig. 2.4. Similar to the case of bulk, the sp3 model
thin film does not implement the band energy or mass in the remaining region well except
the gamma point. Except for direct small bandgap semiconductor,such as InAs and InSb,
whose conduction band minima at Γ point is significantly lower than other valleys, the use
of sp3s∗ basis bandgapstructure leads to generate serious error.

Spin-orbit coupling

The spin-orbit coupling, which is an electromagnetic interaction between the electron’s spin
and the magnetic field generated by the electron’s orbit around the nucleus, leads to spin
splitting of energy bands. Since spin-orbit interaction has a small effect on electronic bands,
the bandstructure calculation with only sp3d5s∗ orbitals is reasonably accurate for conduc-
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Figure 2.3: Bulk bandstructure of Si, Ge, InAs, and GaAs computed with the sp3s∗ (red
dashed line) and sp3d5s∗(blue solid line).

tion band. However, in order to describe the top of the valence band precisely, it is necessary
to include spin-orbit coupling. The matrix form of time-independent Schrödinger equation
without spin-orbit coupling is expressed as

E(ψ) = [Hop](ψ) (2.6)

where Hop = −
~2

2m
∇2 + U(®r). Since Schrödinger equation is a non-relativisitc equation,

eigenvalues of the Hamiltonian operator Hop are the energy levels having spin degeneracy,
spin-up and spin-down. In order to split the spin degeneracy with spin-orbit coupling, the
nonrelativistic schrödinger equation should be replace by

E(ψ)
(
ψ

ψ

)
=

[
Hop 0
0 Hop

] (
ψ

ψ

)
+ [Hso]

(
ψ

ψ

)
(2.7)
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Figure 2.4: Bandstructure of 6nm thin film (100) for Si, Ge, InAs, and GaAs using the
sp3d5s∗ (first row) and sp3s∗ (second row).

where ψ and ψ are the up-spin component and the down-spin component of the electronic
wavefunction, respectively. The spin-orbit Hamiltonian Hso is written as [59]

Hso =
q~

4m2c2
®σ · ( ®E × ®p) (2.8)

where ®E is the nuclear electric field, ®p is momentum operator, and ®σ is the Pauli spin
matrices. A detailed derivation for matrix elements of Hso can be found in Ref. [60]. By
including the spin-orbit interaction, the size of Hamilonian matrix becomes twice the original
size. For example, the size of Hamiltonian matrix for bulk with sp3d5s∗ with spin-orbit
coupling increase from 20×20 to 40×40. Fig. 2.5 shows the bandstructure of InAs(100) thin
films with and without spin-orbit coupling. In the case of conduction band calculations, the
spin-orbit coupling can be ignored for computational efficiency. However, the sp3d5s∗ model
including spin-orbit coupling parameters can correctly reproduce the band gap and effective
masses of valence band only if those are included in the calculation. The neglection of this
effect leads to an increase of the band gap so that the Off current of transistor would be
underestimated.
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Figure 2.5: (a) Bandstructure of 6nm InAs (100) thin film using the sp3d5s∗ tight-binding
model with spin-orbit coupling (blue) and without spin-orbit coupling (red). (b) Comparison
of the bandgap with spin-orbit coupling and one without spin-orbit coupling as a function
of the film thickness for InAs at Γ point. The dashed lines show the lower limit of the
bandgap. The bulk bandgaps using sp3d5s∗-SO basis and sp3d5s∗ basis are 0.37 eV and 0.50
eV, respectively.

2.4 Bandstructure effects in nanoscale structures

In this section, we will discuss the bandstructure effects in nanoscale semiconductor. Fig.
2.6 illustrates the band structure and the density of states of InAs and GaAs thin films with
thickness of 3nm. The transport and thin film growth directions are along the 〈100〉 and
〈001〉 axes respectively. For computational efficiency, the conduction bands and density of
states are calculated using the 10 orbitals consisting of an sp3d5s∗ basis and shifted to the
conduction band minimum energy calculated with sp3d5s∗ basis with spin-orbit coupling.
The density of states is compared with the effective mass approximation using bulk effective
masses. For the effective mass approach, the transverse and longitudinal effective masses
of InAs and GaAs at Γ, X and L valleys are obtained from the bulk bandstructure using
sp3d5s∗-SO TB model and are listed in Table 2.1. The effective masses of transport (mx),
transverse (my) and confinement (mz) are calculated from the relation listed in Table 2.2 [61].
From the parabolic effective mass model, the energy dispersion of electron with confinement
in z-direction is given by

E = Ec,bulk + ∆En +
~2k2x
2m∗x

+
~2k2y
2m∗y

(2.9)
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where ∆En =
~2k2z
2m∗z

=
~2n2π2

2m∗z L2
n = 1, 2, ...

The minimum energies of first subband for each valley are listed in Table 2.3

Figure 2.6: Bandstructure and DOS of InAs (a, b) and GaAs (c, d) thin films with thickness
of 3nm. While the bulk EMA shows that L valley and X valley are the lowest in energy for
InAs and GaAs, respectively. The TB model shows that Γ valley is still the lowest in energy.

InAs GaAs

mΓ 0.0235 0.0657

mX,l 1.126 1.881

mX,t 0.175 0.175

mL,l 1.540 1.728

mL,t 0.0941 0.0967

Table 2.1: Effective masses (in units of the free-electron mass) for InAs and GaAs. All
masses are computed at the respective extrema.
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Valley Degeneracy mx my mz

Γ 1 mΓ mΓ mΓ

X1 1 mX,t mX,t mX,l

X2
1 mX,t mX,l mX,t

1 mX,l mX,t mX,t

L 4 mL,t
2mL,l + mL,t

2mL,t + mL,l

mL,l + 2mL,t

3

3mL,lmL,t

2mL,l + mL,t

Table 2.2: Transport, transverse and confinement effective masses and subband degeneracies
of (100)/〈100〉 III-V thin film from the bulk principal effective masses for each valley. Ref.
[61].

InAs GaAs

Valley Evalley
c,bulk ∆E1 Evalley

c1,E M A Valley Evalley
c,bulk ∆E1 Evalley

c1,E M A

Γ 0.3699 1.7781 2.1480 Γ 1.4159 0.6356 2.0515

X1 2.2827 0.0371 2.3198 X1 1.9016 0.0222 1.9238

X2 2.2827 0.2388 2.5215 X2 1.9016 0.2384 2.1400

L 1.5287 0.3051 1.8338 L 1.7012 0.2961 1.9973

Table 2.3: Minimum energy of bulk conduction band, confinement-induced energy shift and
minimum energy of thin film subband for each valley.

The bulk EMA predicts that the lowest energy valley is L for InAS and X for GaAs
because the energy shift of Γ valley subband is lager than other valleys due to significantly
small confinement effective mass. Contrary to the bulk EMA, the TB model shows that
both semiconductors still have the lowest energy at the Γ valley. The discrepancy between
the TB and bulk EMA results is due to the non-parabolicity of the Γ valley in GaAs and
InAs. The nonparabolicity arises from the interaction between the wave functions of the two
bands without band gap. This k · p interaction remains even when the crystal potentials
open the gap between the two bands and decreases as the band-gap increases [62]. In the
small bandgap semiconductor such as InSb and InAs, the strong k · p interaction across the
narrow direct gap between the conduction and valence bands attribute the nonparabolicity in
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Figure 2.7: Band structure with different thickness for InAs and GaAs (left). Confinement
(mz) and transport effective mass (mx) of the Γ valley as a function of channel thickness
(right).

the Γ valley. On the other hand, the bulk effective mass approach that does not include the
nonparabolicity underestimates the importance of the Γ valley, which result in different turn-
on voltages and On-current densities for FET devices. Fig. 2.7 presents the bandstructure of
InAs and GaAs thin film with different channel thickness from 1 nm to 13 nm. The Γ valley
have the lowest energy for even 1nm (7 atomic layer) thickness. The Γ valley confinement
effective masses (mz) and transport effective mass (mx) and bandgap are plotted as a function
of film thickness in Fig. 2.7. The mz is obtained from the energy difference between the bulk
conduction band minimum and the lowest subband at the Γ point. mx are calculated at Γ
valley minima by fitting the E-k dispersion with a parabola. The effective masses increase
as film thickness decrease significantly due to quantum confinement effect. It can be seen
that the Γ valley bandgap increases while the band curvature decreases with decrease in
film thickness. These quantum confinement results in a considerable distinction in transport
properties of electrons in semiconductors such as band-to-band tunneling probability, the
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carrier injection velocity and density of states.

2.5 Summary

In this chapter, we have discussed the necessity of atomistic modeling for bandstructure and
certain aspects related to using tight-binding method. In confined semiconductor structures,
the quantum confinement effect along the thickness direction increase bandgap and effective
mass. Since a correct description of the bandstructure is crucial for accurately calculat-
ing the subband energies and their dispersions at the nanoscale, we used a semi-empirical
atomistic tight-binding approach with the nearest-neighbor sp3d5s∗ orbital basis with spin-
orbit coupling. This model is a powerful tool to predict full bandstructure of nanoscale
semiconductors accurately.
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Chapter 3

Off state leakage current due to
Band-to-band tunneling in III-V
MOSFETs

3.1 Introduction

III-V metal oxide semiconductor field-effect transistor (MOSFET) devices have found sig-
nificant interest for next generation transistors due to their high mobility [7, 63, 64], which
could enable higher performance in the ultra-scaled nodes. But at the same time the higher
mobility could also enable reaching a specific ON current at a smaller voltage. Due to this
latter reason, the III-V devices could also become important for Internet of Things (IOT)
applications. However, III-V materials usually have a direct energy bandgap. Due to this
reason, the band-to-band tunneling (BTBT) current in these transistors are significantly
larger than indirect bandgap materials such as Si. This could severely limit their application
because of increased standby leakage. Therefore, to properly assess the potential of III-V
transistors, an appropriate understanding of the band-to-band tunneling current, especially
in the off-state, is necessary.

Modeling of the BTBT current in III-V transistors is not new. Approaches such as
the Non-Equilibrium Green's Function (NEGF) method provides a rigorous framework for
treating quantum transport in nanoscale devices and has been used successfully for many
different device structures and modeling systems [65–67]. As such the NEGF method is the
most accurate formalism, within a single particle picture, to model BTBT phenomenon. To
this end, many previous work have modeled current-voltage characteristic of III-V transistors
in the presence of band-to-band tunneling [68–71]. The objective of this dissertation is not to
propose a new model for calculating such tunneling currents, but to point out a specific issue
that has often been ignored in the quantum transport calculations and that can significantly
contribute to BTBT induced leakage current. We shall call it ‘Inadequate body filling by
the source’. In what follows next, we shall discuss this problem within the context of an
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Figure 3.1: (a) Schematic structure of the simulated double-gate InAs FET. (b) Bandstruc-
ture of 3nm InAs(100) thin film using the sp3s∗ tight-binding model.

ultra-thin body (UTB) InAs transistor.

3.2 Simulation Results

As a model system a double gate (DG), UTB InAs MOSFET is simulated following the
NEGF approach. The schematic cross-section of the double gate (DG) ultrathin body (UTB)
InAs MOSFET is shown in Fig. 3.1a. The device is composed of an intrinsic channel (gate
length = 10 nm) and n-doped source and drain with a doping density of 2×1019cm−3. The
channel thickness is 3 nm. The gate dielectric is HfO2 (εr = 20) with a thickness of 3 nm.
The transport direction is aligned with the [100] crystal axis. First, a real space, ballistic
transport within NEGF is solved self-consistently with the Poisson's equation. In this case,
we use a sp3s∗ tight-binding (TB) Hamiltonian. The sp3s∗ model for InAs is accurate enough
to capture the tunneling currents appropriately [68]. The TB parameters of Ref. [72] were
used and passivation of the surface dangling bonds was assumed and implemented in the
Hamiltonian with appropriate potentials. The bandstructure of 3nm thick InAs thin film
(20 atomic layers) is show in Fig. 3.1b. A minimum band gap of Eg is 0.70 eV at the Γ point
and the extracted transport effective mass (mx) is 0.041m0. For simplicity, hence forth we
shall call the real space, self-consistent, NEGF solution as the ‘Full Band NEGF’.

Fig. 3.2 shows electron correlation function and current spectrum within Full Band
NEGF at a typical off condition (VGS = −0.1 V and VDS = 0.9 V). There are two energy
regions of interest: (i)E1; the two ends of which are cut off by the band edges and (ii)E2;
which is the region underneath the valence band in the body region but above E1. Note
from Fig. 3.2a that the region E2 has no electrons. This is somewhat surprising but can be
understood by looking at how the electrons are being injected from the source. The valence
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Figure 3.2: (a) Electron correlation function, Gn, which shows electron distribution in energy
and position and (b) Energy-resolved current spectrum at VDS = 0.9 V and VGS = −0.1 V.

band on the source side cuts off the Fermi distribution. No electrons above the edge of the
valence band at the source side can be injected, leading to the empty region in the body.
This is the main issue that we want to bring attention to. In practice, such empty region
underneath the body does not exist. The abundant valence electrons continuously go through
election-electron interaction at a rate (τee ≈ 10−13 s) that is much faster than the tunneling
rate at the drain side. Therefore, for all practical purposes, the distribution of the electrons
inside the body will build up according to the Fermi function and electrons will fill up the
empty region E2. This is what we have named ‘Inadequate body filling by the source’. Due to
the fact that it is numerically intractable to solve electron-electron interactions in an already
demanding approach such as the NEGF, this inadequate filling of the body has commonly
been ignored in device simulations. The central result of this dissertation is to point out that
ignoring the filling leads to significant errors in the calculation of off-state leakage current.
The only way to accurately model this leakage current is to use a boundary condition that
appropriately captures the filling of the body. This poses a challenge as the only two well-
defined Fermi levels in a quantum transport problem are the source and the drain Fermi
functions. Hence, an approximation has to be made. The approach we take is to calculate
the ballistic current first and then do a second calculation which is essentially a two terminal
current calculation between body and drain by defining a Fermi distribution at the body. In
this two-terminal problem, we use the self-consistent potential previously calculated from the
three-terminal problem and calculate the BTBT. Note that some of these issues have been
discussed within the context of resonant tunneling diodes [73]. One could do another NEGF
calculation for this two terminal current. However, we have previously shown [74] that when
the same potential is used, BTBT current calculated from the Wentzel-Kramers-Brillouin
(WKB) approximation closely matches that of the NEGF approach. Given that WKB is
numerically a much lighter approach than NEGF, we have used the WKB.

We begin by solving the NEGF within the mode-space approach [75]. Note that, because
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Figure 3.3: Complex band structure along the [100] direction of InAs and GaAs UTBs
calculated using the TB approach (black) and the analytical equations in Eq. (3.3) (red)
and Eq. (3.4) (blue). (a) 3nm InAs - sp3s∗, (b) 5nm InAs - sp3d5s∗, (c) 5nm GaAs - sp3d5s∗.

here the individual modes are decoupled, this approach cannot directly account for BTBT.
Next, we perform a two terminal current calculation between the body and the drain follow-
ing the WKB method, using the potential self-consistently converged from the mode-space
calculation. Since we are interested in the off-state current, there is not too much charge
in the channel and therefore, the self-consistent potential is not expected to change signif-
icantly even in the presence of the BTBT current. The tunneling probability within the
WKB approach can be written as:

TWKB (E, k⊥) = exp

(
−2

∫ x2(E)

x1(E)
κ(x, k⊥) dx

)
(3.1)

where κ(x, k⊥) is the imaginary wavevector as a function of position (x) at a given trans-
verse momentum k⊥ and x1 and x2 are positions of valence band and conduction band at E
in the band-diagram. From TWKB , the BTBT current (IBTBT ) can be obtained from

IBTBT =
q
~

∫
dE
2π

∑
k⊥∈1 stBZ

TWKB (E, k⊥) [ fS(E) − fD(E)] (3.2)

where fS and fD are the equilibrium Fermi functions of the source and drain, respectively.
For the imaginary wavevector (κ), instead of calculating κ within the TB method [76], an
analytical equation from [77] was used:

κ(E) =
√

2mh

~2
E(1 − E

2Eq
) , 0 < E < Eq

κ(E) =
√

2me

~2
(Eg − E)

(
1 −

Eg−E
2(Eg−Eq)

)
, Eq ≤ E < Eg

(3.3)
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where Eg is the bandgap of the semiconductor, me and mh are the effective masses of electrons
and holes respectively and Eq = Eg

me

me+mh
is the branch point at which the conduction and

valence branches join each other. When electrons and holes have different effective masses,
decaying behavior are attributed to hole effective mass when E < Eq and to electron effective
mass when Eq ≤ E. In Fig. 3.3, we compare the complex dispersion of InAs and GaAs along
the transport direction calculated using the analytical equation (dashed lines) and the tight-
binding approach (black solid line) at the Γ point. We find that using me instead of mh for hole
branch predicts a more accurate complex band structure. This result implies that transition
between the hole branch and the electron branch occurs in the vicinity of the valence band
maximum and charges follow characteristics of electrons during tunneling. Substituting me
to mh in (3.3), κ can be obtained with a simplified equation as,

κ(E) = 1/~

√
2meE

(
1 − E

Eg

)
, 0 < E < Eg (3.4)

Note that, within the region E1, a conventional real-space approach will accurately calculate
the BTBT current. It is only in the region E2 where the conventional approach is inaccurate.
Therefore, to estimate how our ‘mode-space + 2 terminal WKB with appropriate boundary
condition’ approach (named M2WBC for convenience) compares with the Full Band NEGF
approach. The transmission probabilities calculated using the method presented in the
dissertation (M2WBC) with Eq. 3.3 and Eq. 3.4 and Full Band NEGF for the region E1

are compared in Fig. 3.4a. For the WKB approximation, we included only one dominant
imaginary band connecting the VB maximum and CB minimum since the transmission
coefficient decreases exponentially with the integrated value of imaginary part of the wave
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Figure 3.4: (a) Transmission probability and (b) BTBT current calculated from Full Band
NEGF (black) and the M2WBC approach using Eq. (3.3) (red) and Eq. (3.4) (blue) within
the tunneling window E1. (VGS = −0.1 V and VDS = 0.9 V).
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vector. Even though tunneling probabilities calculated from the WKB approximation do not
exhibit the quantum resonances as seen in the quantum transport approach, both approaches
show the same mean contour. We compare the BTBT current of the 3nm InAs UTB FET
obtained from the Full Band NEGF to the ones calculated with M2WBC approach in Fig.
3.4b. The average value of tunneling probability increases as the gate voltage is decreased,
because the width of tunneling barrier decreases as a higher electric field is applied between
the gate and source. According to the results shown in Fig. 3.4b, the Eq. (3.4) seems
to describe the change in κ with respect to E , accurately. On the other hand, Eq. (3.3)
underestimates the tunneling current because the attribution of higher hall effective mass
predicts a higher decay rate κ. The transfer characteristics at VDS = 0.9 V are shown in Fig.
3.5. For the M2WBC model, first, the currentvoltage characteristics are calculated using
the mode-space NEGF formalism. Then, using the electrostatic potential calculated by the
mode-space approach, the tunneling current is calculated using the WKB approximation
within the tunneling window E1. The tunneling current calculated using the tunneling
probability from the WKB approximation is added to the current from the mode-space
approach. Fig. 3.5b shows the comparisons between the Full Band NEGF simulations and
the M2WBC approach described above. For E1, the difference in current calculated by the
Full Band NEGF and M2WBC approach is less than 10 % as shown in the inset of Fig. 3.5b,
establishing the feasibility of M2WBC for calculating BTBT current. The main distinction
is in the region E2, where naive application of NEGF ignores the appropriate filling, but
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Figure 3.5: (a) Simulated IDS − VGS characteristics for the mode space approach (black),
WKB approximation (red) and the M2WBC approach (blue) at VDS = 0.9 V. (b) Simulated
IDS − VGS characteristics for the Full Band NEGF (black), M2WBC within E1 only (blue)
and M2WBC within E1 and E2 (red). Percentage difference in the current between Full
Band NEGF and M2WBC within E1 (inset).
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the M2WBC will account for it. As shown in Fig. 3.5b, when the current flowing in E2 is
included, the actual drain current goes up almost two orders of magnitude compared to the
Full Band NEGF.

Furthermore, the computation times for the the Full Band NEGF and the M2WBC model
are compared in Fig. 3.6. The M2WBC approach is about 20 times faster than the Full
Band NEGF method for one iteration of self-consistency in case of 3 nm thick InAs UTB
DG MOSFETs with an sp3s∗ TB Hamiltonian description. This difference would become
larger as the size of the Hamiltonian increases.
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Figure 3.6: Comparison of running times between the Full Band NEGF and the M2WBC.

3.3 Conclusions

To summarize, we have discussed how failing to account for proper boundary conditions
could lead to insufficient filling of the body in a MOSFET under a typical OFF condition.
This inadequate filling of the body leads to significant error in the calculation of off-state
leakage current that originates from band-to-band tunneling. Using a UTB InAs transistor
as a model system, we show that the leakage current can be underestimated by almost two
orders of magnitude. We have also shown a numerically efficient method to calculate this
current. Especially, for direct bandgap materials, properly calculating the off-state leakage
is critical to assess their potential for application.
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Chapter 4

Effect of phonon scattering on
quantum transport in III-V
MOSFETs

4.1 Introduction

As the channel length of modern field-effect transistors enters the nanoscale regime, it is
important to understand the effects of quantum mechanics on electron transport because
quantum mechanical effects such as quantum mechanical tunneling, carrier confinement,
and interference effects play a crucial role. Therefore, there have been many researches
on nanoscale devices using the Non-Equilibrium Green's Function (NEGF), which provides
the most rigorous framework for treating quantum transport. However, the most common
approximation in NEGF calculations is to ignore the effects of all scattering processes in order
to reduce simulation time [65–69]. Even if the device length, which is the distance traveled by
a moving carrier between two thermally equivalent reservoirs (source and drain), is the same
or smaller than the mean free path, certain amount of scattering exists and influences the
transport of the free carrier. Therefore, an accurate and efficient device simulation method
based on quantum mechanical formalism that treats the dissipative process rigorously is
necessary to interpret experimental results.

In the NEGF approach, scattering can be incorporated through a self-energy term, i.e.,
the perturbative Hamiltonian, which describes the interaction between the electron and
scattering source. As a phenomenological approach, Büttikerr probe model can implement
scattering by replacing individual physical scattering mechanisms with a global energy and
momentum absorbing self-energy. Though this model is numerically efficient, it yields only
a macroscopic and semi-classical description of the scattering [78]. The microscopic electron
scattering mechanisms can be taken into account within the self-consistent Born approxi-
mation. In this chapter, we present a two-dimensional (2D) simulation framework capable
of handling dissipative transport in the nanoscale MOSFETs based on the NEGF formal-
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ism. Instead of treating transverse modes independently and integrating them analytically,
we coupled them. Furthermore, we also couple each longitudinal energy to include energy
relaxation by inelastic scattering. The mode space approach with an effective mass approx-
imation is used because of a full NEGF treatment, which uses the atomistic electron and
phonon energy spectra, is almost impossible to implement in 2D. Note that we use effective
masses, which depend on each momentum (kx and ky), in order to include the nonparabol-
icity of the electron band instead of approaching a general mode space that uses only one
effective mass for all momentums.

In Section II, we provide a brief review of the theoretical framework for including elec-
tronphonon scattering with the deformation potential theory and the self-consistent Born
approximation. To verify the obtained self-energy functions, we compare the scattering
rates obtained by NEGF formalism to the ones calculated by the Fermi's golden rule (FGR),
which is used in classical Boltzmann transport theory. Simulation of the double gate ultra-
thin body (UTB) MOSFET device with phonon scattering is presented in Section III. Device
characteristics are calculated from the self-consistent solution of the 2D Poisson's equation
and the NEGF equations including scatterings. InAs was used as channel material. We also
include surface roughness (SR) scattering, since SR is the dominant scattering mechanism
in UTB films. SR produces fluctuations in the confining potential along the channel, which
leads to fluctuation in the conduction band minimum levels that cause electron scattering.
Since the channel region of modern day devices is commonly undoped to increase mobility
and reduce random dopant fluctuation, ionized impurity scattering is ignored in this study.

4.2 Simulation methodology

A comprehensive description of the use of the mosde space NEGF formalism and the self-
consistent Born approximation to consider electron-phonon scattering can be found in the
literature [75, 79, 80]. For clarity, however, we will give a brief overview of the technique
used to build a 2D mode-space Hamiltonian and how to obtain the self-energies for acoustic
phonon (AP), optical phonon (OP) and polar optical phonon (POP) scattering in order to
include phonon scattering in the NEGF formalism.

Mode space approach

First, we begin by solving mode-space approach. Here we defined that the transport direc-
tion is x-axis, the confined direction perpendicular to the gate is z-axis and the unconfined
direction along the width of the device is y-axis. When we assume that there is no variation
of potential in y direction and the device is wide enough, the three-dimensional (3D) wave
function Ψ(x, y, z) can be expanded in terms of 2D orthonormal basis and the plane wave

as
1
√

W
Φ(x, y)eiky y, where ky is the quantum number and W is the device width. The wave
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function Φ(x, z) is obtained from 2D Schrödinger equation as

−
~2

2m∗x

∂2

∂x2
Φ(x, z) −

~2

2m∗z

∂2

∂z2
Φ(x, z) − qV(x, z)Φ(x, z) =

[
E − Eky

]
Φ(x, z). (4.1)

where Eky corresponds to the eigenenergy of plane wave and m∗x,y,z are the effective mass
of each direction. Furthermore, in case of UTB structure, quantum confinement in the
thickness direction introduces modes (subbands) and the wave function can be expanded in
an one-dimensional (1D) orthonormal basis as

Φ(x, z) =
∑

m

δ(x − x′)ξm(x′, z)φm(x′) (4.2)

where φm(x′) are the expansion coefficients and ξm(x, z) are the eigenfunctions of subbands
associated confinement in the z-direction.

By using the orthonormal basis and assuming that the shape of the confined mode changes
smoothly along the transport direction(x-axis), the 2D Schrödinger equation can be trans-
formed into 1D as

−
~2

2m∗x

∂2φm(x)
∂x2

+ Em(x)φm(x) = (E − Eky )φm(x) (4.3)

Using the mode space approach, the 3D simulation domain has been split into the several
sets of 1D transport problem. Note that there are infinite quantum number in the unconfined
direction (y) while a few one in confined direction (z). Since only a few subbands are occupied
in UTB devices, the computational burden can be significantly reduced by using a uncoupled
mode space method [75,81]. From NEGF formalism, the retarded Green's function for each
mode (α) can be written as

G(E, ky, α) =
[
EI − H(E, ky, α) − Σ1(E, ky, α) − Σ2(E, ky, α) − ΣS(E, ky, α)

]−1
(4.4)

where H is the effective mass Hamiltonian of device, Σ1 and Σ2 are the self-energy matrices
representing the open boundary conditions of source and drain, respectively and ΣS is the
retarded self-energy matrix representing the interaction between the electron and scattering
source. The matrix elements of a single band Hamiltonian (H) and the self-energy of contacts
can be written as [39,75]

Hi, j = −txδi−1, j + [2tx + Ec(ky) +U(i)]δi, j − txδi+1, j

Σ1(i, j) = −txeikx xδ1, jδ1,i

Σ2(i, j) = −txeikx xδN, jδN,i

(4.5)

where tx =
~2

2m∗xa2
with node spacing (a), Ec is minimum energy of conduction-band and U(i)

is electrostatic potential at node i.
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The electron density for each mode (α) is obtained from NEGF formalism as [79],

nα(x) =
1

W

∑
ky

2

∫
dE
2π

diag
[
GαΣ

<
αG†α)

]
(4.6)

where Σ<α is in-scattering self-energy which is sum of in-scattering self-energy of scattering
and contact L and R (Σ<α = Σ

<
α,L + Σ

<
α,R + Σ

<
α,S).

The 1D electron density from Eq. 4.6 can be distributed in 2D with wave functions in
confined direction, χα(x, z), as,

n(x, z) =
∑
α

|χα(x, z)|2 nα(x) (4.7)

|χα(x, z)|2 are obtained by using the eigenfunction of TB Hamiltonian which is essentially
wave functions in confined direction. The electron density from NEGF is fed back to the
Poisson solver until self-consistency is achieved. After convergence is achieved, current are
calculated from the converged potential profile as,

I =
q
~

∑
α

1

W

∑
ky

2

∫
dE
2π

Trace
[
AαΣ<L,α − G<

αΓL,α
]

(4.8)

where A is spectral function, G< is electron correlation function, Σ<L is in-scattering function
of contact L and ΓL is level broadening of contact L. Each matrix functions can be obtained
from NEGF formalism as

A = i
[
G − G†

]
G< = GΣ<G†

ΓL = i
[
ΣL − Σ

†

L

]
Σ
<
L = ΓL fL

(4.9)

In order to approach with the mode-space method, the self-energy functions of scattering
must also be transformed into the mode-space from real space. We will derive them rigorously
in next subsection.

self-energy for scattering in mode-space

In NEGF formalism, the microscopic scattering processes can be taken into account by self-
energies. The lesser and greater self-energy functions for the electron-phonon interactions
can be obtained from the self-consistent Born approximation

Σ
≶
S = D≶(X1, X2)G≶(X1, X2) (4.10)
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where the argument X = {R, t} represent the spatial coordinates and time, respectively.
[82–84]. G≶ is the greater and lesser electron Green functions is defined by

G>(X1, X2) = (−i/~)
〈
ψ(X1)ψ

†(X2)
〉
,

G<(X1, X2) = (i/~)
〈
ψ†(X2)ψ(X1)

〉 (4.11)

where ψ is the electron field operator. The D≶ is the greater and lesser phonon Green's
functions which is defined in thermal equilibrium as

D<(X1, X2) = 〈Hep(X1)Hep(X2)〉,

D<(X1, X2) = 〈He−p(X2)He−p(X1)〉
(4.12)

The electron-phonon interaction Hamiltonian in a general form can be written as [82,83,85]

Hep =
1
√

V

∑
q

Mq(aqe−iωqt+iq·R + a†qeiωqt−iq·R) (4.13)

Where V is the volume of the sample, Mq is the electron-phonon matrix element, aq and

a†q are annihilation and creation operators for a phonon in mode q. In this equations, the
spatial coordinates R is 3D real space coordinate (x, y, z). Since the averages of phonon
operator products at thermal equilibrium can be written as below relation,

〈a†q′aq〉 = δq′qnq, 〈aq′a†q〉 = δq′q(nq + 1), 〈aq′aq〉 = 0, 〈a†q′a
†
q〉 = 0 (4.14)

by inserting (4.13) into (4.12) we obtain

D<(X1, X2) =
1

V

∑
q

|Mq |
2[ (nq + 1)e(iωq(t1−t2)+iq·(R2−R1)) + nqe(iωq(t2−t1)−iq·(R1−R2))] ,

D>(X1, X2) =
1

V

∑
q

|Mq |
2[ (nq + 1)e(iωq(t2−t1)+iq·(R1−R2)) + nqe(iωq(t1−t2)−iq·(R2−R1))]

(4.15)

where nq is the average phonon number in mode q which, in thermal equilibrium, is Bose-
Einstein factor, nq = 1/(exp(~ωq/kBT) − 1). Inserting Eq. (4.15) into Eq. (4.10) and Fourier
transforming relative time interval t2-t1, we can obtain the energy-dependent self-energy
function as

Σ
<(R1, R2, E) =

1

V

∑
q

|Mq |
2[ eiq·(R1−R2)(nq + 1)G<(R1, R2, E + ~ωq)

+eiq·(R2−R1)nqG<(R1, R2, E − ~ωq)] ,

Σ
>(R1, R2, E) =

1

V

∑
q

|Mq |
2[ eiq·(R2−R1)(nq + 1)G>(R1, R2, E − ~ωq)

+eiq·(R1−R2)nqG<(R1, R2, E + ~ωq)]

(4.16)
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The first term in each equations corresponds to the emission of a phonon, and the second
term corresponds to the absorption of a phonon. Since we assume that the system is in-
variant along the y-axis and all quantities depend only on the difference coordinate y1 − y2,
the unconfined transverse dimension (here, y-axis) can be transformed to the momentum
representation by expanding with the momentum states or vice versa [86] [80]. Then G< and
Σ< can be expressed as

G<(R1, R2, E) = N−1
∑

k ′y1,k
′
y1

ei(k ′y1 y1−k ′y2 y2)G<(r1, r2, k′y1, k′y2, E), (4.17)

Σ
<
S (r1, r2, ky1, ky2E) = N−1

∑
r1,r2

ei(ky2 y2−ky1 y1)Σ<(R1, R2, E) (4.18)

where N is the number of grid cells, i.e., N =
Ly

ay
. Substituting Eq.(4.17) into Eq.(4.16) and

then inserting into Eq. (4.18), the lesser and greater self-energy of scattering in unconfined
transverse momentum space can be obtained with the lesser and greater green function in
the same space as

Σ
<
S (r1, r2, ky, E) =

1

V

∑
qx,qy,qz

|Mq |
2[ eiqx(x1−x2)+iqz(z1−z2)(nq + 1)G<(r1, r2, ky + qy, E + ~ωq)

+eiqx(x2−x1)+iqz(z2−z1)nqG<(r1, r2, ky − qy, E − ~ωq)] ,

Σ
>
S (r1, r2, ky, E) =

1

V

∑
qx,qy,qz

|Mq |
2[ eiqx(x1−x2)+iqz(z1−z2)(nq + 1)G>(r1, r2, ky − qy, E − ~ωq)

+eiqx(x2−x1)+iqz(z2−z1)nqG>(r1, r2, ky + qy, E + ~ωq)] ,

(4.19)

where the spatial r is 2D real space coordinate (x,z). This self-energy for electron-phonon
scattering is for interaction between unconfined bulk phonon and unconfined bulk electrons.
However, for the confined device structure, the self-energy for scattering should be trans-
formed to include interaction between 3D phonon and 2D electron. Assumption of 3D bulk
phonon is still valid because confining phonon in 2D is extremely difficult unlike electron.
Since the real space Green's function can be expanded in a eigenfunction space with eigen-
vectors which form a orthogonal basis with mode space approch [80, 87, 88], the lesser and
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greater self energy of scattering in real space can be transformed as

Σ
<
S (x1, x2, α, ky, E) =

1

A

∑
qx,qy,β

|Mq |
2[ eiqx(x1−x2)(nq + 1)G<(x1, x2, β, ky + qy, E + ~ωq)

+eiqx(x2−x1)nqG<(x1, x2, β, ky − qy, E − ~ωq)] F(α, β)

Σ
>
S (x1, x2, α, ky, E) =

1

A

∑
qx,qy,β

|Mq |
2[ eiqx(x1−x2)(nq + 1)G>(x1, x2, β, ky − qy, E − ~ωq)

+eiqx(x2−x1)nqG>(x1, x2, β, ky + qy, E + ~ωq)] F(α, β)
(4.20)

where F is The form-factor account for transition between subbands α and β.

F(α, β) =
∫ ∞

−∞

ψ∗α(z)ψ
∗
β(z)ψα(z)ψβ(z)dz (4.21)

For the infinite well approximation, since the envelope functions are given by

ψα(z) =

√
2

Lz
sin(

απ

Lz
z) (4.22)

the form factor is easily calculated as

F(α, β) =
3

2Lz
, when α = β

F(α, β) =
1

Lz
, when α , β

(4.23)

The electron-phonon matrix element, |Mq |
2, for several phonon mechanisms has been ob-

tained from the deformation potential theory. The magnitude of oscillating potential is
multiplication of the amplitude of the oscillation (|Aq |) and the deformation potential (|Kq |),

i.e.,|Mq |
2 = V |Aq |

2 |Kq |
2. The amplitude for one phonon in bulk is |Aq | =

√
~

2ρVωq
, where ρ

is density and ωq is the phonon frequency.
For four specific cases of phonon scattering, each one has the following deformation

potential as

|Kq |
2 =q2D2

A (Acoustic Phonon),

|Kq |
2 =D2

o (Optical Phonon),

|Kq |
2 =

(
eePZ

εSε0

)2
(Piezo − electric), (4.24)

|Kq |
2 =ρe2ω2

0

(
1

ε∞
−

1

ε0

)
q2

(q2 + q20)
2

(Polar Optical Phonon)
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We can simplify the Eq. (4.20), when |Mq |
2

(
nq +

1

2
±

1

2

)
is independent of qx, because the

sum over longitudinal wave vector produces the delta function, i.e.,
∑

qx eiqx(x1−x2) =
Lx

ax
δ(x1−

x2). Therefore, the self-energy functions of scattering can be expressed only with the local
site terms. This on-site local scattering significantly reduces computational burden because
diagonal matrices of self-energy and lesser/greater-scattering function allow the recursive
inversion method instead of full matrix inversion. Within above four phonon scattering,
acoustic and optical phonon can be approximated as independent of qx.
For acoustic phonon, scattering functions can be simplified by the two approximation. First,

we can rewrite the number of acoustic phonon as nq ≈ nq + 1 ≈
kT
~ωq

when acoustic phonon

energy is much less than kT . Second, frequency of acoustic phonon is proportional to sound

velocity and moment, i.e., ωq ≈ vsq. Then, |Mq |
2(nq +

1

2
±

1

2
) can be rewritten as

D2
AkT

2ρv2s
which is independent of the wave vector of phonon. Therefore, the self-energy functions for
acoustic phonon is obtained as

Σ
<
AP(x, α, ky, E) =

2

axay

D2
AkT

2ρv2s

∑
β

∫
dqy

2π
G<(x, β, ky + qy, E)F(α, β)

Σ
>
AP(x, α, ky, E) =

2

axay

D2
AkT

2ρv2s

∑
β

∫
dqy

2π
G>(x, β, ky + qy, E)F(α, β)

(4.25)

For optical phonon, E − q relation can be assumed as a fixed-energy mode, i.e., ωq ≈ ω0

and deformation potential is independent of the wave vector of phonon. Therefore, electron-
phonon matrix element can be regarded as constant with respect to phonon momentum.
Then similar with acoustic phonon, the summation over qx produces a delta function. The
self-energy functions for optic phonon can be rewritten as

Σ
<
OP(x, α, ky, E) =

1

axay

~D2
o

2ρωo

∑
β

∫
dqy

2π
[(nq + 1)G<(x, β, ky + qy, E + ~ωo)

+nqG<(x, β, ky − qy, E − ~ωo)] F(α, β),

Σ
>
OP(x, α, ky, E) =

1

axay

~D2
o

2ρωo

∑
β

∫
dqy

2π
[(nq + 1)G>(x, β, ky − qy, E − ~ωo)

+nqG>(x, β, ky + qy, E + ~ωo)] F(α, β),

(4.26)

For POP and PZ, electron-phonon matrix element have phonon wave vector dependent
term and self-energy functions require off-diagonal term to include nonlocal scattering which
be represented by summing with respect to qx.
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For piezo-electric phonons, the lesser/greater self-energies are

Σ
<
PZ (x, α, ky, E) =

KPZ

axay

∑
β

∬
dqx

2π

dqy

2π

1

q2

[
eiqx(x1−x2)G<(x1, x2, β, ky + qy, E)

+eiqx(x2−x1)G<(x, β, ky − qy, E)
]

F(α, β),

Σ
>
PZ (x, α, ky, E) =

KPZ

axay

∑
β

∬
dqx

2π

dqy

2π

1

q2

[
eiqx(x1−x2)G>(x1, x2, β, ky − qy, E)

+eiqx(x2−x1)G>(x, β, ky + qy, E)
]

F(α, β),

(4.27)

where KPZ =

(
eePZ

εSε0

)2 kBT
2ρv2s

.

For polar optical phonon,the lesser/greater self-energies are

Σ
<
POP(x, α, ky, E) =

KPOP

axay

∑
β

∬
dqx

2π

dqy

2π

q2

(q2 + q20)
2

[
eiqx(x1−x2)G<(x1, x2, β, ky + qy, E + ~ωq)

+eiqx(x2−x1)G<(x, β, ky − qy, E − ~ωq)

]
F(α, β),

Σ
>
POP(x, α, ky, E) =

KPOP

axay

∑
β

∬
dqx

2π

dqy

2π

q2

(q2 + q20)
2

[
eiqx(x1−x2)G>(x1, x2, β, ky − qy, E − ~ωq)

+eiqx(x2−x1)G>(x, β, ky + qy, E + ~ωq)

]
F(α, β),

(4.28)

where KPOP =
e2~ωo

2

(
1

ε∞
−

1

ε0

)
and q0 denotes the inverse screening length. This non-

local scattering terms increases the complexity of NEGF calculations significantly and re-
quire huge amount of memory to couple momentum and energy in different position. Since
self-energy of nonlocal scattering decease exponentially with respect to distance, we ignore
nonlocal scattering to reduce calculation burden.

For polar optical phonons of local scattering, the lesser/greater self-energies are

Σ
<
POP(x, α, ky, E) =

1

axay
KPOP

∑
β

∫
dqy

2π

q2

(q2 + q20)
2
[(nq + 1)G<(x, β, ky + qy, E + ~ωq)

+nqG<(x, β, ky − qy, E − ~ωq)] F(α, β),

Σ
>
POP(x, α, ky, E) =

1

axay
KPOP

∑
β

∫
dqy

2π

q2

(q2 + q20)
2
[(nq + 1)G>(x, β, ky − qy, E − ~ωq)

+nqG>(x, β, ky + qy, E + ~ωq)] F(α, β),

(4.29)
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Following procedure is used to determine q2 in Eq.(4.27) Eq.(4.28)
1) Determine kx with given E and ky.
2) Determine k

′

x1 with given E + ~ωq and ky + qy for emission

and k
′

x2 at given E − ~ωq and ky − qy for absorption

3) Determine from kz =
(β − α)π

L
4) For emission q2 =

(
k
′

x1 − kx
)2
+ q2y + k2z , for absorption q2 =

(
k
′

x2 − kx
)2
+ q2y + k2z

NEGF versus Fermi's golden rule

To estimate the physical implication of self-energies for phonon scattering, we compare
the scattering rate obtained from mode-space NEGF calculation with the FGR, i.e., first-
order perturbation theory, since scattering time has the relationship with the broadening
function(Γ) of NEGF as:

ΓS = Σ
<
S + Σ

>
S =
~

τ
(4.30)

where τ is the scattering time.
As the self-energys of scattering (ΣS, Σ

≶
S ) are interdependent with the Green's functions(G,G≶),

we determine them self-consistently as following procedure.
1) Initially, determine G , G≶ in ballistic regime, i.e. , ΣS = Σ

≶
S = 0

2) Determine Σ≶S using Eq.(4.25) (4.29) and then calculate ΣS with below equations

ΣS(E) = −
i
2
[Σ<S (E) + Σ

>
S (E)] (4.31)

3) Build new G using Eq.(4.4). then, G≶ are obtained by

G<(E) = GΣ<G†,G>(E) = GΣ>G† (4.32)

4) Repeat steps 2) and 3) until ΣS(new) − ΣS(old) converge.

In Eq. (4.31), P
∫ dE′

2π

ΓS(E′)
E − E′

, which is responsible for the renormalization of energy, is

neglected since it does not have any significant effect on the results when the density of
state change continuously. Note that all of Green's functions and self-energies are a function
of the total energy E and ky as shown in Fig. 4.1. Thus, the integrals over the Brillouin
zone with respect to the qy in Eq. 4.25, 4.26 and 4.29 require additional conditions that
self-energy and Green's functions should be zero when total energy is less than the minimum
of conduction band at ky. Without this constraint, Σ≶ have values in the region where there
is no electron sate (the navy areas in Fig. 4.1), which causes additional broadenings because
of the coupling between the physically meaningless self-energy and Green's functions.
In order to make calculations within the relatively small energy bandwidth, we use a imagi-
nary semiconductor with a single band with m∗x = m∗y = 1. The other important parameters
for scattering rate were InAs values and listed on Table. 4.1.
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DA Do ρ vs ax, ay ωo ε∞ ε0

(eV) (eV /m) (kg/m3 ) (m/s) (nm) (eV)

4.9 5.2 × 1010 5567 4280 0.303 0.3 12.75 15.15

Table 4.1: Simulated parameters for phonon scattering.

Fig. 4.1 shows the distribution of the scattering rate in the ky-E space calculated by
the NEGF method for the AP, OP, and POP cases. From the E-k relation, which follows
E(kx, ky) = E0 + 2tx − 2txcos(kxa) + 2ty − 2tycos(kya), the scattering rate are converted into
kx − ky space and is compared with the scattering rate obtained from FGR in Fig. 4.2.
Notably the same coupling constants for acoustic and optical phonons have been used for
NEGF and FGR. Since the AP is elastic scattering and the matrix element of scattering is
independent of the wave vector of phonon, the scattering rate is proportional to density of
states (DOS). The DOS has the largest value near E = 2 for this imaginary material, the
scattering rate also shows the largest value in the vicinity. The scattering rate of OP is
almost similar to that of AP, but it has a small value near the conduction band minimum
and maximum because of the energy-momentum conservation. In other words, the scattering
rate shows much lower values near kx = ky = 0 because only electrons whose energy exceed
~ωo can emit optical phonons. The energy-dependent scattering rate is shown in Fig. 4.3.
Importantly, for both acoustic and optical phonons, the NEGF calculated scattering rates
closely match those calculated from FGR in both functional dependence with respect to kx
and ky and also in amplitude. This means that one should be able to use the well-calibrated
coupling constants from FGR for NEGF calculations. For polar optical phonons, there are
slight differences between NEGF and FGR. Although there is some deviation due to the
local scattering approximation, the qualitative trends with respect to energy and screening
length remain intact.
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Figure 4.1: Scattering rates of NEGF simulation as a function of electron energy and kya
for (a) Acoustic phonon, (b) Optical phonon (c) Polar optical phonon.
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: Scattering rate as a function of kxa and kya. (a),(b) and(c)are obtained with
NEGF. (d),(e) and(f)are obtained with FGR. (a),(d): Acoustic phonon, (b),(e): Optical
Phonon (c),(f): Polar Optical Phonon.

(a) (b)

Figure 4.3: Scattering rate with respect to energy. (a) Acoustic phonon and optical phonon,
(b) Polar optical phonon.
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Multi-mass mode space approach

In deeply scaled devices, the quantum effect along the thickness direction forms discrete
subbands with energies far from the bulk band edges. Because of nonparabolicity, the use
of bulk effective masses in a III-V UTB MOSFET do not provide a good description of
these subband energies and their dispersions [61] [89]. Since a correct description of the
bandstructure is crucial to predict and explain current flow, we use a semi-empirical atomistic
tight-binding approach with 10 orbitals consisting of an sp3d5s∗ basis without spin-orbit
coupling. This model is a powerful tool that captures nonparabolicity and band-to-band
coupling and generate accurate charge density on atomic sites because Hamiltonians of TB
is built with the basis set based on local combination of atomic orbitals (LCAO). The tight-
binding parameters of Ref. [58] are used and passivation of the surface dangling bonds is
applied. The E − k dispersion relation at ky = 0 and the lowest conduction band energy of
electrons within the 2D Brillouin zone are shown in Fig. 4.4.
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Figure 4.4: (a) sp3d5s∗ TB bandstructures of geometrically-confined (along [100]), 6 nm
thick InAs(100) at ky = 0. (b) Lowest electron subband of 6 nm thick InAs(100). Red
dashed line shows the 2D Brillouin zone.

There were several parabolic band approaches using a single effective mass extracted
from the TB bandstructure of the confined structure for each unconfined direction [75, 90].
Within the parabolic band approximation, the conduction band energy (Ec) and transport
wavevector (kx) at a certain total energy (E), transverse wavevector (ky), and subband (α)
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(a) (b)

Figure 4.5: (a) Normalized probability density of first subband of 6 nm InAs. (b) Density
of state of 6 nm InAs.

are obtained as

Ec(ky, α) = Ec0 +
~2k2y

2m∗y(α)

kx(E, ky, α) = cos−1
(
1 −

E −U − Ec(ky, α)
2tx(α)

) (4.33)

where, tx(α) =
~2

2m∗x(α)a2
. In ballistic transport, the parabolic band approximation provides

enormous savings in computational burden because the integral over transverse energy can
be done analytically and their contribution is taken into account in the Fermi–Dirac inte-
gral. Furthermore, for treating scattering, there are several approaches that solve transverse
momentum integrals analytically that further simplify the simulation just like the method
of obtaining the current and charge density in the ballistic transport [91–93]. While this ap-
proach shows an acceptable result for the acoustic and optic phonon scattering in non-polar
crystals by transforming the NEGF equations in terms of integrated transverse momentum
modes, it leads to unphysical results for optical phonon scattering because scattering poten-
tials significantly depend on the phonon wavenumber (q). For this study, instead of using
parabolic band approximation, we directly extract Ec(ky, α), m∗x(E, ky, α) and k∗x(E, ky, α)
from the TB bandstructure (named multi-effective mode space for convenience). Those val-
ues are used for phonon scattering to phonon self-energy functions to take care of energy
momentum conservations. When E < U + Ec(ky, α), since it is difficult to extract physical
value from the TB method, values at the conduction band minima at ky are used. For 6
nm InAs, the first subband eigenfunction from TB is shown in Fig. 4.5a. It shows zig-zag
charge distribution because cation-sites have greater probability density than anion-sites.



41

Gate

Gate

S/D Doping  2X1019/cm3

HfO2  (3nm), εr = 20

InAs (6nm)Source Drain

LG = 10 ~ 100 nmx

z

(a) (b)

Figure 4.6: (a) Schematic structure of the simulated double-gate ultra-thin body MOSFETs.
(b) Screening length calculated from different model as function of electron density.

Fig. 4.5b shows a comparison between the DOS of the 6-nm InAs UTB extracted from the
parabolic band approximation (named single effective mass for convenience), multi-effective
mass mode, and full band using sp3d5s∗ basis. While the DOS of a mode space using a single
mass has a stepwise distribution due to constant effective mass, the DOS of multi-effective
mode space, which increases with energy, agrees well with the DOS of the full-band NEGF
because it uses the effective masses, which increases with E and ky due to the nonparabolic
effect. Fig. 4.6a shows the device structure of the 2-D double gate (DG) UTB MOSFETs.
Gate length is varied from 10 to 100nm. Gate voltages are imposed as Dirichlet boundary
conditions in the Poisson solver. The channel material is the 6-nm-thick InAs(100), whose
transport direction is [100]. The doping level of the channel is zero and that of source/drain
is 2×1019 cm−3. The length of source/drain is 18nm. The 3-nm thick HfO2 (εr = 20) is used
as the dielectric material. Periodic boundary conditions are used along the width and the
transverse momentum modes are summed numerically in the calculation of charge densities
and current. NEGF equations with the scattering are solved iteratively along with Pois-
son's equation until a self-consistency between charge and electrostatic potential is achieved.
Given that our intent is to investigate the effective mobility, we have ignored band-to-band
tunneling current which becomes important at large negative gate bias. For self-energies of
the phonon scattering, only POP are included because the mobility of the III-V bulk semi-
conductor is dominated by the polar optical phonon scattering at room temperature. For
POP scattering self energy, we compute the inverse screening length, q0, at different position.
The screen length can be obtained from the electron density at each point. The Lindhard
screening theory gives the screening length at each point as a function of the charge density
at that point (Fig. 4.6b).
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Figure 4.7: Ballistic transfer curves (IDS vs. VGS) for double-gated InAs MOSFETs with
different gate lengths at VDS = 0.01 (dashed lines) and 0.5 V(solid lines).

4.3 Results and discussion

Ballistic transport

From ballistic NEGF simulations, the transfer characteristics of of InAs MOSFETs is com-
pared in Fig. 4.7 at VDS = 0.01 V and 0.5 V . The 10-nm-long MOSFET shows deteriorated
Subthreshold Swing (SS) and drain-induced barrier lowering (DIBL) than the MOSFET with
a longer gate length. Fig. 4.8 show the energy-resolved current spectra at VGS = 0.1 V and
VDS = 0.5 V for the ballistic simulation of the MOSFETs with LG = 10 nm and LG = 30 nm.
White dashed line shows the profile of the conduction band minimum. The source-drain
tunneling is a major source of the short channel effect of the MOSFET with LG = 10nm,
since the majority current flows through the electrical potential barrier in contrast to the
MOSFET with LG=30nm. From the IDS − VGS curve in the linear region, we can calculate
the ballistic mobility (µB) from

IDS

W
= Qi(0)µB

VDS

LG
(4.34)

where Qi(0) is the sheet electron density at the beginning of the channel. Here, ballistic
mobility is the non-physical mobility to express the conventional IDS − VDS equation, which
is the function of LG. Furthermore, according to the Natoris theory of ballistic MOSFET [94],
current can be expressed as a function of the injection velocity at the virtual source, which
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Figure 4.8: Energy-resolved current spectrum of ballistic transport at VGS = 0.1 V and VDS
= 0.5 V for (a) LG = 10 nm and (b) LG = 30 nm.

is independent of the length of the device. Ballistic mobility can be written as [95,96]

µB =
vT qLG

2kBT
F−1/2(η)

F0(η)
(4.35)

where vT =
√

2kBT/πm∗ is the unidirectional thermal velocity of the non-degenerate electrons

and η = (EF − EC)/kBT . Fermi-Dirac correction term

(
F−1/2(η)

F0(η)

)
counts for the impact of

degeneracy of the electrons. Since the carrier density in a semiconductor is a function of
the Fermi level (EF), which can be obtained by integrating the product of the density of
states with a probability density function, as shown in Fig. 4.9a, the Fermi-Dirac correction
term is obtained with respect to charge density in Fig. 4.9b. Fig. 4.10 shows the results
of two different µB calculations with two different method from Eq. (4.34) and Eq. (4.35).
Except LG = 10 nm, Both µB is constant when VGS is smaller than threshold voltage owing
to F−1/2(η) = F0(η) = eη under nondegenerate condition. On the other hand, µB for LG
= 10 nm decreases as the VGS decreases even in the nondegenerate limit. This is because
electrons with relatively low energy contribute to the current through intra-band tunneling
and the ratio of tunneling current to thermionic emission current increases as VGS decreases.
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(a) (b)

Figure 4.9: (a) Carrier density as a function of Fermi energy EF − EC for 6 nm InAs UTB.
(b) Fermi-Dirac correction term as a function of carrier density for 6 nm InAs UTB.

Figure 4.10: Ballistic mobility as a function of gate voltage (VGS) for different gate lengths.
The dashed lines are from Eq. (4.35), and the solid lines are from Eq. (4.34).

Phonon scattering

Fig. 4.11a shows the transfer characteristics in the linear region (VDS = 0.01 V) under either
ballistic or dissipative transport with POP scattering. The impact of the phonon scattering
on different sizes of the devices have been explored on both linear and logarithmic plot and
are shown to be compared in both the above-threshold and the subthreshold region. It is
apparent that as the channel length increases, the enhanced probability of scattering causes
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(a) (b)

(c) (d)

Figure 4.11: (a) IDS – VGS characteristics at VDS = 0.5 V with different gate lengths on loga-
rithmic (left axis) and linear scales (right axis). Sold lines are from ballistic simulation and
dashed lines are from dissipative simulation (POP). (b) Apparent mobility from dissipative
simulation with POP scattering as function of gate voltage (VGS) for different gate lengths.
(c) Ballisticity (Iscat/Ibal) as a function of gate voltage at VDS = 0.5 V with POP scattering.
(d) Ballisticity (Iscat/Ibal) as a function of gate length at VDS = 0.01 V and VDS = 0.5 V with
POP scattering.

a greater decrease in the current. Furthermore, the effect of phonon scattering of POP
also relies on the gate voltage and the drain voltage. For a better understanding of voltage
dependence, we have plotted the ballisticity curve, which is the ratio of the scattering and
ballistic current (Iscat/Ibal). Fig. 4.11c shows that the impact of POP is reduced as the
gate voltage increases. The increased electron density, which is induced by gate voltage,
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Figure 4.12: (a) Energy-resolved current with different gate length under ballistic (dashed
line) and dissipative transport with POP (solid line). Calculations are performed at the
drain side end at VGS = 0.4 V and VDS = 0.5 V. (b) Energy-resolved current spectrum at
VGS = 0.4 V and VDS = 0.5 V with POP scattering.

results in a better screening of deformation potentials of POP, and leads to less efficient
scattering by the dipole field of ion. Ballisticity also depends on the drain voltage. Fig.
4.11d shows that the number of scattering events decrease as the drain voltage increases.
The impacts of drain bias become negligible in the long channel device (100 nm). Since the
average velocity of the electron along the device increases as the drain bias increases, the
time for electrons to stay in the device becomes smaller, and therefore, the probability of
the scattering event relatively decreases. Furthermore, once the energy of the electron is
relaxed by POP at a high VDS, it is highly unlikely that electrons can travel back to the
source, which increases the negative current, because of the insufficient energy to overcome
the top of the potential barrier. In Fig. 4.12a, we have shown that the energy resolved
current in the drain for a different gate length at VGS = 0.4 V and VDS = 0.5 V . While the
ballistic simulation shows an almost identical current distribution regardless of the length of
the device, except for very short channel MOSFET (LG = 10 nm), the scattering simulation
with POP clearly shows device length dependence of the current spectrum. When electrons
propagate from the source to the drain, scattering with POP results in the broadening of the
drain current spectrum as electrons can occupy certain energy levels, which are forbidden
under the ballistic regime. Furthermore, the energy relaxation by emitting one or a few
inelastic phonon produces a separation of the peak of the current spectrum. As the number
of scattering events is proportional to the channel length, energy relaxation is enhanced as
the channel length increases. This impact of energy relaxation caused by POP is clearly
observed in the energy-resolved current spectrum, as shown in Fig. 4.12b.

As the channel length of an MOSFET is comparable with mean free path, the conven-
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Figure 4.13: Ron versus LG under different VGS of 6 nm InAs MOSFETs with POP scattering.
The slope of linear curve is proportional to inverse of µe f f and y-axis intercept is Ron(0) =
RS/D + RB.

tional mobility from Drudes model should be treated carefully. In the quasi-ballistic regime,
the effective mobility in a long-channel equations should be replaced by the apparent channel
mobility , which is governed by Matthiessen's law.

1

µapp
=

1

µB
+

1

µe f f
(4.36)

Here, µe f f is the diffusive mobility in the scattering-dominated long channel. From the
conventional current equation at the low field, the on-resistance for a given length, LG, is
given as

Ron(LG) =RS/D +
VDS

Ion(LG)

=RS/D +
1

µapp

LG

Qi(0)

=RS/D +

(
1

µB
+

1

µe f f

)
LG

Qi(0)

(4.37)

where RS/D is the resistance of the S/D region. Since
1

µB

LG

Qi(0)
= RB is independent of LG,

the effective mobility is extracted from the slope of the linear Ron − LG curve. Since RB has
been calculated from the ballistic simulation, RS/D can be obtained from the y-intercept of
linear Ron−LG curve using Ron(0) = RS/D+RB. The carrier mean free path (λm f p) is obtained
from the scattering limited mobility equation, which is generally given as

µe f f =
vT qλm f p

kBT
F−1/2(η)

F0(η)
(4.38)
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Fig. 4.13 shows a linear dependence of Ron versus LG under different VGS. The Ron value from
LG = 30 nm to 100 nm is well located on the linear fitting line. However, the Ron value of
LG = 10 nm is smaller than the linear fitting and the VGS is smaller and the deviation is larger.
In the short channel (LG = 10 nm), as the VGS increases, the ratio of the current flowing
under the potential barrier increases, resulting in a Ron value less than the linear fit. The
extracted results are summarized in Table. 4.2. As VGS increases, µe f f and λm f p increase
together. However, we note that λm f p continues to increase while the mobility saturates.
This is because the degeneracy of the electrons continues to decrease as the electron density
increases.

VGS Slope Qi(0) µe f f RB RS/D λm f p
(V) (Ω) (#/cm2) (cm2/V ·s) (Ω·µm ) (Ω·µm ) (nm)

0.35 761 1.12E+12 7323 128.5 6.1 171
0.4 319 2.22E+12 8814 74.5 4.6 243
0.45 203 3.49E+12 8810 52.0 3.3 280

Table 4.2: Extracted characteristics of POP scattering for 6 nm InAs MOSFETs with dif-
ferent VGS.

Surface roughness scattering

In contrast to phonon scattering, which is an intrinsic scattering mechanism, SR is an extrin-
sic mechanism, which highly depends on current fabrication technology and has possibility
that further research may reduce the contributions. However, in UTB films, especially short
channel device that apply high normal electric fields, the charge move very close to the
channel-insulator interface, so SR scattering becomes a dominant scattering source. Here,
we examine the effect of SR scattering on electron transport and adjust the parameter of
SR to match the mobility from the experimental data. SR induces fluctuation of the po-
tential along the channel and the subband wave function, of the electron charge, and of
the interface polarization charge. For this study, we take into account the modification of
the wavefunction due to SR, which is expressed with the Prange-Nee term and can be im-
plemented in NEGF via an appropriate self-energy. From the semi-classical expression for
surface roughness scattering, the square of the matrix element can be obtained as

Σ
<
SR(x, α, ky, E) =

1

axay
|MSR |

2
∑
β

∫
dqy

2π
Y (q)[G<(x, β, ky + qy, E)

+G<(x, β, ky − qy, E)] F(α, β),

Σ
>
SR(x, α, ky, E) =

1

axay
|MSR |

2
∑
β

∫
dqy

2π
Y (q)[G>(x, β, ky − qy, E)

+G>(x, β, ky + qy, E)] F(α, β),

(4.39)
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Here, Y(q) is the momentum dependence of the power spectrum, which is obtained from
the Fourier transform of the roughness correlation, and |MSR |

2 is the strength of scattering.
We use the exponential autocorrelation function, i.e., Y (q) = (1 + (Λ2q2)/2)−3/2, and the

square of the matrix element for the small quantum well, i.e., |MSR |
2 = π∆2Λ2 π

4~4

m∗2T6
s

, where

Λ is the correlation length, ∆ is the roughness r.m.s., and Ts is film thickness. The values of Λ
and ∆ are chosen to fit the low-field mean free path of InAs, which is experimentally extracted
as 150 nm (Λ = 0.2 nm, ∆ = 6 nm). In Fig. 4.14a, we compare the I − V characteristics for
InAs MOSFET under ballistic, with only POP scattering and both POP and SR scattering.
In Fig. 4.14b and 4.14c, the result of simulation under POP and SR together exhibits a
smaller energy-resolved current and ballisticity than the result obtained under only POP
scattering because it have higher scattering probability. However, SR scattering has little
impact on the shape of current spectrum and tendency of ballisticity because SR scattering
is an elastic scattering, which does not include energy relaxation.

(a) (b) (c)

Figure 4.14: (a) IDS - VGS characteristics of 100 nm transistor at VDS = 0.01 and 0.5 V under
ballisic and dissipative transport. (b) Energy-resolved current at the drain side end at VGS
= 0.4 V and VDS = 0.5 V. (c) Ballisticity (Iscat / Ibal) as a function of channel length at two
different drain voltages and under two different scattering mechanisms (POP and POP +
SR) at VGS = 0.45 V.

In Fig. 4.15, we show a linear dependence of Ron versus LG for InAs MOSFET computed
under SR and POP scattering and the extracted results are summarized in Table. 4.2. As
in the case of a stand-alone POP, µe f f and λm f p with both SR and POP increase as VGS
increases. Mobility saturation appears to take place at higher voltages.
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Figure 4.15: Ron versus LG under different VGS of 6 nm InAs MOSFETs with POP + SR
scattering. The slope of linear curve is proportional to inverse of µe f f and y-axis intersect
is Ron(0) = RS/D + RB.

VGS Slope Qi(0) µe f f Ron RS/D λm f p
(V) (Ω) (#/cm2) (cm2/V ·s) (Ω·µm ) (Ω·µm ) (nm)

0.35 1237 1.11E+12 4513 131.1 9.2 108
0.4 550 2.20E+12 5115 75.9 6.5 136
0.45 330 3.48E+12 5413 54.2 5.5 160

Table 4.3: Extracted characteristics of SR scattering for 6nm InAs MOSFETs with different
VGS.

In Fig. 4.16, we compare the average injection velocity as a function of channel length
under ballistic and dissipative transport simulation at high VDS and low VDS. For dissipative
transport, the average vin j tends to decrease with an increasing length. This is because the
number of electrons traveling in the + x direction decreases as the number of backward elec-
trons increases because of the scattering. This difference decreases with decreasing length,
but vin j at low VDS still shows a difference by the scattering mechanism even at 10 nm because
there are enough chance that scattering occurs during transport. This tendency is the same
even when VDS = 0.5 V . However, vin j at the high VDS for the 10-nm device converges to
the unidirectional thermal velocity (vT) value and shows a negligible difference by scattering
(less than 10 %).
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(a) (b)

Figure 4.16: (a) Average injection velocity at VGS = 0.45 V and VDS = 0.01 V. (b) Average
injection velocity at VGS = 0.45 V and VDS = 0.5 V.

4.4 Conclusion

In this chapter, we present a 2D simulation framework for electronic transport incorporat-
ing electronphonon scattering based on the NEGF formalism. A mode space approach is
adopted to reduce the computational complexity and the local self-energy functions for the
electronphonon interactions have been rigorously derived within the self-consistent Born ap-
proximation. We verify the obtained self-energy functions by comparing the scattering rates
obtained by NEGF formalism and FGR. We study the quantum transport of the double gate
III-V UTB MOSFETs in the ballistic limit and in the presence of electronphonon interactions
and surface roughness scattering. We also obtain the phonon-limited low field mobility and
mean free path in the long channel limit by extracting the apparent mobility and the ballis-
tic mobility for different gate lengths. Within POP scattering, which is defined by intrinsic
material parameters, the mobility of InAs UTB MOSFETs was about 8800 cm2/V · s. For
SR scattering, the correlation length and the roughness r.m.s. are chosen to fit the low-field
mobility of InAs, which is experimentally extracted as approximately 5000 cm2/V · s. It is
found that the electronphonon interactions reduce the drain current, and broaden the local
density of states. For a 10-nm InAs UTB transistor, the on-sate current with only POP is
93.0 % of ballistic limit and reduced to 89.6 % with POP and SR scattering.
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Chapter 5

Effect of phonon scattering on
quantum transport in Si MOSFETs

5.1 Introduction

As the Internet of Things (IOT) applications become increasingly important, ultra-thin body
metal oxide semiconductor field effect transistor (UTB MOSFET) devices are seeing a resur-
gence. While the UTB MOSFET devices cannot deliver the same ON current as FinFETs,
their OFF state performance is significantly better, making them particularly interesting for
low stand-by power applications. To properly assess the potential of the UTB MOSFET
devices at the ultra scaled dimensions, two aspects need to be considered. Firstly, various
types of tunneling could significantly reduce the ON/OFF ratio. Secondly, a rigorous de-
scription of carrier scattering is critical to understand how the current voltage characteristic
will be in the quasi-ballistic regime. This means that one needs a quantum transport cal-
culation, for example, following the Non-Equilibrium Green's Function (NEGF) formalism,
including scattering to appropriately account for necessary physics. However, such a calcula-
tion is significantly complicated, especially for UTB MOSFETs where scattering couples the
transverse modes, thereby restricting the ability for an analytical summation. Consequently,
most of the existing work in this context have investigated device behavior only from ballis-
tic calculations [66–68] or based on Buttiker probes [78,92] or ignored the coupling between
transverse modes [97].

Luisier [69] reported NEGF calculations where transverse modes are appropriately cou-
pled and compared ON currents of GaSb, strained Si and In0.53Ga0.47As channels. In this
work, we use a similar approach to investigate effective mobility in UTB Si MOSFET devices.
We have focused on the effective mobility [98–102] as this is a parameter that can be directly
measured from experiments. Furthermore, we show that the scattering rates calculated using
NEGF are very similar to those calculated using Fermi's Golden Rule (FGR). Given that
FGR has been very successfully used to model scattering limited transport in semiconductor
materials [103–105], the similarity between NEGF and FGR provides a pathway to choose
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the coupling constants by fitting it to large channel length devices and then using those same
constants to predict behavior for short channel length devices.

This chapter is organized in the following way. Section II discusses the simulation method-
ology including a brief discussion of how the scattering mechanisms are included in the cal-
culation, how the scattering within the NEGF method compares with Fermi’s Golden rule,
how the device is set up and how the effects of band structure is captured. Section III
discusses the main results in terms of current voltage characteristic and how the scattering
mechanisms affect it. The effective mobility is calculated in this section and a framework is
presented to show the mobility can be compared with experimental data. Finally, section
IV summarizes the results.

5.2 Simulation methodology

Following NEGF formalism, we can write the retarded Green's function for each mode (α)
at a given transverse momentum (ky) as [79,80,106–109]

G(E, ky, α) = [ EI − H − Σ1 − Σ2 − ΣS ]
−1 (5.1)

where H is the device Hamiltonian, Σ1 and Σ2 are the self-energy matrices representing the
open boundary conditions of source and drain, respectively and ΣS is the retarded self-energy
matrix representing the interaction between the electron and scattering source. Within the
self-consistent Born approximation, the electron-phonon interactions can be included in the
lesser and greater self-energy functions in the following manner.
For the acoustic phonon (AP) scattering:

Σ
≶
AP(x, α, ky, E) =

1

axay

D2
AkBT

ρv2s

∑
β

∫
dqy

2π
G≶(x, β, ky + qy, E)F(α, β) (5.2)

, where ρ is the density, vs is the sound velocity in silicon, ax and ay are the discretization
mesh in the x and y direction, DA is the AP deformation potential and F(α, β) is the form-
factor account for transition between subbands α and β.

F(α, β) =
∫ ∞

−∞

ψ∗α(z)ψ
∗
β(z)ψα(z)ψβ(z)dz (5.3)

For the optical phonon (OP) scattering:

Σ
≶
OP(x, α, ky, E) =

1

axay

~D2
o

2ρωo

∑
β

∫
dqy

2π
[(nq + 1)G≶(x, β, ky ± qy, E ± ~ωo)

+ nqG≶(x, β, ky ∓ qy, E ∓ ~ωo)]F(α, β)

(5.4)

, where Do is the OP deformation potential, ωo is the angular frequency and nq = [exp(~ωo/kBT)−
1]−1 is the phonon occupation number.
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The imaginary part of the scattering self-energy is,

Σ
i
S(E) = −

i
2
ΓS(E) = −

i
2
[Σ<S + Σ

>
S ] (5.5)

The real part of the self-energy can be computed by the Hilbert transform of the level broad-
ening of scattering (Γ). However, for materials with reasonably continuous density of states,
the real part has negligible effect [85]. Therefore, we have ignored it in our calculations. The
electron density obtained using the NEGF formula including the scattering is fed back to
the Poisson solver until self-consistency is achieved. Once the electrostatic self-consistency
is obtained, the current is calculated from

I =
q
~

∑
α

1

W

∑
ky

2

∫
dE
2π

Trace
[
AαΣ<L,α − G<

αΓL,α
]

(5.6)

where A is the spectral function, G< is the electron correlation function, Σ<L is the in-
scattering function of contact L and ΓL is the level broadening of contact L.

5.3 Results and discussion

An overview of quantum transport within 2D mode-space NEGF including scattering pro-
cesses was presented in previous section. Now we will discuss the effect of scattering on
the electron transport and the electrical characteristics in nanoscale devices. Fig.5.1 shows
the simulated device structure. It has a double gate configuration. The channel consists
of Si(100) with 6 nm thickness and transport direction is chosen to be along [100]. Gate

Figure 5.1: UTB DG MOSFET as a model device and the underlying atomic structure. A
20 orbital sp3d5s∗ − SO TB model is used to calculate the 2D subband dispersion for Si.
There are 45 atomic layers of Si (≈ 6nm).
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length is varied from 10 to 100 nm. The doping level of the channel is zero and those of
source/drain are of 4×1019 cm−3. The length of source/drain region is 20 nm. A 3-nm-thick
HfO2 (εr = 20) is used as the dielectric material (EOT = 0.585 nm). NEGF equations are
solved in the mode space (discussed in more detail in the following) self-consistently with
a two-dimensional finite element Poisson solver. Given that our intent is to investigate the
effective mobility, we have ignored band-to-band tunneling current which becomes impor-
tant at large negative gate bias. Also, impurity scattering has been ignored as the channel
is assumed to be undoped.

Bandstructure

For calculating the band structure in Si channel, we use a sp3d5s∗-SO basis set using the tight-
binding parameters from Ref. [58]. Passivation of the surface dangling bonds is assumed.
The channel is confined in the z direction. For (001) Si , the bulk ∆ valleys along kz in
three-dimensional (3D) Brillouin Zone are projected at Γ point (Fig. 5.2). For other surface
orientations, conduction band edges are not projected onto the Γ point because there are
nonzero components of the in-plane wavevectors. Fig. 5.3a illustrates the lowest subband
energy of 6-nm-thick Si thin film in the two-dimensional (2D) reciprocal space. The L point
is the projection of 3D bulk L point. The dotted square represents the 2D Brillouin Zone.
The X and Y valleys have a small confinement mass and a large transport mass. On the
other hand, Γ valley has a large confinement mass and a small transport mass. Consequently,
conduction band edges at the Γ point are less up-shifted by confinement effects than other

(a) (b)

Figure 5.2: The direct bandgap transition from (a) 3D bulk silicon to (b) (001) UTB Si.
The ∆ valleys on z-axis (Z valley) are projected on to the origin of the first BZ (Γ valley).
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Figure 5.3: (a) Lowest subband of Si (100) thin film for approximately T =6 nm within the
2D Brillouin zone (b) Band structure of 6 nm (100) thin film using the sp3d5s∗ tight-binding
model.

Valley Eg mx

1st Γ 1.183 0.201

2nd Γ 1.216 0.202

3rd Γ 1.269 0.203

4th Γ 1.344 0.205

5th Γ 1.439 0.208

6th X 1.218 0.895

7th X 1.352 0.913

8th Y 1.218 0.224

9th Y 1.352 0.325

10th Y 1.427 0.564

Table 5.1: Band gap (Eg) and effective masses of transport (mx) of each subbands using
sp3d5s∗ TB model.
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valleys since the conduction band edges at the Γ point have a higher confinement effective
mass [110]. As a consequence, Si (001) thin films have a direct band gap (Fig. 5.3b).

Number of subbands

For current voltage calculation, one must also determine the number of subbands that should
be included in the calculation. Here, we have included all subbands within 0.3 eV of the
conduction band minimum. As we show later, subbands outside this range contribute neg-
ligibly to the total current. Within this energy range, here are 10 modes in total: 5 for Γ
valley, 2 for X valley, and 3 for Y valley. X valleys and Y valleys have different effective
masses (m∗e at X valley ≈ 0.90 m0, m∗e at Y valley ≈ 0.22 m0) in the transport direction and
should be included separately. The effective masses of transport (m∗x) and band gap (Eg) of
each subbands, calculated from sp3d5s∗ Hamiltonian, are listed in Table. 5.1. The effective
mass is calculated by fitting a parabola dispersion at the minimum of the conduction band
in each valley. Furthermore, the probability densities for 10 subbands of 6 nm Si can be
obtained from the eigenfunction of TB calculations, as shown in Fig. 5.4. Those probability
densities |ψα(x, z)|2 are used to redistribute the electron density to x-z plane.

In Fig. 5.5, we compare the density of states of 6 nm Si UTB calculated using the mode-
space NEGF and the real-space NEGF approach. The density of states can be obtained by
integrating the spectral function, with respect to ky under the flat band condition. Mode-

Γ valley Χ, 𝑌 valley 

1st 2nd 1st

2nd3rd 4th

Figure 5.4: Normalized probability density of subbands at each valley for 6 nm Si. The
probability density at Y valley. The eigenfunctions of Y valley have the same distribution as
of X valley. The fifth subband at Γ valley and the third subband of Y valley are not shown
here.
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space using 10 subbands is in very close agreement with the real-space NEGF results within
0.3 eV from the conduction band edge. We note that the initial very small step near the
conduction band edge represents the 1st subband of Γ valley and the second step is the
combined density of states from the 2nd subband of Γ valley and the 1st subbands of X and
Y valleys.

Figure 5.5: The density of states for 6 nm Si UTB using mode-space NEGF and full-band
NEGF approach.

Ballistic transport

We start with a ballistic calculation to understand two aspects: (i)how impactful is the
direct source drain tunneling in the context of the total current and (ii) how does the current
distribute itself among different subbands. This second aspect will help understand the effect
of coupling between the modes when we bring in the scattering in the next section. Fig.
5.6 shows the IDS − VGS characteristics for different gate lengths under ballistic transport
for VDS of 0.01 V and 0.5 V. Significant short channel effects for small channel lengths
are clearly evident from the current-voltage characteristic. The 10 nm length MOSFET
shows a deteriorated subthreshold swing (SS) and a drain-induced barrier lowering (DIBL)
in comparison with longer gate length MOSFET.
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Figure 5.6: Ballistic Transfer curves (IDS vs. VGS) for double-gated Si MOSFETs with
different gate lengths at VDS = 0.01 (dashed lines) and 0.5 V(solid lines).

(a) (b)

Figure 5.7: Energy-resolved current spectrum of ballistic transport at VGS = 0 V and VDS =
0.5 V for (a) LG = 10 nm and (b) LG = 30 nm.

Fig. 5.7 shows the energy-resolved current spectra at VGS = 0.0 V and VDS = 0.5 V for
ballistic simulation of LG = 10 nm and LG = 30 nm MOSFETs. White dashed line shows
profile of conduction band minimum. Fig. 5.8a shows the off-state (VGS = 0 V) band diagram
of first subband for different gate lengths at low drain (VDS = 0.01 V) and high drain bias
(VDS = 0.5 V). The potential energy barrier for electrons in the channel is lowered both by
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Figure 5.8: (a) First subband EC profile for different gate lengths at VGS = 0 V . (b) First
subband EC profile for different gate lengths at VGS = 0.45 V . (c) Percentage of BTBT
current for different gate lengths as a function of VGS.

decreasing gate length (Vth roll-off) and increasing drain voltage (DIBL). Both phenomena
stem from the relatively increased charge-sharing effect between the channel depletion region
and source/drain depletion regions when compared to the long-channel device case. This
charge-sharing effect makes a transistor require less gate voltage to deplete and makes Vth
decrease. Furthermore, the source-drain tunneling (SDT) current for off-state also increases
with gate length reduction. Fig.5.8c shows the percentage tunneling for different gate lengths
as function of gate voltage at high drain and low drain bias. The off-state percentage
tunneling of short channel device at high drain bias is higher than the ones at low drain
bias. We note that the SDT current is also an important source of current for the On-state
and is relatively less sensitive to channel length due to the narrowed top-of-barrier (TOB)
width. The off-state SDT current for LG = 10 nm and LG = 30 nm are 17.5 % and 1.3 % of
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the total current, respectively. The On-state SDT current for LG = 10 nm and LG = 30 nm
are 9.9 % and 7.1 % of the total current, respectively. Fig. 5.9 (a) and (b) show Ratio of
10 subbands current to the total current (Isub/ITotal) as function of VGS at VDS = 0.5 V for
LG = 10 nm and LG = 100 nm, respectively. For ballistic simulations, the percentage current
for the lowest first subband is about 51 %. The percentage current for the first subband of Y
valley (8th subbands), the second subband of Γ valley (2nd subbands) and the first subband
of X valley (6th subbands) are 25.5 %, 14.5 % and 7.0 %, respectively. The three subbands
have almost the same Eg but have different percentage currents due to the different mx and
my. Subband with small mx and large my carry lager currents.
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Figure 5.9: Ratio of 10 subbands current to the total current (Isubband/ITotal) as function of
VGS at VDS = 0.5 V for (a) LG = 10 nm and (b) LG = 100 nm.

Electron-Phonon Scattering

We now include the electron phonon scattering as discussed in Section 5.2. For this, the
values for the deformation potential for acoustic phonons (DA) and optical phonons (Do) are
fitted to match the phonon-limited Si effective mobility (µe f f ≈ 1000cm2/V · s) [111]. These
values are 3.05 eV for acoustic phonons and of 2.56 × 108 eV/cm for optical phonons. In
addition, ρ = 2329kg/m3, vs = 9040m/s and ax = ay = 0.2715 nm are used. Fig.5.10a shows
the IDS − VGS characteristics in the saturation region (VDS = 0.5 V) for both ballistic and
dissipative conditions. Fig. 5.10b shows percentage of reduction in the drain current((Iball −

Iscatt)/Iball × 100) due to various scattering mechanisms as a function of the gate length at
VGS = 0.45 V . It is apparent that as the channel length increases, the enhanced probability
of scattering decreases the current, because a portion of scattered carriers returns to the
source and cannot reach the drain. AP scattering is found to be twice as effective as OP.
Interestingly, the effect of phonon scattering is a function of both VGS and VDS. Fig. 5.11
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Figure 5.10: (a) IDS – VGS characteristics at VDS = 0.5 V with different gate lengths in
logarithmic (left axis) and linear scales (right axis). Sold lines are from ballistic simulations
and dashed lines are from dissipative simulation (AP + OP). (b) Percentage reduction in the
on-current caused by scattering as a function of gate length at high drain bias, VDS = 0.5 V .
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shows the same percentage reduction in the drain current as in Fig. 5.10b but as a function
of VGS for the LG = 50 nm device at VDS = 0.01 V and VDS = 0.5 V . The impact of phonon
scattering increases as the gate bias increases. This can be explained by the increase in the
density of states with respect to increasing energy from the conduction band edge (Ec) .
At a low VGS, the current flows mainly near the conduction band edge where the carriers
encounter a smaller density of states and hence less scattering. In contrast, at a high VGS, a
considerable fraction of carriers flow well above the Ec where density of states is higher than
that at the conduction band edge and the scattering rate increases (Fig. 5.5). We also find
that OP scattering is more effective at high drain voltages. This is expected as the carriers
need a threshold energy to emit an optical phonon. Fig.5.12 shows the energy-resolved
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Figure 5.11: Percentage reduction in the on-current caused by scattering as a function of
gate length at VDS = 0.01 V and VDS = 0.5 V .

current spectrum at the OFF condition (VGS = 0 V and VDS = 0.5 V) for the LG = 50 nm
for ballistic as well as dissipative conditions. The coupling between various energies for the
OP phonon scattering and therefore the spreading of the electrons to various energies can be
clearly seen. To better understand this, we have plotted the current spectrum at the drain
end in Fig.5.13a. The spectrum exhibits two peaks with an energy spacing of approximately
0.3 eV . The first peak (P1) is the current from the first subband of the Γ valley and the
second peak (P2) is the current from the sum of the first subbands of the X valley and Y
valley and the first and second subbands of the Γ valley. In ballistic transport, the second
peak is higher because of the larger density of states, even though it is further away from
the conduction band edge. Under dissipative transport, however, this is not the case. With
scattering the height of P1 increases and that of P2 decreases. This is result of the different
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subtends and ky modes getting coupled that distributes carriers more evenly among various
energy levels. A different way to understand this effect is to look at the proportion of total
current carried by the first subband. This is shown in Fig. 5.13b. At the drain where
significant space opens up in the lower energy ranges, the electrons spread out reducing the
ratio of the current carried by the first subband.

We have performed the same study at the ON condition (VGS = 0.45 V and VDS = 0.5 V)
as shown in Figures 5.14 and 5.13. As the drain voltage now slants the barrier profile from
source to drain, energy states become available even in the middle of the device and current
spreading and therefore reduction in the current carried by the subband can be seen far away
from the drain.

Fig. 5.16a shows the ratio of first subband current to the total current (I1stsub/ITotal)
as function of VGS for ballistic (dashed lines) and scattering (solid lines) simulations for
VDS = 0.5 V . This value of the ratio is obtained by averaging the values inside the entire
device. In the case of ballistic transport, the ratio of first subband current continues to
decrease as VGS increases, whereas in the case of dissipative transport, the ratio increases in
the sub-threshold region and decreases in the above-threshold region as VGS increases. The
ratio of first subband at top of the barrier is almost independent of VGS. However, in the
sub-threshold region, the ratio in the source/drain region increases as VGS increases, and in
the above-threshold region, the ratio decreases because of the tilted potential in the channel
region. The increase in the ratio with increasing channel length in the sub-threshold region
is due to the relatively low contribution of the source/drain regions. On the other hand, in
the above-threshold region, the length of the channel with slanted potential increases with
increasing LG, thus resulting in a further reduction of the fraction of the first subband current.
These results support the interpretation that as VGS increases, the fraction of carriers flowing
well above the Ec increases, resulting in higher scattering rate due to higher density of states
(Fig. 5.11).
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(a) (b)

(c) (d)

Figure 5.12: Energy-resolved current spectrum at VGS = 0 V and VDS = 0.5 V under (a)
ballistic transport and dissipative transport with (b) AP, (c)OP, and (d) AP + OP.
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Figure 5.13: (a) Energy-resolved current with different phonon scattering mechanisms. Val-
ues are obtained at the drain end at VGS = 0 V and VDS = 0.5 V . (b) Ratio of first subband
current to the total current (I1stsub/ITotal) as function of position.
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(a) (b)

(c) (d)

Figure 5.14: Energy-resolved current spectrum at VGS = 0.45 V and VDS = 0.5V under (a)
ballistic transport and dissipative transport with (b) AP, (c)OP, and (d) AP + OP.
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Figure 5.15: (a) Energy-resolved current with different phonon scattering mechanism. Values
are obtained at the drain end at VGS = 0.45 V and VDS = 0.5 V . (b) Ratio of first subband
current to the total current (I1stsub/ITotal) as function of position
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Figure 5.16: (a) Ratio of first subband current to the total current (I1stsub/ITotal) as function
of VGS for ballistic (dashed lines) and scattering (solid lines) simulations at VDS = 0.5 V (b)
Ratio of 10 subbands current to the total current (I1stsub/ITotal) as function of position for a
LG = 50 nm device at VGS = 0.5 V and VDS = 0.5 V

Phonon-limited mobility

Finally, we are at a position to investigate the phonon limited mobility. For this, we follow
the approach prescribed in [98–102]. Conventionally, the drain current at low electric fields
can be expressed as

IDS =
W
LG

µQi(0)VDS (5.7)

where Qi(0) is the sheet electron density at the top of the barrier, µ is the channel mobility,
VDS is the drain voltage and W and LG are the device width and length, respectively.

On the other hand, current under ballistic conditions can be written as [94,112]

IDS = W
[
vT q
kBT

F−1/2(η)

F0(η)

]
Qi(0)VDS (5.8)

where vT =
√

2kBT/πm∗ is the unidirectional thermal velocity of nondegenerate electrons,
the function Fi is the Fermi-Dirac integral and η = (EF − EC0)/kBT , where EF is the source
Fermi level and EC0 is the first subband level for electrons. To relate the channel length
independent ballistic current to an expression similar to conventional devices (5.7), Shur [95]
defined a quantity called ballistic mobility µB as

µB =
vT qLG

2kBT
F−1/2(η)

F0(η)
(5.9)

In the quasi-ballistic regime, where the device length is of the order of the mean free path
(mfp) of electron phonon scattering, the µ in (5.7) is replaced by the apparent channel
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mobility (µapp) [98],
1

µapp
=

1

µB
+

1

µe f f
(5.10)

where µe f f is the effective mobility of the quasi-ballistic transistor.

Now, at small drain voltage, the total resistance of the device, Rtotal = IDS/VDS, can be
written as

Rtotal = Rch + RS/D + RB (5.11)

where Rch is the resistance of the channel and a function of channel length. On the other
hand, RS/D is the series resistance of the source/drain region and RB is the ballistic resistance.
Neither RS/D nor RB is a function of the channel length. From (5.11), one can write,

Rtotal = RS/D +
1

µapp

LG

Qi (0 )
= RS/D +

(
1

µB
+

1

µeff

)
LG

Qi (0 )
(5.12)

Inserting (5.9) into (5.12), we obtain

Rtotal = RS/D +
2kB T

vT qQi (0 )

F0 (η)

F−1/2 (η)
+

1

µeff

LG

Qi (0 )
(5.13)

Therefore, the effective mobility can be obtained from the slope of the Rtotal vs. LG plot.
The carrier mean free path (λm f p) can be obtained from the scattering-limited mobility

equation, which is generally given as [113]

µe f f =
vT qλm f p

2kBT
F−1/2(η)

F0(η)
= λm f pµB (5.14)

We calculate IDS − VGS characteristics in the linear region (VDS = 0.01 V) under ballistic
and dissipative transport with AP and OP scattering (Fig. 5.17). The IDS − VGS curves
have been plotted on both linear and logarithmic scale to compare the above-threshold and
the sub-threshold regions. Under the ballistic transport, currents at the same gate voltage
have the same value regardless of the length, except for the increase of current in short
channel devices in the sub-threshold region owing to short channel effect. From IDS and
Qi(0) for ballistic and dissipative transport, the ballistic mobility and the apparent mobility
are obtained as shown in Fig. 5.18. Ballistic mobility increases linearly with device length
as shown in (5.9), while the apparent mobility is similar to the ballistic mobility for a length
of 10 nm, but its value saturates as the length increases, because the apparent mobility is
governed by the Matthiessen's rule (5.10).
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Figure 5.17: Ballistic and dissipative ID-VG transfer curves (IDS vs. VGS) for double-gated
Si MOSFETs with different gate lengths at VDS = 0.01.
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Figure 5.18: (a) Ballistic mobility and (b) Apparent mobility as a function of gate voltage
(VGS) for different gate lengths.
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Figure 5.19: (a) Rtotal versus LG for different VGS of a 6 nm Si MOSFETs with AP and OP
scattering. The slope of the linear curve is proportional to the inverse of µe f f and the y-axis
intersect is Rtotal(0) = RS/D + RB. (b) Effective mobility as a function of gate voltage (VGS).

Fig. 5.19a shows dependence of Rtotal versus LG for different VGS. The Rtotal value from
30 nm to 100 nm is well fitted by a straight line, but the Rtotal value of 10 nm is smaller
than the linear fitting and the VGS are smaller and the deviation is larger. This is because
the potential barrier in the short channel (LG = 10 nm) is lowered by the drain bias (DIBL)
in the sub-threshold region, resulting in a Rtotal value less than for the long channel. The
extracted results are summarized in Table. 5.2. For low carrier concentration (low VGS),
λm f p is 48 nm and µe f f is 1300 cm2/V · s. As VGS increases, µe f f and λm f p decrease together.
When Qi(0) is 6.8 × 1012 cm−2 at VGS = 0.5 V , λm f p is down to 36 nm and µe f f is 790
cm2/V · s. Notably µe f f decreases at high gate voltage (Fig. 5.19b). This is due to increased
scattering with increasing density of states as we discussed before.

Figures 5.19a and 5.19b provide the connection to experimental measurement. In prin-
ciple, a similar R vs. LG plot can be drawn from experimental data and value for µe f f can
be extracted. The simulation results can then be compared against the experimental mea-
surements by using the acoustic and optical phonon scattering coupling constants as fitting
parameters much the same way it was done for Monte Carlo simulations of long channel
MOSFETs. Once this is done, predictive simulation can be performed for shorter channel
devices where the R − LG may vary from a linear trend due to DIBL (as discussed in the
preceding paragraph) and where source-drain direct tunneling becomes a significant part of
the total current (Fig. 5.8c).
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VGS Slope Qi(0) µe f f RB RS/D λm f p
(V) (Ω) (#/cm2) (cm2/V ·s) (Ω·µm ) (Ω·µm ) (nm)

0.35 3672 1.58E+12 1078 167.0 30 41
0.4 1785 2.96E+12 1180 91.5 15 49
0.45 1280 4.66E+12 1065 58.0 11 47
0.5 1172 6.76E+12 787 42.7 8 36

Table 5.2: Extracted characteristics of phonon scattering for 6nm Si MOSFETs with different
VGS.

5.4 Conclusion

To summarize, we have studied the effects of electron-phonon scattering in double Si UTB
MOSFETs by using a mode space approach within the NEGF formalism. Due to coupling
between subbands and transverse modes that open up significant phase space at larger gate
voltages, the effective mobility of electrons in an undoped Si channel could be reduced from
a high of 1400 cm2/V · s to almost half of that value at high voltages. We presented a
framework that can be used to directly compare experimentally obtained effective mobility
with simulation results. Such comparison at channel lengths such as 50-100 nm, where direct
source-to-drain tunneling is not important can be used to calibrate the model parameters.
This calibrated model can then be used to predict device behavior for ultra scaled MOS-
FETs where both tunneling and short channel effects become important. For a complete
description, one would also need to include surface roughness scattering. However, since this
is an elastic scattering process, this can be added in the same was as acoustic phonons [80]
and therefore the general framework presented here can still be applied.
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Chapter 6

Impact of indium mole fraction on the
quantum transport of ultra-scaled
InGaAs MOSFET

6.1 Introduction

InGaAs has been actively researched as an n-channel material for future highly scaled metal-
oxide-semiconductor field-effect transistors (MOSFETs) due to its high mobility. The high
mobility (or high injection velocity, vin j) could improve electrical performance characteristics,
such as on-current and delay. Since the high injection velocity comes from the light carrier
effective mass m∗, high indium content devices continue to attract attention because of their
low m∗. However, there are two main physical issues with high indium content channel
materials. The first one is the so-called density-of-states (DOS) bottleneck problem which
limits the on-current of III-V MOSFETs with thin oxide thickness. For MOS capacitors,
the total gate capacitance (CG) is the series combination of the oxide capacitance and the
quantum capacitance of channel is

1

CG
=

1

COX
+

1

CQ
(6.1)

and is dominated by the smaller of two. The quantum capacitance, (CQ), is a function
of density of states. The small DOS coming from the light effect mass degrades CG and
therfore on-current for thin oxides. The second is the increase of off-state leakage current
due to the effective mass and small band-gap. A light effective mass increases leakage current
through direct source-to-drain tunneling and body-to-drain tunneling. On the other hand,
NSD also has fundamental effects on the carrier transport within the device. At the DOS
bottleneck point, since quantum capacitance is proportional to the density of states around
the electrochemical potential µ, high NSD increases the CQ by shifting the electrochemical
potential level from conduction band edge. However, high NSD also has drawbacks because
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it pushes down the S/D potential and makes the off-state potential barrier narrower. So,
as NSD increases, significant current can flow under the top of the barrier (source-to-drain
tunneling). In this paper, we theoretically calculate the performance of ultra-scaled InGaAs
n-MOSFETs using the Non-Equilibrium Greens Function (NEGF) formalism, which provides
a rigorous framework for treating quantum transport. We explore the effects of NSD on the on
and off states for different InxGa1−xAs composition. We also perform benchmarking against
silicon.

6.2 Simulation approach

Fig. 6.1 illustrates the device structure of a 2-D double gate (DG) ultra-thin body (UTB)
MOSFET. The gate length is 10 nm and the length of source/drain regions is 20 nm. The 3
nm thick HfO2 (εr = 20) is used as the dielectric material (EOT = 0.585 nm).The channel is
undoped. We vary the doping level of the source/drain from 1× 1019 cm−3 to 4× 1019 cm−3.
The thickness of InGaAs is fixed to 6 nm and the transport direction is [100]. For this work,
strain effects are not considered, and we focus on the intrinsic material properties. To obtain

Figure 6.1: Schematic of DG InxGa1xAs UTB MOSFET with atomic arrangements of anion
and cation layers

the current-voltage characteristics, mode-space NEGF within an effective mass approxima-
tion is employed. The effective mass of InxGa1−xAs UTB materials are interpolated from
the E − k dispersion which was obtained from the atomistic tight-binding (TB) model using
the sp3d5s∗ basis set with spin-orbit (SO) coupling. SO coupling should be included for
small band gap materials such as InAs to reproduce the proper band gap energy (Eg) which
significantly affects the body-to-drain band-to-band tunneling (BTBT) leakage current. For
example, when SO coupling is included, the band gap of the InAs is reduced by about 20
%. TB parameters for GaAs and InAs are extracted from Ref. [114] and the TB parameters
are modified to include a bowing parameter for precise InGaAs alloy bandstructure [114].
Fig. 6.2 shows the band gap energy and effective mass for 6nm thick InxGa1−xAs UTB as
function of In concentration x. Bulk values are also presented for comparison. The increas-
ing indium mole fraction leads to a reduction in both the band gap energy and the electron
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effective mass. We assume that the dimension of the devices is large along the width, and
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Figure 6.2: (a) Band gap energy (b) transport effective mass for bulk and the 6nm
InxGa1−xAs UTB as function of indium mole fraction x

hence we use a periodic boundary condition in that direction. The transverse momentum
modes are summed numerically in the calculation of charge density and current. The NEGF
equations are solved iteratively along with Poisson’s equation until self-consistency between
charge and electrostatic potential is achieved. The microscopic electron scattering mecha-
nisms have taken into account within the self-consistent Born approximation [79, 80]. For
an InGaAs MOSFET, polar optical phonon (POP) and surface roughness (SR) scattering
are considered. For SR scattering, we use the exponential autocorrelation function with the
correlation length (Λ) and the r.m.s. roughness (∆) chosen to fit the low-field mobility of
InAs, which is experimentally extracted as approximately 5000 cm2/V · s [113] (Λ = 0.2 nm,
∆ = 6 nm). For a Si MOSFET, acoustic phonon and optical phonon scattering are considered.
The values for the deformation potential for acoustic phonons(DA) and optical phonons(Do)
are fitted to match the phonon-limited Si effective mobility (µe f f ≈ 1000 cm2/V · s) which
was calculated using a Monte Carlo method [111] ( DA = 3.05 eV , Do = 2.56 × 108 eV/cm).
Dirichlet boundary conditions are imposed at the source/drain contacts. Note that the
Neumann boundary condition is not suitable to observe the DOS bottleneck phenomenon
because under this condition EC-EF at high VG significantly changes in order to maintain
the electrostatics as the channel charge density becomes comparable to that at the source.
With the same potential profile from the self-consistent solution, the tunneling leakage cur-
rent at high VDS is obtained by using the ‘mode-space + 2 terminal WKB with appropriate
boundary conditions (M2WBC) approach. A detailed description of the M2WBC modeling
is described in Chapter 3.
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6.3 Results and discussion

Fig. 6.3 presents simulation results with scattering for InxGa1−xAs n-MOSFETs. We plot
the transfer characteristics in both linear and logarithmic scales to explore the performance
in both the off-state and the on-state. The IDS −VGS characteristics for InxGa1−xAs UTB for
high drain voltage (VDS = 0.5 V) with NSD = 4 × 1019 are shown in Fig. 6.3a. First, in the
case of the off characteristic, increasing the indium mole fraction (x) increases the leakage
current. When x is higher than 0.6, the channel valence band and the drain conduction
band overlap at the drain junction so that gate-induced drain leakage (GIDL) occurs. In
fact, InxGa1−xAs MOSFETs with an indium content greater than 0.8 cannot meet the off-
state criteria of 0.1µA/µm due to GIDL. As the consequence, the on-off ratio of the devices
is less than 103. Second, on-state current is enhanced due to the decrease in the effective
mass as the indium content is increased. The values of the charge density at top-of-barrier
(TOB) are about 6.5 × 1012 cm−2 and the difference according to the composition is within
5 %. Since the DOS near the Fermi energies of the doping levels are similar, the influence
of the on-current due to the DOS change according to the composition is not significant.
Therefore, high indium content, having low effective mass, shows higher on-current due to
high injection velocity (vin j) and more tunneling current under the TOB. With POP and SR
scattering, the on-state current for x = 0 is reduced by 10.3 % in terms of drain reduction
percentage ((Iball − Iscatt)/Iball × 100). The drain reduction percentage for x = 1 is increased
up to 12.9 % due to higher deformation potential for POP scattering. Fig. 6.3b shows
transfer characteristics for GaAs MOSFETs for different NSD at VDS = 0.5 V . In the on-
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Figure 6.3: (a) Simulation results for IDS versus VGS at VDS = 0.5 V for InxGa1−xAs UTB
MOSFETs. NSD = 4 × 1019. (b) Simulation results for IDS versus VGS at VDS = 0.5 V for
GaAs UTB MOSFETs for various source/drain doping level.
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state, low NSD MOSFETs show degraded IDS. This is well known as ‘source exhaustion’,
where. the source with low doping level cannot supply enough electrons when the channel
carrier density becomes comparable or higher than that of source [115, 116]. It causes high
series resistance and transconductance degradation at high VGS.

Fig. 6.4a shows IDS and vin j at VGS = 0.5 V and VDS = 0.5 V for various indium
mole fractions and various NSD’s. In general, the higher the indium content and the higher
the Nsd, the greater the on-current. Nsd dependence of on-current is a consequence of the
difference in charge density at the TOB owing to source exhaustion, and composition de-
pendence of on-current is due to the difference in injection velocity (Fig. 6.4a). Whereas
the injection velocity decreases as NSD increases. This is because the unidirectional non-
degenerate velocity of electrons, vT0 is reduced because of the impact of electron degeneracy
as vT = vT0F−1/2(η)/F0(η), where vT0 =

√
2kBT/πm∗, the function Fi is the Fermi-Dirac

integral and η = (EF − EC0)/kBT , where EF is the source Fermi level and EC0 is the first
subband level for electrons. On the other hand, however, increasing NSD degrades the perfor-
mance in the subthreshold region, giving leakage current and the deteriorated subthreshold
swing (SS). For the GaAs MOSFET with NSD = 1 × 1019, the SS is 72.3 mV/decade and
increases to 79.8 for NSD = 4 × 1019. This is mainly due to source-drain tunneling. To
understand the impact of the change in effective mass and NSD on leakage current, Fig.6.4b
shows the the ratio of tunneling current to the total current (IBT BT/ITotal) as a function of
VGS for various indium content fractions and NSD’s. In this plot, we include two-types of
BTBT mechanism, i.e., intra-band source-drain (SD) tunneling and inter-band body-drain
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Figure 6.4: (a) IDS at VGS = 0.5 V and VDS = 0.5 V for various indium mole fractions and
NSD’s. (b) The ratio of tunneling current to the total current (IBT BT/ITotal) as function of
VGS for various indium content and NSD’s. Two-types of BTBT mechanism are compared.
One is intra-band source-drain tunneling (SD-BTBT) and another is inter-band body-drain
tunneling (BD-BTBT)
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(BD) tunneling. As we explained before, BD BTBT is the dominant leakage source for high
indium mole fractions. Also, the increase of indium content enhances the SD BTBT due
to light effective mass. Furthermore, as NSD is increased, total leakage current is increased
by the enhanced SD BTBT rate. This is because the potential barrier is narrowed as high
doping levels push down the potential at the source/drain region.

In order to determine the trade-off between on and off performance as a function of
indium mole fraction and NSD, we plot the on current as a function of On/Off ratio as
shown in Fig. 6.5. The On/Off ratio is obtained by changing the bias window of 0.5 V
for gate voltage along the transfer characteristics. This could be achieved in practice by
engineering the workfunction of the gate metal [117]. The performance of 6nm thickness Si
(100) DG MOSFETs is compared with that of InxGa1−xAs devices. InxGa1−xAs gives higher
on-current than Si. This is in contrast to the prediction that III-V materials will show a
lower current due to the DOS bottleneck. This can be explained by two causes. First, at
the low VDD, the on-current is mainly determined by the injection velocity and the charge
density at the TOB is less affected by DOS. Second, scattering effects for Si are stronger than
for InxGa1−xAs. The drain reduction percentage of Si device for on-state is 23.1 % due to a
higher electron-phonon scattering rate. We set our performance target as IOn > 1000 µA/µm
and IOn/IO f f > 105 µA/µm. Fig. 6.5b shows the IOn versus IOn/IO f f curves meeting these
conditions. The best on-off performance is obtained when the In content is 0.2 and the NSD
is 2 × 1019.

1 0 4 1 0 5 1 0 6 1 0 71 0 0

1 0 1

1 0 2

1 0 3

1 0 4

 N S D  =  1 x 1 0 1 9      N S D  =  2 x 1 0 1 9

 N S D  =  3 x 1 0 1 9      N S D  =  4 x 1 0 1 9

I On
 (µA

/µm
)

I O n / I O f f

 x  =  0 . 0
 x  =  0 . 2
 x  =  0 . 4
 x  =  0 . 6
 S i

(a)

1 x 1 0 5 2 x 1 0 5 3 x 1 0 5 4 x 1 0 5 5 x 1 0 51 . 0 x 1 0 3

1 . 2 x 1 0 3

1 . 4 x 1 0 3

1 . 6 x 1 0 3

1 . 8 x 1 0 3

 N S D  =  1 x 1 0 1 9      N S D  =  2 x 1 0 1 9

 N S D  =  3 x 1 0 1 9      N S D  =  4 x 1 0 1 9

I On
 (µA

/µm
)

I O n / I O f f

 x  =  0 . 0
 x  =  0 . 2
 x  =  0 . 4
 x  =  0 . 6

(b)

Figure 6.5: (a) ON-current as a function of ON/OFF ratios at VDD = 0.50 V for Si and
InGaAs MOSFETs for various NSD’s . (b) Same Simulation results between our performance
target (Ion > 1000 µA/µm and Ion/Io f f > 105)
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6.4 Conclusion

To summarize, InxGa1−xAs transistors with ultra-scaled gate length (10 nm) were studied
using a quantum transport model within the NEGF formalism including scattering effects.
We explored the effect of indium mole fraction and S/D doping in InxGa1−xAs DG MOS-
FETs. High indium content (higher than 0.6) shows high GIDL current due to the direct
and low band-gap. Increased of In content and NSD has a trade-off relationship between in-
creased on-current and decreased off-current. By calculating I −V characteristic for various
compositions and NSD, we find that the optimum values for NSD and Indium mole fraction
are 2 × 1019 and x = 0.2, respectively. This condition could provide an on-current of 1590
µA/µm at 105 On/Off ratio.
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Chapter 7

Summary and Future work

7.1 Summary

The focus of this thesis was to investigate the performance of III-V and Si channel devices at
future technology generation using the non-equilibrium Greens function (NEGF) formalism
coupled with a 20 orbital sp3d5s∗-SO tight-binding model. Chapter 1 served as an introduc-
tion to the main themes of this dissertation. This chapter gave an introduction to the III-V
devices and quantum transport models based on NEGF approach. I began by discussing the
demands on high mobility semiconductors as the alternatives for post-Si logic application.
This was followed by a brief overview of current research and challenges of III-V MOSFETs.
In Chapter 1.3, we reviewed the NEGF method providing rigorous framework for treating
quantum transport in nanoscale semiconductors.

The necessity of atomistic modeling for bandstructure and certain aspects related to using
tight-binding method were discussed in Chapter 2. In confined semiconductor structures,
the quantum confinement effect along the thickness direction increase bandgap and effective
mass. Since effective masses calculated from the bulk do not provide a good description of
these subband, rigorous band structure should be used to study electrical transport. A 20
orbital sp3d5s∗-SO is used to study nanoscale bandstructure. This model is a powerful tool
to predict full bandstructure of nanoscale semiconductors accurately.

In Chapter 3, a mode space NEGF approach including band-to-band tunneling with the
WKB approximation is proposed for simulating double gate MOSFETs with direct bandgap
semiconductor channels. Due to significant transport advantage, high mobility III-V mate-
rials are very actively being researched as channel materials for future highly scaled CMOS
devices. However, most high mobility materials also have a significantly smaller bandgap
compared to Si, leading to very high band-to-band tunneling (BTBT) leakage current. Un-
expectedly, we have found that this off-state leakage current could be significantly underesti-
mated in commonly used quantum transport calculations using the NEGF formalism. This
is because the conventional NEGF method ignores electron-electron interaction and cannot
fill the empty states under valence band which are cut off by the source side band edges. We
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have proposed a new method, the coupled mode-space NEGF with two terminal WKB ap-
proach, that allows for estimating tunneling current correctly. When the appropriate filling
of the body of the transistor is not taken into account, the off-state leakage current for an
InAs transistor could be underestimated by almost 2 orders of magnitude.

In Chapter 4, a framework using NEGF formalism capable of handling quantum transport
including carrier scattering have developed. Proper treatment of microscopic scattering
is necessary to assess the performance of channel materials because a certain amount of
scattering exists and influences the transport of the free carriers, even when the device
length is smaller than the mean free path. The mode space approach is adopted to reduce
the computational complexity and the local self-energy functions for the electron-phonon
interactions have been rigorously derived within the self-consistent Born approximation. We
verify the obtained the self-energy functions by comparing the scattering rates obtained by
NEGF formalism and Fermis golden rule. The effect of carrier scattering on the quantum
transport of ultra-thin body transistors is investigated. In the presence of electron-phonon
interactions, the drain current decreases compared with the ballistic limit and the current
reduction ratio increases as the channel length increases. The phonon-limited low field
mobility and mean free path in the long channel limit are obtained by extracting the apparent
mobility and the ballistic mobility for different gate lengths. For III-V MOSFETs, surface
roughness scattering should be included to predict the performance for current technology
since the calculated mobility with POP scattering alone is larger than the mobility extracted
from experimental data.

Effect of electron phonon coupling in ultra thin body Si MOFETs with small channel
lengths has been explored in Chapter 5. The phonon limited effective mobility is significantly
affected by the coupling between subbands and transverse modes. Increased density of states
leads to enhanced scattering. It is found that this could lead to almost two times reduction
in the effective mobility at large gate voltages. At very small channel lengths, direct source
to drain tunneling, Drain Induced Barrier Lowering and electron phonon scattering will
combine together to determine the eventual current-voltage characteristic.

In chapter 6, we explored the effects of indium mole fraction and S/D doping in InxGa1−xAs
DG MOSFETs with 10 nm gate length thorough the scattering-NEGF method. High indium
content InGaAs with direct and low band-gap show high off-state current due to body-drain
band-to-band tunneling. The In content and S/D doping has a trade-off relationship between
on-current and off-current. We found that there exists an optimum indium mole fraction
and S/D doping concentration that maximizes Ion/Ioff ratio and Ion by balancing injection
velocity and short channel effect.

7.2 Future work

For the future study of the present work, we suggest several interesting topics as follows:
1. In this dissertation, strain effects are not considered, and we focus on the intrinsic

material properties. However, strain effects can significantly alter the bandstructure through
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effects such as band splitting and band wrapping and modify carrier effective mass and
scattering rate. As process-induced strain engineering is being used as performance booster
in today’s scaled in Si devices, strain effects can enhance the performance of III-V MOSETs.
Furthermore, thin films with a heterostructure can get high stress and strain due to lattice
mismatch. Within the tight-binding method, the parameters can be modified to predict
bandstructure depending on the magnitude of strain. We can also include the effect of
crystal orientation. The crystal orientation effect for III-V semiconductors would not be as
large as Si because the bulk conduction band for III-V is located in the Γ point, which is
high symmetry point.

2. We can improve the accuracy of the electron-phonon scattering model instead of using
several assumptions that we have made for this work. First, our approach used a simplified
bulk phonon dispersion for the semiconductors and the electron-phonon scattering is com-
puted with a dispersionless acoustic mode and with fixed-energy optical modes. Accurate full
phonon dispersions can be obtained through various approaches such as ab-initio methods,
the adiabatic bond charge model and the valence force field model. However, since full band
electron-phonon interaction is computationally intractable and actual the device structure
such as source/drain, gate, insulator and substrate also affect the phonon dispersion, a model
that represent actual phonon dispersion is required. Second, we only include local scattering
interactions to reduce computational burden. In the self-energies for POP scattering, there
are nonlocal objects that depend on the spatial coordinates difference. Non-local scattering
will increase the scattering rate and form coupling between the electrons at different posi-
tions. Non-local scattering can only be included by full matrix calculation instead of using
recursive algorithms which use only use diagonal elements. Third, we can include other scat-
tering mechanisms such as alloy disorder and ionized impurities. Although the self-energy
of the two-scattering mechanism already exists for the real space NEGF, an appropriate
self-energy for 2D mode-space should be derived. Alternatively, we can include impurity
scattering within NEGF by the simulation of an ensemble of devices by adding randomly
placed perturbation potentials for impurities. While this approach involves inhomogeneous
screening and multiple scattering, it needs many simulations to obtain average values.

3. One of the interesting directions would be the quantum transport in p-type MOS
devices. Since the valence band structure shows significant nonparabolicity and anisotropy
owing to mixed dispersion between heavy-hole, light-hole, and split-off bands, the full atom-
istic Hamiltonian with spin-orbit coupling should be used. The situation in nanostructures
is even more complicated due to confinement effects. This is why there are few studies on
p-type devices. While there are several studies using a simplified six-band k.p model, the ac-
curacy of this model remains unsatisfactory, and its agreement with experimental data is still
unclear. Scattering-NEGF with the atomistic Hamiltonian is computationally challenging,
but can be simulated for 1D nanowires or thin UTB MOSFETs.
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quantum transport in superlattices: success and failure of the boltzmann equation,”
Physical review letters, vol. 83, no. 4, p. 836, 1999.

[92] R. Venugopal, M. Paulsson, S. Goasguen, S. Datta, and M. Lundstrom, “A simple
quantum mechanical treatment of scattering in nanoscale transistors,” Journal of Ap-
plied Physics, vol. 93, no. 9, pp. 5613–5625, 2003.

[93] H. S. Pal, D. E. Nikonov, R. Kim, and M. S. Lundstrom, “Electron-phonon scattering in
planar mosfets with negf,” in Silicon Nanoelectronics Workshop (SNW), 2010. IEEE,
2010, pp. 1–2.

[94] K. Natori, “Ballistic metal-oxide-semiconductor field effect transistor,” Journal of Ap-
plied Physics, vol. 76, no. 8, pp. 4879–4890, 1994.

[95] M. S. Shur, “Low ballistic mobility in submicron hemts,” IEEE Electron Device Letters,
vol. 23, no. 9, pp. 511–513, 2002.

[96] J. Wang and M. Lundstrom, “Ballistic transport in high electron mobility transistors,”
IEEE Transactions on Electron Devices, vol. 50, no. 7, pp. 1604–1609, 2003.



90

[97] H. S. Pal, D. E. Nikonov, R. Kim, and M. S. Lundstrom, “Electron-phonon scattering
in planar mosfets: Negf and monte carlo methods,” arXiv preprint arXiv:1209.4878,
2012.

[98] M. Lundstrom, “Elementary scattering theory of the si mosfet,” IEEE Electron Device
Letters, vol. 18, no. 7, pp. 361–363, 1997.

[99] S. Rakheja, M. Lundstrom, and D. Antoniadis, “A physics-based compact model for
fets from diffusive to ballistic carrier transport regimes,” in Electron Devices Meeting
(IEDM), 2014 IEEE International. IEEE, 2014, pp. 35–1.

[100] M. Lundstrom, S. Datta, and X. Sun, “Emission–diffusion theory of the mosfet,” IEEE
Transactions on Electron Devices, vol. 62, no. 12, pp. 4174–4178, 2015.

[101] C. Jeong, D. A. Antoniadis, and M. S. Lundstrom, “On backscattering and mobility
in nanoscale silicon mosfets,” IEEE Transactions on electron devices, vol. 56, no. 11,
pp. 2762–2769, 2009.

[102] M. S. Lundstrom and D. A. Antoniadis, “Compact models and the physics of nanoscale
fets,” IEEE Transactions on Electron Devices, vol. 61, no. 2, pp. 225–233, 2014.

[103] M. V. Fischetti and S. E. Laux, “Monte carlo analysis of electron transport in small
semiconductor devices including band-structure and space-charge effects,” Physical
Review B, vol. 38, no. 14, p. 9721, 1988.

[104] M. Fischetti, “Master-equation approach to the study of electronic transport in small
semiconductor devices,” Physical Review B, vol. 59, no. 7, p. 4901, 1999.

[105] M. V. Fischetti, “Monte carlo simulation of transport in technologically significant
semiconductors of the diamond and zinc-blende structures. i. homogeneous transport,”
IEEE Transactions on Electron Devices, vol. 38, no. 3, pp. 634–649, 1991.

[106] R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, “Single and multiband modeling
of quantum electron transport through layered semiconductor devices,” Journal of
Applied Physics, vol. 81, no. 12, pp. 7845–7869, 1997.

[107] T. Kubis and P. Vogl, “Assessment of approximations in nonequilibrium greens func-
tion theory,” Physical Review B, vol. 83, no. 19, p. 195304, 2011.

[108] R. K. Lake and R. R. Pandey, “Non-equilibrium green functions in electronic device
modeling,” arXiv preprint cond-mat/0607219, 2006.

[109] H. S. Pal, “Device physics studies of iii-v and silicon mosfets for digital logic,” Ph.D.
dissertation, Purdue University, 2010.



91

[110] M. O. Baykan, S. E. Thompson, and T. Nishida, “Strain effects on three-dimensional,
two-dimensional, and one-dimensional silicon logic devices: Predicting the future of
strained silicon,” Journal of Applied Physics, vol. 108, no. 9, p. 093716, 2010.

[111] S.-i. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, “Comparative study of phonon-
limited mobility of two-dimensional electrons in strained and unstrained si metal–
oxide–semiconductor field-effect transistors,” Journal of Applied Physics, vol. 80, no. 3,
pp. 1567–1577, 1996.

[112] A. Rahman and M. S. Lundstrom, “A compact scattering model for the nanoscale
double-gate mosfet,” IEEE Transactions on Electron Devices, vol. 49, no. 3, pp. 481–
489, 2002.

[113] J. Lin, Y. Wu, J. A. del Alamo, and D. A. Antoniadis, “Analysis of resistance and
mobility in ingaas quantum-well mosfets from ballistic to diffusive regimes,” IEEE
Transactions on Electron Devices, vol. 63, no. 4, pp. 1464–1470, 2016.

[114] M. Luisier and G. Klimeck, “Investigation of in xga {1-x} as ultra-thin-body tunnel-
ing fets using a full-band and atomistic approach,” in Simulation of Semiconductor
Processes and Devices, 2009. SISPAD’09. International Conference on. IEEE, 2009,
pp. 1–4.

[115] H. S. Pal, T. Low, and M. S. Lundstrom, “Negf analysis of ingaas schottky barrier dou-
ble gate mosfets,” in Electron Devices Meeting, 2008. IEDM 2008. IEEE International.
IEEE, 2008, pp. 1–4.

[116] N. Neophytos, R. Titash, and M. S. Lundstrom, “Performance analysis of 60-nm gate-
length iii-v ingaas hemts: Simulations versus experiments,” IEEE TRANSACTIONS
ON ELECTRON DEVICES, vol. 56, no. 7, p. 1377, 2009.

[117] S. M. Sze and K. K. Ng, Physics of semiconductor devices. John Wiley & Sons, 2006.




