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ABSTRACT OF THE DISSERTATION

Mathematical and physical modeling of reactive gas dynamics and aggregation
dynamics at small scales

by Matteo Polimeno
Doctor of Philosophy in Applied Mathematics

University of California Merced, 2024

Committee Chair: Changho Kim

This thesis aims to characterize the behavior of reactive gas mixtures and aggregate
dynamics at small scales. Since at scales ranging from nanometers to micrometers fluids
are discrete systems made of individual particles, the full characterization of their
dynamics requires modeling approaches capable of capturing both the mean behavior of
the fluid and the impacts of thermal fluctuations due to random molecular motion. Here I
present three different approaches to model fluid systems at small scales in a
physically-accurate, mathematically-sound and computationally-efficient manner.

First, I discuss how to model the dynamics of reactive gas mixtures at the mesoscopic
scale in a thermodynamically consistent manner. To this end, I incorporate a chemical
Langevin equation approach into the framework of fluctuating hydrodynamics
(continuum stochastic approach). I find that in order to obtain physically accurate results,
one needs to fully characterize the temperature dependence of the rate constants of a
chemical reaction. I validate this formulation by simulating a reversible dimerization
reaction and characterize the spectrum of fluctuations at thermodynamic equilibrium.

Secondly, I discuss a Brownian dynamics formulation (particle-based approach) to
model the formation of aggregates. I incorporate rotational effects, size-dependent
diffusivities and settling under gravity into the well-established framework of
Diffusion-Limited Cluster Aggregation. I characterize how the inclusion of rotational
effects and settling lowers the fractal dimension typically found in aggregates, while
size-dependent diffusivities slow down their growth rate.

Finally, I discuss a boundary integral formulation to solve the Stokes Equations
(continuum deterministic approach) to characterize the internal and external stresses felt
by different types of marine aggregates settling under gravity or exposed to some laminar
shear flow. I find that the internal stresses induced by gravity distribute differently in
aggregates compared to those induced by a shear flow, leading to different breakup
distributions. Furthermore, I find that the largest stress felt by aggregates exposed to a
shear background flow shows a quadratic dependence on the aggregate’s radius,
indicating that the contribution of extensional effects on the stresses is dominant over
rotational effects.
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Chapter 1
Introduction

In recent years, due in part to modern technological advances and the on-going
miniaturization of many engineering devices, the modeling of fluid systems at small
scales has become more prominent with the fluids community [80]. It is well known that
at scales ranging from nanometers to micrometers, fluids are discrete systems made of
individual particles [14], and thus the full characterization of their dynamics requires
modeling approaches capable of balancing the need for high fidelity and computational
efficiency [110]. Typically, these modeling efforts subscribe to one of the following two
paradigms: the discrete approach, where one keeps track of individual fluid particles
[64], or the continuum approach, which is based on the averaging of fluid properties over
a volume [27]. Both approaches present advantages and drawbacks, and can be used to
model a plethora of multi-scale [88] and multi-physics [31] fluid phenomena, in scientific
domains spanning from biophysics [12] to nanotechnology [86].

The discrete approach, which typically includes so-called particle-based methods like
Direct Simulation Monte Carlo [4], naturally captures thermal fluctuations caused by the
random molecular motion of fluid particles [20]. Thus, it allows for great accuracy in the
description of systems even at the atomic scale [97], and is often used in fields like
biology and biophysics [33], where capturing the effects of said fluctuations is paramount
to building physically accurate models. This framework is well-suited to describe various
physical phenomena, from the formation of fractal aggregates in the ocean [74], to
granular flow [96]. However, given the level of refinement that particle-based methods
typically require, they tend to give rise to computationally intensive and poorly-scalable
algorithms, which severely limits the size of the systems that can be analyzed, even on
modern distributed architectures [3].

Conversely, the continuum approach is used to characterize the macroscopic behavior
of fluid systems by modeling the dynamical evolution of fluids’ properties like density

1
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and momentum. This approach typically relies on numerically solving a set of Partial
Differential Equations (PDEs) known as the incompressible Navier-Stokes equations,

∇ · u = 0,

ρ

(
∂u
∂t

+ (u · ∇) u
)

= µ∇2u − ∇P + f ,
(1.1)

where u⃗ and P are the unknown velocity and pressure of the fluid, respectively, µ is the
dynamic viscosity, ρ is the fluid density, and f⃗ is a body force. Many numerical schemes
have been designed to solve Eq. (1.1), spanning from finite-difference methods [67] to
finite-volume schemes [68]. These techniques are typically used to characterize fluid
systems at large scales, such as to study the flow physics governing wind farms
performance [89]. At small scales, however, viscous effects are often dominant over
inertial effects, and one can simplify Eq. (1.1) to obtain a linear system of PDEs known
as the Stokes Equations

∇ · u = 0
−∇P + µ∇2u + f = 0.

(1.2)

Eq. (1.2) is often used to describe fluid flows in the so-called low Reynolds number
regime, where the Reynolds number is the non-dimensional ratio between inertial forces
and viscous forces in a fluid [61], and it is defined as follows

Re = ρUL

µ
. (1.3)

Here U and L are some characteristic velocity and length, respectively. For instance,
Stokes Equations can be used to characterize the flow around solid objects via boundary
integral methods [83], and thus applied to problems that involve some solid boundary at
small scales, as in sedimentation [42], like computing the hydrodynamic forces around
marine aggregates [106].

Moreover, continuum methods typically do not require refinement to the level of
particle-based methods, and thus tend to be more efficient and better scalable than
discrete approaches [38]. As such, they provide a rich environment for the optimization
of modern high-performance computing applications in the context of fluid dynamics
simulations [8]. However, these methods are deterministic and designed to model the
mean behavior of fluids. Thus, they are usually not capable of capturing the impact of
thermal fluctuations arising from random molecular motion of fluids particles. Since
simulations of fluid flows have been pushing towards ever-shrinking scales, the discrete
nature of fluids should not be neglected a priori. It has become imperative, for instance,
to build accurate models of reactive fluid systems, where nonlinearity interacts with
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spontaneous fluctuations, such as combustion [66] and reaction fronts [78]. In fact, in
some experimental settings, it was shown that long-ranged correlations in the fluctuations
of concentration and temperature in the presence of sharp gradients, give rise to
fluctuations that grow well beyond the microscopic scale [98]. Thus, and especially for
reactive systems, capturing thermal fluctuations is paramount to modeling the dynamics
of fluids at small scales. To this end, one can take advantage of a continuum-stochastic
approach called fluctuating hydrodynamics.

Fluctuating hydrodynamics (FHD) is a well-established [63] framework to model fluid
mixtures at the mesoscale, where thermal fluctuations play a significant role. To capture
the aforementioned fluctuations, a stochastic forcing term is added to the dissipative fluxes
in the conservation equations of Navier-Stokes, to obtain the so-called Fluctuating Navier-
Stokes (FNS) equations [13] for the time evolution of a species density, ρs, momentum
density ρu⃗ and energy density ρE:

∂ρs
∂t

= −∇ · (ρsu) − ∇ · Fs, (1.4a)

∂(ρu)
∂t

= −∇ · (ρuuT ) − ∇P − ∇ · Π, (1.4b)

∂(ρE)
∂t

= −∇ · (ρEu + Pu) − ∇ · Q − ∇ · (Π · u). (1.4c)

Here Fs, Π, and Q are fluxes for the species’s mass, momentum, and heat densities,
respectively, defined as the sum of a deterministic and stochastic part denoted with the
overline and tilde notation, respectively

Fs = F s + F̃s, Π = Π + Π̃, Q = Q + Q̃. (1.5)

The deterministic fluxes are specified by functions of fluid state variables (i.e. ρs, u, and
the temperature T ) by constitutive relations, while the stochastic fluxes are modeled by
Gaussian white noise fields with the noise intensities being functions of fluid state
variables. Thus, this method allows to still maintain the inherent computational efficiency
of the deterministic continuum approach, while also capturing thermal fluctuations
without requiring refinement to the level of particle-based methods. In fact, this
formulation has been validated numerically many times [18, 94], and it has even been
integrated into the FHDeX software [16], a massively-parallelized and GPU friendly suite
of codes built under the Adaptive-Mesh Refinement for Exascale (AMReX) library,
developed as part of the exascale computing project [77]. Furthermore, as will be shown
in Chapter 2, FHD is particularly well-suited to model reactive fluid systems at small
scales, where taking into account the stochastic nature of chemical reactions, as well as
nonlinear kinetic effects, is paramount to build physically-accurate models.
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In the remainder of this thesis, I will show how each of the three aforementioned
approaches can be used to model various fluid systems at small scales. The structure of
this thesis is as follows: in Chapter 2, I will show how fluctuating hydrodynamics can be
used to model the dynamics of a reactive ideal gas mixture undergoing a reversible
dimerization reaction at the mesoscopic scale. This work was conducted as part of a
collaborative effort with the Multiscale Modeling and Stochastic Systems group at
Lawrence Berkeley National Laboratory, and its results are being collected into a
manuscript to be submitted to the Journal of Chemical Physics in the Summer of 2024. In
Chapter 3, I will describe our particle-based method to simulate the formation of fractal
aggregates in low Reynolds number regimes, and characterize the aggregates’ growth rate
and fractal dimension under different conditions. This work was conducted at UC
Merced alongside my advisors Profs. Changho Kim and François Blanchette, and led to a
publication in ACS Omega in October 2022 [82]. In Chapter 4, I will discuss a
boundary-integral formulation to solve the Stokes Equations and characterize both the
internal and external stresses in marine aggregates. I will show that the internal stresses
induced by gravity distribute differently in aggregates compared to those induced by a
shear flow, leading to different breakup distributions. The results of this work are being
collected into a manuscript to be submitted for publication to Physics Review Fluids in
the Summer of 2024. Finally, Chapter 5 contains the Conclusions.



Chapter 2
Modeling Reactive Gas Dynamics: A
Fluctuating Hydrodynamics Approach

2.1 Introduction
Stochastic modeling of chemical reactions was first popularized in the 1970’s with the

introduction of birth-death models based on the master equation [101]. These led to
continuum formulations such as the Fokker-Planck and Langevin equations [100, 99],
whose popularity was further enhanced by the introduction of Gillespie’s Stochastic
Simulation Algorithm (SSA) [40]. These models were originally limited to homogeneous
systems, such as the Continuously Stirred Tank Reactor (CSTR), yet experiments [108]
showed that systems with spatial extent produced interesting patterns, such as spiral
waves. Therefore, species diffusion was incorporated both in continuum-deterministic
models, such as those based on on the reaction-diffusion equation, and in stochastic
models, such as those based on random walks.

More recently, the framework of reactive fluctuating hydrodynamics (RFHD) was
used to model the transport and flow in fluid systems with chemical reactions [55]
combining continuum and stochastic features of previous models. However, it is
non-trivial to ensure that reactive fluctuating hydrodynamics simulations, for example in
the context of reactive gas mixtures, is implemented in a thermodynamically consistent
manner. It is essential that mesoscopic simulations of reactive systems reproduce the
correct statistical distributions at thermodynamic equilibrium. Previously, Bhattacharjee
et al. [18] presented a RFHD-based framework to model the dynamics of reactive gas
mixtures. However, the formulation proposed in [18] does not account for the effect that
fluctuating temperature in reactive gas mixtures has on the expression of the rate

5
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constants, and it is thus not thermodynamically consistent.
In this Chapter we consider a fluctuating hydrodynamics simulation method of an

ideal gas mixture undergoing reversible reactions described by the chemical Langevin
equation. We present a rigorous analysis of a novel formulation that is
thermodynamically-consistent and demonstrate that we are able to properly capture the
spectrum of fluctuations in realistic gas mixtures, by correctly characterizing the
temperature dependence of the rate constants of chemical reactions. The rest of this
Chapter is organized as follows. In Section 2.2 we briefly explain the framework of
RFHD. In Section 2.3 we provide the details of our formulation of stochastic chemistry.
In Section 2.4 we show the accuracy of our formulation, by studying a simple
dimerization reaction. Finally, Section 2.5 contains our Conclusions.

2.2 Reactive Fluctuating Hydrodynamics
In Section 2.2.1, we summarize the overall structure of the reactive fluctuating

hydrodynamics formulation [13, 18] that provides the framework for our
thermodynamically-consistent stochastic chemistry formulation. In Section 2.2.2, we
focus on the reactive source term and discuss how it can be modeled using a chemical
Langevin equation [56, 55].

2.2.1 Overall Structure
For a gas mixture of Nspec species, we denote the species mass densities and the total

mass density as ρs (s = 1, · · · , Nspec) and ρ = ∑Nspec
s=1 ρs, respectively, and the fluid

velocity and the total specific energy (i.e. energy per mass) as u and E, respectively. The
time evolution of the species mass densities (ρs), momentum density (ρu), and energy
density (ρE) is described by the fluctuating Navier–Stokes (FNS) equations given in
Eqs. (1.4) supplemented by a reaction term [13, 18]:

∂ρs
∂t

= −∇ · (ρsu) − ∇ · Fs +MsΩs, (2.1a)

∂(ρu)
∂t

= −∇ · (ρuuT ) − ∇P − ∇ · Π, (2.1b)

∂(ρE)
∂t

= −∇ · (ρEu + pu) − ∇ · Q − ∇ · (Π · u). (2.1c)

Here, MsΩs is the reaction source term where Ms is the molar mass of species s and
Ωs is the molar concentration production rate of species s due to the chemical reactions
associated with species s. This term will be discussed in more detail in Section 2.2.2.
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As discussed in Chapter 1, while Eqs. (2.1) may superficially look the same as the
deterministic Navier–Stokes equations, the species mass flux Fs, the momentum flux Π
and the heat flux Q are modeled via Eq. (1.5) as the sum of a deterministic and stochastic
component, whose explicit forms are given in Ref. [13]. Thus, Eqs (2.1) account for both
the mean behavior of a fluid, as well as the thermal fluctuations due to random molecular
motion of fluid particles.

Note that the relation between the total specific energy E and the temperature T is
given by

E = 1
2 |u|2 + e(T, {ρs}). (2.2)

Here, the total specific internal energy e = e(T, {ρs}) is a function of temperature and
chemical composition. In this paper, we assume an ideal gas mixture, for which we can
simply express e as the weighted sum of the specific internal energy of each species es:

e(T, {ρs}) = 1
ρ

Nspec∑
s=1

ρses(T ). (2.3)

Note that the es’s are functions of temperature and their functional forms are provided as
modeling inputs. In addition, the equation of state is given by the ideal gas law:

Ps = ρsRT

Ms

, P =
Nspec∑
s=1

Ps = RT
Nspec∑
s=1

ρs
Ms

, (2.4)

where Ps is the partial pressure of species s and R is the ideal gas constant.

2.2.2 CLE-based Stochastic Chemistry
We assume that the chemistry of the gas mixture is described by elementary reactions,

which can be grouped into Nrxn pairs of reversible reactions. We write reaction r (r =
1, · · · , Nrxn) as

Nspec∑
s=1

ν+
srMs

k+
r
⇌
k−

r

Nspec∑
s=1

ν−
srMs. (2.5)

Here, Ms represents the chemical symbol of species s. We introduce the superscripts +
and − to indicate the forward and reverse reactions, respectively, and denote the number
of molecules of species s on the reactant side for the forward and reverse reactions as ν+

sr

and ν−
sr, respectively. We define the stoichiometric coefficients of species s for the reaction

r as νsr = ν−
sr − ν+

sr. We also denote the reaction rate constants of the forward and reverse
reactions by k+

r and k−
r , respectively.
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In the chemical Langevin equation (CLE) [56, 55], the molar concentration production
rate for species s, denoted by Ωs, is expressed as the sum of deterministic and stochastic
parts:

Ωs = Ωs + Ω̃s. (2.6)

To express Ωs and Ω̃s, we introduce the mean forward and reverse rates a+
r and a−

r of
reaction r. Here we assume that the deterministic reaction rates obey the law of mass
action for gas phase reactions [60, 41] which expresses a±

r as

a±
r = k±

r

Nspec∏
s=1

[Xs]ν
±
sr , (2.7)

where [Xs] is the molar concentration of species s. Here, the forward and reverse reaction
constants, k+

r and k−
r , are functions of temperature. Standard function forms for these

rates and the relationship between these rates that is needed to ensure thermodynamic
consistency are discussed in Section 2.3.

The mean production rate Ωs is then expressed as

Ωs =
Nrxn∑
r=1

νsr
(
a+
r − a−

r

)
. (2.8)

Assuming that reaction occurrences follow Poisson statistics and applying the Gaussian
approximation [55], one can express the stochastic contribution Ω̃s as

Ω̃s = 1√
NA

Nrxn∑
r=1

νsr

(√
a+
r W+

r −
√
a−
r W−

r

)
, (2.9)

where NA is the Avogadro constant and W±
r denote Gaussian white noise fields satisfying

⟨Wα
r (x, t)Wα′

r′ (x′, t′)⟩ = δr,r′δα,α′δ(x − x′)δ(t− t′). (2.10)

Note that the factor 1/
√
NA reflects conversion from the variance of the Poisson

distribution in terms of number density to molar concentration.

2.3 Chemistry Formulation
Although reactions are often discussed in terms of forward and reverse rates, these rates

are not independent. The rates must be compatible with thermodynamic equilibrium for
the system. In Section 2.3.1, we review the basic thermodynamics and chemical kinetics
of ideal gas mixtures and show how thermodynamic equilibrium constrains the forward
and reverse rates. As part of this discussion, we introduce the symmetric form of reactions
that arise from kinetic theory as discussed in Ref. [41]. In Section 2.3.2, we introduce our
enthalpy model and derive our main results.
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2.3.1 Basic Thermodynamics and Chemical Kinetics of Ideal Gas
Mixtures

Chemical Potential and Equilibrium Constant

The thermodynamics of reaction is based on the chemical potential of the reacting
species. For an ideal gas mixture, the specific chemical potential of each species s is given
by [41]:

µs([X], T ) = µ̄◦
s(T ) + RT

Ms

log Ps
P st

= µ̄◦
s(T ) + RT

Ms

log RT [Xs]
P st

= µ◦
s(T ) + RT

Ms

log [Xs],
(2.11)

since Ps = [Xs]RT . Here, [X] is a vector containing the molar concentrations [Xs] of
each species s and P st is a reference pressure. Note that µ̄◦

s and µ◦
s = µ̄◦

s + RT
Ms

log RT
P st are

the chemical potentials of the pure substance at the reference pressure and at unit molar
concentration, respectively. Since we express reaction rates using molar concentrations
[Xs] rather than using partial pressures Ps in this paper, we use µ◦

s rather than µ̄◦
s.

However, one can equivalently use Ps and µ̄◦
s and the corresponding results are

summarized in Appendix A.1.
We use a hat notation to denote a dimensionless per-particle quantity. For chemical

potential, we define

µ̂s([X], T ) = Ms

RT
µs([X], T ), µ̂◦

s(T ) = Ms

RT
µ◦
s(T ), (2.12)

and thus have
µ̂s = µ̂◦

s + log[Xs]. (2.13)

For each reaction r, the condition
∑
s ν

+
srµ̂s = ∑

s ν
−
srµ̂s must hold at equilibrium.

Hence, using Eq. (2.13), at equilibrium we have

exp
−

Nspec∑
s=1

νsrµ̂
◦
s(T )

 =
Nspec∏
s=1

[Xs]ν
−
sr

[Xs]ν
+
sr
. (2.14)

We can then define the equilibrium constant as

Kr(T ) = exp
−

Nspec∑
s=1

νsrµ̂
◦
s(T )

 . (2.15)
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Law of Mass Action and Rate Constants

We note the Kr(T ) is a thermodynamic quantity that depends only on the properties
of the system at equilibrium; it does not depend on the reaction rates. In this section, we
discuss how Kr(T ) constrains the forward and reverse reaction rates. Following Ref. [41],
we first consider the mean rate of progress of reaction r denoted by τr = a+

r − a−
r . The

symmetric form for τr is deduced from statistical physics [53]

τr = λr

exp
Nspec∑

s=1
ν+
srµ̂s

− exp
Nspec∑

s=1
ν−
srµ̂s

 , (2.16)

where λr is the symmetric reaction constant of reaction r. This form of the rate of progress
expresses the reaction in terms of a single rate that characterizes how the system relaxes
to equilbrium. Using Eq. (2.13), we rewrite this equation as

τr = λr

exp
Nspec∑

s=1
ν+
srµ̂

◦
s

Nspec∏
s=1

[Xs]ν
+
sr − exp

Nspec∑
s=1

ν−
srµ̂

◦
s

Nspec∏
s=1

[Xs]ν
−
sr

 . (2.17)

Hence, by defining the rate constants as

k±
r (T ) = λr(T ) exp

Nspec∑
s=1

ν±
srµ̂

◦
s(T )

 , (2.18)

we recover the law of mass action

τr = k+
r

Nspec∏
s=1

[Xs]ν
+
sr − k−

r

Nspec∏
s=1

[Xs]ν
−
sr . (2.19)

At chemical equilibrium τr = 0. Noting that k±
r (T ) share the same factor λr(T ), one

can show that for the system to be thermoynamically consistent the forward and reverse
rates must be related through the equilibrium constant:

Kr(T ) = k+
r (T )
k−
r (T ) . (2.20)

Equivalently, one can say that the symmetric constant λr(T ) defines a relation that each
pair of rate constants k±

r (T ) must satisfy:

λr(T ) = k+
r (T ) exp

−
Nspec∑
s=1

ν+
srµ̂

◦
s(T )

 = k−
r (T ) exp

−
Nspec∑
s=1

ν−
srµ̂

◦
s(T )

 . (2.21)
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The relationship Eq, (2.20) is required for thermodynamic consistency. Consequently,
for thermodynamic consistency only one of the forward and reverse rate constants can
specified; the other must be obtained via Eq. (2.20) or equivalently Eq. (2.21).

In practice, the functional form of a reaction rate constant is modeled by an empirical
expression. The most commonly used form is the modified Arrhenius equation [62, 45]:

k(T ) = A
(
T

T st

)β
e−α/RT , (2.22)

where A is a temperature-independent constant, β is a dimensionless number, α has units
of energy per mole, and T st denotes a standard or reference temperature. While some
theoretical justifications are available for this form [60], its parameters are usually
determined by fitting reaction rate data to this form. Note that this form is used in several
standard chemical kinetics databases (e.g. the NIST chemical kinetics database [72] or
CHEMKIN [52]) and the parameter values are available.

We note that, even if one of the rate constants, say k+(T ), is modeled by the modified
Arrhenius equation, the other rate constant, k−(T ), will not, in general, be described by
the same form. This is because k−(T ) cannot be specified independently. Instead it is
determined by K(T ) and k+(T ) via Eq. (2.20) and its functional form can obey the
modified Arrhenius equation only if K(T ) follows the same form as in Eq. (2.22), i.e.

K(T ) ∼
(
T

T st

)B
e−A/RT (2.23)

for some choice of parameters A and B. In the following section, we consider a simple
heat capacity model and show that the resultingK(T ) is of the form (2.23) and, as a result,
both rate constants can be modeled using the modified Arrhenius equation.

2.3.2 Constant Heat Capacity Model
Assumption

We assume that the specific heat at constant pressure, cp,s, is constant for each species
s. The specific enthalpy of species s can then be expressed as a linear function of
temperature,

hs(T ) = hsts +
∫ T

T st
cp,s dT

′ = hsts + cp,s(T − T st). (2.24)

Since the specific internal energy es(T ) of species s is given as es(T ) = hs(T ) −RT/Ms,
it can also be expressed as a linear function of temperature where the specific heat at
constant volume, cv,s, is also constant so that

es(T ) = ests + cv,s(T − T st), (2.25)
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where

ests = hsts − RT st

Ms

, cv,s = cp,s − R

Ms

. (2.26)

One can also derive the pure-component specific entropy of species s,

s◦
s(T ) = ssts +

∫ T

T st

cp,s
T ′ dT

′ = ssts + cp,s log T

T st
. (2.27)

We note that the values of cp,s, hsts , and ssts are readily available in thermochemical
databases (e.g. the NIST Chemistry WebBook [70, 1]). Although the specific heat capacity
is actually a function of temperature, the constant specific heat capacity model remains
valid in a rather wide temperature range in many cases as demonstrated using the NO2
dimerization example in Section 2.4.

Equilibrium Constant

We show here that for our constant specific heat capacity model the general expression
for Kr(T ), Eq. (2.15) can be written in the form (2.23), which is identical to the modified
Arrhenius equation for rate constants. As discussed above, we can write the chemical
potential in terms of enthalpy and entropy,

µ̂◦
s(T ) = Ms

RT
{hs(T ) −Ts◦

s(T )} + log RT
P st

, µ̂◦
s(T st) = Ms

RT st
(hsts −T stssts ) + log RT

st

P st
.

(2.28)
Note that logarithm terms appear because we use µ◦

s instead of µ◦
s, see Eq. (2.11). For the

simplified model considered here, from Eqs. (2.24) and (2.27), we obtain

µ̂◦
s(T ) − µ̂◦

s(T st) = Ms(hsts − cp,sT
st)

R

( 1
T

− 1
T st

)
−
(
Ms

R
cp,s − 1

)
log T

T st
. (2.29)

By defining

ϵs = hsts − cp,sT
st = ests − cv,sT

st, (2.30)

ĉv,s = Ms

R
cv,s = Ms

R

(
cp,s − R

Ms

)
, (2.31)

we rewrite Eq. (2.29) as

µ̂◦
s(T ) − µ̂◦

s(T st) = Msϵs
R

( 1
T

− 1
T st

)
− ĉv,s log T

T st
. (2.32)
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By substituting Eq. (2.32) into Eq. (2.15), we finally obtain

Kr(T ) = Kr(T st) exp
[
−Ar
R

( 1
T

− 1
T st

)](
T

T st

)Br

, (2.33)

where

Ar =
Nspec∑
s=1

νsrMsϵs, Br =
Nspec∑
s=1

νsrĉv,s. (2.34)

Rate Constants

The form of Kr(T ) given by Eq. (2.33) for this simplified model implies that if one
of the rate constants can be written in the modified Arrhenius form then that other can be
as well. In particular, when we write the forward and reverse rates in modified Arrhenius
form as

k±
r (T ) = k±

r (T st) exp
[
−α±

r

R

( 1
T

− 1
T st

)](
T

T st

)β±
r

, (2.35)

using relation (2.20), the relation between forward and reverse rates can then be simplified
to

α−
r = α+

r − Ar, β−
r = β+

r −Br. (2.36)
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2.4 Numerical Example
In this section, we consider an ideal gas mixture with a reversible dimerization

reaction,

2A k+

⇌
k−

A2, (2.37)

and perform reactive FHD simulations. In Section 2.4.1, we describe how to model the
reaction and determine reaction parameters. In Section 2.4.2, we briefly explain our
numerical implementation of reactive FHD and the determination of FHD simulation
parameters. In Section 2.4.3, we present our simulation study.

2.4.1 Reaction Modeling and Parameters
Our simulation model is inspired by the experimental study of the dimerization of

nitrogen dioxide [21]. While the chemical kinetics was measured in the presence of
nitrogen gas in the study, we first consider the case where the ideal gas mixture only
contains NO2 and N2O4 and then investigate the case where N2 is also included. For the
species index s, A (or NO2) is set to s = 1 and A2 (or N2O4) to s = 2. When nitrogen is
added, N2 is set to s = 3. Since we only consider one reversible reaction (i.e. Nrxn = 1),
we drop the reaction index r. By the law of mass action, the forward and reverse rates are
expressed as a+ = k+[A]2 and a− = k−[A2], respectively. The chemical production rates
of each species are given as

Ω1 = −2
a+ +

√
a+

NA

W+

+ 2
(
a− +

√
a−

NA

W−
)
, (2.38)

Ω2 =
a+ +

√
a+

NA

W+

−
(
a− +

√
a−

NA

W−
)
. (2.39)

We use cgs units and, particularly, mol/cm3 for molar concentration. If one interprets [Xs]
as a unitless quantity normalized by unit molar concentration, the units of both k+ and k−

coincide with those of a+ and a−, i.e., mol/cm3·s, and thus give a unitless equilibrium
constant [81] in Eq. (2.20). If one considers the units of [Xs], the units of k+ and k− are
cm3/mol · s and s−1, respectively.

We assume that each chemical species has constant heat capacity and the reaction rate
constants, k+(T ) and k−(T ), follow the modified Arrhenius equation, or equivalently,
Eq. (2.35). For the reference temperature T st = 350 K, the values of the reaction
parameters, k±(T st), α±, and β±, that we use for our simulation study are given in
Table 2.1. We obtain the parameter values of the reverse reaction, k−(T st), α−, and β−,
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units + (forward reaction) − (reverse reaction)
k±(T st) mol/cm3·s 4.07 × 1011 6.24 × 107

α± erg/mol −5.34 × 1010 5.37 × 1011

β± unitless 0.645 −1.10

Table 2.1: Reaction parameter values for the dimerization reaction (2.37). These
parameters appear in Eq. (2.35)

units s = 1 (A) s = 2 (A2)
µ̂◦
s(T st) unitless −7.27 −2.33
εs erg/g 4.69 × 109 −1.73 × 109

ĉv,s unitless 3.64 9.02

Table 2.2: Thermodynamic parameter values for A and A2. These values are obtained
from the thermochemistry data of NO2 and N2O4.

from Ref. [21] via NIST Chemical Kinetics Database [72]. We determine the parameter
values of the forward reaction, k+(T st), α+, and β+, using the relations (2.20) and (2.36)
with the values, K(T st) = 6.52 × 103, A = −5.90 × 1011 erg/mol, and B = 1.74. We
obtain the latter values using the thermochemistry data of NO2 and N2O4 in the NIST
Chemistry WebBook [70]. More specifically, for each species, we first compute the
values of hsts , ssts , and cp,s by evaluating the Shomate equation at T st. We then determine
the values of µ̂◦

s(T st), ϵs, and ĉv,s by using Eqs. (2.28), (2.30), (2.31), respectively, and
finally K(T st) by Eq. (2.15) and A and B by Eq. (2.34). The values of µ̂◦

s(T st), ϵs, and
ĉv,s are given in Table 2.2.

Figure 2.1 shows the values of K(T ), k+(T ), and k−(T ) computed from our constant
heat capacity model. In panel (a), we compare the equilibrium constant values of our
model with those directly obtained at each temperature by evaluating the Shomate
equation, where the temperature dependence of heat capacity is considered. It is
remarkable that our constant heat capacity model reproduces the equilibrium constant
K(T ) faithfully (within about 0.1% errors) in the temperature range 300 K ≤ T ≤ 400 K.
In panel (b), the temperature dependence of k+(T ) and k−(T ) is compared. As
temperature increases, k+(T ) decreases gradually, whereas k−(T ) increases significantly.
These behaviors can be mainly explained by the signs and magnitudes of the parameters
α+ and α−. We note that the value of α+ computed from α− and A via Eq. (2.36) is
negative but rather small.
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Figure 2.1: In panel (a), the values of the equilibrium constant K(T ) obtained from our
constant heat capacity model are compared with those computed by the Shomate equation
in the temperature range 300 K ≤ T ≤ 400 K. Their relative differences, (Kmodel −
KShomate)/KShomate, are shown in the inset. In panel (b), the values of the forward and
reverse reaction rate constants, k+(T ) and k−(T ), are plotted versus T . Two y-axes are
used; the left one is for k+(T ) (depicted by the blue solid line), whereas the right one is
for k−(T ) (by the red dashed line).

2.4.2 Implementation of Reactive FHD
We construct numerical methods to solve reactive FNS equations (2.1) by

incorporating chemistry source terms MsΩs into the existing (nonreactive) FNS
solvers [13, 94]. These FNS solvers are based on a method-of-lines approach, where the
FNS equations are discretized first in space and the resulting stochastic ordinary
differential equations are solved by a stochastic time integration scheme. For spatial
discretization, a finite-volume representation is employed in the original FNS solver
developed in Ref. [13], whereas a staggered spatial discretization is used in the one
developed in Ref. [94]. For temporal integration, both FNS solvers use an explicit,
three-stage, low-storage Runge–Kutta (RK3) scheme [2]. Since chemistry source terms
are given in the form of Langevin equation, they are readily incorporated into the RK3
scheme. Since species mass densities ρs and energy density ρE (and thus temperature T )
are located at cell centers in both FNS solvers, the same procedure to include chemistry
can be applied to both solvers. We develop reactive FNS solvers based on both original
and staggered FNS solvers. For numerical results, we use the staggered one [94]. We
refer the reader to Section S1 in the Supplementary Material for a detailed description of
the implementation of reactive FHD.

We determine FHD simulation parameters as follows. To choose the equilibrium
state, which is needed for the setup of both equilibrium and nonequilibrium simulations,
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the equilibrium species mass densities, ρeq1 = 1.35 × 10−3 g/cm3 and
ρeq2 = 5.13 × 10−4 g/cm3, are determined so that the sum of partial pressures of A and
A2 is equal to 1 atm at T eq = T st = 350 K. The simulation box is a cube of side length
L = 2.56 × 10−4 cm with periodic boundary conditions and is discretized into 323 cells
of side length ∆x = 8 × 10−6 cm. We use time integration step size ∆t = 1 × 10−12 s.
Note that thermochemistry parameters, ϵs and ĉv,s, which are used to determine the
reaction parameters, are also used to define the internal energy of each species,
es(T ) = ϵs + R

Ms
ĉv,sT . For N2, ϵ3 = −3.10 × 109 erg/g and ĉv,3 = 2.51. To evaluate

transport coefficients [43], each species is assumed to be a hard sphere of diameter ds:
d1 = 3.8 × 10−8 cm, d2 = 4.6 × 10−8 cm, and d3 = 3.0 × 10−8 cm.

2.4.3 Simulation Results
Equilibrium Simulations

To demonstrate that reactive FHD based on our chemistry formulation reproduces the
correct statistical distributions at equilibrium, we first perform equilibrium simulations of
the NO2/N2O4 mixture. We run each simulation up to 2×106 steps with ∆t = 1 × 10−12 s.
To estimate an equilibrium average ⟨·⟩, we discard the first 2×105 steps and compute time
average.

To confirm that thermodynamic equilibrium is achieved, one can estimate the cell
variance ⟨δϕ2⟩ = ⟨(ϕ− ϕeq)2⟩ of each field quantity ϕ (e.g. ρs, T ) in each fluid cell and
compare this with the value predicted by equilibrium statistical mechanics [13]. For
example, temperature fluctuations in a cell of volume ∆V are characterized by

⟨δT 2⟩ = kBT
2
0

ρcv,mix∆V
, (2.40)

where kB is the Boltzmann constant and

cv,mix = 1
ρ

Nspec∑
s=1

ρscv,s, (2.41)

and our simulation result ⟨δT 2⟩ = 2.53±0.01K2 coincides with the correct value 2.53 K2.
However, to show that fluctuations in different cells are uncorrelated at thermodynamic
equilibrium, one should also compute covariances between different cells.

Instead of computing the cell variance and covariances of each field quantity, we
investigate the static structure factor [2]. While the structure factor contain essentially the
same information as the cell variance and covariances, the former is more convenient to
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Figure 2.2: Equilibrium structure factor spectra obtained from reactive FHD based on
our chemistry formulation. For various field variables, the structure factor values S(k) are
normalized by the theoretical values Seq and plotted versus r =

√
κ2
x + κ2

y + κ2
z, where

κi = ki
(

2π
L

)−1
is the integer wave index in the i-direction. Panels show the structure

factors for (a) ρ, (b) ρux, (c) ρE, (d) ρ1, (e) ρ2, and (f) T . Each data point is colored based
on its normalized value S(r)/Seq (see the color bar). The horizontal black line is drawn at
the expected theoretical value for visual clarity.

compute and easier to visualize and analyze. The structure factor for the field variable ϕ
is defined as

Sϕ(k) = ∆V ⟨δϕ̂kδϕ̂
∗
k⟩, (2.42)

where V is the volume of the system, k = (kx, ky, kz) is a vector of wavenumbers, δϕ̂k is
the discrete Fourier transform coefficient of δϕ for wavevector k, and δϕ̂∗

k is its complex
conjugate. When thermodynamic equilibrium is achieved (i.e. exhibiting the correct cell
variance value with zero covariance values), the structure factor of each field becomes a
constant function (i.e. Sϕ(k) = Sϕ,eq) and its constant value Sϕ,eq is related to the correct
cell variance via Sϕ,eq = ∆V ⟨δϕ2⟩. For example, the structure factor of the temperature
field is given as

ST (k) = ST,eq = kBT
2
0

ρcv,mix
. (2.43)

For various field variables (ρ, ρux, ρE, ρ1, ρ2, and T ), we show in Figure 2.2 the
static structure factors that we obtain from our equilibrium simulation. For each field ϕ,
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Figure 2.3: For the temperature field variable, equilibrium structure factor spectra
obtained from the temperature-independent rate constant case and our chemistry model
are compared. Note that the same data are shown in panel (b) of this figure and panel (f)
of Figure 2.2 but different vertical scales are used.

we normalize the values of Sϕ(k) by the correct structure factor value Sϕ,eq, which can be
computed from the correct equilibrium cell variance [13]. To see whether Sϕ(k) does not
depend on k, we plot the normalized structure factor values Sϕ(k)/Sϕ,eq versus

r =
√
κ2
x + κ2

y + κ2
z, where κi = ki

(
2π
L

)−1
is the integer wave index in the i-direction.

We observe that all structure factors exhibit flat spectra with the correct values. For the
corresponding nonreactive system (i.e. with k+ = k− = 0), we also observe the same
behaviors (see Figure A.1 in Appendix A.4.1). Hence, these simulation results confirm
that the incorporation of our stochastic formulation does not disturb the thermodynamic
equilibrium state correctly established by nonreactive FHD. In Appendix A.2, by
analyzing the chemistry source terms MsΩs in the FNS equations (2.1) and the structure
of the linearized FNS equations for dimerization, we also analytically show that our
chemistry formulation gives flat structure factors with the correct values.

We now turn into the case where a thermodynamically-inconsistent chemistry
formulation is used. In an equilibrium simulation, particularly with small temperature
fluctuations (note that the magnitude of temperature fluctuations in our dimerization
example is ⟨δT 2⟩1/2 = 1.6 K, it is tempting to use temperature-independent rate
constants, i.e. k±(T ) = k±(T eq). However, when these rates are used in FHD
simulations, remarkably significant errors appear in the structure factors. Figure 2.3
compares the temperature structure factor of the temperature-independent rate constants
case with that of our chemistry model. The structure factor spectrum is not flat and more
significant deviations are observed for smaller wave vectors k. This implies that
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Figure 2.4: For various partial pressure values of N2, the temperature structure factor
spectra obtained from the temperature-independent rate constant case are compared.
For visual clarity, rather than plotting all data points, representative values of S(r)/Seq
obtained by averaging within each subinterval of r are shown.

temperature fluctuations in different fluid cells are correlated and these incorrect
correlations are long-ranged. On the other hand, at short length scales (i.e. large k),
fluctuational behaviors are rather similar to those of the nonreactive FHD system. As
shown in Figure A.2 in Appendix A.4.2, the structure factor spectra of the other field
variables show similar shapes. In Appendix A.2, we provide an explanation on why
thermodynamically-inconsistent chemistry causes errors in the small k region of the
structure factor spectra. Roughly speaking, the impact of fluctuations from reaction
becomes dominant at long-length scales, whereas that from transport processes (e.g.
diffusion) becomes dominant at short-length scales. For a stochastic reaction-diffusion
system, a similar behavior was discussed with the concept of the penetration depth [56].

We also perform reactive FHD simulations with N2 and compare the structure factor
spectra of our chemistry model and the temperature-independent case. While maintaining
the sum of the equilibrium partial pressures of A and A2 to be 1 atm, we consider ideal
gas mixtures with PN2 = 1, 2, 5, and 10 atm. As shown for the temperature structure
factor in Figure 2.4, FHD simulations with the temperature-independent rate constants give
incorrect spectra with shapes similar to the simulation without N2 (i.e. more significant
errors at smaller k). However, the magnitude of the errors decreases as PN2 increases. This
behavior is consistent with the tendency that the impact of incorrect reaction becomes less
significant as the mole fraction of the inert gas increases.



21

Figure 2.5: The time profiles of spatially averaged temperature (panel (a)) and monomer
mass density (panel (b)). The black dashed lines show the results of our chemistry model,
whereas the red dotted lines show the temperature-independent rate constant case. Note
that chemistry is initially turned off for the first 104 time steps, after which reactive FHD
is run for additional 1.9 × 105 time steps.

Non-Equilibrium Simulations

We perform non-equilibrium simulations of the NO2/N2O4 mixture with an initial
condition perturbed from the equilibrium condition considered above and compare the
results from our chemistry model and the temperature-independent rate constant case. We
choose the initial condition with T init = 380 K, ρinit1 = 1.28 × 10−3 g/cm3, and
ρinit2 = 5.80 × 10−4 g/cm3 using the relations

ρinit1 + ρinit2 = ρeq1 + ρeq2 , (2.44)

ρinit1 e1(T init) + ρinit2 e2(T init) = ρeq1 e1(T eq) + ρeq2 e2(T eq), (2.45)

so that a macroscopic well-mixed system with this perturbed initial condition will attain
the prescribed equilibrium. For equilibration, we first simulate the system without reaction
for 104 steps. Then we turn on reaction and simulate the system for 1.9 × 105 steps.

Figure 2.5 shows the time profiles of spatially averaged temperature and monomer
mass density. While both our chemistry model and the temperature-independent rate
constant case approach the prescribed equilibrium state, their time-transient behaviors are
different as expected from their different rate constant values for T ̸= T eq. We note that
the time profiles of the spatially averaged variables can be reproduced by the macroscopic
well-mixed system with the corresponding rate constants (i.e. solving ordinary
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differential equations). Hence, we confirm that our reactive FHD faithfully reproduces
the chemical kinetics of a well-mixed bulk system if there is no mean flow.

2.5 Conclusion
In this work, we discussed an approach to model the behavior of reactive ideal gas

mixtures at the mesoscopic scale based on the framework of reactive fluctuating
hydrodynamics. We have found that, to properly simulate the dynamics of reactive gases,
thermodynamic consistency requires to account for temperature fluctuations in the
expression of the rate constants. We verified our implementation by running equilibrium
and non-equilibrium simulations for the dimerization of nitrogen dioxide. For the
equilibrium simulations, we analyzed the spectrum of fluctuations for several fields of
interest, and showed that our formulation produces results consistent with those obtained
for the case of non-reactive mixtures, in agreement with theormodynamic theory.
Moreover, we showed how even for systems that are initially perturbed from the
equilibrium conditions, our reactive FHD formulation accurately reproduces the kinetics
of a well-mixed gas mixture.



Chapter 3
Modeling Aggregate Dynamics: Part A,
aggregation

3.1 Introduction
The aggregation of small particles into larger clusters occurs in a great variety of

contexts. It has been reported in metallic crystal [22, 10] and aerogel formation [112],
soot clustering [26], proteins accumulations [102], wastewater treatment [71], and marine
aggregates forming in the oceans [7, 24]. In all these cases, smaller particles move, at
least in part, in an effectively random manner and may aggregate upon encountering other
similar particles. The progressively larger aggregates thus formed often exhibit fractal
structures [22, 10, 112, 26, 102, 71, 7, 24].

Arguably the most effective and influential models of aggregation have been
the Diffusion-Limited-Aggregation (DLA) and Diffusion-Limited-Cluster-Aggregation
(DLCA) models. In the DLA model [104], individual particles undergo stochastic motion
until they encounter a cluster that they then stick to, whereas in the DLCA model [59, 73],
many particles move simultaneously, form clusters when encountering each other, and
continue moving stochastically as clusters. In most cases, the rationale for the stochastic
motion of the particles is that they are subject to large numbers of molecular collisions.
The effect of these collisions can be modeled as random forces in Langevin dynamics
models or directly as random displacements in Brownian dynamics models [19].

The translational diffusivity of individual particles is well known to be inversely
proportional to their size, as captured by the Stokes–Einstein relation [32]. As aggregates
grow in size, the resistance of the surrounding fluid increases and aggregates are therefore
expected to move slower than individual particles. This effect was studied early on in two-

23
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[75, 85] and three-dimensional systems [9] but has been neglected in many DLCA studies.
Furthermore, until recently, it was not clear how to determine the hydrodynamic radius
of a fractal aggregate in a manner consistent with the Stokes–Einstein relation. A recent
study [106] showed that the radius of gyration of an aggregate is an appropriate measure
of its size. We study here the effects on aggregation of having size-dependent diffusivities,
following and extending the work of Refs. [75], [9].

Early DLA models, where the particles were modeled as spheres and the aggregates
formed were fixed, did not include the effects of particle rotation. However, once clusters
are allowed to move stochastically, they are expected to rotate as they are subjected to
random torques as well. While early two-dimensional studies of DLCA incorporated the
effects of rotation [76], these effects were only recently taken into consideration in three-
dimensional systems by Jungblut et al. [50]. In contradiction to the prior assumption
that the effects of rotation on aggregation would be negligible, they demonstrated that the
rotation of clusters significantly alter the structure of the resulting aggregates. However,
this conclusion was drawn by using constant rotational diffusivity. As indicated by the
Stokes–Einstein–Debye relation [30], the rotational diffusivity of an object is inversely
proportional to the cube of its size, which, for aggregates, was shown to be well captured
by the radius of gyration [106]. Based on these physical observations, we revisit here the
effects of rotation. To this end, we present a DLCA model that incorporates rotational
effects into Brownian dynamics and accounts, to the best of our knowledge for the first
time, for the size-dependence of the rotational diffusivity.

Another factor that can affect the dynamics of particles and clusters during the
aggregation process is the density difference between the particles and the surrounding
fluid. In many instances, particles such as soot, plankton, or metal atoms are denser than
the surrounding medium. The gravitational acceleration will therefore cause particles to
settle downward at a speed that increases with their size [103, 48, 95, 106]. While this
effect has been well quantified for aggregates already formed, to the best of our knowledge,
it has not been incorporated in three-dimensional DLCA models. We therefore also study
here the influence of a size-dependent settling velocity on the formation of aggregates.

The quantity typically used to characterize the fractal structures of randomly formed
aggregates is their fractal dimension [92]. Models of DLCA (see for instance Ref. [74])
as well as experiments [25, 93] have reported fractal dimensions in the 1.7–1.8
range. However, lower fractal dimensions (1.5–1.6) have also been measured in soot
aggregates [26] and a broad range of fractal dimensions (1.28–1.86) have been measured
in marine aggregates [54]. In addition, models incorporating rotation [76, 50, 49] have
reported fractal dimensions in the 1.5–1.6 range.

The rest of this Chapter is organized as follows. In Section 3.2 we provide details on
the formulation of our aggregation model, for spherical particles that undergo translational
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and rotational Brownian motion, and are subject to size-dependent diffusivities and settling
under gravity. In Section 3.3 we validate our choices of parameters. In Section 3.4 we
give the details of our numerical implementation. In Section 3.5 we explain the time
range considered in our analysis, and discuss the results obtained in our simulations for
the growth rate and fractal dimension of the aggregates. In Section 3.6 we present our
Conclusions, and in Section 3.7 we discuss current and future directions for our efforts on
modeling aggregate dynamics.

3.2 Method
In our model, aggregates are built from identical spheres. We consider spheres of

radiusR′
1 ≈ 1µm or smaller, so that inertial effects are negligible. Brownian dynamics are

applied to aggregates to randomly translate and rotate them [19]. In addition, following
the DLCA model [74], if any two spheres overlap (i.e. their centers of mass are within
one sphere diameter), the aggregates containing them are made to merge irreversibly and
move as a single aggregate thereafter. Hence, as time progresses, spheres merge into
aggregates of various sizes and eventually form a single large aggregate. Snapshots taken
from a typical simulation of our model are shown in Fig. 3.1 and the structure of the final
aggregate obtained is shown in Fig. 3.2.
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t = 0 t = 4000 t = 56000

Figure 3.1: Snapshots taken from a typical simulation. Panel (a) displays the initial
distribution of N = 100 spheres and panels (b) and (c) depict the distributions of
aggregates formed at times t = 4000 and 56000, respectively. The simulation domain
was a cubic box with side length L = 128 with periodic boundaries in every direction.
For visual clarity, projected images onto the xy-plane are shown. Different colors are
used to show the the number of spheres M in an aggregate; magenta for M = 1, blue for
2 ≤ M < 10, black for 10 ≤ M < 30, green for 30 ≤ M < 60, and red for 60 ≤ M .

y

z

x

Figure 3.2: Sample aggregate with M = 100 spheres. This aggregate was obtained at the
end of the simulation shown in Fig. 3.1.
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3.2.1 Non-dimensionalization
To write the relevant equations in non-dimensional form, we use the radius, R′

1, of a
single sphere as our length scale and a diffusive time scale, τ ′ = (R′

1)2/2D′
1, where D′

1 is
the translational diffusion coefficient of a single sphere. Here, primes indicate dimensional
quantities. We can then define non-dimensional quantities, denoted without a prime, as
follows:

x⃗ = x⃗′/R′
1, t = t′/τ ′. (3.1)

3.2.2 Transformation between the center-of-mass and laboratory
frames

For an aggregate made of M spheres, we define the position of the mth sphere within
the aggregate in the laboratory frame of reference, x⃗m, as

x⃗m = x⃗c +Qx⃗m,body for m = 1, · · · ,M. (3.2)

Here, x⃗m,body is the position of the mth sphere of the aggregate in a frame of reference
that moves with the body of the aggregate. The center of mass of the aggregate is given
by x⃗c = 1

M

∑M
m=1 x⃗m and Q is a 3 × 3 rotation matrix, which we refer to as the orientation

matrix of the aggregate.

3.2.3 Translation
To update the position of the center of mass of the aggregate at each time step ∆t, we

compute
x⃗c(t+ ∆t) = x⃗c(t) + ∆x⃗, (3.3)

where ∆x⃗ =
√

2D∆t N⃗ (0, 1) is a vector denoting a single step taken by the aggregate.
Here, D is the translational diffusion coefficient of the aggregate, and N⃗ (0, 1) denotes a
three-dimensional vector with independent random components drawn from the standard
normal distribution (i.e. with zero mean and unit variance).

3.2.4 Rotation
To update the orientation of a given aggregate, we evaluate

Q(t+ ∆t) = R Q(t), (3.4)
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where R is a rotation matrix. To define R at each time step, we select a three-dimensional
vector ∆θ⃗ = (∆θx,∆θy,∆θz) as

∆θ⃗ =
√

2Dθ∆t N⃗θ(0, 1), (3.5)

where Dθ is the rotational diffusion coefficient of the aggregate and N⃗θ(0, 1) is another
three-dimensional random vector sampled similarly to N⃗ (0, 1). To obtain the rotation
matrix R corresponding to ∆θ⃗, we note that the action of R is equivalent to imposing a
rigid body rotation with angular velocity ∆θ⃗/∆t to every column q̂k of the orientation
matrix Q over a time step ∆t. Therefore, over each time step, we have

d

dt
q̂k = ∆θ⃗

∆t × q̂k, (3.6)

or equivalently in matrix form

dQ

dt
=
¯̄̄ϵ · ∆θ⃗

∆t

Q = A

∆tQ, (3.7)

where ¯̄̄ϵ is the Levi-Civita permutation tensor and we defined the matrix

A = (¯̄̄ϵ · ∆θ⃗) =

 0 ∆θz −∆θy
−∆θz 0 ∆θx
∆θy −∆θx 0

 , (3.8)

so that for any vector x⃗ we have Ax⃗ = ∆θ⃗ × x⃗. The exact solution to eq. (3.7) can be
expressed by using a matrix exponential as

Q(t+ ∆t) =
(
e

A
∆t

·∆t
)
Q(t) = eAQ(t) (3.9)

and we therefore have that R = eA. Note that for validation purposes (see section 3.3), we
also associate to Q a cumulative angle vector θ⃗ defined with components restricted to be
between −π and π and such that Q = exp(¯̄̄ϵ · θ⃗).

To efficiently compute the matrix exponential eA, we first let ∆θ⃗ = ∆ψ Θ̂ for a scalar
∆ψ = ∥∆θ⃗∥ capturing the rotation angle and a unit vector Θ̂ = ∆θ⃗/∥∆θ⃗∥ indicating the
rotation axis. Noting thatA is anti-symmetric, we then use Rodrigues’ formula to compute
its exponential [37]

R = eA = I + sin(∆ψ)
∆ψ A+ 1 − cos(∆ψ)

∆ψ2 A2. (3.10)
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We note that while the same result can be obtained using quaternions [11], we selected the
method above as it is easier to relate directly to the physical situation under consideration.

In summary, to implement Brownian rotation, we first generate the random vector ∆θ⃗.
We then construct the anti-symmetric matrix A, and compute its exponential, which yields
the rotation matrix R used to update the orientation matrix Q(t). Finally, using eqs. (3.3)
and (3.4), we can update the position of any sphere as

x⃗m(t+ ∆t) = x⃗c(t+ ∆t) +Q(t+ ∆t) x⃗m,body,

= x⃗c(t) + ∆x⃗+R Q(t) x⃗m,body.
(3.11)

3.2.5 Aggregation
We consider several aggregates undergoing Brownian motion as described by

eq. (3.11). We initially confineN single spheres, each of which is assigned a random initial
position x⃗m(0) which is uniformly distributed in a cubic domain with periodic boundary
conditions applied in all directions. After all spheres (or later aggregates) have moved,
we compute the closest distance between all aggregate pairs. If this distance is within
one sphere diameter, the spheres or aggregates merge irreversibly, moving as a single
aggregate thereafter. Note that while overlapping between spheres can occur, we show in
section 3.3 that our choice of time step size confines the overlapping volume to be less
than 5% of the total volume of the newly formed aggregate. Once a new aggregate forms,
we compute its center of mass x⃗c, accounting for periodicity, set its orientation matrix Q
to the identity matrix I , and update the relative position of its constituents x⃗m,body. Note
that x⃗m,body changes only when aggregation occurs. In Fig. 3.3, panels (a) through (c)
show snapshots of the typical evolution of a system with N = 100 spheres, as aggregates
and single spheres undergo Brownian motion and merge. In panel (d), we show a sample
aggregate of size M = 100.
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(a) (b)

(c) (d)

Figure 3.3: Time snapshots of a typical system with N = 100 spheres at time t = 0 in
panel (a), t = 200 in panel (b), and t = 1200 in panel (c). Eventually, a single aggregate
containing M = 100 spheres remains, as shown from a closer perspective in panel (d).
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3.2.6 Size-dependent diffusivities
To build a more realistic model of aggregation, we allow diffusivities to be size-

dependent, as was previously done for translational diffusivity [9]. It has been shown [106]
that the best length scale to describe the hydrodynamic resistance of fractal aggregates is
the radius of gyration, Rg, and it was found that the translational and rotational friction
coefficients of an aggregate are proportional to Rg and R3

g, respectively. Since the
corresponding diffusivities are inversely proportional to the friction coefficients, D and
Dθ are proportional to 1/Rg and 1/R3

g, respectively, which is consistent with the Stokes–
Einstein [32] and Stokes–Einstein–Debye equations [30] for the diffusivities of a sphere.
For an aggregate made of M spheres of uniform density, the radius of gyration is defined
as

Rg =

√√√√3
5 + 1

M

M∑
m=1

∥x⃗m − x⃗c∥2. (3.12)

Here, x⃗m denotes the position of the mth sphere in the aggregate and x⃗c is the center of
mass of the aggregate. Note that the definition of Rg for point-mass particles is slightly
modified by the addition of 3/5 to accurately account for the non-zero radius of the
spheres, which also recovers the radius of gyration of a single unit sphere with uniform
mass distribution: Rg1 =

√
3/5.

Following Ref. [106], we express the dimensional magnitude of the drag F ′
D and torque

Q′ of aggregates as
F ′
D = CTµ

′R′
gU

′, Q′ = Cθµ
′(R′

g)3Ω′, (3.13)

where R′
g is the dimensional radius of gyration, µ′ the dynamic viscosity of water,

U ′ the translational speed of the aggregate, Ω′ its angular speed, and CT and Cθ are
proportionality factors that depend on the geometry of the object. For single spheres,
recalling that Rg1 =

√
3/5, we have

CT = 6π
√

5
3 , Cθ = 8π

(5
3

)3/2
, (3.14)

and for fractal aggregates [106], we use

CT = 18, Cθ = 25. (3.15)

In eq. (3.13), the coefficients in front of U ′ and Ω′ are, respectively, the translational and
rotational friction coefficients. By the Einstein relation, we then set the translational and
rotational diffusivities to be the ratio of the thermal energy to the appropriate friction
coefficient:

D′ = kbT
′

CTµ′R′
g

, D′
θ = kbT

′

Cθµ′(R′
g)3 , (3.16)
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where kb is the Boltzmann constant and T ′ the temperature of the system. We note
that eq. (3.16) is consistent with the Stokes–Einstein [32] and Stokes–Einstein–Debye
equations [30] for the diffusivities of a sphere.

For a single sphere, the dimensional translational diffusivity is

D′
1 = kbT

′

6π
√

5/3µ′R′
g1

= kbT
′

6πµ′R′
1
, (3.17)

and, consequently, our corresponding characteristic time scale is

τ ′ = (R′
1)2

2D′
1

= 3π(R′
1)3µ′

kbT ′ . (3.18)

In dimensionless terms, the diffusivities for a single sphere are

D = 0.5, Dθ = D′
θτ

′ = 0.375, (3.19)

and for aggregates

D = D′τ ′

(R′
1)2 = 0.5

Rg

, Dθ = D′
θτ

′ = 0.375
R3
g

. (3.20)

Note that in eq. (3.20), we approximated CT ≈ 18 ≈ 6π, and Cθ ≈ 25 ≈ 8π, to simplify
the final expression of the diffusivities.

3.2.7 Settling
To incorporate the effects of the gravitational acceleration, g′, we consider aggregates

with an excess density of ∆ρ′ relative to the surrounding fluid. The corresponding weight
is then F ′

W = g′ 4
3π(R′

1)3∆ρ′M , where M is the number of spheres in a given aggregate.
Equating the weight to the drag and using eq. (3.13), we find that the settling speed of an
aggregate is then

U ′ = 4πg′(R′
1)3∆ρ′M

3CTR′
gµ

′ . (3.21)

In non-dimensional form, this settling speed becomes

U =
(

4π2

CT

)
g′∆ρ′(R′

1)4

kbT ′

(
M

Rg

)
= ΓM

Rg

, (3.22)

where we defined the quantity

Γ =
(

4π2

CT

)
g′∆ρ′(R′

1)4

kbT ′ , (3.23)
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which is proportional to the gravitational potential energy of a single sphere made
dimensionless using the thermal energy. To compute the value of Γ, we select approximate
typical parameter values appropriate to aggregates made of organic matter. To study the
impact of various settling speeds, we select three density differences of ∆ρ′ = 100,
200, or 400kg/m3 and use other parameter values of R′

1 = 1µm, g′ = 10m/s2, and
kbT

′ = 4 × 10−21J. We obtain that single spheres have settling speeds U1 = 0.525,
1.05, or 2.10, and that aggregates of more than one sphere have Γ ≈ 0.55, 1.10, or 2.20,
and correspondingly have a settling speed of U = 0.55M/Rg, U = 1.10M/Rg, and
U = 2.20M/Rg.

3.3 Validation

3.3.1 Dynamics
To validate our approach and implementation, we begin by studying a single sphere

undergoing Brownian motion as described by eq. (3.11). We let the sphere move for 10
time steps of size ∆t = 0.01 and record its position and orientation at the final time
tf = 0.1.

We first verified that the position of the particle was approximately normally
distributed in all three dimensions. We confirmed that the data obtained followed to a
good approximation a normal distribution of mean zero and variance σ2 = 2Dtf = 0.1.
We also verified that the cumulative angle vector θ⃗(tf ) associated to the final orientation of
the sphere Q(tf ) was normally distributed in each coordinate with mean zero and variance
σ2 = 2Dθtf = 0.075 and again observed close agreement to the theoretical distribution
as can be seen for the x-component in Fig. 3.4. Note that our data set was collected at a
relatively short time tf to avoid the impact of periodicity.

3.3.2 Overlap
Our model allows for some overlap between spheres in their last step prior to

aggregation. However, we select the time step size to be sufficiently small so that overlap
remains minimal. In terms of the distance d̃ between two attached spheres, the overlapping
volume is

Voverlap = 1 − 3
4 d̃+ d̃3

16 for d̃ ≤ 2. (3.24)

To quantify the overlap, we run 20 simulations for Case 4 using ∆t = 0.01 with N =
100 spheres, until all spheres have merged into a single aggregate. Using eq. (3.24), we
compute the distribution of overlapping volumes. From Fig. 3.5, it can readily be seen that
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Figure 3.4: Normal distribution of the x-component of the angle vector θ⃗(tf ) associated to
the final orientation Q(tf ) of the sphere after 10 time steps. A total of 105 samples were
collected.

our choice of time step size confines the percentage of overlap amongst any two attached
spheres in an aggregate to be less than 5% of their total volume, and usually to be less
than 2%. Based on these results, we conclude that our choice of ∆t = 0.01 is a reasonable
compromise between overlap minimization and computational efficiency.

3.3.3 Number of nearest neighbors
To help characterize the fractal structure of the aggregates formed in our simulations,

we record the number of nearest neighbors of each sphere, defined as the number
of spheres that lie within a distance of two from the sphere under consideration. A
histogram showing the distribution of the number of nearest neighbors of all spheres within
aggregates of size M ≥ 25 obtained at tmax in the case with settling where U1 = 1.05,
Γ = 1.10 and U = 1.10M/Rg is shown in Figure 3.6. This result is typical for the
aggregates we observed; a majority of spheres have two neighbors and roughly equal
numbers of spheres have one or three neighbors, while a few spheres have four or five
neighbors.
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Figure 3.5: Percentage of the overlapping volume amongst attached spheres in aggregates
made of M = 100 spheres, for simulations run using a time step size of ∆t = 0.01. A
total of 20 samples were collected.

Figure 3.6: Histogram of the number of nearest neighbors for aggregates of size M ≥ 25
collected at tmax in the case with settling where U1 = 1.05, Γ = 1.10 and U = 1.10M/Rg.
The vertical axis is normalized as frequency. A total of 20 samples were collected for the
volume fraction ϕ = 8 × 10−4.
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3.4 Numerical Set Up
To characterize the impact of size-dependent diffusivities and rotation on the structure

of aggregates and their growth dynamics we study four different cases:

• Case 1: D = 0.5, Dθ = 0,

• Case 2: D = 0.5, Dθ = 0.375,

• Case 3: D = 0.5/Rg, Dθ = 0,

• Case 4: D = 0.5/Rg, Dθ = 0.375/R3
g.

In Case 1, we follow the traditional DLCA approach, see for instance Ref. [74], where
rotational diffusion is not incorporated and translational diffusivity is kept constant. In
Case 2, we incorporate rotation, keeping diffusivities constant, as in Ref. [50]. In Case 3,
while rotation is absent, we allow translational diffusivity to be size-dependent, similarly
to Ref. [9]. In Case 4, we use more realistic size-dependent diffusivities for both translation
and rotation. To the best of our knowledge, the latter model has not been studied to date.

As discussed in Section 3.2.7, when spheres have a greater density than the surrounding
fluid, they will, in addition to being subject to Brownian dynamics, settle under the
influence of gravity. While this effect was neglected up to this point as it is often small,
it is more likely to become influential for larger aggregates. We therefore study Case 5,
with the same conditions as Case 4 supplemented by a size-dependent aggregate settling
speed, U , which is determined by balancing the weight and the drag force as characterized
by their radius of gyration [106]. As detailed in Section 3.2.7, we consider three different
sets of parameters corresponding to Cases 5a, 5b, and 5c. In these cases, single spheres
are computed to have settling speeds of, respectively, U1 = 0.525, 1.05, and 2.10, while
aggregates containing M spheres have Γ = 0.55, 1.10, and 2.20 for a settling speed of

U = 0.55M
Rg

(Case 5a), U = 1.10M
Rg

(Case 5b), U = 2.20M
Rg

(Case 5c).

(3.25)
In our simulations, the ratio M/Rg is typically of order one and does not exceed 20. We
note that a size-dependent aggregate Péclet number is found to be Pe = U ′R′

g/D
′ =

2ΓRgM . This indicates that whenever settling is present its importance grows very
quickly with aggregate size, as both M and Rg grow, with a magnitude prescribed by
the dimensionless gravitational potential energy of a single sphere Γ. We implement
this settling speed as a bias in the vertical direction. Placing the entire system in a
frame of reference moving at the settling speed of a single sphere, we select the vertical
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displacement ∆z of single spheres as before and that of aggregates of more than one sphere
as ∆z =

√
2D∆tN (0, 1) − (U − U1)∆t.

For all cases considered in our simulations, we initially confine single spheres to
a cubic box of side length L = 128 with periodic boundary conditions applied in all
directions. The time step size is chosen to be ∆t = 0.01 in all cases except when rotational
diffusion is constant (Case 2) and large aggregates are present, when ∆t was chosen to be
as small as ∆t = 0.001. The total number of spheres N is varied between 100 and 400,
giving a range of volume fraction ϕ = 4

3πN/L
3 between 2×10−4 and 10−3. We collect 400

samples for Cases 1–4, and 100 samples for Case 5, for each volume fraction considered
in this study.

3.5 Results and Discussion
We monitor over time the radius of gyrationRg of the aggregates as well as the number

of spheres M they contain. To characterize the dynamical evolution of the aggregates, we
introduce a weighted average of the radius of gyration within a system:

R̄g = 1
N

N∑
n=1

R(n)
g , (3.26)

where R(n)
g denotes the radius of gyration of the aggregate containing the nth sphere. We

note that R̄g is computed from each sample as a function of time and that in this average,
aggregates with a large number of spheres, M , will have a larger weight, as their radius of
gyration is summed M times. We then take the average of R̄g over all samples formed in
the same conditions, which we denote ⟨R̄g⟩.

3.5.1 Growth Rate
We investigate the size growth of aggregates over time using the weighted average of

the radius of gyration ⟨R̄g⟩ and compare the results of Cases 1–4 to discuss the effects of
size-dependent diffusivities as well as rotation. To minimize computational time and focus
on dynamics relevant to very large systems, independent of the domain size considered,
we usually interrupt simulations before a single aggregate is formed for all cases except
Case 2, where all spheres quickly merge into a single aggregate. For the other six cases,
for each volume fraction, we first run 36 samples until all spheres have merged into a
single aggregate. Then, we run the next 64 samples until a stopping time, ts. To determine
ts, we monitor the growth over time of the average radius of gyration ⟨R̄g⟩ of aggregates
and compute a reference slope S at the early stages of the simulations. The stopping time
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Figure 3.7: Growth over time of the average radius of gyration of aggregates, ⟨R̄g⟩, relative
to their initial value, Rg1, for Case 4. Panel (a) compares the results obtained for a fixed
volume fraction ϕ = 10−3 and different system sizes (specified by the total number N
of spheres and the different domain side lengths L). Panel (b) compares the results of
different volume fractions ϕ for a fixed system size with side length L = 128. On each
curve, tmax is shown as a black dot. The inset shows the same curves superimposed by
vertical translation.

is then determined as the first time for which the slopes on the intervals [ts − 2000, ts] and
[ts, ts + 2000] are both smaller than 0.05S. In all cases, from our first 100 samples, we can
reliably identify the maximum time, tmax, before the domain size begins to have an impact
on the system. We identify this time by computing the same slopes discussed above and
determine when the slopes on either side of tmax are less than half of the reference slope
S. We use tmax as the largest time considered when fitting the growth rate of aggregates
over time. For Cases 1, 3, and 4, we run an additional 300 samples up to tmax only (for
Case 2 we run these additional samples until a single aggregate is formed). A total of 400
samples were used for Cases 1–4, whereas 100 samples were used for Cases 5a–5c.

Before comparing those results, we first report the effects of finite system-size on the
time profile of ⟨R̄g⟩ and also investigate the dependence of the latter quantity on the
volume fraction ϕ to justify our choice of simulation parameter values. We note that,
contrary to molecular dynamics simulation models whose finite system-size effects have
been well understood (see for example Refs. [57], [64]), these effects have not been as
systematically investigated for aggregation models.

We show in Fig. 3.7(a) the time profiles of the average radius of gyration of aggregates
obtained from 36 samples in Case 4 for different domain sizes, L, and a fixed volume
fraction ϕ = 10−3. For reference, we note that ⟨R̄g⟩ = Rg1 at t = 0 and that if two spheres
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Diffusivities Exponent α† Fractal dimension d‡

Case 1 D = 0.5, Dθ = 0 1.02 1.82 ± 0.02
Case 2 D = 0.5, Dθ = 0.375 Not applicable 1.23 ± 0.10
Case 3 D = 0.5/Rg, Dθ = 0 0.66 1.81 ± 0.02
Case 4 D = 0.5/Rg, Dθ = 0.375/R3

g 0.71 1.69 ± 0.01

Table 3.1: Values of the exponent α and the fractal dimension d for Cases 1–4
† See eq. (3.27) for mathematical definition and Fig. 3.9 for actual estimation;

‡ See eq. (3.28) for mathematical definition and Fig. 3.11 for actual estimation.

meet and form an aggregate the increase in radius of gyration is approximately 0.5. We
observe that there is a time period where the growth of ⟨R̄g⟩ is independent of L and is well
described by a power law (i.e. a straight line in the log-log plot). At later times, the number
of spheres available for aggregation decreases and eventually the growth saturates as too
few spheres remain to maintain growth. This behavior happens later for larger domains as
they initially contain more spheres.

We also investigate aggregate growth for various volume fractions and for a fixed
domain size, L = 128, as shown in Fig. 3.7(b). We see that the very early growth for
t ≲ 1 is faster for larger volume fractions. This is a reflection of the higher probability
that two spheres have initial positions that are separated by a very short distance when
the volume fraction is larger. Less time is then required for spheres to first encounter each
other. However, the increase in ⟨R̄g⟩ during this time period is rather small (< 10−2). More
significantly, in a wide time range for t > 1, all curves can be superimposed by vertical
translation, indicating that the slopes of the curves at a fixed time in the log-log scales
appear independent of the volume fraction ϕ. Thus, in a time period where the curves
exhibit a nearly constant slope, the growth over the time period can be characterized by an
exponent α in the following relation:

⟨R̄g⟩ = C(ϕ)tα +Rg1. (3.27)

The values of α estimated in Cases 1, 3, and 4 are given in Table 3.1. Overall similar trends
are observed for Cases 1–4 except that an acceleration in growth appears before saturation
in Case 2, as discussed below. For all cases, corresponding plots to Fig. 3.7(b) are given
in Fig. 3.8. The rest of this Section will focus on Cases 1–4, while Cases 5a–5c will be
analyzed in further detail in Section 3.5.3.

We now consider the effects of rotational diffusion and size-dependent diffusivity on
aggregate growth over the time interval 1 ≤ t ≤ tmax, where the volume fraction of
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Figure 3.8: We plot over time the growth in the average radius of gyration ⟨R̄g⟩ compared
to its initial value Rg1 for various volume fractions ϕ for all cases considered: (a) Case 1,
(b) Case 2, (c) Case 3, (d) Case 4, (e) Case 5a, (f) Case 5b, (g) Case 5c. The black dots
indicate the maximum times, tmax, at which we collect data for further analysis, and the
open circles are the stopping times, ts, at which we interrupt simulation runs for the second
batch of 64 samples.
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spheres has only a negligible effect. We show in Fig. 3.9 the temporal evolution of the
average size of aggregates for ϕ = 6 × 10−4 for Cases 1–4. For t < 100, the four curves
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Figure 3.9: Comparison of the growth patterns of average radius of gyration observed in
Cases 1–4 for volume fraction ϕ = 6 × 10−4. The time profiles of ⟨R̄g⟩ − Rg1 are shown
in the log-log scales as solid lines. For each case except Case 2, linear regressions are also
shown as dashed lines, which are obtained over the range starting when ⟨R̄g⟩ − Rg1 = 1
and ending when the size of the systems starts impacting the results at time tmax.

overlap, indicating that, at those early times, aggregates exhibit the same growth dynamics.
In this regime, the size-dependence of the diffusivities is still weak, as most aggregates are
still small, and aggregates move as if their diffusivities were constant. Moreover, rotational
diffusion has no effect on single spheres which still constitute most of the aggregates.

As time increases past t = 100, differences in the four cases emerge. Unsurprisingly,
when the diffusivities are reduced with aggregate size, the growth slows. In the absence of
rotation, we see that Case 3 produces a slower growth than Case 1, and similarly Case 4
produces a slower growth than Case 2, which has constant non-zero diffusivities for both
translation and rotation. In the latter case (green curve), the growth of the aggregates
accelerates as time progresses and becomes faster than a power law. This is due to the
larger displacements induced by a fixed rotational diffusivity applied to larger aggregates.
In fact, this is the only case where we had to reduce the simulation time step size, using
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values as low as ∆t = 0.001 to limit the magnitude of those displacements. Such larger
displacements clearly facilitate aggregation, yielding much faster growth. However, it is
unlikely that real aggregates can maintain a constant rotational diffusivity as they grow
because the resistance of the surrounding fluid to rotation typically grows with the cube of
the aggregate size [106].

The second fastest growth, which exhibits a power-law behavior throughout, is
observed to be the classic DLCA with fixed translational diffusivity and without rotation
(Case 1, red curve). In this case, the growth is nearly linear in time, with a best fit yielding
⟨R̄g⟩ = C1(ϕ)t1.02 +Rg1.

In the two cases where diffusivities are size-dependent, whether rotation is absent
(Case 3, black curve) or present (Case 4, magenta curve), the growth is quite similar and
appears to follow a power law, but is markedly slower than for DLCA. The presence of
rotation again is observed to accelerate growth, as it provides an additional displacement
which increases the odds of coming into contact with another aggregate. However, because
of the strong dependence of Dθ on Rg, this effect remains small. The growth rate
therefore appears to be mostly set by the translational diffusivities. Best fits of the growth
rates are found to be ⟨R̄g⟩ = C3(ϕ)t0.66 + Rg1 in the absence of rotation (Case 3) and
⟨R̄g⟩ = C4(ϕ)t0.71 +Rg1 for the most complete model (Case 4) that includes both rotation
and size-dependence. Note that while the prefactors in the above relationships depend on
ϕ, the powers of t found are consistent across all the volume fractions analyzed.

3.5.2 Fractal Dimension
We now wish to characterize the structure of aggregates observed in the course of

aggregation in terms of their fractal dimension, d. To this end, we use the well-known
relationship [74, 9] between the number of spheres M in an aggregate and its size, here
characterized by the radius of gyration Rg:

M ∼ (Rg)d. (3.28)

As shown in Fig. 3.10(d) for Case 4, Rg grows approximately as a power of M , with
that power being the inverse of the fractal dimension, consistent with eq. (3.28). From
Fig. 3.10(a) and (c), it can be seen that Cases 1 and 3 yield a similar relationship, as does
Case 2 (Fig. 3.10 (b)), with the caveat that in that case the size of the largest aggregates
eventually becomes limited by the domain size.

To find d, we apply eq. (3.28) to data collected at time tmax. We focus on aggregates
of size M ≥ 25 to ensure that we are looking at fractal-like objects. Fig. 3.11(b) shows
a linear fit of the radius of gyration as a function of M for Cases 1–4 and the fractal
dimensions found are listed in Table 3.1. Since the choice of the range of M values for
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Figure 3.10: Radius of gyration of aggregates, Rg, as a function of the number of sphere
they contain, M , for all five cases considered for all volume fractions: (a) Case 1, (b)
Case 2, (c) Case 3, (d) Case 4, (e) Case 5a, (f) Case 5b, (g) Case 5c. We used all volume
fractions in order to have more data and thus a more reliable estimate of d. Data points
were obtained at the time tmax (shown in Figure 3.7) from 400 samples for Cases 1–4 and
100 samples for Cases 5a–5c. For Case 2, aggregates of maximum radius [106] greater
than or equal to half the side length of the domain were discarded.
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Figure 3.11: Radius of gyration, Rg, of aggregates observed at time tmax as a function of
the number of spheres in an aggregate, M . We compare the results of Cases 1–4 for all
volume fractions, where, for visual clarity, each dot represents the average value of Rg

computed over a small interval around a given value of M . Solid lines depict the linear
regression results based on data for which M ≥ 25. For Case 2 (green line), aggregates
of maximum radius greater or equal to half the domain size were discarded. A full scatter
plot of all Cases considered is shown in Fig. 3.10.

linear regression may affect the resulting estimated value of d, we also compute linear
regressions using two different ranges, M ≥ 5 and M ≥ 50, and use them to quantify the
level of uncertainty in the d values.

Our results for cases without rotation, Cases 1 and 3, are consistent with previous
numerical simulations of DLCA, for example, Refs. [9], [74]. However, including
rotational diffusion lowers the fractal dimension of the aggregates, most significantly
when it is constant. This can be understood by noting that larger aggregates subject to
rotation will have their tips experience the largest displacements. This in turn increases
the probability that contact with surrounding aggregates will take place at or near the tips,
resulting in an object with a more linear structure and therefore a smaller fractal dimension.

The trend of rotational diffusion lowering fractal dimension was previously reported
in two-dimensional simulations [76, 85] as well as a recent simulation study with a setup
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similar to Case 2 with a constant rotational diffusivity by Jungblut et al. [50]. In the latter
study, using Langevin dynamics rather than Brownian dynamics and considering systems
of volume fraction approximately 10 times greater than ours, a value of fractal dimension
of 1.55 ± 0.02 was reported, which is greater than what was found in the present study.
We note that this fractal dimension was obtained using data for both smaller aggregates
than what was used here and considering aggregates that had reached the percolation limit,
where an aggregate can connect with itself via the periodic boundary conditions, both of
which tend to increase the computed fractal dimension.

As can be seen comparing Cases 1 and 3, incorporating a size-dependent translational
diffusivity is found to cause only a very small reduction of the fractal dimension. The
aggregates’ structure then appears to remain qualitatively the same and to simply be
formed slower when D is size-dependent. Finally, the model with both rotation and size-
dependent diffusivities, Case 4, shows a slightly reduced fractal dimension, d = 1.69,
compared to DLCA. This is most likely due to the inclusion of rotational diffusion, which
generates less compact aggregates. However, taking into account the size dependence
of the rotational diffusion greatly reduces this effect. The ratio of the diffusivities,
D/Dθ = 4

3R
2
g, indicates that as the aggregates become larger, translational diffusion

becomes dominant, and the resulting aggregates are closer in structure to those formed
by DLCA.

3.5.3 Settling
We present in this section results for Cases 5a–5c, where settling is added to Case 4

using a different value of the single sphere gravitational potential energy Γ in each case.
From equations (3.25) and (3.28), we see that for d > 1, the settling speed of an aggregate
increases with its size, potentially affecting the formation dynamics of aggregates and their
resulting structure. Note that for Cases 5a–5c, results presented were obtained from 100
samples. Figure 3.12(a) shows that, at early times, incorporating settling in the simulations
does not have a significant effect on the growth of aggregates. This is because settling
affects dynamics when aggregates have different settling speeds, which only happens when
a range of aggregate sizes is present. However, in the time range 40 < t < 100 the growth
of the aggregates is accelerated by the presence of settling, and it can readily be seen that
increasing the value of Γ enhances this effect. This acceleration is attributable to larger
aggregates settling faster and effectively capturing smaller aggregates located in a vertical
column beneath them as they settle. We note that this process takes place over a settling
time scale, which here is significantly faster than the diffusive time scale. As a result, finite
system-size effects can be felt earlier than in the absence of settling. In other words, in a
periodic domain, larger aggregates can quickly collect all smaller aggregates within their
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Figure 3.12: Comparison of simulation results without settling (Case 4: magenta) and with
size-dependent settling for different values of Γ (Cases 5a: purple, 5b: cyan, and 5c: blue).
Size-dependent diffusivities are used in all four cases. Panel (a) shows the time profiles of
⟨R̄g⟩−Rg1 in the log-log scales for volume fraction ϕ = 6×10−4. Panel (b) compares the
results of Cases 4, and 5a–5c for all volume fractions, where, for visual clarity, each dot
represents the average value of Rg computed over a small interval around a given value of
M . Solid lines depict the linear regression results based on data for which M ≥ 25. The
inset shows only the fitted lines for the range M ≥ 200 to emphasize where they differ.

vertical column and then continue to grow slowly due to horizontal diffusive effects. More
care to avoid system-size effects must therefore be taken in simulations of aggregation that
include settling.

As can be seen in Figure 3.12(b) and in the values listed in Table 3.2, the fractal
dimension of aggregates formed in the presence of settling decreases as the importance of
settling, characterized by the gravitational potential energy of a single sphere Γ, increases.
For the largest effect of settling we considered, Γ = 2.20, we find a fractal dimension of
d = 1.56 ± 0.06. Moreover, settling breaks the isotropy of the system and distinguishes
the vertical direction (denoted with coordinate z) from the horizontal directions (denoted
with coordinates x and y). To quantify the effect of this break in symmetry, we measure
coordinate specific components of the radius of gyration for Cases 5a–5c. We define the
vertical component of the radius of gyration of an aggregate as

Rz =

√√√√ 1
M

M∑
m=1

(zm − zc)2, (3.29)

and we define Rx and Ry analogously. Figure 3.13 compares the scatter plot of Ry versus
Rx with that of Rz versus Rx at t = 4000 from 100 samples for ϕ = 8 × 10−4 for Case
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Figure 3.13: Evidence of anisotropy in aggregates formed in the presence of settling, for
Γ = 1.10 (Case 5b). Here, the quantities Rη (η = x, y, z) represent the contribution of
each direction η to the radius of gyration of an aggregate, see equation (3.29). Panel (a)
shows a scatter plot of Ry versus Rx and panel (b) shows a scatter plot of Rz versus Rx.
The solid lines are best fitted line obtained by averaging the polar angle of the data points
and are of slope 0.99 for panel (a) and 0.92 for panel (b). Simulation results were collected
at t = 4000 for ϕ = 8 × 10−4 from 100 samples.

5b, with Cases 5a and 5c exhibiting similar results. The best fits, obtained by averaging
the polar angle of the data plotted, are, respectively Ry = 0.99Rx and Rz = 0.92Rx. This
indicates that, as a statistical average, the size of an aggregate in the x and y directions is
effectively the same, but that aggregates are on average smaller in the vertical direction.

Even in the absence of settling, individual aggregates do not generally have the same
extent in every direction. However, the direction in which they are shortest is then
uniformly distributed. In the presence of settling, the shortest direction is statistically
preferentially aligned with the vertical. We define the average aggregate aspect ratio γ
using the best fit of Rz versus Rx as

Rz = γRx (3.30)

and compute it also for Cases 5a and 5c. The results are summarized in Table 3.2. While
this aspect ratio remains close to one, it nonetheless reflects the influence of the settling
direction on the structure of the aggregates formed and shows that the anisotropy increases
with the magnitude of the settling speed. We note that, at earlier times, a smaller difference
between the horizontal and vertical directions is observed, presumably because the effects
of settling are not yet at their peak. At later times, the vertical extent is also observed to
be closer to the horizontal extent. We suspect that finite system-size effects then come
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Single Sphere Grav. P.E. Γ† Fractal Dimension d‡ Aspect Ratio γ§

Case 4 0.0 1.69 ± 0.01 0.99

Case 5a 0.55 1.64 ± 0.08 0.94

Case 5b 1.10 1.60 ± 0.07 0.92

Case 5c 2.20 1.56 ± 0.06 0.90

Table 3.2: Values of the fractal dimension d for Cases 4 and 5a–5c
† See equation (3.22) for relation between Γ and settling speed U and equation (3.23) for

its definition;
‡ See equation (3.28) for mathematical definition and Figure 3.12(b) for actual estimation;

§ See equation (3.30) for mathematical definition.

into play in this behavior as settling first depletes available aggregates in vertical columns
and further growth effectively occurs sufficiently slowly through horizontal diffusive
processes to allow rotational diffusion to re-orient aggregates in an isotropic manner.
When the departure from statistical isotropy becomes significant, the assumption of scalar
diffusivities is no longer appropriate and diffusivity tensors must be used to describe the
Brownian motion of each aggregate [84, 105]. This will be an important consideration to
incorporate in future simulations where settling effects are dominant.
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3.6 Conclusions
In this work, we studied the impact of size-dependent diffusivities and rotation on

the formation mechanisms of aggregates. To this end, we investigated the growth rate
and fractal dimension of aggregates by computing the radius of gyration Rg over time.
To ensure that the conclusions of our simulation study be independent of the size of the
simulation domain, we systematically investigated the finite system-size effects on these
quantities. We considered a dilute regime where the solid volume fraction was seen to
only be impactful in the very early stages of aggregation.

We found that including size-dependent translational diffusivity, D, into the traditional
Diffusion-Limited Cluster Aggregation (DLCA) model has a negligible impact on the
fractal dimension, d, of the aggregates formed, which remained near d = 1.8. However,
we observed that a size-dependent D significantly reduces the growth rate of aggregates,
with their average radius of gyration growing like ⟨R̄g⟩ ∼ t0.66 compared to ⟨R̄g⟩ ∼ t1.02

in DLCA.
The effects of non-zero rotational diffusion, Dθ, were found to be significant for a

constant Dθ. The aggregates then grew much faster and had a significantly reduced fractal
dimension, d = 1.23. However, this scenario is not appropriate to systems where diffusive
effects are due to molecular effects, as the rotational friction coefficient quickly increases
with aggregate size. The use of a more realistic, size-dependent, Dθ greatly reduced the
impact of rotational diffusion as larger aggregates rotated much more slowly owing to the
Dθ ∼ R−3

g scaling. Nonetheless, the fractal dimension of aggregates formed with size-
dependent Dθ was reduced compared to DLCA, yielding d = 1.69, and their growth rate
was accelerated to scale as ⟨R̄g⟩ ∼ t0.71.

To obtain even more realistic models of aggregation, we also included gravitational
effects, causing the aggregates to settle at a rate depending on their size and on the choice
of a dimensionless parameter here set to Γ = 0.55, 1.10, 2.20. We found that settling, much
like rotational diffusion, hastened the growth of aggregates and resulted in aggregates of
smaller fractal dimension, d = 1.64, 1.60, 1.56 for the parameters we considered. We also
observed the breaking of isotropy in this case, resulting in aggregates with a slightly shorter
vertical extent compared to their horizontal extent. Depending on the size and density
of the aggregating spheres, the impact of settling can vary from negligible to dominant
and a more systematic study of this effect remains to be completed. Our simulations
revealed that finite system-size effects quickly come into play in the presence of settling,
so that obtaining results applicable to larger systems likely require significantly greater
computational effort.
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3.7 Further Modeling Improvements
In order to obtain a more realistic model of aggregation, several other factors will

eventually need to be taken into account. For example, particles may only stick to
each other with a certain probability rather than automatically as we have assumed [69],
leading to a transition from DLCA to Reaction-Limited Cluster Aggregation (RLCA). In
addition, aggregates are known to break up, or disaggregate [46, 5], either under the effect
of external flows or under the stress due to their own settling, or thermal fluctuations
[51]. It has been observed that the growth of aggregates is not strictly irreversible,
and that both restructuring and breaking up need to be included to accurate model their
growth dynamics. In fact, the effects of the breakup of aggregates is often studied in
experimental settings [91], and it is known to be an important factor especially in marine
systems. Numerical models of the effects of disaggregation are traditionally based on
reversible aggregation approaches [58, 47], where aggregates are allowed to break at
random locations after a critical length is reached. Thus, these models do not account
for the impact that different conditions, from external forces to background flows, might
have in inducing stresses on the aggregates, or how the aggregates structures could affect
the way they break. Therefore, to extend the validity and increase the applicability of
disaggregation models, a different approach is needed.

In Chapter 4, we will present a novel boundary integral formulation of Stokes
Equations to characterize the stresses that aggregates experience as a result of an external
force, torque, or background flow. This formulation allows us to study the distribution of
stresses in aggregates of different structures and under different conditions, which will be
insightful to build more accurate disaggregation models.



Chapter 4
Modeling Aggregate Dynamics: Part B,
disaggregation

4.1 Introduction
Near the surface of the ocean, particulates and other microorganisms tend to cluster and

form fractal aggregates as they meet. The resulting marine aggregates play an important
role in the oceanic carbon cycle [44], and in the transport of microplastics from the ocean
surface towards the ocean floor, an issue of major environmental concern [28]. Aggregates
initially grow over time and the mechanisms that lead to aggregates formation have been
studied extensively [74, 50, 82]. However, it is also well known that aggregates often break
up either as they settle under gravity or because of stresses induced by some background
flow [91]. Nonetheless, a full characterization of their rupture (disaggregation) is often
lacking in numerical models.

Traditionally, disaggregation has been incorporated into models of aggregate dynamics
by including a given probability that aggregates might break once they reach a pre-
determined critical size [58]. In this so-called reversible aggregation approach, aggregates
simply break at random locations, regardless of their structure or of the conditions they are
exposed to. Recently, there have been renewed efforts to characterize the stresses induced
on aggregates immersed in some background flow, particularly in experimental settings
[29, 90, 23], and in some simulations [36, 111]. For instance, De La Rosa et al. [29] ran
experiments to study the fragmentation of aggregates made of magnetic particles in high-
Reynolds-number turbulent von Kármán flows. The authors found that by knowing the
intensity of turbulence and the cohesive forces and shapes of the individual particles, one
can predict the average size of aggregates exposed to turbulent flows. Zhao et al. [111]
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developed one-way coupled numerical simulations to analyze the flocculation dynamics
of aggregates exposed to turbulent shear. They investigated the influence of the shear rate
on the aggregates’ size, and identified what they refer to as optimal shear rate, which
would “promote preferential concentration of the primary particles without producing
sufficiently large stresses to break up the emerging aggregates" [111]. Other studies,
such as Zaccone et al. [107] investigated the rupture of compact colloidal aggregates
immersed in intermediate and high Reynolds number flows, via a process called crack
propagation, a mechanism that resembles the fracture mechanics of brittle materials.
While this model successfully accounts for the scaling of the size of colloidal aggregates
with fractal dimensions close to 3 with the applied hydrodynamic stress, its applicability
is typically limited to systems with compact aggregates, as discussed in Ref. [39]. To
overcome some of those limitations, Gastaldi et al. [39] proposed a model to characterize
the distribution of internal stresses in aggregates based on the method of reflections [42].
In this model, aggregates are made of spheres and translate at a constant velocity, under
the effect of a constant force, in an unbounded fluid that is at rest at infinity. Using the
method of reflections, the Stokes Equations are then solved to compute the flow velocity
and thus extract the drag force acting on each sphere to finally characterize the internal
stresses within the aggregates. While this approach gives accurate results for low-density
aggregates, it can introduce errors when trying to characterize the stresses in compact
aggregates since the method of reflections is valid for widely separated particles, rather
than ones in close proximity. These authors provide sample results of computed internal
stresses but do not extract trends or distributions of the location of large stresses likely
to lead to break up. Thus, while there has been significant progress in recent years, most
numerical models have yet to capture the dynamics of disaggregation in a manner than can
be incorporated into particulate stochastic models.

Here, we propose a boundary-integral formulation of the Stokes Equations [83] that
allows us to characterize the external and internal stresses felt by aggregates of various
fractal dimensions subjected to some external force or background flow. We study how
the internal stresses distribute in aggregates of different structures, and characterize how
different conditions might affect the rupture of aggregates. The rest of this Chapter
is organized as follows: in Section 4.2 we give the details of our boundary-integral
formulation of Stokes Equations to compute the stresses in aggregates and explain how we
characterize the distribution of the aggregates’ internal stresses. In Section 4.3 we discuss
the results obtained in our simulations considering aggregates subject to a constant force
or to a shear flow. We compute the distribution of internal stresses, the scaling of the
maximum internal stress, and the relative sizes of aggregates formed after a single break-
up event. Finally, Section 4.4 contains our Conclusions. The results of this Chapter are
being collected into a manuscript for publication purposes.
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4.2 Methods

4.2.1 Types of aggregates considered
To model marine aggregates, we use the well-established numerical framework of

diffusion-limited aggregation (DLA) [104]. In order to study aggregates of different
fractal dimensions d [73], we use two different DLA-based routines to build aggregates:
Individually-Added Aggregation (IAA) with d ∼ 2.3, and Cluster-to-Cluster Aggregation
(CCA) with d ∼ 1.8. Our aggregates are built from solid cubic particles, closely following
Yoo et al. [106], to which we refer the interested reader for a detailed description of both
the IAA and CCA aggregation routines used in this work. In Figure 4.1 we display a
typical more compact IAA-type aggregate, panel (a), and a typical more wispy CCA-
type aggregate, panel (b). Since our focus is on characterizing the stresses felt by
marine aggregates under different conditions, we note that the main advantage of building
aggregates from solid cubes is that their surface is a simple collection of squares. This fact
will be exploited to accurately compute these stresses via a boundary-integral approach
[83] , as discussed in detail in Section 4.2.2.

(b)(a)

d ≈ 2.3 d ≈ 1.8
Figure 4.1: Panel (a): typical aggregate formed via IAA-routine; panel (b): typical
aggregate formed via CCA-routine. In both cases, aggregates are made of 100 cubes.
IAA-type aggregates are generally more compact than CCA-type aggregates, as quantified
by their fractal dimension d listed under each aggregate.

4.2.2 Computation of External Stresses
In this paper, we consider aggregates made of cubes with side-length of 2µm, which

approximately corresponds to the diameter of individual phytoplankton cells [34, 6]. This
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allows us to neglect inertial effects in the description of the flow on the aggregates, and
model the relevant dynamics simply using Stokes equations

∇⃗ · u⃗tot = 0
−∇⃗Pd + µ∇2u⃗tot = 0,

(4.1)

where u⃗tot represents the fluid’s velocity and Pd is the dynamic pressure, defined at a point
x⃗p in the fluid as Pd(x⃗p) = P (x⃗p) + ρg⃗ · x⃗p, where g⃗ is the gravitational acceleration. In
this work, we assume that both the density, ρ, and the viscosity, µ, are constant. As shown
in [83], for some point x⃗0 located outside, on, or inside the surface S of any solid object,
the solution to Eq. (4.1) can be expressed using a boundary integral formulation, known
as the representation formula

u⃗tot(x⃗0) = − 1
8πµ

∫
S
f⃗(x⃗) · ¯̄G(x⃗, x⃗0)dS(x⃗) + 1

8π

∫
S
u⃗tot(x⃗) · ¯̄̄

T (x⃗, x⃗0) · n̂dS(x⃗), (4.2)

where
¯̄G(x⃗, x⃗0) =

 ¯̄I
||x⃗− x⃗0||

+ (x⃗− x⃗0)(x⃗− x⃗0)
||x⃗− x⃗0||3


¯̄̄
T (x⃗, x⃗0) = −6(x⃗− x⃗0)(x⃗− x⃗0)(x⃗− x⃗0)

||x⃗− x⃗0||5

(4.3)

are the so-called single- and double-layer potential, respectively, and the vector f⃗ is
generally referred to as a density function, but in this paper it will be referred to as a
vector of stresses. For ease of notation, in what follows we will assume that the center of
mass of the aggregates is at the origin.

We are interested in finding the vector of stresses f⃗ in the scenarios when aggregates
are settling under gravity, or are subjected to some background flow in an infinite ambient.
Thus, exploiting the linearity of Stokes equations, we decompose the total flow u⃗tot into
the sum of an undisturbed component u⃗∞, which would prevail in the absence of the
aggregate, and a disturbance component u⃗, due to the boundary of the aggregate. Next, we
require that the total velocity of the fluid on the boundary of any aggregate must satisfy
solid-body motion

u⃗tot(x⃗s) = V⃗ + Ω⃗ ∧ x⃗s, (4.4)

or, equivalently, u⃗ = V⃗ + Ω⃗ ∧ x⃗s − u⃗∞. Here V⃗ and Ω⃗ are the unknown translational and
rotational velocity of the aggregate, respectively. Then, since we are ultimately interested
in finding the stresses induced by a flow on the surface of an aggregate, we use the known
[83] theoretical result

lim
x⃗out

0 →x⃗s

∫
S
u⃗ · ¯̄̄

T (x⃗, x⃗out
0 ) · n̂dS(x⃗) = 4πu⃗(x⃗s) +

∫
S
u⃗(x⃗) · ¯̄̄

T (x⃗, x⃗s) · n̂dS(x⃗), (4.5)



55

where x⃗out
0 is a point outside of the aggregate, x⃗s is a point that lies on the surface of the

aggregate, and the last integral should be interpreted in the principal value sense. Applying
(4.2) to u⃗ and then using (4.5) yields

u⃗(x⃗s) = − 1
8πµ

∫
S
f⃗(x⃗) · ¯̄G(x⃗, x⃗s)dS(x⃗)+ 1

2 u⃗(x⃗s)+ 1
8π

∫
S
u⃗(x⃗) · ¯̄̄

T (x⃗, x⃗s) · n̂dS(x⃗). (4.6)

Finally, plugging in u⃗ = V⃗ + Ω⃗ ∧ x⃗s − u⃗∞ into (4.6), and using the identities [83]∫
S
V⃗ · ¯̄̄

T (x⃗, x⃗s) · n̂dS(x⃗) = −4πV⃗ ,
∫
S
(Ω⃗ ∧ x⃗s) · ¯̄̄

T (x⃗, x⃗s) · n̂dS(x⃗) = −4πΩ⃗ ∧ x⃗s (4.7)

after simplifications yields

V⃗ +Ω⃗∧x⃗s+
1

8πµ

∫
S
f⃗(x⃗)· ¯̄G(x⃗, x⃗s)dS(x⃗) = 1

2 u⃗
∞(x⃗s)−

1
8π

∫
S
u⃗∞(x⃗)· ¯̄̄

T (x⃗, x⃗s)·n̂(x⃗)dS(x⃗),
(4.8)

which is a representation formula valid on the surface of solid objects that accounts for the
presence of a background flow u⃗∞, and where the last integral should still be interpreted in
the principal value sense. A full derivation of Eq. (4.8) is provided in Appendix B.1. We
note that the identities (4.7) apply to points on the surface of a solid object, and that the
simplification used in Ref. [106], which claims that the double-layer integral in Eq. (4.2)
is identically zero, is applicable only to points outside of a solid object, as shown in [83].
Finally, we also note that Eq. (4.8) is valid for the computation of the external stresses due
to the disturbance flow, and further validation is being done as of this writing to include the
contribution of the external stresses due to the background flow to obtain the total stresses.
However, given the nature of the flow considered in this work, the results are expected to
be qualitatively consistent with what will be shown in Section 4.3.

Now, we need to determine the unknown vectors f⃗ , V⃗ and Ω⃗. To this end, we assume
that a known external force and torque are imposed on the aggregates, and since all forces
must be in equilibrium in inertia-free regimes, we can then relate the total force, F⃗ , and
torque, Q⃗, to the stress vectors as follows∫

S
f⃗(x⃗)dS(x⃗) = F⃗ ,∫

S
x⃗ ∧ f⃗(x⃗)dS(x⃗) = Q⃗.

(4.9)
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Combining Eqs. (4.8) and (4.9) yields the following linear system

V⃗ + Ω⃗ ∧ x⃗s + 1
8πµ

∫
S
f⃗(x⃗) · ¯̄G(x⃗, x⃗s)dS(x⃗) = 1

2 u⃗
∞(x⃗s)

− 1
8π

∫
S
u⃗∞(x⃗) · ¯̄̄

T (x⃗, x⃗s) · n̂(x⃗)dS(x⃗),∫
S
f⃗(x⃗)dS(x⃗) = F⃗ ,∫

S
x⃗ ∧ f⃗(x⃗)dS(x⃗) = Q⃗,

(4.10)
Note that, in what follows, we will assume that the stresses f⃗ are constant over a

given square face, and that the point x⃗s is always located at the center of a square face.
We provide a simple graphic of how we characterize an aggregate in Figure 4.2. To
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Figure 4.2: Graphic of how we characterize a given fractal aggregate. Here S is the surface
of the aggregate, x⃗s is a point on the surface of the object, and the vector n̂ is the outward
unit normal to the surface.

discretize our system, we introduce the index k = 1, . . . , N (ext)
f , where N

(ext)
f is the

number of external faces in an aggregate, and we label Si the i-th external face, where
i = 1, . . . , N (ext)

f . Thus, i represents the index that will go over every external square
face of the aggregate as we compute the single- and double-layer integrals over the entire

boundary S = ∑N
(ext)
f

i=1 Si, evaluating them at the center x⃗s,k of every square face, one k
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index at a time. Then, for a given k we can write

V⃗ + Ω⃗ ∧ x⃗s,k +
N

(ext)
f∑
i=1

f⃗i

∫
Si

˜̄̄
G(x⃗, x⃗s,k)dSi = 1

2 u⃗
∞(x⃗s,k)

− 1
8π

N
(ext)
f∑
i=1

∫
Si

u⃗∞(x⃗) · ¯̄̄
T (x⃗, x⃗s,k) · n̂idSi,

N
(ext)
f∑
i=1

f⃗i∆A = F⃗ ,

−
N

(ext)
f∑
i=1

f⃗i ∧ x⃗s,i∆A = Q⃗,

(4.11)

where ∆A is the area of the square face Si and
˜̄̄
G(x⃗, x⃗s,k) = 1

8πµ
¯̄G(x⃗, x⃗s,k). Once fully

discretized, we obtain a dense linear system of size 3(N (ext)
f + 2) × 3(N (ext)

f + 2), that,
after removing the tilde (∼) notation from the single-layer integrals to ease our notation,
can compactly be written as

¯̄Af⃗ = b⃗, (4.12)

where

¯̄
A =



∫
S1

¯̄G(x⃗, x⃗s,1)dS1
∫

S2

¯̄G(x⃗, x⃗s,1)dS2 · · ·
∫

S
N

(ext)
f

¯̄G(x⃗, x⃗s,1)dS
N

(ext)
f

¯̄I1 [x⃗s,1]∧∫
S1

¯̄G(x⃗, x⃗s,2)dS1
∫

S2

¯̄G(x⃗, x⃗s,2)dS2 · · ·
∫

S
N

(ext)
f

¯̄G(x⃗, x⃗s,2)dS
N

(ext)
f

¯̄I2 [x⃗s,2]∧
...

...
. . .

...
...

...∫
S1

¯̄G(x⃗, x⃗s,N
(ext)
f

)dS1
∫

S2

¯̄G(x⃗, x⃗s,N
(ext)
f

)dS2 · · ·
∫

S
N

(ext)
f

¯̄G(x⃗, x⃗s,N
(ext)
f

)dS
N

(ext)
f

¯̄I
N

(ext)
f

[x⃗s,N
(ext)
f

]∧

¯̄I1∆A ¯̄I2∆A · · · ¯̄I
N

(ext)
f

∆A ¯̄0 ¯̄0

[x⃗s,1]∧ [x⃗s,2]∧ · · · [x⃗s,N
(ext)
f

]∧ ¯̄0 ¯̄0



,

(4.13)
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f⃗ =



f⃗1

f⃗2

...

f⃗
N

(ext)
f

V⃗

Ω⃗



, b⃗ =



DL1

DL2

...

DL
N

(ext)
f

F⃗

Q⃗



, (4.14)

with

DLk = 1
2 u⃗

∞(x⃗s,k) − 1
8π

N
(ext)
f∑
i=1

∫
Si

u⃗∞(x⃗) · ¯̄̄
T (x⃗, x⃗s,k) · n̂idSi, k = 1, . . . , N (ext)

f , (4.15)

and we defined the cross-product operator acting on any 3x1 vector z⃗ as follows

[z⃗]∧ =

 0 −z3 z2
z3 0 −z1

−z2 z1 0

 . (4.16)

The single layer integrals are solved analytically as in [106], while the double layer

integrals
∫
Si
u⃗∞(x⃗) · ¯̄̄

T (x⃗, x⃗s,k) · n̂idSi are solved numerically, by first mapping the square
Si to the square S̃ = {(η1, η2, η3) : η1,2 ∈ [−1, 1], η3 = 0}, oriented in the positive vertical
direction. To perform the mapping, we construct a linear operator ¯̄R such that

η⃗ = ¯̄R(x⃗− x⃗s,i),
¯̄Rn̂ = k̂

(4.17)

where x⃗s,i is the center of face Si, η⃗ = [η1, η2, 0]T is a 3×1 vector, and k̂ = [0, 0, 1]T is the
unit normal vector in the positive vertical direction. After the mapping, the double-layer
integral then becomes∫

S̃
u⃗∞( ¯̄RT η⃗ + x⃗s,i) · ¯̄̄

T ( ¯̄RT η⃗ + x⃗s,i, x⃗s,k) · ¯̄RT k̂dS̃, (4.18)
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Figure 4.3: Graphic of how we map any face S of a given cube in an aggregate to the
square S̃ defined such that each any vector η⃗ = [η1, η2, η3]T lying on the plane will satisfy
η1 ∈ [−1, 1], η2 ∈ [−1, 1] and η3 = 0, and whose normal vector is k̂ = [0, 0, 1]T . The red
dots displayed on S̃ represents the evaluation points of our discretization, for the case in
which we were to use only two points in each direction for the Midpoint Rule.

as the Jacobian of the transformation is unity. Then, we evaluate (4.18) using the Midpoint
Rule, discretizing S̃ using an even number of points in each direction to avoid integrating
at the singularity. This allows us to fill the first block of the right-hand side of (4.12). The
second and third blocks on the right hand side are filled out by the user-input vectors F⃗
and Q⃗, for the external force and torque, respectively. Note that solving this system will
yield the translational and rotational velocities of the aggregates, V⃗ and Ω⃗, respectively,
and the stresses f⃗ felt by the aggregates on their external faces. We solve (4.12) by simple
matrix inversion, and select the least-square solution in those cases in which the system is
not full-rank. While matrix inversion is not the most efficient way to solve such a large
linear system, it was found that, for the typical aggregate considered, this did not yield any
significant additional computational cost.

4.2.3 Computation of Internal Stresses
To compute the internal stresses, we assume that the total force acting on the aggregates

is equally distributed across all their constituting cubes. This assumption is motivated by a
corresponding assumption that our aggregates are objects of constant density, and that the
only forces considered in this work is their weight, or is set to zero. Therefore, the sum of
the stresses over all the faces of a cube times their area equals the total force acting on the
aggregate, F⃗ , over the number of cubes in the aggregate, M . Moreover, the stresses found
on two adjacent faces are assumed to be equal to each other in magnitude but opposite in
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direction. Mathematically, those assumptions can be written as follows

F⃗m = F⃗ /M, m = 1, 2, . . . ,M

F⃗m =
6∑

n=1
f⃗(x⃗n)∆A

f⃗(x⃗j)(+) = −f⃗(x⃗j)(−), j = 1, 2, . . . , N (int)
f .

(4.19)

Here F⃗m is the force acting on a single cube, N (int)
f is the total number of internal faces in

an aggregate, and f⃗(x⃗j)(±) are the stresses found on two adjacent faces oriented in opposite
directions. Using (4.19), we set up a constrained optimization problem [17]

minimize ||f⃗ ||2

subject to ¯̄Cf⃗ = d⃗,
(4.20)

where the N (int)
f × N

(int)
f matrix ¯̄C, and the N (int)

f × 1 vector d⃗ are built according to the
constraints (4.19). To solve (4.20), we first define the Lagrangian function

L(f⃗ ; λ⃗) = (f⃗)T f⃗ + λ⃗T ( ¯̄Cf⃗ − d⃗), (4.21)

where λ⃗ is a N (int)
f × 1 vector of Lagrange multipliers, and then compute the related

optimality conditions
∇⃗f⃗L = 2f⃗ + ¯̄CT λ⃗ = 0⃗,

∇⃗λ⃗L = ¯̄Cf⃗ − d⃗ = 0⃗.
(4.22)

Eq. (4.22) can be concisely written as the following block-matrix linear system2 ¯̄I ¯̄CT

¯̄C ¯̄0

 [f⃗
λ⃗

]
=
[
0⃗
d⃗

]
, (4.23)

whose solution will give us the smallest f⃗ that satisfies (4.20). Here ¯̄I is the N (int)
f ×N

(int)
f

identity matrix. Once the stress vectors on every internal face have been computed, we
extract their magnitude, as a proxy for the likelihood that an aggregate may break. A
simple schematics of the process for a typical aggregate made of 100 cubes settling under
gravity is shown in Figure 4.4.
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M = 100

Solve  
Eq. (4.12)

Settling

External 
Stresses

Internal 
Stresses

Solve  
Eq. (4.20)

Figure 4.4: Simple schematics of how we characterize the stresses in an aggregate made of
M = 100 cubes, settling under gravity. The aggregate is depicted in the left-hand column.
In the middle column we show the magnitude of all the external stresses found by solving
(4.12), normalized by the largest external stress. Finally, the right-hand column shows the
magnitude of all the internal stresses found by solving (4.20), normalized by the largest
internal stress.

4.2.4 Characterizing the distribution of the internal stresses
To quantify how the internal stresses distribute across the aggregates’ structure, we

compute the distance, say R, between the internal faces of the aggregates and their center
of mass. Then, using the maximum radius

Rmax = 1 + max
m=1,...,M

||x⃗m − x⃗cm||, (4.24)

we partition the aggregates in three regions, which we will refer to as shells, as follows

• Inner Shell: R < Rmax/3,

• Middle Shell: Rmax/3 ≤ R < 2Rmax/3,

• Outer Shell: R ≥ 2Rmax/3.

While we have studied other possible subdivisions of the aggregates, we found that for
the typical sizes analyzed in this work, three shells provide a good quantitative picture
of the distribution of the internal stresses. We provide a simple graphic of the shells for a
typical aggregate made ofM = 100 cubes in Figure 4.5. To characterize the distribution of
internal stresses, we first normalize them by the maximum internal stress and then compute
the relative frequency of stresses of a given magnitude range within each shell, using a
constant bin size. Then, to model disaggregation we break the aggregate into two newly
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Inner Shell 

Middle Shell

Outer Shell

(a) (b)

Figure 4.5: Simple schematics of how we characterize the shells in an aggregate made
of M = 100 cubes, for IAA-type, panel (a), and CCA-type aggregates, panel (b). The
internal faces of the aggregates belonging to the Inner Shell are depicted in green. The
internal faces belonging to the Middle Shell are depicted in orange. Finally the internal
faces belonging to the Outer Shell are depicted in purple. All the external faces are made
transparent for visual clarity.
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formed aggregates based on the location of the internal face where the maximum internal
stress was found, as shown in Figure 4.6 for a typical object made of M = 100 cubes
settling under gravity. We label the sub-aggregate with the smaller number of cubes with a
subscript 1, and the sub-aggregate with the greater number of cubes with a subscript 2. For
each sub-aggregate obtained, we compute the maximum radius, as well as the number of
their constituting cubes, to quantify the size and mass of the two new aggregates compared
to the original.

Largest Internal Stress

M1 = 42

M2 = 58

Break

Aggregate

M = 100

Figure 4.6: Simple schematics of our disaggregation routine. The left-hand column shows
the magnitude of all the internal stresses found by solving (4.20) for the settling case for
an object made of M = 100 cubes. The middle column highlights the location of the face
subjected to the largest stress, where we choose to break the aggregate into two. Finally,
the right-hand column depicts the two aggregates resulting from the break-up.

4.2.5 Cases Considered
We aim to characterize the internal stresses induced on the aggregates either by the

action of some external force, or by some background flow. To this end, we study two
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different cases
• Settling in a fluid at rest (Settling Case): u⃗∞(x⃗) = 0⃗, F⃗ = (ρ−ρagg)g⃗MV , Q⃗ = 0⃗
• Shear flow in the absence of forces (Shear Case): u⃗∞(x⃗) = γty[1, 0, 0]T , F⃗ = 0⃗,
Q⃗ = 0⃗.

In the Settling Case, we impose an external force F⃗ proportional to the number of cubes
constituting a given aggregate, M , while we set both the background flow u⃗∞(x⃗) and the
external torque Q⃗ to zero. Here ρ is the density of the fluid, ρagg is the density of the
aggregate, g⃗ is the acceleration due to gravity, and V is the volume of a single cube of
side-length two after non-dimensionalization. In the Shear Case, we impose a canonical
laminar shear flow in the horizontal direction, and proportional to the spatial coordinate y,
and with some shear rate γt [91]. For this case, we set both the external force F⃗ and torque
Q⃗ to zero. Note that because the system is linear, all computed stresses are proportional
to either the imposed force, or the shear rate. For both cases, we compute the internal
stresses for aggregates made of a range of M cubes varying from 25 to 200, collecting
400 samples per M . To analyze the distribution of the internal stresses relative to the
size and structure of the aggregates, we sort the internal stresses in the shells discussed
in Section 4.2.4, averaging over all the samples collected. We compare the results for
the two cases considered for IAA- and CCA-type aggregates to characterize the impact
that the structure of the aggregates have on the distribution of the internal stresses, and
understand how different external conditions might affect the rupture of aggregates.

4.3 Results and Discussion

4.3.1 Settling Case
We begin by studying the Settling Case, corresponding to an aggregate denser than the

ambient, settling under gravity in a fluid at rest. In Figure 4.7, we show the distribution
of nondimensionalized internal stresses in the three shells discussed in Section 4.2.4, for
400 samples of a single aggregate made of M = 200 cubes. Here we use the weight
of each aggregate divided by the area of the face of a single cube as a reference stress.
In panels 4.7(a) and (b), we display the distribution of the total range of internal stresses
computed for IAA-type and CCA-type aggregates, respectively. It can be seen that for
all shells and for both cases, the stress probability density function is greatest for small
stresses and decays in a manner consistent with a power-law for both IAA and CCA.
Furthermore, we find that approximately 98% of the stresses have a magnitude smaller
than half the maximum stress observed, leaving only rare instances of high stress. We
focus on the distribution tails in panels 4.7(c) and (d) by plotting on a logarithmic scale
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Figure 4.7: Distribution of internal stresses for the Settling Case in the inner (green),
middle (orange), and outer (purple) shells for IAA-type, panels (a) and (c), and CCA-
type aggregates, panels (b) and (d). In panels (a) and (b) we show the full range of inner
stresses found in the three shells, while in panels (c) and (d) we zoom in on the tail of
the distribution and only display on a log-log scale the distribution of normalized stresses
greater than half of the maximum internal stress computed for IAA-type and CCA-type
aggregates, respectively.



66

only the stresses whose value is greater than half the maximum internal stress found across
samples for IAA-type and CCA-type aggregates, respectively. In IAA-type aggregates the
inner shell has roughly 2% of stresses that lie above this threshold, the middle shell has
1.5% of such stresses, and the outer shell only 0.3%. For CCA-type aggregates, the inner
shell has 1.4% of large stresses, while the middle shell and outer shell have 2% and 0.5%
of large stresses, respectively. We can see that the larger half of internal stresses distribute
similarly in the two types of structures analyzed. In both cases, the outer shell contains far
fewer large internal stresses in both structures, while the inner and middle shells contain
a larger proportion. This indicates that settling IAA- and CCA- type aggregates are more
likely to experience large stresses that could lead to rupture closer to their center of mass,
rather than towards the far edges of their structure.

In fact, when we break up the aggregates in two at the location of the maximum
internal stress, we find that the distribution of the relative masses of the newly formed
aggregates is at least qualitatively similar for IAA-type and CCA-type aggregates, as
shown in Figure 4.8. Here we analyze the relative masses of the two aggregates formed
after rupture, compared to the mass of the original aggregate. From panel 4.8(a), it can be
seen that IAA-type aggregates tend to break into a smaller aggregate made on average of
15% of the mass of the original aggregate, and a larger aggregate made of the remaining
85% of the original mass, as shown by the two high peaks located toward the tails of the
distribution. From panel 4.8(b), it can be seen that the distribution of masses for CCA-
type aggregates is more uniform. In fact, we find that CCA-type aggregates break into a
smaller aggregate made on average of 20% of the mass of the original aggregate, and a
larger aggregate made of the remaining 80% of the original mass. Moreover, if one focuses
on the region in panels 4.8(a) and (b) where the abscissa is 0.5, it can be seen that CCA-
type aggregates have a slightly higher tendency of breaking into two aggregates whose
masses are roughly equal, compared to IAA-type aggregates. This agrees with the fact
that, owing to their mode of formation, CCA-aggregates are more linear and often have a
long thin connection between larger portions on either sides (see Figure 4.5), and thus, it
is more likely that CCA-aggregates would lose a greater proportion of their original mass
when breaking in two, compared to IAA-type aggregates.

Since the external force imposed in the Settling Case is proportional to the number of
cubes M constituting a given aggregate, we verify whether the maximum internal stress
also scales linearly with the mass of the aggregates. To this end, in Figure 4.9 we display a
box and whisker plot for the maximum internal stress as a function of the number of cubes
M in the aggregates, for IAA-type, panel (a), and CCA-type, panel (b), aggregates. The
dashed black lines represent the best fits to the data. We see that on average the internal
stresses scale nearly constantly with mass for both IAA-type and CCA-type aggregates, as
expected, with a best fit of 0.077 for IAA and 0.073 for CCA
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Figure 4.8: Relative mass for IAA-type, panel (a), and CCA-type aggregates, panel (b),
for M = 25, 50, 100, 150, 200 for all the samples collected in our simulations. We display
the ratio between the mass of the smaller of the two aggregate and the original in red,
while the ratio between the larger of the two aggregates and the the original is shown in
blue.
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Figure 4.9: Box and whisker plots of the maximum internal stress computed on
each aggregate in the simulations, for IAA-type aggregates, panel (a), and CCA-type
aggregates, panel (b), for the Settling Case. The black dashed line represents the best
constant fit to the data, found to be 0.077 for IAA and 0.073 for CCA.
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4.3.2 Shear Case
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Figure 4.10: Distribution of internal stresses for the Shear Case in the inner (green),
middle (orange), and outer (purple) shells for IAA-type, panels (a) and (c), and CCA-
type aggregates, panels (b) and (d). In panels (a) and (b) we show the full range of inner
stresses found in the three shells, while in panels (c) and (d) we zoom in on the tail of
the distribution and only display on a log-log scale the distribution of normalized stresses
greater than half of the maximum internal stress computed for IAA-type and CCA-type
aggregates, respectively.

We now consider neutrally buoyant aggregates, subject to no force or torque in
a turbulent background flow modeled as a local shear. In Figure 4.10 we show the
distribution of internal stresses in the three shells discussed in Section 4.2.4, for 400
samples for IAA-type aggregates and CCA-type aggregates made of M = 200 cubes. In
panels 4.10(a) and (b), we display the total range of stresses computed for IAA-type and
CCA-type aggregates. As in the Settling Case, the overall trend is similar for both types
of structures, with the internal stress density functions decaying monotonically away from
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zero in all three shells. However, the evidence on whether the decay is consistent with a
power law behavior is less conclusive than in the Settling Case and would require further
data collection and analysis. In IAA-type aggregate, the inner shell has 4% of stresses that
are greater than half the maximum internal stress found across samples in contrast to the
middle shell that exhibits only 0.4% of such stresses, and to the outer shell where no stress
greater than half the maximum stress is present. In CCA-type aggregates, the inner shell
contains roughly 8% of stresses greater than half the maximum internal stress found across
samples, the middle shell 3%, while the outer shell has only 0.4% of such stresses. We
also note that the stresses induced by a shear flow are much larger in CCA-type aggregates,
with the largest internal stress found across sample being almost a factor of two greater
than in the IAA case. In panels 4.10(c) and (d) we focus on the tail of the distribution and
use a log-log scale to show only the stresses equal or greater than half of the largest internal
stress computed across samples, for IAA-type and CCA-type aggregates, respectively. We
find that a greater proportion of large stresses consistently lie in the inner shell than in the
middle and outer shell, for both types of aggregate.

The propensity of the largest stress caused by a shear flow to be located in the inner
shell is reflected in the relative masses found after rupture, as shown in Figure 4.11. When
we break the aggregate in two at the location of the maximum internal stress, we see
that broken-up aggregates have more sizes closer to half the initial aggregate than in the
Settling Case (see Figure 4.8), and that very small and very large broken-up aggregates
are rare. In fact, for IAA-type aggregates, the average smaller aggregate has a mass that
is roughly 28% of the original mass while the larger aggregate has a mass that is roughly
72% of the original mass. For CCA-type aggregates, we find that they tend to break into
two aggregates whose relative masses are roughly 33% and 67% of the original mass, for
the smaller and larger aggregate, respectively.

In Figure 4.12, we plot the norm of the nondimensional maximum internal stress
computed for all the samples analyzed vs. the maximum radius of the aggregates, in a
log-log scale, and perform linear regression to the data. We see that the maximum internal
stress scales roughly quadratically with the aggregates’ maximum radius, both for IAA-
type and CCA-type aggregates, as shown by the black lines in panels (a) and (b), whose
slopes are found to be 1.92 and 1.67, respectively. We note that since any shear can be
written as the sum of a rotation and a strain

u⃗∞(x⃗) = 1
2 ω⃗ ∧ x⃗+ ¯̄Ex⃗, (4.25)
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Figure 4.11: Relative mass for IAA-type, panel (a), and CCA-type aggregates, panel (b),
for M = 25, 50, 100, 150, 200 for all the samples collected in our simulations. We display
the ratio between the mass of the smaller of the two aggregate and the original in red,
while the ratio between the larger of the two aggregates and the the original is shown in
blue.
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Figure 4.12: Plot of the maximum internal stress computed on each aggregate in the
simulations, as a function of the maximum radiusRmax, for the case of a shear background
flow, on a log-log scale, for all the samples collected in our simulations. The number of
cubes in aggregates span from M = 25 to M = 200. The black lines represent the best
linear fits to the data. The slopes of the lines were found to be 1.92 and 1.67 for IAA-type
and CCA-type aggregates, respectively.
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in our case one can set ω⃗ = −γtk̂ for the angular velocity, and

¯̄E = 1
2

 0 γt 0
γt 0 0
0 0 0

 (4.26)

for the strain tensor, and then use Eq. (4.25) to impose the background flow u⃗∞(x⃗) =
γty[1, 0, 0]T . It was shown in Ref. [106] that extensional flows cause a straining force that
scales quadratically with the characteristic length-scale of fractal aggregates. As it can be
seen from the best-fits (black lines) in Figure 4.12(a) and (b), roughly the same scaling is
found between the maximum internal stresses in the aggregates and the maximum radius.
Thus, our findings indicate that the extensional contribution to the shear flow is what
induces the internal stresses on the aggregates, and suggest that solid objects exposed
to a rotational background flow would simply freely rotate with the flow, experiencing
no internal stresses as a result. Consistent with our findings on the distribution of all the
internal stresses induced by a shear flow, see Figure 4.10, we also observe that CCA-type
aggregates experience much larger maximum internal stresses under shear than IAA-type
aggregates, presumably because their maximum radius is greater which allows for a greater
impact of the extensional portion of the flow.

4.4 Conclusions
In this work, we implemented a boundary integral formulation of Stokes Equations to

characterize stresses induced on fractal aggregates by an external force or background
flow. We studied the external and internal stresses in marine aggregates of different
densities settling under gravity in a fluid at rest, or exposed to a laminar shear flow in
the absence of forces. We investigated the impact of these different conditions on the
distribution of internal stresses in the aggregates, and quantified how the largest stresses
scale with the mass and size of the aggregates.

We found that imposing an external force proportional to the mass of the aggregates
(Settling Case) induces internal stresses of a magnitude that scales as the aggregate’s
weight divided by the area of a single square, with a proportionality constant of
approximately 0.08. The stress distribution was found to be similar in more compact
aggregates (IAA) and less compact ones (CCA), with a power-law decay with exponent
approximately -3 in both cases, indicating that the same distribution can probably be used
to model the stresses of aggregates with different fractal dimensions. When aggregates
were allowed to break at the location of the maximum internal stress, we found that the
relative masses of the newly formed objects distribute in a fairly uneven manner, and
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that aggregates of both types rarely break at the far edges of their structure. On average,
IAA-type aggregates break up in two aggregates whose relative masses are roughly 85%
and 15% of the original mass, for the larger and smaller aggregate, respectively, while
CCA-type aggregates break up in two aggregates whose relative masses are roughly 80%
and 20% of the original mass, for the larger and smaller aggregate, respectively. This
is also consistent with the fact that regions closer to the center of the aggregates have
a greater number of large stresses compared to the far edges, both for IAA- and CCA-
type aggregates. While the overall distribution of the relative masses is similar in both
types of aggregates, it is noteworthy that CCA-type aggregates have a greater likelihood
to break close to their center of mass, compared to IAA-type aggregates, and thus would
sometimes, albeit rarely, yield aggregates whose masses are roughly equal. This is likely
a consequence of the way CCA-type aggregates are built. As clusters of different sizes
collide into each other, they typically merge via one of the longer branches in their
structure. Thus, the resulting aggregate tends to have a less compact region near its center
of mass, which is more likely to experience largest stresses, and thus break up, as a result
of settling.

In aggregates exposed to laminar shear in the absence of forces (Shear Case), we found
that the largest stresses are much more likely to be found close to the center of mass for
both IAA- and CCA-type aggregates with an even greater prevalence than for the Settling
Case. The stress distribution was again found to be qualitatively similar in more compact
aggregates (IAA) and less compact ones (CCA) across shells, exhibiting a power-law
behavior, with exponent of roughly -2 for the inner shell, where most of the large stresses
are found, for both aggregate types. This indicates that to model stresses sufficiently
large to lead to rupture, in aggregates exposed to laminar shear, the same distribution
can likely be used. We also note that CCA aggregates experience larger stresses than
IAA aggregates for a given mass, as CCA aggregates have a greater span that is more
affected by shear than IAA aggregates. When allowed to break at the location of the
maximum internal stress, we found that the relative masses of the newly formed objects
distribute roughly uniformly. On average, IAA-type aggregates break up in two aggregates
whose relative masses are roughly 72% and 28% of the original mass, for the larger and
smaller aggregate, respectively, while CCA-type aggregates break up in two aggregates
whose relative masses are roughly 67% and 33% of the original mass, for the larger and
smaller aggregate, respectively. In addition, we found that the maximum internal stress
scales almost quadratically with the maximum radius of the aggregates, as it grows like
max||f⃗ (int)|| ∼ (Rmax)1.92 for IAA-type aggregates and max||f⃗ (int)|| ∼ (Rmax)1.67 for
CCA-type aggregates. Since it was shown in Ref. [106] that an extensional flow acting on
aggregates would induce a straining force that scales quadratically with their characteristic
length scale, our findings indicate that when aggregates are exposed to laminar shear, it is
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the extensional component of the shear flow that induces stresses in the aggregates.
This study gives insights on how to build a more accurate reversible aggregation model.

For instance, our findings indicate how stochastically-generated internal stresses should be
distributed based on their distance to the center of mass of the aggregate. From our results
we expect that CCA-type objects would tend to break into denser and denser objects
whose structures resemble that of IAA-type aggregates. Moreover, for a given density
difference, aggregates would likely reach a maximal size before the stresses induced
by their settling causes them to break. Furthermore, while we modeled the action of
laminar shear as it is physically relevant and often studied in experimental settings [91],
we found that the leading cause of stress in aggregates exposed to shear comes from the
extensional component of the flow, rather than the rotational one. Thus, if a model of
aggregate dynamics were to include the action of a background flow, our results suggest
that the incorporation of an extensional flow would capture the dominant effects while the
translational and rotational components of the flows would have less impact.



Chapter 5
Conclusion and future work

In this Thesis, I presented three frameworks that describe simulations of fluid systems
at small scales and discussed how these frameworks can be used to model the behavior of
reactive gas mixtures and characterize aggregate dynamics. In Chapter 2, I presented
the framework of reactive fluctuating hydrodynamics (RFHD), and showed that this
continuum-stochastic approach is well-suited to model the dynamics of reactive gases at
the mesoscale. As discussed in Section 2.2, the incorporation of stochastic chemistry into
the framework of fluctuating hydrodynamics is achieved by the inclusion of a source term,
modeled via a chemical Langevin equation (CLE) approach, into the fluctuating Navier
Stokes equations [63]. This allows to accurately model the transport properties of fluids at
the mesoscale [94], and properly characterize the stochastic nature of chemical reactions,
without resorting to a particle-based description of the chemistry. Moreover, it was shown
in Section 2.4.2 that this CLE-based formulation can be readily incorporated into existing
massively parallelized solvers for non-reactive FHD [16] thus combining high fidelity and
computational efficiency.

An example where these processes are important is at the onset of density-driven
instabilities in fluids. It is also known both from experiments [65] and numerical
simulations [55] that in systems where fluids are separated by a flat interface in the
presence of a density gradient, thermal fluctuations play a fundamental role in the onset of
fingering patterns instability. When reaction is also present, it was found that these systems
show asymmetric and much faster growth of these fingering patterns, compared to non-
reactive systems. Since it was shown in Section 2.4.3 that to properly capture thermal
fluctuations in reactive gas mixtures, one needs to fully characterize the temperature
dependence of the rate constants, our RHFD model would then greatly extend the ability
of existing frameworks to accurately reproduce the onset of instability in certain reactive
fluid mixtures. Another example in which the findings of this research could be useful
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is to help design more accurate numerical methods to simulate heterogeneous catalysis
[35], a key component of many industrial processes, ranging from the refining of crude
oil, to the synthesis of organic and inorganic chemicals [87]. This type of reaction usually
involves a solid catalytic surface where gas-phase chemicals react, releasing the products
of these reactions onto a surrounding reactive gas. Since this process is characterized
by the interaction of a gas phase and a solid surface, then the formulation discussed in
Section 2.2 could be critical to realistically simulate the behavior of the reactive bulk of
gas in these systems. In particular, close to the catalytic surface, at mesoscopic scales,
accurately capturing the impact of thermal fluctuations in the reactive gas can be essential
to ensure the proper exchange of information between the gas and solid phase.

In Chapters 3 and 4, I discussed the importance of various aspects that contribute to
the dynamical evolution of aggregates in low Reynolds number regimes. In Chapter 3, I
presented a novel particle-based approach to model the formation mechanisms of fractal
aggregates, based on the framework of Diffusion-Limited Cluster Aggregation (DLCA).
Traditionally, the fluids community has studied aggregates for the role they play in the
oceanic carbon cycle [44], as they subtract carbon dioxide from the atmosphere and sink
from the surface of the ocean towards the ocean floor. In my model, improving on
traditional DLCA approaches, clusters are allowed to randomly rotate, and the impact
of aggregates’ size on their diffusivity is accounted for to characterize their dynamical
evolution. I investigated how rotational effects, size-dependent diffusivities and settling
impact the aggregates’ fractal dimension and growth rate. I found that rotation accelerates
the growth of the aggregates as it increases aggregate motion and raises the likelihood of
collision. Rotation was also found to decrease the resulting aggregates’ fractal dimension,
again a result consistent with increasing the likelihood that long, narrow limbs encounter
each other as they rotate. I also found that size-dependent diffusivities slow down the
growth of the aggregate, but have little to no impact on their fractal dimension. Finally,
the incorporation of settling into the model led to clusters that grow more quickly, are
smaller in their vertical than in their horizontal extents, and have a lower fractal dimension
than typical DLCA aggregates.

In Chapter 4, I discussed a boundary integral formulation of Stokes equations to
characterize the stresses in aggregates exposed to some external force or background flow.
This continuum deterministic approach is useful to model fluid flow around solid objects in
low Reynolds number regimes. This framework is used to compute the flow and stresses
on fractal aggregates made of cubic particles whose boundary is a simple collection of
squares. On such a simple boundary, one can compute the internal and external stresses
induced by the action of some background flow or external force and even treat analytically
the apparent singularity that arises. I analyzed how the type of conditions that aggregates
are exposed to affect the distribution of stresses in aggregates of different structures. I
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found that, when settling in a fluid at rest, both more compact and less compact aggregates
experience small stresses that scale as about 8% of their weight. Moreover, when allowed
to break at the location of the maximum internal stress, the relative masses of the two newly
formed aggregates distribute well away from an even balance. However, less compact
aggregates, have a slightly higher likelihood to also break closer to their center of mass,
compared to more compact ones. On the other end, when exposed to a shear background
flow, both more compact and less compact aggregates tend to experience large stresses
closer to their center of mass. This leads to a more uniform distribution for the relative
masses of the newly formed aggregates. Furthermore, for both more and less compact
aggregates exposed to laminar shear, the maximum stress scales roughly quadratically
with the maximum radius of the aggregates, indicating that the extensional component of
the flow is what induces the stresses.

The models presented in Chapters 3 and 4 provide valuable insights on how to properly
characterize the formation and disruption mechanisms of aggregates and aim to better
describe aggregates typically observed in experiments [90]. To the best of my knowledge,
aggregation models typically do not include stochastic background flows, and thus are
not capable of capturing the effects of localized eddies, which might cause variations in
translational and rotational diffusivities to an even greater extent than molecular motion. In
Section 3.5, it was shown that the way in which diffusivities are modeled has a significant
impact on the growth of aggregates, and thus capturing the effects of localized eddies
could be important to properly characterize aggregates formation. Furthermore, while
most aggregation models tend to only study the structure of the aggregates [50], the
growth rate of aggregates should also be analyzed, as it can help estimate the time that
marine aggregates spend in a water column. The results provided in Chapter 3 can help
give a more realistic description of an aggregate’s progression towards the deep ocean.
One other important feature, in addition to size-dependent diffusivities, that is typically
under-discussed in most models is the impact of gravitational effects on aggregate growth
dynamics. In Section 3.5.3, it was shown that accounting for gravitational effects in the
formation mechanism of aggregates, via the incorporation of a size-dependent settling
speed, leads to a speed-up in the aggregates growth, and that capturing this effect is
particularly critical for large aggregates. These aggregates, in turn, are also more likely
to experience stresses large enough to lead to break-up. In Chapter 4, I showed that
aggregates settling under the influence of gravity experience large stresses that tend to lead
to rupture away from their edges. Moreover, many recent experimental efforts have aimed
to characterize the breaking of marine aggregates exposed to some background flow [90].
Given that the formulation discussed in Section 4.2 allows for the ready incorporation of
background flows in the model, this approach is well-equipped to provide a more realistic
description of disaggregation typically observed in experiments [91]. In this context, the
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findings of Section 4.3.2 could also be a integral part in the design of experiments that
aim to reproduce the breaking of marine aggregates in a realistic and efficient manner. For
instance, since it was shown that it is the extensional component of a laminar shear flow
that induces stresses in aggregates, this can give insights on how to construct more efficient
experimental settings to characterize disaggregation. Ultimately, providing a well-justified
disaggregation mechanism is an important step toward obtaining a more complete, and
physically relevant model of aggregation that extends beyond the early stages of formation.
Furthermore, while the realistic description of aggregates break-up is extremely important
especially in the context of marine systems, the results of this model could be extended
to other types of aggregates. For instance, granular aggregates have a tendency to deform
[79] rather than break, and thus the characterization of the external and internal stresses
discussed in Chapter 4 could be useful in settings where capturing aggregates deformation
is also relevant.

In conclusion, the research that I conducted during my Ph.D. is relevant to
fields spanning from chemistry to oceanography, and its results can help advance our
understanding of many physical processes. This research helped me foster an interest in
the study of Fluid Dynamics within the broader context of multi- and interdisciplinary
Science. Therefore, I hope to continue working on the mathematical and numerical
modeling of fluid systems, and that the work I conducted during my Ph.D. will be
valuable to help me extend my career and research horizons. I aim to widen my
understanding of numerical methods for Partial Differential Equations, and study physical
phenomena where the interaction of multiple scales, and the presence of multi-physics,
require the design of massively parallelized software optimized for distributed multi-core
architectures and modern GPU computing.
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Appendix A
Appendix for Chapter 2

A.1 Chemistry Formulation Based on Partial Pressures
In Section 2.3, our chemistry formulation is presented in terms of molar concentrations

[Xs]. Equivalently, it can be given in terms of partial pressures Ps = [Xs]RT . In this
section, we summarize the corresponding expressions for our main results. Here we
assume that the equilibrium constant Kr and rate constants k±

r are defined in terms of
Ps/P

st so that

Kr =
Nspec∏
s=1

(Ps/P st)ν−
sr

(Ps/P st)ν+
sr

at equilibrium, (A.1)

a±
r = k

±
r

Nspec∏
s=1

(Ps/P st)ν
±
sr . (A.2)

Note that these partial pressure based quantities are related to the corresponding molar
concentration based quantities as

Kr(T ) = Kr(T )
(
RT

P st

)∆nr

, k
±
r (T ) = k±

r (T )
(
RT

P st

)−n±
r

, (A.3)

where ∆nr = ∑Nspec
s=1 νsr and n±

r = ∑Nspec
s=1 ν±

sr.
When partial pressures are employed instead of molar concentrations, it is more

convenient to use µ◦
s(T ) instead of µ◦

s(T ), see Eq. (2.11). Note that these quantities satisfy

µ◦
s(T ) = µ◦

s(T ) + RT

Ms

log P
st

RT
. (A.4)
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In the resulting expressions forKr and k±
r for the general case considered in Section 2.3.1,

the per-particle chemical potential µ̂◦
s(T ) is replaced by µ̂

◦
s(T ) = (Ms/RT )µ◦

s(T ).
Specifically, Eqs. (2.15) and (2.18) become respectively

Kr(T ) = exp
−

Nspec∑
s=1

νsrµ̂
◦
s(T )

 , (A.5)

k
±
r (T ) = λr(T ) exp

Nspec∑
s=1

ν±
srµ̂

◦
s(T )

 . (A.6)

For the constant heat capacity model considered in Section 2.3.2, Eq. (2.32) becomes

µ̂
◦
s(T ) − µ̂

◦
s(T st) = Msϵs

R

( 1
T

− 1
T st

)
− ĉp,s log T

T st
, (A.7)

where ĉp,s = (Ms/R)cp,s. Thus, Eq. (2.33) becomes

Kr(T ) = Kr(T st) exp
[
−Ar
R

( 1
T

− 1
T st

)](
T

T st

)Br

, (A.8)

where Ar = Ar and Br = Br + ∆nr. Finally, when the rate constants are given in the
form of the modified Arrhenius equation,

k
±
r (T ) = k

±
r (T st) exp

[
−α±

r

R

( 1
T

− 1
T st

)](
T

T st

)β±
r

, (A.9)

the parameters α± and β± must satisfy

α−
r = α+

r − Ar, β
−
r = β

+
r −Br, (A.10)

for thermodynamic consistency.

A.2 Structure Factor Analysis for Dimerization
For a one-dimensional two-species ideal gas mixture undergoing a reversible

dimerization reaction at equilibrium, we show that our chemistry formulation gives the
correct flat structure factor spectra as predicted by the equilibrium statistical mechanics.
Following the fact that adding chemical reactions should not change the thermodynamic
equilibrium state of the system, we show that the correct equilibrium structure factor
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spectra established by nonreactive FHD are not disturbed by the inclusion of our chemistry
model. Here, we denote transpose and complex transpose by (·)T and (·)∗, respectively.

We first consider the nonreactive system. For our purposes, let U = [δρ1, δρ2, v, δT ]T ,
where δρs = ρs − ρeqs and δT = T − T eq. Like a one-species system [2], the linearized
FHD equations for a two-species system can be written as

∂

∂t
U = − ∂

∂x
(A1U) + ∂2

∂x2 (A2U) + ∂

∂x
(BZ) , (A.11)

where the first, second, and third terms in the right-hand side correspond to hyperbolic,
dissipative, and stochastic fluxes, respectively, and Z is a collection of independent
standard Gaussian white noise fields. Since transport coefficients are dependent on
composition [15], it is possible but tedious to derive explicit expressions of A1, A2, and
B. Note, however, that we do not need explicit expressions. Instead, we assume that the
linearized FHD equations (A.11) guarantees thermodynamic consistency. In other words,
the following equation [2], from which the structure factors S(k) = V ⟨ÛkÛ∗

k⟩ can be
determined, (

−ikA1 − k2A2
)

S(k) + S(k)
(
ikAT

1 − k2AT
2

)
+ BBT = 0, (A.12)

is satisfied by the correct structure factors Seq, which are obtained from the equilibrium
statistical mechanics [15, 13]:

Seq = diag
(
M1

NA

ρeq1 ,
M2

NA

ρeq2 ,
kBT

eq

ρeq1 + ρeq2
,

kB(T eq)2

cv,1ρ
eq
1 + cv,2ρ

eq
2

)
. (A.13)

We now consider the reactive system undergoing dimerization. By using M1Ω1 =
−M2Ω2 and expressing ∂(δT )/∂t in terms of ∂ρs/∂t and ∂(ρE)/∂t, we write the
linearized FHD equations as

∂

∂t
U = A0U − ∂

∂x
(A1U) + ∂2

∂x2 (A2U) + ∂

∂x
(BZ) + bz, (A.14)

Here, z is a standard Gaussian white noise field and the additional terms are given as

A0U = M2Ω2


−1
1
0
ϕ

 , bz = M2Ω̃2


−1
1
0
ϕ

 , (A.15)

where

ϕ = (ϵ1 − ϵ2) + (cv,1 − cv,2)T eq
cv,1ρ

eq
1 + cv,2ρ

eq
2

. (A.16)
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To derive explicit expressions of A0 and b, we linearize the rate constants,

k±(T ) = k±
eq

{
1 +

(
α±

RT eq
+ β±

)
δT

T eq

}
, (A.17)

where k±
eq = k±(T eq), and obtain

M2Ω2 = k−
eqρ

eq
2

{
2δρ1

ρeq1
− δρ2

ρeq2
+ ψ

δT

T eq

}
, where ψ = A

RT eq
+B, (A.18)

M2Ω̃2 =
√

2M2

NA

k−
eqρ

eq
2 z. (A.19)

Thus, we finally obtain

A0 = k−
eqρ

eq
2


− 2
ρeq

1

1
ρeq

2
0 − ψ

T eq

2
ρeq

1
− 1
ρeq

2
0 ψ

T eq

0 0 0 0
2ϕ
ρeq

1
− ϕ
ρeq

2
0 ϕψ

T eq

 , b =
√

2M2

NA

k−
eqρ

eq
2


−1
1
0
ϕ

 . (A.20)

The structure factors S(k) resulting from Eq. (A.14) can be determined by(
A0 − ikA1 − k2A2

)
S(k) + S(k)

(
AT

0 + ikAT
1 − k2AT

2

)
+ BBT + bbT = 0. (A.21)

Hence, if the following condition is satisfied by Seq, A0, and b,

A0Seq + SeqAT
0 + bbT = 0, (A.22)

by combining that Eq. (A.12) is satisfied by Seq, one can show that Seq satisfies Eq. (A.21).
By using explicit expressions of Seq, A0, and b (see Eqs. (A.13) and (A.20), one can
easily show that Eq. (A.22) holds. Therefore, our chemistry formulation gives the correct
structure factors.

We have a couple of remarks for this analysis. First, by comparing Eq. (A.12)
(nonreactive case) and Eq. (A.21) (reactive case), one can predict that errors in the
structure factors appear at small k values if a thermodynamically-inconsistent chemistry
formulation is used. This is because the contribution of the additional reactive terms
containing A0 and b becomes less significant in Eq. (A.21) for larger k values and the
two equations becomes the same asymptotically in the large k limit. Second, using the
definitions of A and B (see Eq. (2.34)), one can show that

ψ = − M2

RT eq
(cv,1ρeq1 + cv,2ρ

eq
2 )ϕ. (A.23)
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Hence, if ϵ1 + cv,1T
eq = ϵ2 + cv,2T

eq, that is, the specific internal energies of A and A2
coincide, both ψ and ϕ become zero. In this special case, the temperature dependence
in A0 and b disappears but thermodynamic consistency is still maintained. Similarly,
simple models, such as the Brusselator, that use "color chemistry" (species are thermally
indistinguishable) are themodynamically consistent despite using constant rates.

A.3 Numerical Scheme
In this section, we describe the numerical method used to solve the FNS equations

(2.1a)-(2.1c) for reactive gas mixtures. We will focus our discussion on the temporal
integrator used, and refer the interested reader to Ref. [94] for a detailed description of the
spatial discretization, implemented using the Finite Volume method on a staggered-grid.
We note that our numerical approach takes advantage of the AMReX framework [109],
which allows for massive parallelization and GPU-accelerated performance.

The fluctuating Navier–Stokes (FNS) equations [13, 18]:

∂ρs
∂t

= −∇ · (ρsu) − ∇ · Fs +msΩs, (A.24a)

∂(ρu)
∂t

= −∇ · (ρuuT ) − ∇P − ∇ · Π, (A.24b)

∂(ρE)
∂t

= −∇ · (ρEu + Pu) − ∇ · Q − ∇ · (Π · u). (A.24c)

can be written in a more compact form

∂tU = −∇ · FH − ∇ · FD − ∇ · FS + H ≡ R(U, Z), (A.25)

where U = [ρs, ρu, ρE] is the set of hydrodynamic variables, while FH , FD and FS are

FH =

 ρsu
ρuuT + P
u(ρE + P )

 , FD =

 F s

Π
Q + Π · u

 ,
(A.26)

FS =

 F̃s

Π̃
Q̃ + Π̃ · u

 , (A.27)

and represent the hyperbolic, diffusive and stochastic fluxes, respectively. The term H
embeds all the external forcing, and in this work on reactive chemistry takes the form
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H = [Ωs,0, 0]T . The right-hand side of eq. (A.25) is written as R(U, Z), where Z is the
spatiotemporal discretization of the Gaussian white noise (GWN) field W . For temporal
integration, we use a three-stage, low-storage Runge–Kutta (RK3) scheme [2], in which
the stochastic fields are discretized in time so that only two GWN fields, say ZA and
ZB, are required. Note that these fields are generated independently in each FHD cell
at the beginning of each time step. Since chemistry source terms are given in the form of
Langevin equation, they are readily incorporated into the RK3 scheme. Furthermore, since
the species mass densities ρs is discretized at the center of each FHD cell, the evaluation
of the source term Ωs occurs at the cell centers. This allows our formulation to be valid
both on collocated [13] and staggered [94] grids.

The three stages of the RK3 scheme per time step can be written as follows

Un+1/3 = Un + ∆tR(Un, Z1),

Un+2/3 = 3
4Un + 1

4[Un+1/3 + ∆tR(Un+1/3, Z2)],

Un+1 = 1
3Un + 2

3[Un+2/3 + ∆tR(Un+2/3, Z3)],

where the random fields Zi, i = 1, 2, 3, are defined as linear combinations of ZA and ZB

Z1 = ZA + β1Z
B,

Z2 = ZA + β2Z
B,

Z3 = ZA + β3Z
B.

(A.28)

The values of the weights βi are β1 = (2/
√

2 +
√

3)/5, β2 = (−4/
√

2 + 3
√

3)/5 and
β3 = (2 − 2

√
3)/10, to guarantee weak second-order accuracy, following Ref. [2].
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A.4 Numerical Results

A.4.1 Nonreactive FHD

Figure A.1: Equilibrium structure factor spectra obtained from non-reactive FHD. For
various field variables, the structure factor values S(k) are normalized by the theoretical
values Seq and plotted versus r =

√
κ2
x + κ2

y + κ2
z, where κi = ki

(
2π
L

)−1
is the integer

wave index in the i-direction. Panels show the structure factors for (a) ρ, (b) ρux, (c) ρE,
(d) ρ1, (e) ρ2, and (f) T . Each data point is colored based on its normalized value S(r)/Seq
(see the color bar). The horizontal black line is drawn at the expected theoretical value for
visual clarity.
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A.4.2 Temperature Independent Rate Constants

Figure A.2: Equilibrium structure factor spectra obtained from reactive FHD based on
the temperature-independent rate constants formulation of reactive chemistry. For various
field variables, the structure factor values S(k) are normalized by the theoretical values
Seq and plotted versus r =

√
κ2
x + κ2

y + κ2
z, where κi = ki

(
2π
L

)−1
is the integer wave

index in the i-direction. Panels show the structure factors for (a) ρ, (b) ρux, (c) ρE, (d)
ρ1, (e) ρ2, and (f) T . Each data point is colored based on its normalized value S(r)/Seq
(see the color bar). The horizontal black line is drawn at the expected theoretical value for
visual clarity.



Appendix B
Appendix for Chapter 4

B.1 Derivation of formulation to account for background
flow

Following Ref. [83], the velocity of a flow computed on a point outside, inside or on
the surface of a solid object can be written as

uj(x0) = − 1
8πµ

∫
S
fi(x)Gij(x, x0)dS(x) + 1

8π

∫
S
ui(x)Tijk(x, x0)nk(x)dS(x). (B.1)

Here the indices represent Einstein notation. In general x⃗0 can be outside of S, inside the
volume whose boundary is S, or on S. Since we are interested in computing the stresses
on the surface of the object, we will denote with x⃗s any point that lie on the surface of the
aggregates, whereas x⃗0 will denote points that lie outside of the surface of the aggregates.
Furthermore, in our formulation, x⃗s will always correspond to the center of the face of a
cube. Finally, we introduce a disturbance flow, caused by the presence of a solid object in
a fluid, and define its velocity to be u⃗D = V⃗ +Ω⃗∧ x⃗− u⃗∞, where u⃗∞ represents the fluid’s
velocity in absence of the object. In summary,

• u⃗ is what we call the true velocity

• u⃗∞ is the background flow

• u⃗D is a disturbance flow such that u⃗D = u⃗− u⃗∞

• S is the surface of the aggregate

• x⃗0 is a point outside of the aggregate
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• x⃗s is a point on the surface of the aggregate

Re-writing eq. (B.1) in terms of u⃗D yields

uDj (x0) = − 1
8πµ

∫
S
fDi (x)Gij(x, x0)dS(x)+ 1

8π

∫
S
uDi (x)Tijk(x, x0)nk(x)dS(x). (B.2)

Then, we compute (B.2) in the limit where x⃗0 → x⃗s. In general, while the single layer is
always continuous, the integral with the double layer introduces a singularity. Thus, we
will use the fact that, from [83] we know that

lim
x⃗0→x⃗s

∫
S
ui(x)Tijk(x, x0)nk(x)dS(x) = ±4πuj(xs) +

∫ PV

S
ui(x)Tijk(x, xs)nk(x)dS(x),

(B.3)
where PV indicates that the integral is evaluated in the Principle Value sense. The ± of
the first term on the right-hand side, corresponds to the cases where x⃗0 approaches S from
outside the object (+), or from inside (-), in the direction of the normal. Since we are using
the outward pointing normal in our formulation, we will limit our discussion to (+) case.
Thus, taking the limit for x⃗0 → x⃗s on both sides of eq. (B.2) yields

uDj (xs) = − 1
8π

∫
S
fDi (x)Gij(x, xs)dS(x) (B.4)

+ 1
8π

(
4πuDj (xs) +

∫ PV

S
uDi (x)Tijk(x, xs)nk(x)dS(x)

)
,

which, after simplification becomes

uDj (xs) = − 1
8π

∫
S
fDi (x)Gij(x, xs)dS(x) (B.5)

+ 1
2u

D
j (xs) + 1

8π

∫ PV

S
uDi (x)Tijk(x, xs)nk(x)dS(x).

Now we plug in u⃗D = V⃗ + Ω⃗ ∧ x⃗− u⃗∞ on both sides, and use the identities [83]∫
S
V⃗ · ¯̄̄

T (x⃗, x⃗s) · n̂dS(x⃗) = −4πV⃗ ,
∫
S
(Ω⃗ ∧ x⃗s) · ¯̄̄

T (x⃗, x⃗s) · n̂dS(x⃗) = −4πΩ⃗ ∧ x⃗s (B.6)

to solve the double layer integrals for the solid body motion part. This yields

V⃗ + Ω⃗ ∧ x⃗s − u⃗∞(x⃗s) = − 1
8πµ

∫
S
fDi (x)Gij(x, xs)dS(x)

+ 1
2(V⃗ + Ω⃗ ∧ x⃗s − u⃗∞(x⃗s))

+ 1
8π

(
−4π(V⃗ + Ω⃗ ∧ x⃗s) −

∫ PV

S
u∞
i (x)Tijk(x, xs)nk(x)dS(x)

)
.

(B.7)
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After simplification and rearranging terms, we obtain

V⃗ + Ω⃗ ∧ x⃗s + 1
8πµ

∫
S
fDi (x)Gij(x, xs)dS(x) = 1

2u
∞(xs) (B.8)

− 1
8π

∫ PV

S
u∞
i (x)Tijk(x, xs)nk(x)dS(x),

(B.9)

which, along with the equations for Torque and Force, will give the linear system (4.10)
that we solve for V⃗ , Ω⃗ and the external stresses f⃗D.
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