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SUMMARY. Forecasting and predictive inference are fundamental data analysis tasks. Most studies employ parametric
approaches making strong assumptions about the data generating process. On the other hand, while nonparametric models
are applied, it is sometimes found in situations involving low signal to noise ratios or large numbers of covariates that their
performance is unsatisfactory. We propose a new varying-coefficient semiparametric model averaging prediction (VC-SMAP)
approach to analyze large data sets with abundant covariates. Performance of the procedure is investigated with numerical
examples. Even though model averaging has been extensively investigated in the literature, very few authors have considered
averaging a set of semiparametric models. Our proposed model averaging approach provides more flexibility than parametric
methods, while being more stable and easily implemented than fully multivariate nonparametric varying-coefficient models.

We supply numerical evidence to justify the effectiveness of our methodology.

KEY WORDS:
model.

1. Introduction

Forecasting and predictive inference are fundamental tasks for
economic and medical data analysis (Clements and Hendry,
1998; Chatfield, 2001). Parametric methods which make
strong assumptions dominate practical applications, but there
is no reason why real life data generating mechanisms should
obey common parametric assumptions such as linearity. In
contrast, nonparametric and semiparametric models may
acknowledge the existence of more complex and realistic func-
tional covariate effects (Wu and Zhang, 2004). To incorporate
multiple predictor variables, many multivariate nonparamet-
ric models are available (Matzner et al., 1998; De Gooijer and
Gannoun, 2000; Fan and Yao, 2003). However, empirical stud-
ies indicate the predictive performance of multi-dimensional
nonparametric models may not be satisfactory in applica-
tions involving low signal to noise ratios and large numbers of
covariates. In this article, we propose a new semiparametric
model average prediction (SMAP) approach to analyze large
data sets with abundant covariates and investigate its pre-
dictive performance in numerical examples. This approach
involves fitting individual partly linear varying-coefficient
nonparametric models and combining them using a linear
weighting structure. The procedure may provide more flex-
ible predictive inference than a parametric model while being
more stable than a fully nonparametric approach.

© 2018, The International Biometric Society
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When numerous candidate models are available for predic-
tion, one must consider appropriate approaches for dealing
with uncertainty about the model. One popular approach
is to employ a model selector and identify a single optimal
model from all candidates. Traditional approaches for model
selection include subset selection, regularization (Fan and Li,
2001) and dimension reduction (Jolliffe, 1986; Ma and Zhu,
2013). These approaches have been extended to incorporate
high-dimensional covariates in the recent literature, e.g., Chen
et al. (2010) and Fan et al. (2011). Since a model selector
yields only one final model, useful information may be lost
when variables absent from the final model are also relevant
to predicting the outcome.

As an attractive alternative, model averaging may include
a set of models and make prediction via a weighted average
from all the models (Buckland et al., 1997; Yang, 2001, 2003;
Hansen, 2007, 2008). Most early work on model averaging
was done in a Bayesian framework (Hoeting et al., 1999),
and provided good solutions to many practical problems
given appropriate prior choices and computational methodol-
ogy. Hjort and Claeskens (2003) systematically discussed the
advantages of weighting estimators across models, proposed a
general framework for frequentist model averaging. Follow-
ing their work, model averaging has been investigated in,
for example, semiparametric models (Claeskens and Carrol,
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2007), generalized partially linear additive models (Zhang and
Liang, 2011), mixing partially linear regression models (Liu
and Yang, 2013), high dimensional factor-augmented linear
regression (Chen and Hansen, 2015), and ultra-high dimen-
sional nonparametric additive models for time series (Chen
et al., 2017). Some theoreticians have argued that model aver-
aging shares all the good properties of model selection under
general settings (Giraud, 2015).

Almost all previous authors focused on averaging a set of
parameterized models such as linear regression models. Such
simple models are easy to interpret and widely accepted by
scientific researchers and business analysts. However, to pro-
vide accurate characterization of the relationship between the
response and the predictors, it may be more sensible to con-
sider nonparametric models with less structural restrictions.
Li et al. (2015) developed a flexible prediction approach by
averaging a set of nonparametric models obtained from local
constant smoothing. Their numerical works suggest that the
nonparametric averaging approach may perform better than
the traditional parametric averaging approach. Our current
development extends Li et al. (2015) who addressed a series
of univariate sub-models.

We aim at predicting the response variable Y by con-
structing a varying-coefficient submodel-based prediction
from complicated data. There is a large literature con-
cerning varying-coefficient models such as Fan and Huang
(2005) among others. Fitting a model with multiple varying
coefficients is as difficult as fitting other multivariate nonpara-
metric models. In particular, we need to select the bandwidth
for functional estimates when adopting the familiar local poly-
nomial regression. Different covariates may actually require
different degrees of smoothness. Yet most existing programs
to fit such models allow only a single bandwidth for all the
estimated varying coefficients.

In this article, we propose varying-coefficient semipara-
metric model averaging prediction (VC-SMAP) which works
much more satisfactorily than the ordinary varying coefficient
model. In particular, now, we consider only one varying coef-
ficient in each submodel and thus the bandwidth selected
for such a sub-model is itself optimal. Each submodel only
involves one nonparametric component and thus can be eas-
ily fitted using univariate smoothing. In each model, we also
adjust all other covariates linearly to approximate the condi-
tional relationship more accurately. The overall prediction is
to average individual submodel predictions. The SMAP pro-
cedure is motivated by approximating the Gibbs mixing of
estimators (Giraud, 2015). We stress that there is no new
model introduced in this article. All models are wrong. How-
ever, by combining useful submodels in an effective manner,
we may achieve improved prediction accuracy. We carry out
extensive simulations to investigate the proposed methods in
this article. Two biomedical data sets are analyzed to further
illustrate our methodology.

2. Method and Estimation

Suppose that we have sample data {(U;, X;,Y:);i=1,...,n},
consisting of n independent copies of (U, X,Y), where X =
(X1,...,X,)T is a p-vector of covariates, U is an index
variable and Y is the response variable. We assume X; =
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1 in the following presentation. We write Z = (X7, U)T =
(Z1,...,Zp1)". It is well known that, when the dimension
of Z (or X) is high, modeling the conditional mean function
m(Z) = E(Y|Z) by purely multivariate nonparametric meth-
ods without any structure specification is not practical due
to the curse of dimensionality. There is a large literature
concerned with approximating the regression function, m(Z),
by an affine combination of low dimensional semiparametric
regression functions. Earlier authors considered additive mod-
els, partly linear additive models, varying-coefficient models
(Cai et al., 2000) and partly linear varying-coefficient mod-
els (Fan and Huang, 2005), among many other choices. In
practice, using a specified model with fixed regression struc-
ture may lead to very poor prediction because of the risk of
misspecification. To rectify this problem, we adopt the model
averaging principle (Hansen, 2007) in this article.

Most authors use parametric models when applying the
model averaging method. Li et al. (2015) first proposed to
approximate m(Z) by a weighted average of nonparametric
regression models. Although their resulting semiparametric
model average prediction (SMAP) on the response allows non-
linear structure for predictors, each of the models is marginal
and completely ignores the presence of other factors. This
kind of prediction may be insufficient since it ignores the
potentially strong confounding effects among predictors. In
addition, there might be interaction between the predictors,
which is not uncommon in practice, especially for high dimen-
sional data.

In this manuscript, we propose an alternative strategy to
approximate m(Z) by a class of semiparametric regression
functions, which covers varying-coefficient regression, in the
framework of model averaging. Specifically, we seek weights
to minimize the following

E (Yiw,-mj>2 , (1)

mj=a;(U)X;+> 0 BaXe j=1,....p,
(wi,...,w,)*€ H and H={w: ,';lekzl,wkEO}.
In this case «;(U) is the varying coefficient for the jth
covariate X; while the B;s are constant coefficients for X,
k # j. In fact, the jth sub-model is equivalent to fitting the

following regression problem

where W =

P
Y =a;(U)X;+ Y BuXe+e, (2)
oy

where ¢ is a random error. Such a model allows discrete as
well as continuous covariates to be considered while only con-
tinuous terms are allowed under Li et al. (2015)s approach. On
the other hand, the overall combined model can be rewritten
as a fully varying-coefficient model

m(Z) = a;(U)X;, (3)

where a;(U) = w;a;(U) + Zk#i wiBrj. However, directly fit-
ting such a model to obtain the estimates of «;(-) and By
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is infeasible since (3) is not identifiable without additional
conditions. For the purpose of predicting Y, perhaps attain-
ing good estimates for unstructured a; would be sufficient.
However, such a standard varying-coefficient model may not
work as well as our VC-SMAP. There are two possible reasons.
First, some X; may have constant coefficient and should be
modeled in this way. When forcing all coefficients to be func-
tionals, the usual varying-coefficient model may overfit, as
will be seen in our simulation results. The weights in the pro-
posed VC-SMAP adjust the relative importance of the varying
vs. constant coefficients for the same predictor and hence the
final prediction is more robust against model misspecification.
Secondly, we are smoothing each varying-coefficient function
separately in our procedure and thus do not require all the
a;’s to be smoothed with the same bandwidth. These con-
siderations naturally improve the prediction performance of
VC-SMAP over existing semiparametric single-model-based
prediction.

In this study, what we are most interested in is to pre-
dict the response. It is necessary to accurately estimate m;
and the model average weights. Without loss of generality,
we assume that the index variable U has been scaled to [0, 1]
and X;, j=2,..., p, are all standardized to be of mean 0
and variance 1. In the first step, for a fixed j, we estimate
m; by the profile least squares method in Fan and Huang
(2005). To simplify the presentation, we use matrix nota-
tion and write Y= (Y1,...,Y,)", X= (X, ..., X)), X; =
(Xila ceey Xl‘p)T and Zi = (X’T, U,‘)T, = 1, B N Let X(]) be
a sub-matrix of X without the jth column. Write W(u) =
diag{K,(U; —u), ..., Kn(U, —u)}, where K,(-) = K(-/h)/h,
K(-) is a kernel function and & is a bandwidth,

X1j X1j(Ur —u)/h
Dju)=1 : :
Xn] Xn](Un _u)/h

and

(X1, 0){DT (U)W (U1)D,;(U1)} ' D} (U )W(Uy)

(an’ 0){D.;T'(Un)W(Un)Dj(Un)}ilDJT'(UH)W(Un)

Let B;y = (Bj1---» Bj(i-1)» Bj(j+1)» - -» Bjp)" - Using the above
notation, the profile least squares estimate of B; is given by

By = 1X() (T =8)"(T=8)X()} ' X[ (T-8)"Y  (4)
and the local linear estimate of «;(u) is given by

& (1) = (1, 0){D? (u)W(u)D,;(u)} D! (W)W(u)(Y — X B(;)-
(5)

Therefore, we obtain the jth model-based prediction M; =

mi(Zy),...,mj(Z,))T for the n samples as M;=
j j j
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Sj{y— X(j>ﬂ(j)} =+ X(j)ﬂ(j) = .Ajy, where .Aj = S]- + (I —
S /)X (A (T=8))T (T = S)) X)) [, X = S))".

In the second step, we estimate the weights w. We first con-
sider estimation without restricting the weights to be in space
H. The optimal weight estimator can be obtained via minimiz-
ing the least squares function Q(w) =Y — Z/{’=1 wk//\ZkIIQ.
Letﬁ: (ﬂh...
(M M) M Y.

For constrained estimation, we have to use a quadratic
programming technique to obtain w. For the optimization
problem under the constraint H, one may apply the commonly
used “interior-point-convex” algorithm (Anna and Gondzio,
1999), which is implemented in familiar software: for exam-
ple, the quadprog package in R, the quadprog command in
MATLAB and the gprog command in GAUSS. Finally, we output
the VC-SMAP for the mean response predicted at a future
observation z = (x7,u)7 as

, ﬂp). We have a closed-form solution w =

p
m(z) = Z w{x;a (u) +x(5 B ) (6)
=1

2.1.

For varying-coefficient partly linear models, Fan and Huang
(2005) developed the asymptotic properties of the paramet-
ric and nonparametric components. When the assumed model
is indeed the same as the underlying data generating mecha-
nism, their results can be directly applied. However, we do not
impose any true model in this manuscript. Therefore, some
theoretical issues must be clarified.

Suppose the true functional relationship is mqg(Z) =
E(Y|Z). The prediction error for a function m is usually
framed as the population risk under the L, loss

Theoretical Issues

R(m) = E{Y — m(Z))?

and the minimizer is m = mg. Let the corresponding empirical
risk be

Ry(m) =n"" Y (¥, = m(Z))?
i=1

and we have R(m) = ER,(m) where the expectation is condi-
tional given Z;, i = 1,...,n. The excess risk R(m) — R(my) is
equal to |m — mg||?> where | - || is the L, norm.

Now we define the function space where we search for m.
If we assume a varying-coefficient for the jth covariate, the
functional space is F; = {m : m(Z) = a;(U)X; + ZZ# B X}
Let m; = arg min,cr; R, (m) and let m;, = arg min,cr; R(m).
We can easily show that

~ 2 ~ 2 2
[lm; —moll” = |lm; —m||* + llmj. —mo|l”,

where the first term is the estimation error and the second
term is the approximation error. When the model is misspec-
ified, that is, mo ¢ F;, the excess risk is always positive. Thus,
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a theoretical condition for a valid varying-coefficient model-
ing is to require §; = ||m, — mol|? to be at a negligible order.
The so-called margin condition may be a useful technical tool
to guarantee this requirement. We refer to Lemma 2.1 in van
de Geer (2007) which may be used to provide a probability
bound on ER(m;) — R(mo).

Another theoretical issue of interest is the asymptotic
behavior of the estimated weights w. Li et al. (2015) con-
sidered such an issue and derived the asymptotic normality
for the weight distribution under regularity conditions. It is
not hard to modify their derivation to show the asymptotic
distribution for the estimated weights in this article. Sim-
ilar to their development, the large sample theory for the
weight estimates is unaffected by model misspecification. An
extension from local constant smoother to local polynomial
smoother is available in Huang and Li (2018). However, such
a large sample result is obtained without acknowledging the
fact that w € H. For constrained minimizers resulted from
quadratic programming the technical argument for consis-
tency and asymptotic distribution may be more complicated.
In the numerical studies of this article, we carry out a boot-
strap procedure to estimate the variability of the estimated
weights and thus facilitate the inference. The detailed boot-
strap procedure is given in Web Appendix of Supplementary
Materials.

2.2.

We have provided the estimation procedures in earlier sec-
tion. A few technical details warrant readers’ attention and
we carry out a discussion in this subsection.

First, the semiparametric estimation for varying-coefficient
models is a straight forward computation well developed
for applications. We choose Epanechnikov kernel in this
manuscript for its relative efficiency over other kernel func-
tions. The bandwidth is selected by the cross-validation
method. We note that bandwidth selection is an important
step for nonparametric function estimation. When fitting a
model with multiple nonparametric functions, one usually
has to assume the same bandwidth for all the function esti-
mates to facilitate computation. Such a convenient choice
may not be the most appropriate when different functions
require different degrees of smoothing. Allowing different
function estimates to have different bandwidth is not practi-
cally feasible since that can greatly increase the computation
burden and also cause unstable estimation. In contrast, in our
model averaging procedure, every sub-model only contains
one nonparametric function and thus only involves selection
of one bandwidth. The final SMAP combines these individual
model estimates and effectively provide the most appropriate
smoothing for different functional effect estimation without
seriously increasing the computational cost. Our numerical
work indicates that this method works very well in a wide
range of scenarios.

Secondly, the estimation of optimal weights is carried out
using a least squares approach. The default least squares esti-
mation does not acknowledge the fact that the weights must
be non-negative and the sum of the weights must exactly equal
one. In order to satisfy these constraints on parameter estima-
tion, we may adopt the well-known quadratic programming
techniques available in all sorts of statistical packages such as

Computational Issues
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R. Quadratic programming is a special type of mathematical
optimization problem—specifically, the problem of optimizing
(minimizing or maximizing) a quadratic function of several
variables subject to linear constraints on these variables. It
is a particular type of nonlinear programming. For general
problems a variety of methods are commonly used, including
interior point, active set, augmented Lagrangian, conjugate
gradient, gradient projection, and extensions of the simplex
algorithm. In all numerical studies of this article, we consider
two versions of VC-SMAP: one without constraint and one
with constraint. For the constrained estimation, we use the R
function solve.QP from the package quadprog developed by
Berwin Turlach and Andreas Weingessel. This routine basi-
cally implements the dual method of Goldfarb and Idnani
(1982, 1983).

One very relevant question is whether we can incorporate
more than one index variables in the VC-SMAP procedure. In
principle for ¢ index variables, we may compute g sets of sub-
models using the Fan—Huang estimators and then evaluate the
average of all ¢ x p models. Our methods can thus be straight
forwardly extended. This procedure might face a computa-
tional challenge when g and p are large. Some regularization
steps must be included in that case. In the numerical exam-
ples considered in this article, we confine our investigation
to a single index variable which is usually determined from
experience and agreed by data analysts to be the most likely
to be interacting with other variables.

3. Simulation Studies

In this section, we examine the performance of VC-SMAP
via numerical examples. To compare with the existing
model-based prediction methods, we investigate the fol-
lowing methods in all simulated data sets: (i) VC-SMAP
without constraints, (ii) VC-SMAP with weight constraints
(denoted as VC-SMAPc), (iii) the model averaging method
by Li et al. (2015) (denoted as SMAP), (iv) SMAP with
weight constraints (denoted as SMAPc), (v) the prediction
method using varying-coefficient model (denoted as VCP).
Moreover, we apply these approaches under two cases with
model misspecification, where (vi) we use an incorrect index
variable (denoted as VC-SMAP(MI), VC-SMAPc(MI), and
VCP(MI)); and (vii) we exclude some relevant variables in the
sub-models (denoted as VC-SMAP(MC), VC-SMAPc(MC),
SMAP(MC), SMAPc(MC), and VCP(MC)). We compare
these approaches to the oracle method with the true model
form known.

To evaluate the prediction perfornglce for proposed pro-
cedures, we calculate the bias ZieZ(Y,- —Y))/|Z|, the mean
absolute prediction error (MAPE) >~ _|Y; — Y,|/IZ], and the
mean squared prediction error (MSPE) > . _ (¥; —Y)?/|7,
where 7 represents the index set of either the training sample

or the test sample. We report the means and the standard
deviations of bias, MAPE and MSPE over 1000 simulation.

EXAMPLE 1. We generate data from Y =g;(U)X;+

gQ(U)XQ+g3(U)X3+4X4+4X5+4X6+8, where
g1(x) = cos(2mx), g2(x) = (2+x2)/(1 +x%)  and g3(x) =
{2 exp(—0.5x?)}/{exp(—0.5x2) + 1}, X =(Xy,..., Xg)T ~

N(0, %) with £ = (0.5V7*)%,_,, U ~ Unif(0,1). We simulate
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the noise from five different distributions: € ~ N(0, 0?) with
o=1,2, and 4, respectively, t(2)/5 as well as a mizture
normal distribution 0.4N(—3,1) 4+ 0.6N(2,1). Each sample
is of size N = Ney + Ngua, consisting of a train set of size Ny
and a test set of size ngiq = 50. We compare the performance
with sample sizes n = 100 and 200. In VC-SMAP, we use U
as the index variable and all X;, j=1,...,6 to construct the
submodels. In misspecification case (vi), we consider using X1
as the index variable for all the submodels. In misspecification
case (vii), we build all the models without Xe. The results
are displayed in Table 1. For space consideration, the results
regarding misspecification case (vii) and two noise cases:
N(0,2%) and N(0,4?) are retained in Tables S1 and S2 in
Web Appendiz A of Supplementary Materials.

Table 1 shows that the in-sample performance of the VCP
method is the best in most simulation situations. However, for
the out-of-sample performance, we can see that the proposed
VC-SMAPc method is better than all other methods as it
attains the smallest prediction errors, and thus is closest to the
oracle prediction method. In fact VCP forces all coefficients to
be functions and thus leads to overfitting for the training set.
Our VC-SMAP and VC-SMAPc perform much better than
SMAP and SMAPc in all cases, including the two misspecified
settings. This is not surprising because the underlying data
generation mechanism is not in an additive form. When there
is nonlinear interaction terms as in this example, the VC-
SMAP procedures may provide more accurate results than
the ordinary SMAP procedures.

We have implemented extensive simulation studies under
many other data generating settings and the numerical results
are in Web Appendix A of Supplementary Materials. In
summary, our proposed methods always perform very well,
relative to other existing methods. We may attempt to provide
an empirical answer on when and why our proposed prediction
method would work and outperform the existing approaches.
In practice, when the true data generating mechanism is very
complicated and the model form cannot be easily decided
without prior experience or preliminary numerical studies,
one usually has to adopt working models to make the pre-
diction. VC-SMAP approaches will be relatively more robust
against model mis-specification. One can see easily that this
method does not require a rigid designation of a true joint
model but integrates a number of possible sub-models. The
plausibility of each sub-model is then evaluated by its weight
in the averaging step. This flexible approach avoids making
a fixed parametric or nonparametric model assumption and
thus can yield prediction results closer to the real data, as
witnessed in our numerical studies.

4. Applications

4.1. New Zealand Workforce Study

We apply our proposal to a cross-sectional data set of a work-
force company, plus another health survey, in New Zealand
during the 1990s. The data were collected from a confidential
self-administered questionnaire for a large observational study
conducted during 1992-1993 and included physical, lifestyle,
and psychological variables. More details of the study can
be found in MacMahon et al. (1995). The data set xs.nz is
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available in R package VGAMdata. Our primary research aim
is to construct accurate predictions of the response variable,
body mass index (BMI), defined as the weight (kg) divided
by the squared height (m) (Yee, 2015). Before employing our
prediction methods, we first clean the data by removing obser-
vations with missing values and extreme outliers (Iglewics and
Hoaglin, 1993). We further exclude variables that do not seem
to affect BMI based on a preliminary exploratory analysis.

After removing missing cases, we retain 3765 observations
with 12 covariates for the following analysis, of which there
are 7 continuous variables (“age,” “sbp,” “dbp,” “cholest,”
“drinkmaxday,” “feethour,” “sleep”) and 5 binary variables
(“sex,” “diabetes,” “hypertension,” “acne,” “nervous”). The
marginal relationships between BMI and 12 predictors are
plotted in Figure S1 of Web Appendix B in the Supplementary
Web Materials. It is clear that the dependence pattern may
not be linear from eyeballing the plots. A direct application
of a linear model to this data suggest that all the estimated
coefficients except that for “sbp” are significant at level 0.05.

Because age is well-known for its interactive effects with
other variables, we choose it to be the index variable U. All of
the remaining predictors are included as covariates X for VC-
SMAP, VC-SMAPc, and VCP. BMI is log transformed and
all the continuous covariates are standardized to have mean
zero and variance one. To evaluate the predictive performance
of various methods, we randomly split the data set into two
equally sized sets for training and validation. We report the
in-sample performance and the out-of-sample performance in
terms of MSPE and MAPE, as well as their standard devia-
tions over 100 random partitions. Corresponding results are
summarized in Table 2. For in-sample performance, we can see
that VCP performs best followed by VC-SMAP, VC-SMAPc,
linear model prediction (LMP), and SMAPc. For out-of-
sample performance, on the other hand, one can see clearly
that VC-SMAP, VC-SMAPc and LMP are uniformly better
than the others (SMAP, SMAPc and VCP). Our proposal
VC-SMAPc performs better than LMP, although there is no
large difference between VC-SMAP, VC-SMAPc¢ and LMP.
The plot of predicted BMI by VC-SMAP and VC-SMAPc
approaches versus the VCP approach is showed in Figure 1.

To examine the estimated weights, we compare four model
averaging methods in Table 3. The weights for the constrained
prediction methods (VC-SMAPc and SMAPc) are relatively
sparse with much smaller standard deviation. We note that
the interpretation of weight coefficients in VC-SMAP is quite
distinct from that of ordinary regression coefficients. For
example, in the constrained VC-SMAP, only the weights for
sub-models 1, 5, and 6 are positive. This would still suggest
all variables be used to predict the BMI response; however, it
is best that we choose nonparametric function for the effects
of age and varying-coefficients for drinkmaxday and feethour,
and use constant coefficients for all other variables. In other
words, our VC-SMAP method may serve as a new method
to identify the nonparametric and parametric components of
the predictive model.

The estimated varying-coefficients multiplied by the cor-
responding weights from VC-SMAP and VC-SMAPc are
displayed in Figure 2. One may notice that the curves are of
different degrees of smoothness (with different bandwidths)
and this is achieved with our procedure easily. The functions
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Simulation results for Example 1 with three noise distributions: (al) e ~ N(0,
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Table 1

1), (a2) e ~1(2)/5 and (a3)

e~0.4N(-3,1)+ 0.6N(2,1), where the Bias, MSPE, MAPE and their standard deviations (in parenthesis) are computed
over 1000 replications

In-sample error

Out-of-sample error

& Mey Method Bias MSPE MAPE Bias MSPE MAPE
(al) 100 Oracle 0.001 (0.09)  0.79 (0.14)  0.70 (0.07) —0.005 (0.16)  1.23 (0.29)  0.88 (0.10)
VC-SMAP  —0.001 (0.09)  0.83 (0.13)  0.73 (0.06) —0.002 (0.16)  1.27 (0.32)  0.89 (0.11)
VC-SMAPc 0.000 (0.10)  0.89 (0.13)  0.75 (0.06) —0.001 (0. 16) 1.19 (0.28) 0.87 (0.11)
SMAP —0.012 (0.87)  3.88 (1.37)  1.54 (0.27)  0.002 (1.0 6.02 (2.85)  1.87 (0.40)
SMAPc —0.052 (1.89)  8.33(5.60)  2.25 (0.80) —0.039 (2. ) 9.85 (6.52)  2.44 (0.83)
VCP —0.001 (0.08)  0.69 (0.13) 0.65 (0.07) —0.001 (0.17)  1.40 (0.37)  0.93 (0.12)
VC-SMAP(MI) —0.001 (0.05)  1.09 (0.21)  0.83 (0.08)  0.001 (0.29)  3.36 (5.47)  1.15 (0.23)
VC-SMAPc¢(MI)  0.000 (0.05)  1.14 (0.20)  0.85 (0.08)  0.003 (0.24)  2.27 (2.64)  1.07 (0.16)
VCP(MI) —0.001 (0.05)  0.88 (0.17)  0.73 (0.08)  0.009 (0.34)  4.13 (4.05)  1.28 (0.26)
200 Oracle 0.000 (0.07)  0.88 (0.10)  0.75 (0.05)  0.005 (0.15)  1.11 (0.23)  0.84 (0.09)
VC-SMAP  —0.002 (0.07)  0.93 (0.10)  0.77 (0.05)  0.003 (0.16)  1.14 (0.24)  0.85 (0.09)
VC-SMAPc  —0.001 (0.07)  0.97 (0.11)  0.78 (0.05)  0.001 (0.16)  1.11 (0.22) 0.84 (0.09)
SMAP 0.005 (0.73)  3.12(0.95)  1.38(0.20)  0.003 (0.84)  4.08 (1.62)  1.55 (0.29)
SMAPc 0.008 (1.67)  9.47 (4.76)  2.36 (0.64) —0.005 (1.73)  9.63 (5.14)  2.39 (0.67)
VCP —0.001 (0.07)  0.83 (0.11) 0.72 (0.05) 0.006 (0.16)  1.19 (0.26)  0.87 (0.10)
VC-SMAP(MI)  0.000 (0.04)  1.26 (0.15)  0.89 (0.06)  0.013 (0.25)  2.98 (9.59)  1.07 (0.21)
VC-SMAPc¢(MI)  0.000 (0.04)  1.29 (0.15)  0.90 (0.06)  0.010 (0.22)  2.11 (5.22)  1.03 (0.15)
VCP(MI) 0.001 (0.04)  1.08 (0.13)  0.82 (0.05) —0.009 (0.26)  3.24 (4.25)  1.16 (0.20)
(a2) 100 Oracle 0.002 (0.07)  0.50 (6.23)  0.28 (0.15)  0.000 (0.10)  0.49 (1.12)  0.38 (0.13)
VC-SMAP  —0.001 (0.07)  0.51 (3.30)  0.33 (0.19)  0.005 (0.15)  1.08 (17.10)  0.40 (0.21)
VC-SMAPc  —0.001 (0.08)  0.57 (3.66)  0.34 (0.17)  0.003 (0.15)  1.01 (17.04) 0.39 (0.18)
SMAP 0.001 (0.88)  3.73 (9.42)  1.42(0.36)  0.000 (1.06)  5.39 (3.13)  1.73 (0.44)
SMAPc —0.013 (1.88) 821 (10.98) 2.16 (0.87) —0.020 (1.97)  9.16 (6.69)  2.32 (0.87)
VCP —0.001 (0.06)  0.42 (2.96) 0.26 (0.16) 0.005 (0.15)  1.17 (17.21)  0.43 (0.21)
VC-SMAP(MI)  0.000 (0.04)  0.75 (5.59)  0.53 (0.20) —0.007 (0.27)  3.07 (12.12)  0.80 (0.29)
VC-SMAPc¢(MI)  0.001 (0.04)  0.80 (6.02)  0.54 (0.16) —0.008 (0.23)  1.92 (7.43)  0.73 (0.22)
VCP(MI) 0.000 (0.04)  0.49 (1.09)  0.45 (0.10)  0.010 (0.27)  3.82 (30.29)  0.89 (0.36)
200 Oracle 0.001 (0.05)  0.55 (4.90) 0.29 (0.09) —0.001 (0.10)  0.46 (1.23)  0.34 (0.10)
VC-SMAP 0.001 (0.06)  0.66 (6.35)  0.33 (0.14) —0.007 (0.10)  0.49 (1.66)  0.36 (0.12)
VC-SMAPc 0.001 (0.06)  0.69 (6.45)  0.34 (0.12) —0.008 (0.09)  0.48 (1.65)  0.36 (0.11)
SMAP 0.001 (0.71)  2.64 (1.84)  1.20 (0.23) —0.004 (0.81)  3.35 (2.34)  1.35 (0.30)
SMAPc 0.018 (1.60)  9.07 (4.94)  2.26 (0.67)  0.028 (1.64)  8.94 (5.38)  2.27 (0.68)
VCP 0.001 (0.06)  0.60 (6.27)  0.29 (0.11) —0.006 (0.10)  0.51 (1.73)  0.36 (0.11)
VC-SMAP(MI)  0.001 (0.03)  0.85 (2.46)  0.58 (0.10)  0.003 (0.24)  2.42 (16.42) 0.74 (0.21)
VC-SMAPc(MI)  0.001 (0.03)  0.88 (2.64)  0.59 (0.08)  0.004 (0.20)  1.87 (14.04) 0.70 (0.17)
VCP(MI) 0.000 (0.03)  0.65 (1.44)  0.51 (0.07)  0.005 (0.23)  2.17 (2.89)  0.78 (0.19)
(a3) 100 Oracle —0.011 (0.25)  5.68 (0.65)  2.07 (0.15)  0.013 (0.42)  8.36 (1.57)  2.50 (0.22)
VC-SMAP 0.012 (0.24)  5.66 (0.73)  2.05(0.17)  0.011 (0.42)  8.79 (2.37)  2.54 (0.23)
VC-SMAPc 0.014 (0.25)  5.96 (0.68)  2.13 (0.15)  0.008 (0.40)  8.10 (1.55) 2.48 (0.21)
SMAP —0.034 (0.89) 870 (1.70)  2.43 (0.23) —0.058 (1.19) 1271 (3.62)  2.90 (0.37)
SMAPc —0.078 (1.89) 12,97 (5.89)  2.88 (0.61) —0.100 (2.12)  16.94 (8.12)  3.29 (0.72)
VCP 0.010 (0.22)  4.94 (0.61)  1.90 (0.14)  0.014 (0.43)  9.44 (2.10)  2.60 (0.26)
VC-SMAP(MI) —0.004 (0.12)  5.82 (0.74)  2.06 (0.17)  0.002 (0.58)  14.13 (22.96) 2.71 (0.43)
VC-SMAPc¢(MI) —0.002 (0.12)  6.03 (0.71)  2.11 (0.16)  0.013 (0.49)  9.90 (9.10)  2.56 (0.28)
VCP (MI) 0.001 (0.12)  4.92 (0.65) 1.84 (0.16) —0.014 (0.69)  16.40 (11.90)  2.94 (0.47)
200 Oracle —0.001 (0.19)  6.29 (0.45)  2.22 (0.10) —0.012 (0.41)  7.66 (1.02)  2.46 (0.18)
VC-SMAP  —0.007 (0.18)  6.33 (0.48) 222 (0.11) —0.013 (0.39)  7.77 (1.09)  2.46 (0.18)
VC-SMAPc  —0.006 (0.18)  6.51 (0.44)  2.28 (0.09) —0.012 (0.39)  7.49 (0.96) 2.44 (0.17)
SMAP 0.014 (0.75)  8.35 (1.07) 242 (0.15)  0.039 (1.0)  10.37 (2.36)  2.68 (0.29)
SMAPc 0.049 (1.65)  14.70 (4.99)  3.04 (0.48)  0.068 (1.8)  16.19 (6.00)  3.22 (0.57)
VCP —0.006 (0.17)  5.83 (0.43) 2.12 (0.09) —0.005 (0.40)  8.04 (1.19)  2.48 (0.19)
VC-SMAP(MI) —0.003 (0.09)  6.57 (0.52)  2.23 (0.11)  0.021 (0.51)  10.81 (25.65) 2.57 (0.32)
VC-SMAPc¢(MI) —0.003 (0.09)  6.69 (0.50)  2.26 (0.11)  0.020 (0.48)  9.15 (17.47)  2.51 (0.25)
VCP(MI) —0.002 (0.09)  5.83 (0.46) 2.07 (0.10) 0.017 (0.56)  12.79 (10.80) 2.72 (0.35)
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Table 2
Prediction results for New Zealand workforce study, where
the values in parenthesis are standard deviations

MSPE MAPE
In-sample performance
VC-SMAP 0.0144 (0.0003) 0.0954 (0.0011)
VC-SMAPc 0.0145 (0.0003 0.0958 (0.0011)
SMAP 0.0162 (0.0003) 0.1017 (0.0012)
SMAPc 0.0164 (0.0003) 0.1026 (0.0011)
VCP 0.0135 (0.0003) 0.0926 (0.0011)
LMP 0.0149 (0.0003) 0.0970 (0.0012)
Out-of-sample performance
VC-SMAP 0.0151 (0.0003) 0.0975 (0.0011)
VC-SMAPc 0.0149 (0.0003) 0.0971 (0.0011)
SMAP 0.0171 (0.0014) 0.1031 (0.0014)
SMAPc 0.0167 (0.0004) 0.1035 (0.0012)
VCP 0.0157 (0.0010) 0.0987 (0.0014)
LMP 0.0151 (0.0003) 0.0973 (0.0012)

with less variability are reduced to a constant under the con-
strained estimation. Besides offering accurate prediction, the
constrained VC-SMAP may be more interpretable and thus
more appealing to practitioners.

4.2.  Bowine Collagen Trial Study

We next consider some clinical data, which was previ-
ously studied by Li and Wong (2009) and originally from
a 3-year NIH-sponsored randomized Bovine Collagen Trial
for Scleroderma patients conducted at 12 centers in the USA
(Postlethwaite et al., 2008). The raw data set consists of 831
observations. The response variable is the Modified Rodnan
Skin Score (mrss) that uses skin thickness to measure disease
severity. It is a continuous variable with an aggregated score
from 17 areas of the body with a score of 0-3 from each area.
The maximum value of mrss is 51 and a larger value means
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Figure 1. Predicted BMI by VC-SMAP and VC-SMAPc
versus VCP for the training sample of New Zealand workforce
study.

more disease severity. In our analysis, we log transformed the
skin score and include nine continuous predictors and two dis-
crete predictors in our analysis. The covariates include patient
global assessment, physician global assessment, health assess-
ment questionnaire, a pain score, several pulmonary function
measures, and age. The two discrete covariates are ethnic and
sex. Further information of the study and the variables are in
Postlethwaite et al. (2008).

To apply our method, we select age as the index variable
U since it is generally accepted that patient’s age interacts
with all other predictors. The results for MSPE and MAPE
are summarized in Table 4. We observe that the training data

Table 3
Results for estimated weights for New Zealand workforce study, where the values in the brackets are *standard deviations
computed based on 400 bootstrap samples. The weights w;s correspond to different submodels with nonparametric component

corresponding to “age”

(intercept), “sbp,” “dbp,” “cholest,” “drinkmazday,” “feethour,” “sleep,” “se

x,” “diabetes,”

“hypertension,” “acne,” and “nervous,” respectively

SMAPc SMAP VC-SMAPc VC-SMAP

Weight Estimate Estimate Weight Estimate Estimate
w1 0.038 (0.000) 0.201 (0.127) w1 0.528 (0.223) 0.750 (0.218)
wo 0.081 (0.026) 0.195 (0.051) wo 0.000 (0.084) 0.187 (0.324)
w3 0.649 (0.030) 0.651 (0.054) w3 0.000 (0.086) 0.201 (0.412)
wy 0.232 (0.017) 0.353 (0.089) wy 0.000 (0.101) 0.239 (0.242)
ws 0.000 (0.000) 0.059 (0.960) ws 0.073 (0.092) 0.467 (0.210)
We 0.000 (0.000) —0.459 (0.532) We 0.400 (0.196) 0.745 (0.144)
wr 0.000 (0.000) 0.000 (0.653) wy 0.000 (0.101) —0.112 (0.495)
ws 0.000 (0.151) —0.068 (0.253)
wo 0.000 (0.081) 0.240 (0.546)
w1o 0.000 (0.072) —1.510 (0.500)
w1y 0.000 (0.066) 0.151 (0.593)
wia 0.000 (0.078) —0.290 (0.491)
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Figure 2. Estimated coefficient curves by two proposed methods: VC-SMAP and VC-SMAPc, where blue line in each
subplot corresponds to the VC-SMAP method and red line represents the VC-SMAPc method.

performance of our proposed VC-SMAP is very close to that
of VCP which achieves the lowest in-sample prediction error.
When applying to the test sets, the VC-SMAPc outperforms

other methods for the out-of-sample prediction.
This clinical data is much smaller than the New Zealand

workforce study. Using moderate training sample size, we
examine how the training size affects the prediction accuracy.
When training sample size is adjusted to be four times that
of the test sample, a similar conclusion can be obtained from
Table 4. Other training sample sizes are also investigated in
our analysis and the results are very similar. More analysis
results can be found in Web Appendix B of the Supplementary
Web Materials.

5. Supplementary Materials

Web Appendices, Tables, and Figures referenced in Sections
3 and 4, along with the R and Matlab code, are available
with this article at the Biometrics website on Wiley Online
Library.
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Table 4
Prediction results for Bovine Collagen data, where the values in parenthesis are standard deviations
Size ratio of train and test sets 1:1 Size ratio of train and test sets 4:1
MSPE MAPE MSPE MAPE
In-sample performance

VC-SMAP 0.0943 (0.008) 0.2262 (0.009) 0.1043 (0.004) 0.2382 (0.005)
VC-SMAPc 0.1033 (0.008) 0.2371 (0.008 0.1083 (0.004) 0.2423 (0.004)
SMAP 0.1312 (0.011) 0.2674 (0.010 0.1335 (0.005) 0.2687 (0.005)
SMAPc 0.1373 (0.011) 0.2737 (0.009 0.1381 (0.005) 0.2739 (0.005)
VCP 0.0944 (0.011) 0.2221 (0.015 0.0906 (0.011) 0.2153 (0.015)
LMP 0.1344 (0.009) 0.2730 (0.009 0.1350 (0.005) 0.2720 (0.005)

Out-of-sample performance
VC-SMAP 0.1591 (0.122) 0.2754 (0.019 0.1734 (0.499) 0.2609 (0.043)
VC-SMAPc 0.1296 (0.016) 0.2659 (0.009 0.1237 (0.061) 0.2561 (0.020)
SMAP 0.1507 (0.022) 0.2837 (0.010 0.1414 (0.022) 0.2753 (0.018)
SMAPc 0.1445 (0.012) 0.2812 (0.008 0.1429 (0.021) 0.2771 (0.017)
VCP 0.1696 (0.036) 0.2930 (0.016 0.1400 (0.035) 0.2696 (0.021)
LMP 0.1408 (0.010) 0.2791 (0.008 0.1429 (0.021) 0.2792 (0.017)
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