
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Online Learning of Combinatorial Objects

Permalink
https://escholarship.org/uc/item/7kw5d47f

Author
Rahmanian, Holakou

Publication Date
2018

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, availalbe at https://creativecommons.org/licenses/by-nc/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7kw5d47f
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

SANTA CRUZ

ONLINE LEARNING OF COMBINATORIAL OBJECTS

A thesis submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Holakou Rahmanian

September 2018

The Dissertation of Holakou Rahmanian
is approved:

Professor Manfred K. Warmuth, Chair

Professor S.V.N. Vishwanathan

Professor David P. Helmbold

Lori Kletzer
Vice Provost and Dean of Graduate Studies



Copyright © by

Holakou Rahmanian

2018



Contents

List of Figures vi

List of Tables vii

Abstract viii

Dedication ix

Acknowledgments x

1 Introduction 1
1.1 The Basics of Online Learning . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Learning Combinatorial Objects . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Challenges in Learning Combinatorial Objects . . . . . . . . . . 6
1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Expanded Hedge (EH) . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Follow The Perturbed Leader (FPL) . . . . . . . . . . . . . . . . 9
1.3.3 Component Hedge (CH) . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Overview of Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.1 Overview of Chapter 2: Online Learning with Extended Formu-

lations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.2 Overview of Chapter 3: Online Dynamic Programming . . . . . . 12
1.4.3 Overview of Chapter 4: Online Non-Additive Path Learning . . . 13

2 Online Learning with Extended Formulations 14
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 The Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 XF-Hedge Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Regret Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 XF-Hedge Examples Using Reflection Relations . . . . . . . . . . . . . . 29
2.4 Fast Prediction with Reflection Relations . . . . . . . . . . . . . . . . . 36
2.5 Projection with Reflection Relations . . . . . . . . . . . . . . . . . . . . 39

iii



2.5.1 Projection onto Each Constraint in XF-Hedge . . . . . . . . . . . 41
2.5.2 Additional Loss with Approximate Projection in XF-Hedge . . . 42
2.5.3 Running Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Online Dynamic Programming 50
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.1 Expanded Hedge on Paths . . . . . . . . . . . . . . . . . . . . . . 56
3.1.2 Component Hedge on Paths . . . . . . . . . . . . . . . . . . . . . 56
3.1.3 Component Hedge vs Expanded Hedge . . . . . . . . . . . . . . . 58

3.2 Learning Multipaths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.1 Expanded Hedge on Multipaths . . . . . . . . . . . . . . . . . . . 62
3.2.2 Component Hedge on Multipaths . . . . . . . . . . . . . . . . . . 69
3.2.3 Stochastic Product Form vs Mean Form . . . . . . . . . . . . . . 77

3.3 Online Dynamic Programming with Multipaths . . . . . . . . . . . . . . 79
3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.1 Binary Search Trees . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.4.2 Matrix-Chain Multiplication . . . . . . . . . . . . . . . . . . . . 84
3.4.3 Knapsack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.4.4 k-Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.4.5 Rod Cutting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.4.6 Weighted Interval Scheduling . . . . . . . . . . . . . . . . . . . . 96

3.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 99

4 Online Non-Additive Path Learning 103
4.1 Basic Notation and Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.2 Overview of Weighted Finite Automata . . . . . . . . . . . . . . . . . . 109

4.2.1 Weight Pushing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.2.2 Intersection of WFAs . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3 Count-Based Gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.3.1 Context-Dependent Rewrite Rules . . . . . . . . . . . . . . . . . 114
4.3.2 Context-Dependent Automaton A′ . . . . . . . . . . . . . . . . . 117

4.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.4.1 Full Information: Context-dependent Component Hedge Algorithm122
4.4.2 Semi-Bandit: Context-dependent Semi-Bandit Algorithm . . . . 124
4.4.3 Full Bandit: Context-dependent ComBand Algorithm . . . . . . 125
4.4.4 Gains U vs Losses − log(U) . . . . . . . . . . . . . . . . . . . . . 127

4.5 Extension to Gappy Count-Based Gains . . . . . . . . . . . . . . . . . . 128
4.6 Applications to Ensemble Structured Prediction . . . . . . . . . . . . . . 132

4.6.1 Full Information: Context-dependent Component Hedge Algorithm135
4.6.2 Semi-Bandit: Context-dependent Semi-Bandit Algorithm . . . . 136
4.6.3 Full Bandit: Context-dependent ComBand Algorithm . . . . . . 137

4.7 Path Learning for Full Bandit and Arbitrary Gain . . . . . . . . . . . . 138

iv



4.8 Conclusion and Open Problems . . . . . . . . . . . . . . . . . . . . . . . 144

5 Conclusions and Future Work 145

v



List of Figures

1.1 Examples of combinatorial objects. . . . . . . . . . . . . . . . . . . . . . 6

2.1 Extended formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Constructing Extended Formulations from Reflection Relations. . . . . . 31
2.3 An extended formulation for permutation on n = 3 items. . . . . . . . . 34

3.1 Examples of multi-DAGs and multipaths. . . . . . . . . . . . . . . . . . 61
3.2 Example of weight pushing for regular DAGs . . . . . . . . . . . . . . . 65
3.3 Mapping between Stochastic Product Form in EH and Mean Form in CH. 78
3.4 Examples of multipaths and multi-DAGs for Binary Search Trees. . . . 83
3.5 Examples of multipaths and multi-DAGs for Matrix-Chain Multiplications. 86
3.6 Examples of paths and DAGs for the Knapsack problem. . . . . . . . . 89
3.7 Examples of paths and DAGs for the k-set problem. . . . . . . . . . . . 91
3.8 An example of all cutting for a given rod in the rod cutting problem. . . 93
3.9 Examples of paths and DAGs for the rod cutting problem. . . . . . . . . 94
3.10 An example of weighted interval scheduling with n = 6 . . . . . . . . . . 97
3.11 Examples of paths and DAG for the weight interval scheduling problem. 98

4.1 Combining two different translators. . . . . . . . . . . . . . . . . . . . . 104
4.2 An example of the expert automaton and its output. . . . . . . . . . . . 107
4.3 Information revealed in different settings. . . . . . . . . . . . . . . . . . 108
4.4 The context-dependent transducer for a given expert automaton. . . . . 115
4.5 The context-dependent automaton for a given expert automaton. . . . . 119
4.6 Outputs of the expert automaton and its associated context-dependent

automaton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.7 The structured experts and their associated expert automaton allowing

all combinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.8 The context-dependent automaton for a given expert automaton in en-

semble structured prediction. . . . . . . . . . . . . . . . . . . . . . . . . 135
4.9 The update WFA for EXP3-AG. . . . . . . . . . . . . . . . . . . . . . . 139

vi



List of Tables

1.1 Examples of combinatorial objects with their components. . . . . . . . . 5

2.1 Comparing the regret bounds of XF-Hedge with other existing algorithms
in different problems and different loss regimes. . . . . . . . . . . . . . . 48

3.1 From graphs to multi-graphs . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Performance of various algorithms over different problems in the full in-

formation setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

vii



Abstract

Online Learning of Combinatorial Objects

by

Holakou Rahmanian

This thesis develops algorithms for learning combinatorial objects. A combinatorial

object is a structured concept composed of components. Examples are permutations,

Huffman trees, binary search trees and paths in a directed graph. Learning combina-

torial objects is a challenging problem: First, the number of combinatorial objects is

typically exponential in terms of number of components. Second, the convex hull of

these objects is a polytope whose characterization in the original space may have ex-

ponentially many facets or a description of the polytope in terms of facets/inequalities

may not be even known. Finally, the loss of each object could be a complicated function

of its component and may not be simply additive as a function of the components. In

this thesis, we explore a wide variety of combinatorial objects and address the chal-

lenges above. For each combinatorial object, we go beyond the original space of the

problem and introduce auxiliary spaces and representations. The representation of the

objects in these auxiliary spaces admits additive losses and polytopes with polynomially

many facets. This allows us to extend well-known algorithms like Expanded Hedge and

Component Hedge to these combinatorial objects for the first time.
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Chapter 1

Introduction

This thesis shows some significant novel results in online learning which is a

subfield of machine learning (ML). Online learning has the following characteristics. The

learning is online: Data points are presented in a sequential fashion. The learning is

supervised : The algorithm receives feedback on the quality of its prediction. The data

is adversarial : There is no assumption regarding the underlying distribution which

generates the data points [Cesa-Bianchi and Lugosi, 2006, Littlestone and Warmuth,

1994].

In this thesis, we consider online learning of combinatorial objects. Informally,

a combinatorial object is a structured concept composed of components. Examples are

k-sets, permutations, paths in graph. The main challenge in these problems is to deal

with large number of combinatorial objects typically exponential in terms of the number

of components.

Two well-known algorithms proposed for these problems in previous papers
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are Expanded Hedge (EH) [Takimoto and Warmuth, 2003] and Component Hedge (CH)

[Koolen et al., 2010]. These algorithms, however, cannot be efficiently applied to all

combinatorial objects because they require certain conditions which are described later

in this chapter. In this thesis, we explore several classes of such combinatorial objects.

For each class, we introduce auxiliary spaces and representations which allow us to

extend well-known online learning algorithms like EH and CH to a significantly wider

class of combinatorial objects than was possible before.

We start in this chapter with an introduction to online learning as well as an

overview of the problems discussed in the thesis. This chapter itself is organized as

follows: Section 1.1 explains basic concepts of online learning, such as the interactive

learning protocol, the adversarial data setting and worst case regret bounds. The online

learning setting and its challenges are further discussed in Section 1.2 for learning com-

binatorial objects. In Section 1.3, we discuss the main algorithms for online learning

of combinatorial objects currently in the literature. Finally, in Section 1.4, we give an

overview of the main chapters of the thesis (Chapters 2, 3 and 4).

1.1 The Basics of Online Learning

Online learning is a rich and vibrant area, see Vovk [1990], Littlestone and

Warmuth [1994], Cesa-Bianchi et al. [1996, 1997] for some early papers, and Cesa-

Bianchi and Lugosi [2006] for a textbook treatment. The online learning setting is a

game between the learner and the adversary on a set of experts over a series of trials.
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This game is illustrated in Prediction Game 1 and summarized in the following: In

each trial, the learner makes a prediction with an expert, observes the losses of all the

experts, and finally, incurs the loss of its prediction. The algorithm can then update

its internal representation based on this feedback and the process moves on to the next

trial.

Prediction Game 1 Prediction game for Experts E = {E1, . . . , EN}.
1: Given a set of N experts E = {E1, . . . , EN}

2: For each trial t = 1, . . . , T

3: The learner randomly predicts with the itth expert it ∈ [N ].

4: The adversary reveals the loss of each expert as a loss vector `t ∈ [0, 1]N .

5: The learner incurs a (expected) loss E[`t,it ].

Unlike batch learning settings, there is no assumed distribution from which

losses are randomly drawn. Instead the losses are drawn adversarially. In general, an

adversary can force arbitrarily large loss on the algorithm. So instead of measuring the

algorithm’s performance by the total loss incurred, the algorithm is measured by its

regret, the amount of loss the algorithm incurs above that of the single best expert in

the set of experts. Therefore the regret of the algorithm can be viewed as the cost of

not knowing the best expert ahead of time:

Regret =

T∑
t=1

E[`t,it ]− min
i∈[N ]

T∑
t=1

`t,i︸ ︷︷ ︸
L∗

One way to create algorithms for these problems is to use one of the well-

known so-called “experts algorithms” like Randomized Weighted Majority [Littlestone

3



and Warmuth, 1994] or Hedge [Freund and Schapire, 1997]. In these algorithms, the

learner maintains a weight vector wt ∈ RN≥0 on the simplex throughout the trials, i.e.∑N
i=1wt,i = 1 for all t ∈ {1 . . . T}. This weight vector is initialized to the uniform

distribution w1 = [ 1
N . . . 1

N ]. The expected loss of the learner at the tth trial is E[`t,it ] =

wt · `t. After observing the losses in each trial t, the learner updates its weight vector

multiplicatively by the exponentiated factors: ŵt+1,i = wt,i exp(−η`t,i) where η > 0

is the learning rate. Finally, the learner normalizes the ŵt+1 weights resulting in the

weight vector wt+1 for the next trial. With proper tuning of the learning rate η, the

regret of these algorithms is logarithmic in the number of experts.

Theorem 1 (Littlestone and Warmuth [1994], Freund and Schapire [1997]). With

proper tuning of the learning rate η, the Hedge and Randomized Weighted Majority

algorithms achieve the regret bound

T∑
t=1

wt · `t − min
i∈[N ]

T∑
t=1

`t,i ≤
√

2L∗ logN + logN,

where L∗ is the cumulative loss of the best expert in hindsight.

1.2 Learning Combinatorial Objects

In Prediction Game 1, we consider the scenario where the experts are com-

binatorial objects. A combinatorial object is represented as a n-tuple of non-negative

integers where each integer is associated with a component of the object. The combina-

torial class is the finite set of all combinatorial objects denoted by1 H ⊂ Nn. Table 1.1

1 N denotes the set of non-negative integers.

4



Combinatorial Object Component Example

Permutation position assignment [4, 2, 3, 1, 5] with n = 5
k-Set presence of the element [0, 1, 1, 0, 0] with n=5 and k=2
Binary Search Tree depth of the node [2, 3, 4, 1, 2] with n = 5

(see Figure 1.1(a))
Huffman Tree depth of the leaf [2, 3, 3, 2, 2] with n = 5

(see Figure 1.1(b))
Paths presence of the edge [0, 1, 0, 0, 1, 0, 1] with n = 7

(see Figure 1.1(c))

Table 1.1: Examples of combinatorial objects with their components.

and Figure 1.1 provide a few examples of combinatorial objects and their components.

Figure 1.1(a) illustrates a binary search tree containing the keys k1 < . . . < k5 located

at depths 2, 3, 4, 1 and 2, respectively. In Figure 1.1(b) a Huffman tree is shown which

encodes the symbols s1, . . . , s5 which are located at leaves in depths2 2, 3, 3, 2 and 2,

respectively. Figure 1.1(c) shows a path from the source s to the sink t (illustrated in

blue) in a directed graph with edges as components. Since the edges e2, e5 and e7 are

present in the path, then their associated bits are 1s and the bit-vector representation

of the path is [0, 1, 0, 0, 1, 0, 1].

When learning combinatorial objects online, the adversary reveals a piece of

information about every component in each trial. Each component contributes to the

loss of the combinatorial object and this loss can be easily computed. In several cases,

the adversary reveals a loss vector which contains the loss of each component and the

loss of the objects is linear in terms of the components. For example, in learning k-sets,

the adversary reveals the loss of each element. Then the loss of the k-set is the sum over

2 Unlike binary search trees, the depths in Huffman trees start from zero at the root. This is because
each edge represent a bit in the encoding of the symbols and the depth of each symbol is its code length
in the encoding.
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(a)

[2, 3, 4, 1, 2]

k4

k1

k2

k3

k5
(b)

[2, 3, 3, 2, 2]

s1

s2 s3

s4 s5

(c)

[0, 1, 0, 0, 1, 0, 1]

s

t

e1

e2
e3

e4
e5

e6

e7

Figure 1.1: Examples of (a) a binary search tree, (b) a Huffman tree, and (c) a path in

a directed graph.

the losses of the k elements in the subset [Warmuth and Kuzmin, 2008]. As another

example, in online shortest path learning, the adversary reveals the cost of each edge

and the loss of each path is typically the sum of the costs of the edges along that path

[Takimoto and Warmuth, 2003].

1.2.1 Challenges in Learning Combinatorial Objects

Learning combinatorial objects is typically a challenging problem. The com-

binatorial nature of this objects and the structure of their losses may bring certain

challenges:

• Exponentially Many Experts. The number of experts N is typically huge in terms

of number of components n. Examples are N = n! for permutations, N =
(
n
k

)
for k-sets, and N = Cn for binary search trees where Cn = 1

n+1

(
2n
n

)
is the nth

Catalan number. Thus a naive attempt to implement algorithms like Hedge (i.e.

maintaining one weight per expert) results in an inefficient algorithm. It is simply

6



impractical to keep track of a distribution over the combinatorial objects via a

weight vector of exponential size.

• Ill-behaved Polytopes. Even maintaining a mean vector of a distribution over all

combinatorial objects could be challenging. Mean vectors live in the convex hull

F of the combinatorial objects. The description of the polytope F in its natural

space may have exponentially many facets or a characterization of the facets in

terms of inequalities may not be even known.

• Non-Additive Losses. The loss or the gradient thereof appears in the exponent of

the multiplicative update factors for each combinatorial object. Additivity of the

loss in terms of the components turns the update factors into products over the

components which makes the updates mathematically convenient. The loss of the

combinatorial object, however, may not be additive in terms of the components.

Several modern machine learning applications like machine translation, automatic

speech recognition, optical character recognition and computer vision can be rep-

resented as a learning a minimum loss path in a directed graph where the loss of

each path is not additive in the edges along the path.

In this thesis, we explore a wide variety of classes of combinatorial objects

and address the challenges above. In each of these classes of combinatorial object, we

provide an efficient solution. The common theme of our solutions is to go beyond the

original space of the problem and use an auxiliary space. In that auxiliary space, the

loss will be additive in terms of the components of the auxiliary space and the convex

7



hull of the objects is a polytope with a polynomial number of facets. This will allow us

to deal with exponentially many combinatorial experts.

Main Idea of Thesis

The main idea of this thesis is to use auxiliary spaces and representations to deal

with the challenges in online learning of combinatorial objects.

1.3 Background

We give a brief overview of the main algorithms for online learning of combi-

natorial objects with additive losses currently in the literature.

1.3.1 Expanded Hedge (EH)

When Hedge is applied to combinatorial objects, we call it Expanded Hedge

(EH) because it is applied to a combinatorially “expanded domain”. In this setting,

there is one expert per object. In some combinatorial objects, an efficient implementa-

tion of EH can be achieved by exploiting the structure of the experts and losses.

Consider the additive path learning problem in a directed graph with one

designated source node and one designated sink node. The experts are the set of paths

from the source to the sink. The loss of each path is the sum of the losses of the edges

along that path. Takimoto and Warmuth [2003] introduced an efficient implementation

of EH by exploiting the additivity of the loss over the edges of a path. Viewing each

path as an expert, the weight wπ of a path π is proportional to
∏
e∈π exp(−ηLe), where

8



Le is the cumulative loss of edge e. The algorithm maintains one weight we per edge

e ∈ E. These weights are in stochastic form, that is, the total weight of all edges

leaving any non-sink node sums up to 1. The weight of each path is in product form

wπ =
∏
e∈π we and sampling a path is easy. At the end of the current trial, each edge

e receives additional loss `e, and path weights are updated. The multiplicative updates

with exponentiated loss for the paths decomposes over the edges due to additivity of

the loss over the edges. Thus the updated path weights will be

wnew
π =

1

Z
wπ exp(−η

∑
e∈π

`e) =
1

Z

∏
e∈π

we exp(−η`e),

where Z is a normalization. Now a certain efficient procedure called weight pushing

[Mohri, 2009b] is applied. It finds new edge weights wnew
e which are again in stochastic

product form, i.e. the total outflow out of each node is one and the updated weights

are wnew
π =

∏
e∈π w

new
e , facilitating sampling.

1.3.2 Follow The Perturbed Leader (FPL)

The Follow the Perturbed Leader (FPL) [Kalai and Vempala, 2005] is another

algorithm for learning combinatorial objects with additive losses. FPL adds random

perturbations to the cumulative loss of each component in each trial. Then it predicts

with the combinatorial object that has the minimum perturbed loss.

1.3.3 Component Hedge (CH)

The Component Hedge (CH) algorithm [Koolen et al., 2010] is the main generic

approach for learning combinatorial objects with additive losses. Each object is repre-
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sented as a bit vector over the set of components where the 1-bits indicate the compo-

nents appearing in the object. The algorithm maintains a mean vector f representing a

mixture over all objects. The weight space of CH is thus the convex hull of the weight

vectors representing the objects. This convex hull is a polytope F of dimension n with

the objects as corners.

In each trial, the weight of each component (i.e. coordinate) fi of f is updated

multiplicatively by its associated exponentiated loss: fi ← fi e
−η `i . Then the weight

vector f is projected back to the polytope F via relative entropy projection. F is

often characterized with a set of equality constraints (i.e. it is an intersection of affine

subspaces). Iterative Bregman projection [Bregman, 1967] is often used; it enforces each

constraint in turn. Although this can violate previously satisfied constraints, repeatedly

cycling through them is guaranteed to converge to the proper projection if all the facets

of the polytope are equality constraints. For the efficiency of CH it is required that the

polytope F has a small number of facets (polynomial in n).

The CH algorithm predicts with a random corner of the polytope whose ex-

pectation equals the maintained mean vector in the polytope. The prediction step is

usually done by first decomposing the weight vector into a small convex combination of

combinatorial objects, and then randomly sampling from the convex combination. The

decomposition step is typically done using a greedy approach: At each iteration, one

combinatorial object is chosen in a greedy fashion such that removing that object from

the weight vector zeros out one component of the remaining weight vector.
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1.4 Overview of Chapters

We now sketch the contents of the main chapters of this dissertation. Chapter 2

and Chapter 3 have been published at ALT 2018 and NIPS 2017 conferences [Rahmanian

et al., 2018, Rahmanian and Warmuth, 2017], respectively. Chapter 4 is based on the

arXiv preprint [Cortes et al., 2018].

1.4.1 Overview of Chapter 2: Online Learning with Extended Formu-

lations

The standard techniques for online learning of combinatorial objects perform

multiplicative updates followed by projections into the convex hull of all the objects.

However, this methodology can be expensive if the convex hull contains many facets.

For example, the convex hull of n-symbol Huffman trees is known to have exponen-

tially many facets [Maurras et al., 2010]. We get around this difficulty by exploiting

extended formulations [Kaibel, 2011], which encode the polytope of combinatorial ob-

jects in a higher dimensional “extended” space with only polynomially many facets. We

develop a general framework for converting extended formulations into efficient online

algorithms with good relative loss bounds. We present applications of our framework

to online learning of Huffman trees and permutations. The regret bounds of the re-

sulting algorithms are within a factor of O(
√

log(n)) of the state-of-the-art specialized

algorithms for permutations, and depending on the domain of the loss vectors, improve

on or match the state-of-the-art for Huffman trees. Our method is general and can be
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applied to other combinatorial objects. Furthermore, we believe this technique provides

a promising approach for the bandit setting as well as problems with more complex

losses.

1.4.2 Overview of Chapter 3: Online Dynamic Programming

We consider a special method of constructing extended formulations for on-

line learning from a dynamic programming algorithm. We propose a general method

for learning combinatorial objects whose offline optimization problem can be solved

efficiently via a dynamic programming algorithm with arbitrary min-sum recurrence

relations. Examples include Binary Search Trees, Matrix-Chain Multiplication, k-sets,

Knapsack, Rod Cutting, and Weighted Interval Scheduling.

Using the underlying graph of subproblems (called multi-DAG) induced by

the dynamic programming algorithm for these problems, we define a representation

of the combinatorial objects by encoding them as a specific type of subgraph called

multipaths. These multipaths encode each object as a series of successive decisions

(i.e. the components) over which the loss is linear, even though the loss may not be

linear in the original representation (e.g. for Matrix-Chain Multiplication). Then we

prove that minimizing a specific dynamic programming problem from this class over

trials reduces to online learning of multipaths in the induced multi-DAG. We show

that the multi-DAGs and multipaths are natural generalization of DAGs and paths.

Also the associated polytope has a polynomial number of facets in this representation.

These properties allow us to generalize the existing EH [Takimoto and Warmuth, 2003]
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and CH [Koolen et al., 2010] algorithms from online shortest path problem to learning

multipaths. Additionally, we also introduce a new and faster prediction technique for

CH for multipaths which directly samples from an appropriate distribution, bypassing

the need to create a decomposition with small support.

1.4.3 Overview of Chapter 4: Online Non-Additive Path Learning

We study the problem of online path learning with non-additive gains, which

is a central problem appearing in several applications, including ensemble structured

prediction. We present new online algorithms for path learning with non-additive count-

based gains for the three settings of full information, semi-bandit and full bandit. These

algorithms admit very favorable regret guarantees and their guarantees can be viewed

as the non-additive counterparts to the best known guarantees in the additive case. A

key component of our algorithms is the definition and computation of an intermediate

context-dependent automaton that enables us to use existing algorithms designed for

additive gains. We further apply our methods to the important application of ensemble

structured prediction. Finally, beyond count-based gains, we give an efficient implemen-

tation of the EXP3 algorithm for the full bandit setting with an arbitrary (non-additive)

gain.
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Chapter 2

Online Learning with Extended

Formulations

This chapter introduces a general methodology for developing efficient and

effective algorithms for learning combinatorial structures. Examples include learning

the best permutation of a set of elements for scheduling or assignment problems, or

learning the best Huffman tree for compressing sequences of symbols. Online learning

algorithms are being successfully applied to an increasing variety of problems, so it is

important to have good tools and techniques for creating good algorithms that match

the particular problem at hand.

The online learning setting proceeds in a series of trials where the algorithm

makes a prediction or takes an action associated with an object in the appropriate

combinatorial space and then receives the loss of its choice in such a way that the loss

of any of the possible combinatorial objects can be easily computed (see Prediction
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Prediction Game 2 Prediction game for the combinatorial class H ⊂ Nn.

1: For each trial t = 1, . . . , T

2: The learner randomly predicts with an object ĥt−1 in class H.

3: The adversary reveals a loss vector `t ∈ [0, 1]n.

4: The learner incurs a (expected) linear loss E[ĥt−1 · `t].

Game 2). The algorithm can then update its internal representation based on this

feedback and the process moves on to the next trial. The algorithm’s performance is

measured by its regret, the amount of loss the algorithm incurs above that of the single

best predictor in some comparator class. Usually the comparator class is the class of

objects in the combinatorial space being learned. To make the setting concrete, consider

the case of learning Huffman trees for compression1. In each trial, the algorithm would

(perhaps randomly) predict a Huffman tree, and then obtain a sequence of symbols to

be encoded. The loss of the algorithm on that trial is the average number of bits per

symbol to encode the sequence using the predicted Huffman tree. This loss is essentially

the inner product of the frequency vector of the symbols and the code lengths of the

symbols. More generally, the loss could be defined as the inner product of any loss

vector from the unit cube and the code lengths of the symbols. The total loss of the

algorithm is the expected average bits per symbol summed over trials. The regret of the

algorithm is the difference between its total loss and the sum over trials of the average

bits per symbol for the single best Huffman tree chosen in hindsight. Therefore the

1Huffman trees [Cormen et al., 2009] are binary trees which construct prefix codes (called Huffman
codes) for data compression. The plaintext symbols are located at the leaves of the tree and the path
from the root to each leaf defines the prefix code for the symbols at the leaves.
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regret of the algorithm can be viewed as the cost of not knowing the best combinatorial

object ahead of time. With proper tuning, the regret is typically logarithmic in the

number of combinatorial objects.

One way to create algorithms for these combinatorial problems is to use one

of the well-known “experts algorithms” like the Randomized Weighted Majority [Little-

stone and Warmuth, 1994] or Hedge algorithm [Freund and Schapire, 1997] where the

set of combinatorial objects is the set of “experts”. However, unless some additional

structure is used, this requires explicitly keeping track of one weight for each of the

exponentially many combinatorial objects, and this results in an inefficient algorithm.

Furthermore, in this case an additional loss range factor appears in the regret bounds.

There has been much work on creating efficient algorithms that implicitly encode the

weights over the set of exponentially many combinatorial objects using concise repre-

sentations. For example, many distributions over the 2n subsets of n elements can be

encoded by the probability of including each of the n elements. In addition to subsets,

such work includes permutations [Helmbold and Warmuth, 2009, Yasutake et al., 2011,

Ailon, 2014], paths [Takimoto and Warmuth, 2003, Kuzmin and Warmuth, 2005], and

k-sets [Warmuth and Kuzmin, 2008].

There are also some general tools for learning combinatorial objects such as

the Component Hedge algorithm of Koolen et al. [2010]. This algorithm maintains one

weight per component (instead of one weight per combinatorial object) and it does

multiplicative updates on these weights. However, the vector of component weights is

typically constrained to lie in a convex polytope. Therefore Bregman projections are
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used after the update to return the weight vector to the desired polytope. A limitation of

Component Hedge is its projection step which is generally only computationally efficient

when there are a small (polynomial) number of constraints on the weights.

Suehiro et al. [2012] introduced another projection-based algorithm which spe-

cializes the Component Hedge algorithm for structures that can be formulated by sub-

modular functions2. It guarantees the same regret bounds as Component Hedge but

offers efficient projection and prediction when the convex hull of combinatorial objects

is a specialized polytope characterized by a submodular function [Fujishige, 2005].

There are also projection-free algorithms for online learning such as the Follow

the Perturbed Leader (FPL) algorithm [Kalai and Vempala, 2005] and its generalizations

[Dud́ık et al., 2017]. These algorithms are based on adding random perturbations to the

cumulative loss of each component, and then predicting with the combinatorial object

with minimum perturbed loss. FPL is very efficient and usually offers the same regret

bound guarantees as the Expanded Hedge algorithm when applied to combinatorial

objects.

In this chapter we focus on the combinatorial objects whose convex hull in the

original space has exponentially many facets. Examples are permutation and Huffman

trees. A powerful technique – namely extended formulations – has been developed to

represent these polytopes in auxiliary spaces using far fewer (polynomial instead of

exponential) constraints [Kaibel and Pashkovich, 2013, Kaibel, 2011, Conforti et al.,

2010]. Using this technique, we extend Component Hedge to combinatorial objects

2For instance, permutations belong to such classes of structures (see Suehiro et al. [2012]); but
Huffman trees do not as the sum of the code lengths of the symbols is not fixed.
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with ill-behaved polytopes.

Contributions: The main contributions of this chapter are:

1. The application of extended formulation techniques for online learning.

In particular, the fusion of Component Hedge with extended formulations results

in a new methodology for designing efficient online algorithms for complex classes

of combinatorial objects. Our methodology uses a redundant representation for

the combinatorial objects where one part of the representation allows for a natural

loss measure while another enables the simple specification of the class using only

polynomially many constraints. We are unaware of previous online learning work

exploiting this kind of redundancy. To better match the extended formulations

to the machine learning applications, we augment the extended formulation with

slack variables.

2. A new and faster prediction technique.

Component Hedge applications usually predict by first re-expressing the algo-

rithm’s weight vector as a convex combination of combinatorial objects with small

support, and then randomly sample from the convex combination. The redundant

representation often allows for a more direct and efficient way to generate the al-

gorithm’s random prediction, bypassing the need to create convex combinations.

This is always the case for extended formulations based on “reflection relations”

(as in permutations and Huffman Trees).
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3. A new and elegant initialization method.

Component Hedge style loss bounds depend on the distance from the initial hy-

pothesis to the best predictor in the class, and a roughly uniform initialization is

usually a good choice. The initialization of the redundant representation is more

delicate. Rather than directly picking a feasible initialization, we introduce the

idea of first creating an infeasible encoding with good distance properties, and

then projecting it into the feasible polytope. This style of implicit initialization

improves the regret bounds for some existing work (e.g. the algorithm of Yasutake

et al. [2011] has now the state-of-the-art regret bound for permutations) and will

be used to good effect in another domain (e.g. for repeatedly solving a variant

of the same dynamic programming problem in successive trials3 [Rahmanian and

Warmuth, 2017]).

Chapter Outline: Section 2.1 contains a few additional remarks about the Compo-

nent Hedge algorithm (see Section 1.3 for a detailed explanation) and an overview of

extended formulations. Section 2.2 explains our methodology. In Section 2.3, we ex-

plore the concrete application of our method to Huffman trees and permutations. In

these applications, the extended formulations are constructed by reflection relations.

Section 2.4 describes our fast prediction technique. Next, in Section 2.5 we discuss in

detail how to do projection. In Section 2.6, we contrast our bounds with those of FPL

[Kalai and Vempala, 2005], Hedge [Freund and Schapire, 1997] and OnlineRank [Ailon,

3 This is described in Chapter 3.
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2014]. We show the regret bounds of our algorithm are within a factor of O(log(n)) of

those of OnlineRank (the state-of-the-art specialized algorithm for permutations), and

depending on the loss regimes, improve on or match the state-of-the-art for Huffman

trees. Finally, we conclude with suggesting some directions for future work.

2.1 Background

The implicit representations for structured concepts (sometimes called ‘indirect

representations’) have been used for a variety of problems [Helmbold et al., 2002, Helm-

bold and Schapire, 1997, Maass and Warmuth, 1998, Takimoto and Warmuth, 2002,

2003, Yasutake et al., 2011, Koolen et al., 2010]. Recall from the Prediction Game 2,

that t ∈ {1..T} is the trial index, H is the class of combinatorial objects, ĥt−1 ∈ H

is the algorithm’s selected object at the beginning of trial t, and `t is the loss vector

revealed by the adversary.

Component Hedge: Koolen et al. [2010] developed a generic algorithm called Com-

ponent Hedge which results in efficient and effective online algorithms over combinatorial

objects in Rn+ with linear loss. Component Hedge maintains a mean vector v in the

polytope V which is the convex hull of all objects in the combinatorial class H. See

Section 1.3 for a more detailed overview of the Component Hedge algorithm.

Component Hedge relies heavily on an efficient characterization of the polytope

V (i.e. a description of the facets in terms of inequalities) both for projection and

decomposition steps. If directly characterizing the polytope V is either unknown or
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requires exponentially many facets, the direct application of Component Hedge is not

efficient. In those cases, we show how extended formulations can help with efficiently

describing the polytope V.

Extended Formulations: Many classes of combinatorial objects have polytopes whose

discription requires exponentially many facets in the original space (e.g. see Maurras

et al. [2010]). This has triggered the search for more concise descriptions in alternative

spaces. In recent years, the combinatorial optimization community has given significant

attention to the technique of extended formulation where difficult polytopes are repre-

sented as a linear projection of a higher-dimensional polyhedron [Magnanti and Wolsey,

1995, Conforti et al., 2010, Kaibel, 2011, Kaibel and Pashkovich, 2013]. There are many

complex combinatorial objects whose associated polyhedra can be described as the linear

projection of a much simpler, but higher dimensional, polyhedra (see Figure 2.1).

Concretely, assume a polytope V ⊂ Rn+ is given and described with exponen-

tially many constraints in matrix-vector multiplication form as V = {v ∈ Rn+ | M1v ≤

d} in the original space Rn+ . We assume that using some additional variables x ∈ Rm+ ,

V can be written efficiently as

V = {v ∈ Rn+ | ∃x ∈ Rm+ : M2v +M3x ≤ f}4 (2.1)

with r = poly(n) inequality constraints of M2v + M3x ≤ f . Vector x ∈ Rm+ is an

4Note that for each v ∈ V there exists a x ∈ X , but it is not necessarily unique.
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Figure 2.1: Extended formulation.

extended formulation5 which belongs to the set

X = {x ∈ Rm+ | ∃v ∈ Rn+ : M2v +M3x ≤ f}. (2.2)

Extended formulations incur the cost of additional m variables for the benefit of a

simpler (although, higher dimensional) polytope.

2.2 The Method

Here we describe our general methodology for using extended formulations to

develop new learning algorithms. Our focus is on combinatorial objects whose con-

vex hull in the original space has exponentially many facets. To implement efficient

algorithms, we need to work with polytopes with small number of facets. Each facet

is characterized by an equality constraint and the polytope is defined as the inter-

section of the constraints. To obtain a well-behaved polytope, we work with another

5Throughout this chapter, we assume w.l.o.g. that x is in positive quadrant of Rn, since an arbitrary
point in Rn can be written as x = x+ − x− where x+,x− ∈ Rn+.
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space/representation where we add some extended variables to the original set of vari-

ables.

Consider a class H of combinatorial objects and its convex hull V. We assume

there is no efficient description of V in Rn+, but it can be efficiently characterized via an

extended formulation x ∈ X as in Equations (2.1) and (2.2). As described in Section 2.1,

in order to apply Component Hedge (especially the projection), we need to have equality

constraints instead of inequality ones. Thus, we introduce slack variables s ∈ Rr+, where

r is the number of constraints. Equation (2.1) now becomes

V = {v ∈ Rn+ | ∃x ∈ Rm+ , s ∈ Rr+ : M2v +M3x+ s = f}

Now, in order to keep track of a mean vector v ∈ V, we use the following novel repre-

sentation:

W = {(v,x, s)︸ ︷︷ ︸
w

∈ Rn+m+r
+ |M2v +M3x+ s = f}

where W is characterized by r affine constraints. We refer to W as the augmented

formulation. Observe that, despite potential redundancy in representation, all three

constituents are useful in this new encoding: v is needed to encode the right loss, x

is used for efficient description of the polytope, and s is incorporated to have equality

constraints.

2.2.1 XF-Hedge Algorithm

Having developed the well-equipped space/representation W, we can now ap-

ply Component Hedge. Since v is the only constituent over which the loss vector `t
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is defined, we work with Lt = (`t,0,0) ∈ [0, 1]n+m+r in the augmented formulation

space W. We introduce a new type of Hedge algorithm combined with the extended

formulation – XF-Hedge (See Algorithm 3). Similar to Component Hedge, XF-Hedge

consists of three main steps: Prediction, Update, and Projection.

Algorithm 3 XF-Hedge

1: w0 = (v0,x0, s0) ∈ W – a proper prior distribution discussed in 2.2.2

2: For t = 1, . . . , T

3: ĥt−1 ←Prediction(wt−1) where ĥt−1∈H is a random object s.t. E
[
ĥt−1

]
=vt−1

4: Incur a loss ĥt−1 · `t

5: Update:

6: ṽt−1,i ← vt−1,i e
−η `ti for all i ∈ [n]

7: wt ← Projection(ṽt−1,xt−1, st−1)︸ ︷︷ ︸
w̃t−1

where wt = arg min
w∈W

∆ (w||w̃t−1)

Prediction: Randomly select an object ĥt−1 from the combinatorial class H in such

a way that E
[
ĥt−1

]
= vt−1 where wt−1 = (vt−1,xt−1, st−1). The details of this step

depend on the combinatorial class H and the extended formulation used for W. In

Component Hedge and its applications [Helmbold and Warmuth, 2009, Koolen et al.,

2010, Yasutake et al., 2011, Warmuth and Kuzmin, 2008], this step is usually done by

decomposing6 vt−1 into a convex combination of objects in H. In Section 2.4, using

other components of wt−1 (i.e. vt−1 and xt−1), we present a faster O(m+n) prediction

6Note that according to Caratheodory’s theorem, such decomposition exists in W using at most
n+m+ r + 1 objects (i.e. corners of the polytope W).

24



method for combinatorial classes H where the additional variables and hyperplanes of

the extended formulation are constructed by reflection relations.

Update: Having defined Lt = (`t,0,0), the updated w̃t−1 = (ṽt−1, x̃t−1, s̃t−1) is

obtained using a trade-off between the linear loss and the unnormalized relative entropy

[Koolen et al., 2010]:

w̃t−1 = arg min
w∈Rr

∆(w||wt−1) + ηw ·Lt, where ∆(a||b) =
∑
i

ai log
ai
bi

+ bi − ai

Using Lagrange multipliers, it is fairly straight-forward to see that only the v compo-

nents of wt−1 are updated:

∀i ∈ {1..n} : ṽt−1,i = vt−1,i e
−η `ti ; x̃t−1 = xt−1; s̃t−1 = st−1.

Thus this step takes O(n) time.

Projection: We use an unnormalized relative entropy Bregman projection to project

w̃t−1 = (ṽt−1, x̃t−1, s̃t−1) back into W obtaining the new wt = (vt,xt, st) for the next

trial.

wt = arg min
w∈W

∆(w||w̃t−1) (2.3)

Let Ψ0, . . . ,Ψr−1 be the r facets where the r constraints specifying the polytope

W (i.e. the ones of M2v + M3x + s = f) are satisfied. Then W is the intersection of

the Ψk’s. Since the non-negativity constraints are already enforced by the definition

of ∆(·||·), it is possible to solve (2.3) using iterative Bregman projections7 [Bregman,

7In Helmbold and Warmuth [2009] Sinkhorn balancing is used for projection which is also a special
case of iterative Bregman projection.
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1967]. Starting from p0 = w̃t−1 6∈ W, we iteratively compute:

pk = arg min
p∈Ψ(k mod r)

∆(p||pk−1) (2.4)

repeatedly cycling through the constraints. Finding the solution pk to the convex op-

timization (2.4) for general constraints and Bregman divergences can be found in Sec-

tion 3 of Dhillon and Tropp [2007]. For the sake of completeness, we discuss the details

of this step in Section 2.5 for combinatorial classes H whose extended formulation is

constructed by reflection relations. It is known that pk converges in Euclidean norm

to the unique solution of (2.3) [Bregman, 1967, Bauschke and Borwein, 1997]. These

kinds of cyclic Bregman projections are believed to have fast linear convergence [Dhillon

and Tropp, 2007], and empirically are very efficient [Koolen et al., 2010]. Moreover, the

projection step typically dominates the overall running time of the algorithm8.

2.2.2 Regret Bounds

Similar to Component Hedge, the general regret bound depends on the initial

weight vectorw0 ∈ W. For each object h ∈ H, letw(h) be the representation of h in the

augmented formulation W. The regret bound of XF-Hedge depends on ∆(w(h)||w0)

where w0 ∈ W is the initial weight vector and h is the combinatorial object against

which the algorithm is compared (the best h for the adversarially chosen sequence of

losses).

The following lemma provides bounds in complete knowledge case where the

8 If the model is being trained on data where predictions are not required, then the expensive
projection step can be deferred until the predictions are needed.
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loss of the best combinatorial object is known in order to tune the learning rate η.

However only slightly worse bounds can be achieved with doubling tricks to handle the

unknown loss (see, e.g. Cesa-Bianchi et al. [1997], Cesa-Bianchi and Lugosi [2006]).

Lemma 2. Let L∗ := min
h∈H

∑T
t=1 h · `t. By proper tuning of the learning rate η:

E

[
T∑
t=1

ĥt−1 · `t

]
−min
h∈H

T∑
t=1

h · `t ≤
√

2L∗∆(w(h)||w0) + ∆(w(h)||w0)

Proof. The proof uses standard techniques from the online learning literature (e.g. [Koolen

et al., 2010]). Assuming w = (v,x, s) and L = (`,0,0):

(1− e−η)vt−1 · `t = (1− e−η)wt−1 ·Lt ≤
∑
i

wt−1,i(1− e−η Lt,i)

= ∆(w(h)||wt−1)−∆(w(h)||w̃t−1) + ηw(h) ·Lt

= ∆(w(h)||wt−1)−∆(w(h)||w̃t−1) + η h · `t

≤ ∆(w(h)||wt−1)−∆(w(h)||wt) + η h · `t

The first inequality is obtained using 1−e−ηx ≥ (1−e−η)x for x ∈ [0, 1] as done

in Littlestone and Warmuth [1994]. The second inequality is a result of the Generalized

Pythagorean Theorem [Herbster and Warmuth, 2001], since wt is a Bregman projection

of ŵt−1 into the convex set W which contains w(h). By summing over t = 1 . . . T and

using the non-negativity of divergences, we obtain:

(1− e−η)
T∑
t=1

vt−1 · `t ≤ ∆(w(h)||w0)−∆(w(h)||wT ) + η

T∑
t=1

h · `t

−→ E

[
T∑
t=1

ht−1 · `t

]
≤
η
∑T

t=1 h · `t + ∆(w(h)||w0)

1− e−η
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Let L∗ = min
h∈H

∑T
t=1 h · `t. We can set the learning rate η =

√
2 ∆(w(h)||w0)

L∗ as

instructed in Koolen et al. [2010] and obtain the following regret bound:

E

[
T∑
t=1

ht−1 · `t

]
−min
h∈H

T∑
t=1

h · `t ≤
√

2L∗∆(w(h)||w0) + ∆(w(h)||w0)

�

In order to get good bounds, the initial weight w0 must be “close” to all

corners h of the polytope, and thus in the“middle” of W. In previous works [Koolen

et al., 2010, Yasutake et al., 2011, Helmbold and Warmuth, 2009], the initial weight is

explicitly chosen and it is often set to be the uniform mean of the objects. This explicit

initialization approach may be difficult to perform when the polytope has a complex

structure.

Here, instead of explicitly selecting w0 ∈ W, we implicitly design the initial

point. First, we find an intermediate “middle” point w̃ ∈ Rn+m+r with good distance

properties, and then project w̃ into W to obtain the initial w0 for the first trial.

A good choice for w̃ is U 1 where 1 ∈ Rn+m+r is the vector of all ones, and

U ∈ R+ is an upper-bound on the infinity norms of the corners of polytopeW. This leads

to the nice bound ∆(w(h)||w̃) ≤ (n+m+ r)U for all objects h ∈ H. The Generalized

Pythagorean Theorem [Herbster and Warmuth, 2001] ensures that the same bound

holds for w0.

Lemma 3. Assume that there exists U ∈ R+ such that ‖w(h)‖∞ ≤ U for all h ∈ H.

Then the initialization method finds a w0 ∈ W such that for all h ∈ H, ∆(w(h)||w0) ≤

(n+m+ r)U .
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Proof. Let w̃ = U 1 in which 1 ∈ Rm+n+r is a vector with all ones in its components.

Now let w0 be the Bregman projection of w̃ onto W, that is:

w0 = arg min
w∈W

∆(w||w̃)

Now for all h ∈ H, we have:

∆(w(h)||w0) ≤ ∆(w(h)||w̃) (Generalized Pythagorean Thm.)

=
∑

i∈{1..n+m+r}

(
(w(h))i log

(w(h))i
U

+ U − (w(h))i

)

≤
∑

i∈{1..n+m+r}

U since (w(h))i ≤ U

= (n+m+ r)U.

�

Combining Lemmas 2, and 3 gives the following guarantee.

Theorem 4. If each `t ∈ [0, 1]n and ‖w(h)‖∞ ≤ U for all h ∈ H, then the regret of

XF-Hedge is bounded as follows:

E

[
T∑
t=1

ĥt−1 · `t
]
−min
h∈H

T∑
t=1

h · `t ≤
√

2L∗ (n+m+ r)U + (n+m+ r)U.

2.3 XF-Hedge Examples Using Reflection Relations

One technique for constructing extended formulations is to introduce addi-

tional variables, constraints and spaces via reflection relations [Kaibel and Pashkovich,

2013]. This technique can be used to efficiently describe the polytopes of permutations
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and Huffman trees. Here we describe how reflection relations can be used with the XF-

Hedge framework to create concrete learning algorithms for permutations and Huffman

trees.

As in Yasutake et al. [2011] and Ailon [2014], we consider losses that are linear

in the first order representation of the objects [Diaconis, 1988]. For permutations of n

items, the first order representation is vectors v ∈ Rn where each of the elements of

{1, 2, . . . , n} appears exactly once9 and for Huffman trees on n symbols, the first order

representation is vectors v ∈ Rn where each vi is an integer indicating the depth of the

leaf corresponding to symbol i in the coding tree. At each trial the loss is v ·` where the

adversary’s ` is a loss vector in the unit cube [0, 1]n. This type of loss is sufficiently rich

to capture well-known natural losses like average code length for Huffman trees (when

` is the symbol frequencies) and sum of completion times for permutations10 (when ` is

the task completion times).

Constructing Extended Formulations from Reflection Relations. Kaibel and

Pashkovich [2013] show how to construct polynomial size extended formulations using

a canonical corner of the polytope and a fixed sequence of hyperplanes. These have

the property that any corner of the desired polytope can be generated by reflecting

the canonical corner through a subsequence of the hyperplanes. These reflections are

one-sided in the sense that they map the half-space containing the canonical corner to

9In contrast, Helmbold and Warmuth [2009] work with the second order representation (i.e. the
Birkhoff polytope). Consequently the losses they consider are more general (see Yasutake et al. [2011]
for comparison).

10To easily encode the sum of completion times, the predicted permutation represents the reverse
order in which the tasks are to be executed.
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hyperplane

v =̂ (x = xmin)

vreflected =̂ (x = xmax)

v′ =̂ (xmin ≤ x ≤ xmax)

(1) → (2) ↘

(3) ↓
P2

P1

P0

P3

Figure 2.2: (Left) A partial reflection of v to v′ corresponds to (denoted by =̂) a variable

x indicating how far v′ moves towards v’s image vreflected. (Right) The 6 corners of the

polytope are generated by subsequences of one-sided reflections through lines (1), (2),

and (3), starting from the canonical point P0. Using partial reflections, we can generate

the entire polytope.

the other half-space. For example, the corners of Figure 2.2 (Left) can be generated in

this way. Of course the hard part is to find a good sequence of hyperplanes with this

property.

A key idea for generating the entire polytope is to allow “partial reflections”

where the point to be reflected can not just be kept (skipping the reflection) or replaced

by its reflected image, but mapped to any point on the line segment joining the point

and its reflected image as illustrated in Figure 2.2 (Right). Since any point in the convex

hull of the polytope can be constructed by at least one sequence of partial one-sided

reflections, every point in the polytope has an alternative representation in terms of how

much each reflection was used to generate it from the canonical corner (see Figure 2.2).

Each of these parameterized partial reflections is a reflection relation,
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For each reflection relation, there will be one additional variable indicating the

extent to which the reflection occurs, and two additional inequalities for the extreme

cases of complete reflection and no reflection. Therefore, if the polytope can be expressed

with polynomially many reflection relations, then it has an extended formulation of

polynomial size with polynomially many constraints.

Instead of starting with a single corner, one could also consider passing an

entire polytope as an input through the sequence of (partial) reflections to generate a

new polytope. Using this fact, Theorem 1 in Kaibel and Pashkovich [2013] provides

an inductive construction of higher dimensional polytopes via sequences of reflection

relations. Concretely, let Pnobj be the polytope of a given combinatorial object of size

n. The typical approach is to properly embed Pnobj ⊂ Rn into P̂nobj ⊂ Rn+1, and then

feed it through an appropriate sequence of reflection relations as an input polytope in

order to obtain an extended formulation for Pn+1
obj ⊂ Rn+1. Theorem 1 in Kaibel and

Pashkovich [2013] provides sufficient conditions for the correctness of this procedure.

Again, if polynomially many reflection relations are used to go from n to n + 1, then

we can construct an extended formulation of polynomial size for Pnobj with polynomially

many constraints. In this chapter, however, we work with batch construction of the

extended formulation as opposed to the inductive construction.

Extended Formulations for Objects Closed under Re-Ordering. Assume we

want to construct an extended formulation for a class of combinatorial objects which

is closed under any re-ordering (both Huffman trees and permutations both have this
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property). Then reflection relations corresponding to swapping pairs of elements are

useful. Swapping elements i and j can be implemented with a hyperplane going through

the origin and having normal vector ei−ej (here ei is the ith unit vector). The identity

permutation is the natural canonical corner, so the one-sided reflections are only used

for v where vi ≤ vj .

Implementing the reflection relation for the i, j swap uses an additional variable

along with two additional inequalities. Concretely, assume v ∈ Rn is going into this

reflection relation and v′ ∈ Rn is the output, so v′ is in the convex combination of v and

its reflection. It is natural to encode this as v′ = γv+(1−γ)vreflected. However, we found

it more convenient to parameterize v′ by its absolute distance x from v, rather than the

relative distance γ ∈ [0, 1]. Using this parameterization, we have v′ = v + x (ei − ej)

constrained by (ei − ej) · v ≤ (ei − ej) · v′ ≤ −(ei − ej) · v. Therefore the possible

relationships between v′ and v can be encoded with the additional variable x and the

following constraints:11

v′ = mx+ v where m = ei − ej , 0 ≤ x ≤ vj − vi. (2.5)

Notice that x indicates the amount of change in the ith and jth elements which

can go from zero (remaining unchanged) to the maximum swap capacity vj − vi.

Suppose the desired polytope is described using m reflection relations and with

canonical point c. Then starting from c and successively applying the equation in (2.5),

we obtain the connection between the extended formulation space X and original space

11In general v (and thus vj and vi) may be functions of the variables for previous reflection relations.
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Sorting Network−−−−−−−−−−→

Extended Formulation←−−−−−−−−−−−−−

1

2

3

Sorting Network−−−−−−−−−−→

Extended Formulation←−−−−−−−−−−−−−

1

2

3

Sorting Network−−−−−−−−−−→

Extended Formulation←−−−−−−−−−−−−−

1

2

3

1

2

3

1

2

3

1

2

3

0

0

0

and

3

1

2

1

3

2

1

2

3

2

1

0

v1 = 2

v2 = 1.5

v3 = 2.5

1

2.5

2.5

1

2

3

x3 = 1

x2 = .5

x1 = 0
average
====⇒

Figure 2.3: An extended formulation for permutation on n = 3 items. The canonical

permutation is [1, 2, 3]. Elements of v are in blue, x in red, and the intermediate values

are in green.

V:

v = M x+ c, v, c ∈ V ⊂ Rn, x ∈ X ⊂ Rm, M ∈ {−1, 0, 1}n×m.

Kaibel and Pashkovich [2013] showed that the m reflection relations corre-

sponding to the m comparators in an arbitrary n-input sorting network12 generates the

permutation polytope (see Figure 2.3). A similar extended formulation for Huffman

trees can be built using an arbitrary sorting network along with O(n log n) additional

comparators and simple linear maps (which do not require extra variables) and the

canonical corner c = [1, 2, . . . , n−2, n−1, n−1]T (see Section 2.24 in Pashkovich [2012]

for more details). Note that the reflection relations are applied in reverse order than

their use in the sorting network (see Figure 2.3).

Learning Permutations and Huffman Trees. As described in the previous sub-

sections, the polytope V of both permutations and Huffman trees can be efficiently

12A sorting network is a sorting algorithm where the comparisons are fixed in advance [Cormen et al.,
2009].
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described using m inequality and n equality constraints13:

V = {v ∈ Rn+|∃x ∈ Rm+ : Ax ≤ b and v = Mx+ c}

Adding the slack variables s ∈ Rm+ , we obtain the augmented formulation W:

W = {w = (v,x, s) ∈ Rn+2m
+ |Ax+ s = b and v = Mx+ c} (2.6)

Lemma below shows that A and b can be computed in terms of M and c.

Lemma 5. In augmented formulation W in Equation 2.6:

A = Tri(MTM) + I, b = −MTc

in which Tri(·) is a function over square matrices which zeros out the upper triangular

part of the input including the diagonal.

Proof. Let vk be the vector in V after going through the kth reflection relation. Also

denote the kth column of M by Mk. Observe that v0 = c and vk = c+
∑k

i=1Mixi. Let

Mk = er − es. Then, using (2.5), the inequality associated with the kth row of Ax ≤ b

will be obtained as below:

xk ≤ vk−1
s − vk−1

r = −MT
k v

k−1 = −MT
k

(
c+

k−1∑
i=1

Mixi

)

−→ xk +

k−1∑
i=1

MT
k Mixi ≤ −MT

k c = bk

13Positivity constraints are excluded as they are already enforced due to definition of ∆(·||·), and
Huffman trees require additional O(n logn) inequality constraints beyond those corresponding to the
sorting network.
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Thus:

∀ i, j ∈ [m] : Aij =



MT
i Mj i > j

1 i = j

0 i < j

, ∀ k ∈ [m] : bk = −MT
k c

which concludes the proof. �

Note that all the wire values (i.e. vi’s), as well as xi’s and si’s are upperbounded

by U = n. Using the AKS sorting networks with m = O(n log n) comparators [Ajtai

et al., 1983], we can obtain the regret bounds below from Theorem 4:

Corollary 6. XF-Hedge has the following regret bound when learning either permuta-

tions or Huffman trees:

E

[
T∑
t=1

ĥt−1 · `t
]
−min
h∈H

T∑
t=1

h · `t = O
(
n (log n)

1
2

√
L∗ + n2 log n

)

2.4 Fast Prediction with Reflection Relations

From its current weight vector w = (v,x, s) ∈ W, XF-Hedge randomly selects

an object ĥ from the combinatorial class H in such a way that E
[
ĥ
]

= v. In Compo-

nent Hedge and similar algorithms [Helmbold and Warmuth, 2009, Koolen et al., 2010,

Yasutake et al., 2011, Warmuth and Kuzmin, 2008], this is done by decomposing v into

a convex combination of objects in H followed by sampling. In this section, we give a

new more direct prediction method for combinatorial classes H whose extended formu-

lation is constructed by reflection relations. Our method is faster due to avoiding the

decomposition.
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The values x and x+ s can be interpreted as amount swapped and the maxi-

mum swap allowed for the comparators in the sorting networks, respectively. Therefore,

it is natural to define xi/(xi+si) as swap probability associated with the ith comparator

for i ∈ {1..m}. Algorithm 4 incorporates the notion of swap probabilities to construct

an efficient sampling procedure from a distribution D which has the right expectation.

It starts with the canonical object (e.g. identity permutation) and feeds it through the

reflection relations. Each reflection i is taken with probability xi/(xi+si). The theorem

below guarantees the correctness and efficiency of this algorithm.

Theorem 7. Given (v,x,s)∈W⊆Rn+2m,

(i) Algorithm 4 samples h from a distribution D such that ED[h] = v.

(ii) The time complexity of Algorithm 4 is O(n+m).

Proof. First we prove part (i). Let x = [x1, x2, . . . , xm]T . Using induction, we prove

that by the end of the ith loop of Algorithm 4, the obtained distribution D(i) has

the right expectation for x(i) = [x1, . . . , xi, 0, . . . , 0]. Concretely,
∑
h∈H PD(i) [h] · h =

M x(i) + c. The desired result is obtained by setting i = m as v = M x + c. The

base case i = 0 (i.e. before the first loop of the algorithm) is indeed true, since D(0) is

initialized to follow PD(0) [c] = 1, and x(0) = 0, thus we have v(0) = Mx(0) + c = c.

Now assume that by the end of the (k − 1)st iteration we have the right distribution

D(k−1), namely v(k−1) =
∑
h∈H PD(k−1) [h] · h. Also assume that the kth comparator is

applied on ith and jth element14. Thus the kth column of M will be Mk = ei − ej .
14Note that j > i as in sorting networks the swap value is propagated to lower wires
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Now, according to (2.5) the swap capacity at kth comparator is:

xk + sk = vk−1
j − vk−1

i

=
∑
h∈H

PD(k−1) [h] · (hj − hi)

= −
∑
h∈H

PD(k−1) [h] ·MT
k h

= −MT
k

∑
h∈H

PD(k−1) [h] · h (2.7)

Now observe:

v(k) = Mx(k) + c

= xkMk +Mx(k−1) + c

= xkMk + v(k−1)

= xkMk +
∑
h∈H

PD(k−1) [h] · h

=
xk

xk + sk
Mk (xk + sk) +

∑
h∈H

PD(k−1) [h] · h

= − xk
xk + sk

MkM
T
k

∑
h∈H

PD(k−1) [h] · h+
∑
h∈H

PD(k−1) [h] · h According to (2.7)

=

(
I − xk

xk + sk
MkM

T
k

)∑
h∈H

PD(k−1) [h] · h

=

(
sk

xk + sk
I +

xk
xk + sk

Tij

)∑
h∈H

PD(k−1) [h] · h

=
∑
h∈H

sk
xk + sk

PD(k−1) [h]︸ ︷︷ ︸
PD(k) [h]

·h+
xk

xk + sk
PD(k−1) [h]︸ ︷︷ ︸

PD(k) [Tij h]

·Tij h

=
∑
h∈H

PD(k) [h] · h
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in which Tij is the row-switching matrix obtained by swapping the ith and jth rows

of the identity matrix. For Huffman trees, the linear maps introduced in Pashkovich

[2012] are used to set the depths of the leaves. It is straightforward to see that these

linear maps maintain the equality v(k) =
∑
h∈H PD(k) [h] · h when applied to v(k) and

all h’s in H. This concludes the inductive proof.

We now prove part (ii). The final distribution D over objects h ∈ H is de-

composed into individual actions of swap/pass through the network of comparators

independently. Thus one can draw an instance according to the distribution by simply

doing independent Bernoulli trials associated with the comparators. It is also easy to

see that the time complexity of the algorithm is O(n+m) since one just needs to do m

Bernoulli trials.

�

Using the AKS sorting networks [Ajtai et al., 1983], the number of compara-

tors is m ∈ O(n log n), and thus Algorithm 4 predicts in O(n log n) time. This improves

the previously known O(n2) prediction procedure for mean-based algorithms15 for per-

mutations [Yasutake et al., 2011, Suehiro et al., 2012].

2.5 Projection with Reflection Relations

In this section, we explore the details of the projection step when working with

reflection relations. This is step is done via iterative Bregman projections [Bregman,

15It also matches the time complexity of prediction step for non-mean-based permutation-specialized
OnlineRank [Ailon, 2014] and also the general FPL [Kalai and Vempala, 2005] algorithm both for
permutations and Huffman Trees.
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Algorithm 4 Fast-Prediction

1: Input: (x, s) ∈ R2m
+

2: Output: A prediction ĥ ∈ H ⊆ Rn

3: ĥ← c – the canonical corner in Rn

4: for k = 1 to m do

5: (ik, jk)← wire indices associated with the k-th comparator

6: if xi = 0 then

7: continue

8: else

9: Switch the ikth and jkth components of ĥ w.p. xk/(xk + sk).

10: end if

11: end forreturn ĥ
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1967]. It cycles through the constraints and projects onto their associated facets until

convergence. We first discuss the projection onto each constraint in XF-Hedge. Next,

we bound the cost of working with approximate projections in XF-Hedge. Finally, we

provide a time complexity analysis.

2.5.1 Projection onto Each Constraint in XF-Hedge

Each constraint of the polytope in the augmented formulation is of the form

aTw = a0. Formally, the projection w∗ of a give point w to this constraint is solution

to the following:

arg min
aTw∗=a0

∑
i

w∗i log

(
w∗i
wi

)
+ wi − w∗i

Finding the solution to the projection above for general constraints and Breg-

man divergence can be found in Section 3 of Dhillon and Tropp [2007]. Nevertheless, for

the sake of completeness, we also provide the solution for the particular case of Huffman

trees and permutations. We compute the solution of the projection above to each facet

of W which is described in Section 2.3. Using the method of Lagrange multipliers, we

have:

L(w∗, µ) =
∑
i

w∗i log

(
w∗i
wi

)
+ wi − w∗i − µ

2m+n∑
j=1

aiw
∗
i − a0


∂L

∂w∗i
= log

(
w∗i
wi

)
− µai = 0, ∀i ∈ [n+ 2m]

∂L

∂µ
=

2m+n∑
j=1

aiw
∗
i − a0 = 0

Replacing ρ = e−µ, we have w∗i = wi ρ
ai . By enforcing ∂L

∂µ = 0, one needs to
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find ρ > 0 such that:
n+2m∑
i=1

aiwi ρ
ai − a0 = 0 (2.8)

Observe that due to the structure of matrices M and A (see Lemma 5), ai ∈ Z

and ai ≥ −1 for all i ∈ [n + 2m], and furthermore a0 ≥ 0. Multiplying by ρ, we can

re-write equation (2.8) as the polynomial below:

f(ρ) = φkρ
k + . . .+ φ2ρ

2 − φ1ρ− φ0 = 0

in which all φi’s are non-negative real numbers and k ≤ n. Note that f(0) < 0 and

f(ρ)→ +∞ as ρ→ +∞. Thus f(ρ) has at least one positive root. However, it can not

have more than one positive roots and we can prove it by contradiction. Assume that

there exist 0 < r1 < r2 such that f(r1) = f(r2) = 0. Since f is convex on positive real

line, using Jensen’s inequality, we can obtain the contradiction below:

0 = f(r1) = f

(
r2 − r1

r2
× 0 +

r1

r2
× r2

)
<
r2 − r1

r2
f(0) +

r1

r2
f(r2) =

r2 − r1

r2
f(0) < 0

Therefore f has exactly one positive root which can be found by Newton’s

method starting from a sufficiently large initial point. Note that if the constraint belongs

to v = Mx+c, then all the ai’s are in {−1, 0, 1} and polynomial f(ρ) will be quadratic,

so there is a closed form for the positive root.

2.5.2 Additional Loss with Approximate Projection in XF-Hedge

Each iteration of Bregman Projection is described in Section 2.5.1. Since it

is basically finding a positive root of a polynomial (which n/(n + m) of the time is
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quadratic), each iteration is arguably efficient. Now suppose, using iterative Bregman

projections, we reached at ŵ = (v̂, x̂, ŝ) which is ε-close to the exact projection w =

(v,x, s), that is ‖w−ŵ‖2 < ε. In this analysis, we work with a two-level approximation:

1) approximating mean vector v by the mean vector ṽ := M x̂+c and 2) approximating

the mean vector ṽ by the mean vector v(p̂) (where p̂ = x̂/(x̂+ ŝ) with coordinate-wise

division) obtained from Algorithm 4 with x̂ and ŝ as input. First, observe that:

‖v − ṽ‖2 = ‖M (x− x̂)‖2

≤ ‖M‖F ‖x− x̂‖2

≤ (
√

2n) ε (2.9)

Now suppose we run Algorithm 4 with x̂ and ŝ as input. Let Mk be the k-th

column of M , and let Tαβ be the row-switching matrix that is obtained from switching

α-th and β-th row in identity matrix. Additionally, let v(k)(p̂) be the mean vector

associated with the distribution D(k) obtained by the end of k-th loop of the Algorithm 4

i.e. v(k)(p̂) :=
∑
h∈H PD(k) [h] · h (so v(m)(p̂) = v(p̂)). Also for all k ∈ {1..m} define

ṽ(k) := c +
∑k

i=1Mi x̂i (thus ṽ(m) = ṽ). Furthermore, let δ(k) := v(k)(p̂) − ṽ(k). Now

we can write:
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v(k)(p̂) =
∑
h∈H

PD(k) [h] · h

=
∑
h∈H

ŝk
x̂k + ŝk

PD(k−1) [h] · h+
x̂k

x̂k + ŝk
PD(k−1) [h] · Tαβ h

= (
ŝk

x̂k + ŝk
I +

x̂k
x̂k + ŝk

Tαβ)
∑
h∈H

PD(k−1) [h] · h

= (I − x̂k
x̂k + ŝk

MkM
T
k )v(k−1)(p̂) since I − Tαβ = MkM

T
k

= (I − x̂k
x̂k + ŝk

MkM
T
k ) ṽ(k−1) + (I − x̂k

x̂k + ŝk
MkM

T
k ) δ(k−1)

= (I − x̂k
x̂k + ŝk

MkM
T
k )

(
c+

k−1∑
i=1

Mi x̂i

)
+ (I − x̂k

x̂k + ŝk
MkM

T
k ) δ(k−1)

=

(
c+

k−1∑
i=1

Mi x̂i

)
− x̂k
x̂k + ŝk

MkM
T
k

(
c+

k−1∑
i=1

Mi x̂i

)

+ (I − x̂k
x̂k + ŝk

MkM
T
k ) δ(k−1)

= ṽ(k)−Mkx̂k −
x̂k

x̂k + ŝk
MkM

T
k

(
c+

k−1∑
i=1

Mi x̂i

)
+ (I − x̂k

x̂k + ŝk
MkM

T
k ) δ(k−1)

︸ ︷︷ ︸
δ(k)

Now define p̂k := x̂k
x̂k+ŝk

and let errk := −MT
k

(
c+

∑k−1
i=1 Mi x̂i

)
− (x̂k + ŝk),

which is – according to Lemma 5 – the error in the k-th row of Ax + s = b using x̂

and ŝ i.e. amount by which (Ax̂+ ŝ)k falls short of bk, violating the k-th constraint of

Ax+ s = b. Thus we obtain:

δ(k) = −Mkx̂k + p̂kMk (x̂k + ŝk + errk) + (I − p̂kMkM
T
k ) δ(k−1)

= p̂kMk errk + (I − p̂kMkM
T
k ) δ(k−1) (p̂k =

x̂k
x̂k + ŝk

)
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Observe that δ(0) = c − c = 0. Thus, by unrolling the recurrence relation

above, we have:

v(p̂)− ṽ = δ(m) =

m∑
k=1

p̂kMk errk

m∏
i=k+1

(I − p̂iMiM
T
i )

Note that since I − p̂iMiM
T
i is a n × n doubly-stochastic matrix,

∏k−1
i=1 (I −

p̂iMiM
T
i ) is also a n × n doubly-stochastic matrix, and consequently, its Frobenius

norm is at most
√
n. Thus we have:

‖v(p̂)− ṽ‖2 = ‖δ(m)‖2 ≤
m∑
k=1

|p̂k| ‖Mk‖2 |errk|
√
n ≤
√

2n
m∑
k=1

|errk|

=
√

2n ‖err‖1 err := (err1, . . . , errm)

≤
√

2nm ‖err‖2 (2.10)

Observe that we can bound the 2-norm of the vector err as follows:

‖err‖2 = ‖ −Ax̂− ŝ+ b‖2

= ‖A(x− x̂) + (s− ŝ)‖2 (b = Ax+ s)

≤ ‖A‖F ‖x− x̂‖2 + ‖s− ŝ‖2

≤ ‖MTM + I‖F ε+ ε

≤
(
‖MT ‖2 ‖M‖2 + ‖I‖2

)
ε+ ε

= (2n+
√
n+ 1) ε (2.11)

Therefore, if we perform Algorithm 4 with inputs x̂ and ŝ, combining the

inequalities (2.9), (2.10), and (2.11), the generated mean vector v(p̂) can be shown to

45



be close to the mean vector v associated with the exact projection:

‖v − v(p̂)‖2 ≤ ‖v − ṽ‖2 + ‖ṽ − v(p̂)‖2

≤ (
√

2n) ε+
√

2nm (2n+
√
n+ 1) ε

=
√

2n (1 +
√
m (2n+

√
n+ 1)) ε

Now we can compute the total expected loss using approximate projection:∣∣∣∣∣
T∑
t=1

vt−1(p̂) · `t
∣∣∣∣∣ =

∣∣∣∣∣
T∑
t=1

(
vt−1 + (vt−1 − vt−1(p̂))

)
· `t
∣∣∣∣∣

=

∣∣∣∣∣
T∑
t=1

vt−1 · `t +
T∑
t=1

(vt−1 − vt−1(p̂)) · `t
∣∣∣∣∣

≤

∣∣∣∣∣
T∑
t=1

vt−1 · `t
∣∣∣∣∣+

∣∣∣∣∣
T∑
t=1

(vt−1 − vt−1(p̂)) · `t
∣∣∣∣∣

≤

∣∣∣∣∣
T∑
t=1

vt−1 · `t
∣∣∣∣∣+

T∑
t=1

‖vt−1 − vt−1(p̂)‖2 ‖`t‖2

≤

∣∣∣∣∣
T∑
t=1

vt−1 · `t
∣∣∣∣∣+ T

(√
2n (1 +

√
m (2n+

√
n+ 1)) ε

) √
n

For Huffman trees, the linear maps introduced in Pashkovich [2012] have this

property that ‖F (a) − F (a′)‖2 ≤ ‖a − a′‖2 for all vectors a and a′ where F (·) is the

linear map. Using this property, it is straightforward to observe that this analysis can

be extended for Huffman trees in which these linear maps are also used along with the

reflection relations. Setting ε = 1
6n2
√
mT

, we add at most one unit to the expected cu-

mulative loss with exact projections.
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2.5.3 Running Time

The projection step dominates the running time of the XF-Hedge algorithm.

Projecting onto any of the r = m + n facets reduces to finding the sole non-negative

(real) zero of a univariate polynomial of degree at most n so Newton’s method takes

O(n log log(1/ε1)) time to get an ε1-close solution. With m+ n constraints, each cycle

through the constraints takes O(mn log log(1/ε)) time. Letting Cε be the number of cy-

cles to have an ε-accurate projection, the whole projection step takesO(Cεmn log log(1/ε1))

time. These kinds of cyclic Bregman projections are believed to have fast linear con-

vergence [Dhillon and Tropp, 2007], and empirically are very efficient [Koolen et al.,

2010]. Note that exact convergence is not essential. For example, if the projection step

estimates each wt within ε = 1/6n2√mT then the additional loss over the entire se-

quence of T trials is less than 1 unit as shown Section 2.5.2. Therefore, with the linear

convergence assumption, the projection step takes O(mn log(nmT ) log log(1/ε1)) time.

2.6 Conclusion and Future Work

Table 2.1 contains a comparison of the regret bounds for the new XF-Hedge

algorithm, OnlineRank [Ailon, 2014], Follow the Perturbed Leader (FPL) [Kalai and

Vempala, 2005], and the Hedge algorithm [Freund and Schapire, 1997] which ineffi-

ciently maintains an explicit weight for each of the exponentially many permutations or

Huffman trees. For permutations, the regret bound of general XF-Hedge methodology

is within a factor
√

log n of the state-of-the-art algorithm OnlineRank [Ailon, 2014].
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Algorithm Efficient? Permutation
Huffman Tree

`t ∈ Unit Cube `t ∈ Unit Simplex

XF-Hedge Yes O(n(log n)
1
2

√
L∗) O(n(log n)

1
2

√
L∗) O(n(log n)

1
2

√
L∗)

*Best* *Best*

OnlineRank Yes O(n
√
L∗) – –

*Best*

FPL Yes O(n
3
2 (log n)

1
2

√
L∗) O(n

3
2 (log n)

1
2

√
L∗) O(n(log n)

1
2

√
L∗)

*Best*

Hedge Algorithm No O(n
3
2 (log n)

1
2

√
L∗) O(n

3
2 (log n)

1
2

√
L∗) O(n(log n)

1
2

√
L∗)

*Best*

Table 2.1: Comparing the regret bounds of XF-Hedge with other existing algorithms in

different problems and different loss regimes.

When compared with the generic explicit Hedge algorithm (which is not computation-

ally efficient) and FPL, XF-Hedge has a better loss bound by a factor of
√
n.

When comparing on Huffman trees, we consider two loss regimes: one where

the loss vectors are from the general unit cube, and consequently, the per-trial losses are

in O(n2) (like permutations), and another where the loss vectors represent frequencies

and lie on the unit simplex so the per-trial losses are in O(n). In the first case, as with

permutations, XF-Hedge has the best asymptotic bounds. In the second case, the lower

loss range benefits Hedge and FPL, and the regret bounds of all three algorithms match.

In conclusion, we have presented a general methodology for creating online

learning algorithms from extended formulations. Our main contribution is the XF-

Hedge algorithm that enables the efficient use of Component Hedge techniques on com-

plex classes of combinatorial objects. Because XF-Hedge is in the Bregman projection

family of algorithms, many of the tools from the expert setting are likely to carry over.
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This includes lower bounding weights for shifting comparators [Herbster and Warmuth,

1998], long-term memory [Bousquet and Warmuth, 2002], and adapting the updates to

the bandit setting [Audibert et al., 2011]. Several important areas remain for potentially

fruitful future work:

More Applications. There is a rich literature on extended formulation for different

combinatorial objects [Conforti et al., 2010, Kaibel, 2011, Pashkovich, 2012, Afshari Rad

and Kakhki, 2017, Fiorini et al., 2013]. Which combinatorial classes have both natu-

ral online losses and suitable extended formulations so XF-Hedge is appropriate? For

instance, building on the underlying ideas of XF-Hedge, Chapter 3 develops a fam-

ily of learning algorithms focusing on extended formulations constructed by dynamic

programming.

More Complex Losses. The redundant representation we introduced can be used

to express different losses. Although our current applications do not assign loss to the

extended formulation variables x and their associated slack variables s, these additional

variables enable the expression of different kinds of losses. For what natural losses could

be these additional variables useful?
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Chapter 3

Online Dynamic Programming

In this chapter we focus on online learning of a large family of combinato-

rial objects. We consider the combinatorial objects whose offline optimizations can be

formulated as a dynamic programming problem with min-sum recurrence relations. A

typical example of such combinatorial problem is to learn paths in a given fixed directed

acyclic graph (DAG) with designated source and sink nodes. The loss of each path from

the source to the sink is additive, that is, it is the sum of the losses of the edges along

that path. For the explanation purposes, we start with path learning problem. This

will be generalized later.

We view the problem of finding the path with minimum loss in a given DAG

G = (V,E) as a rudimentary dynamic programming problem. For every node v ∈ V

in the given DAG, let OPT(v) be the loss of the best path from v to the sink. The

following min-sum recurrence holds for OPT:

OPT(v) = min
u:(v,u)∈E

{OPT(u)+`(v,u)}
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where `e is the loss of the edge e ∈ E.

Online learning of paths in G proceeds in a series of trial. In each trial, the

learner predicts with a path in G. Then, the adversary reveals the losses of all the edges

in E. Finally, the learner incurs the loss of its predicted path. The goal is to minimize

regret which is the total loss of the learner minus the total loss of the single best path

in hindsight.

A natural solution is to use one of the well-known so-called “expert algorithms”

like Randomized Weighted Majority [Littlestone and Warmuth, 1994] or Hedge [Freund

and Schapire, 1997] with one weight per path (i.e. “expert”). Maintaining one weight

per path, however, is impractical since it requires keeping track of a weight vector of

exponential size. Exploiting the additivity of the loss, Takimoto and Warmuth [2003]

introduced the Expanded Hedge (EH) algorithm which is an efficient implementation of

the Hedge algorithm in the path learning problem. EH assigns weights to the edges and

maintains a distribution over paths where the probability of each path is proportionate

to the product of the weights of the edges along that path. Another efficient algorithm

for learning paths is the Component Hedge (CH) algorithm of Koolen et al. [2010] which

is a generic algorithm for learning combinatorial objects with additive losses. Instead

of a distribution, CH maintains a mean vector over the paths and assigns flows to the

edges. This mean vector lives in the unit-flow polytope which is the convex hull of all

paths in the graph. Comparing to EH, CH guarantees better regret bounds as it does

not have additional loss range factors in its bounds.

Going beyond paths, we generalize the online learning problem to any combina-
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torial object which can be “recognized” by a min-sum dynamic programming problem.

Similar to the paths, the online learning in a given dynamic programming problem pro-

ceeds in a series of trials. In each trial, the learner makes a prediction with a solution

in the appropriate combinatorial space. Then, it receives the loss of its choice in such a

way that the loss of any of the possible solution can be easily computed. Despite batch

learning settings, there is no assumed distribution from which the losses are randomly

drawn. Instead the losses are drawn in adversarial fashion. The goal is to minimize re-

gret which is the total loss of the learner minus the total loss of the single best solution

in hindsight. Therefore the regret of the learner can be interpreted as the cost of not

knowing the best solution ahead of time. With proper tuning, the regret is typically

logarithmic in the number of solutions.

To make the setting more concrete, consider the case of learning the best

Binary Search Tree (BST) for a given set of n keys [Cormen et al., 2009]. In each trial,

the learner plays with a BST. Then the adversary reveals a set of probabilities for the n

keys and the learner incurs a linear loss of average search cost, which is simply the dot

product between the vector of probabilities and the vector of depth values of the keys

in the tree. The regret of the learner is the difference between its total loss and the sum

over trials of the average search cost for the single best BST chosen in hindsight.

The number of solutions is typically exponential in n where n is the number of

components in the structure of the solutions. In a BST, for instance, the components

are the depth values of the n keys in the tree, and the number of possible BSTs is the

nth Catalan number Cn = 1
n+1

(
2n
n

)
[Cormen et al., 2009]. Thus, a naive implementation
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of Randomized Weighted Majority or Hedge (i.e maintaining one weight per solution)

is impractical since it requires keeping track of a weight vector of exponential size.

Moreover, the results of CH (and its current extensions [Suehiro et al., 2012,

Rajkumar and Agarwal, 2014, Gupta et al., 2016]) cannot be directly applied to prob-

lems like BST. CH maintains a mean vector of the BSTs which lives in the convex hull of

all BSTs with the representation above. This polytope does not have a characterization

with polynomially many facets 1.

We close this gap by exploiting the dynamic programming algorithm which

solves the BST offline optimization problem. This gives us a polytope with a polyno-

mial number of facets while the loss is linear in the natural components of the BST

problem. This well-behaved polytope allows us to implement CH efficiently. Moreover,

the dynamic programming algorithm provides a representation with which EH can be

efficiently implemented.

Contributions. We propose a general method for learning combinatorial objects

whose offline optimization problem can be solved efficiently via a dynamic program-

ming algorithm with an arbitrary min-sum recurrence relation. Examples include BST,

Matrix-Chain Multiplication, Knapsack, k-sets, Rod Cutting, and Weighted Interval

Scheduling. Using the underlying graph of subproblems (called multi-DAG) induced by

the dynamic programming algorithm for these problems, we define a representation of

1 There is an alternate polytope for BSTs with a polynomial number of facets (called the associahe-
dron [Loday, 2005]) but the average search cost is not linear in terms of the components used for this
polytope. CH and its extensions, however, rely heavily on the additivity of the loss over the components.
Thus they cannot be applied to the associahedron.
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Graph =⇒ Multigraph
with the set of vertices V with the set of vertices V

Edge (v, u) Multiedge (v, U)
u, v ∈ V =⇒ v ∈ V, U ⊂ V

v u v ...

u1

uk

Path =⇒ Multipath

DAG =⇒ Multi-DAG

Table 3.1: From graphs to multi-graphs

the combinatorial objects by encoding them as a specific type of subgraphs called mul-

tipaths. These multipaths encode each object as a series of successive decisions (i.e. the

components) over which the loss is linear, even though the loss may not be linear in the

original representation (e.g. Matrix-Chain Multiplication). We show that optimizing

a specific dynamic programming problem from this class over trials reduces to online

learning of multipaths.

We generalize the definition of edge as an ordered pair (v, u) of vertices to

multiedge which is an ordered pair (v, U) where the first element v is a vertex and the

second element U is a subset of the vertices. Following from this generalization, we

extend the definitions of paths, graphs and directed acyclic graphs (DAG) accordingly

(see Table 3.1; Section 3.2 contains the formal definitions). These extensions allow us

to generalize the existing EH [Takimoto and Warmuth, 2003] and CH [Koolen et al.,

2010] algorithms from online shortest path problem to learning multipaths. Moreover,

we also introduce a new and faster prediction technique for CH for multipaths which
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directly samples from an appropriate distribution, bypassing the need to create convex

combinations.

Chapter Outline. We start with online learning of paths in a directed graph in Sec-

tion 3.1 and give an overview on existing algorithms: Expanded Hedge and Component

Hedge. Section 3.2 introduces multipaths and generalizes the path learning algorithms

to multipaths. In Section 3.3, we define a class of combinatorial objects recognized by

dynamic programming algorithms. Then we prove that minimizing a specific dynamic

programming problem from this class over trials reduces to online learning of multipaths.

In Section 3.4, we apply our methods to several dynamic programming problems. Fi-

nally, Section 3.5 concludes with comparison to other algorithms and future work.

3.1 Background

One of the core combinatorial online learning problems is learning a minimum

loss path in a directed acyclic graph (DAG). The online shortest path problem has been

explored both in the full information setting [Takimoto and Warmuth, 2003, Koolen

et al., 2010, Cortes et al., 2015a] and various bandit settings [György et al., 2007,

Audibert et al., 2013, Awerbuch and Kleinberg, 2008, Dani et al., 2008, Cortes et al.,

2018]. In the full information setting, the problem is as follows. A DAG G = (V,E) is

given along with a designated source node s ∈ V and sink node t ∈ V . In each trial, the

algorithm predicts with a path from s to t. Then for each edge e ∈ E, the adversary

reveals a loss `e ∈ [0, 1]. The loss of the algorithm is given by the sum of the losses of
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the edges (components) along the predicted path. The goal is to minimize the regret

which is the difference between the total loss of the algorithm and that of the single

best path chosen in hindsight. In the remainder of this section, we give a few remarks

on EH and provide an overview of CH as the the two main algorithms for online path

learning in full information setting.

3.1.1 Expanded Hedge on Paths

Takimoto and Warmuth [2003] introduced an efficient implementation of EH

by exploiting the additivity of the loss over the edges of a path. See Section 1.3 for an

overview of EH in path learning. EH provides the regret guarantees below.

Theorem 8 (Takimoto and Warmuth [2003]). Given a DAG G = (V,E) with designated

source node s ∈ V and sink node t ∈ V , assume N is the number of paths in G from s

to t, L∗ is the total loss of best path, and D is an upper-bound on the number of edges

of the paths in G from s to t. Then with proper tuning of the learning rate η over the

trials, EH guarantees the following regret bound:

REH ≤
√

2L∗D logN +D logN . (3.1)

3.1.2 Component Hedge on Paths

The generic Component Hedge algorithm of Koolen et al. [2010] can be applied

to the online shortest path problem. The components are the edges E in the DAG.

Each path is encoded as a bit vector π of |E| components where the 1-bits indicate

the presence of the edges in the path π. The convex hull of all paths is called the
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unit-flow polytope and CH maintains a mixture vector f = [fe]e∈E in this polytope.

The constraints of the polytope enforce an outflow of 1 from the source node s, and

flow conservation at every other node but the sink node t. In each trial, each edge e

receives a loss of `e and the weight of that edge fe is updated multiplicatively by the

factor exp(−η`e). Then the weight vector is projected back to the unit-flow polytope

via a relative entropy projection. This projection is achieved by iteratively projecting

onto the flow constraint of a particular vertex and then repeatedly cycling through the

vertices [Bregman, 1967]. Finally, to sample with the same expectation as the mixture

vector in the polytope, this vector is decomposed into paths using a greedy approach

which removes one path at a time and zeros out at least one edge in the remaining

mixture vector in each iteration. CH provides the regret guarantees below.

Theorem 9 (Koolen et al. [2010]). Given a DAG G = (V,E) with designated source

node s ∈ V and sink node t ∈ V , let D be an upper-bound on the number of edges of

the paths in G from s to t. Also denote the total loss of the best path by L∗. Then with

proper tuning of the learning rate η over the trials, CH guarantees the following regret

bound:

RCH ≤
√

4L∗D log |V |+ 2D log |V |. (3.2)

Remark. In a moment, we will compare the regret bounds of EH (3.1) and CH (3.2).

We will observe that compared to EH, CH guarantees better regret bounds as it does

not have additional loss range factors in its bounds. In fact, the regret bounds of CH

are typically optimal. Koolen et al. [2010] prove lower bounds which matches the guar-
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antees of CH for various combinatorial objects such as k-sets and permutations. The

lower bounds are shown by embedding the combinatorial online learning into the origi-

nal expert problem. To form the experts, a set of cominatorial objects is chosen which

partitions all of the components. Moreover, all objects in the set must have the same

number of present components (i.e. same number of ones in the bit-vector representa-

tion). Given this proof technique, a lower bound on the regret for arbitrary graphs is

difficult to obtain since choosing a set of paths with the aforementioned characteristics

is non-trivial. Perhaps the regret of CH is tight within constant factors for all graphs,

but this question is still open.

3.1.3 Component Hedge vs Expanded Hedge

To have a concrete comparison between CH and EH on paths, consider the fol-

lowing path learning setting. Let G = (V,E) be a complete DAG with V = {v1, . . . , vn}

where for all 1 ≤ i < j ≤ n, vi is connected to vj . Also let s = v1 and t = vn be the

designated source and sink nodes, respectively. Note that the number of edges in any

path in G from s to t is at most D = n − 1. Also the total number of paths in G is

N = 2n−2. The corollary below shows the superiority of the performance of CH over

EH in terms of regret bound which is a direct result of Theorems 8 and 9. EH offers

worse regret guarantee as its bound has an additional loss range factor.

Corollary 10. Given a complete DAG G with n nodes, let L∗ be the total loss of the

best path. Then with proper tuning of the learning rate over the trials for both EH and
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CH, we obtain the following regret guarantees:

REH = O(n
√
L∗), RCH = O(n

1
2 (log n)

1
2

√
L∗).

Remark. For EH, projections are simply a renormalization of the path weights which

is done efficiently via weight pushing [Mohri, 2009b, Takimoto and Warmuth, 2003]. On

the other hand, for CH, iterative Bregman projections [Bregman, 1967] are needed for

projecting back into the unit-flow [Koolen et al., 2010]. These methods are known to

converge to the exact projection [Bregman, 1967, Bauschke and Borwein, 1997]; however,

there will always be a gap to the full convergence. These remaining gaps to the exact

projections have to be accounted for as additional loss in the regret bounds (e.g. see

Section 2.5.2). Additionally, the relatively expensive projection operation in CH makes

it less computationally efficient compared to EH.

3.2 Learning Multipaths

We begin with defining directed multigraphs, multiedges2 and multi-DAGs.

Definition 1 (Directed Multigraph). A directed multigraph is an ordered pair H =

(V,M) comprising of a set V of vertices or nodes together with a set M of multiedges.

Each multiedge m ∈ M is an ordered pair m = (v, U) where v ∈ V and U ⊆ V .

Furthermore, we denote the set of “outgoing” and “incoming” multiedges for vertex v

2 Our definitions of multigraphs and multiedges are closely related to hyper-graphs and hyper-arcs
in the literature (see e.g. Martin et al. [1990]).
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by M
(out)
v and M

(in)
v , respectively, which are defined as

M (out)
v := {m ∈M | m = (v, U) for some U ⊆ V },

M (in)
v := {m ∈M | m = (u, U) for some u ∈ V and U ⊆ V s.t. v ∈ U}.

Definition 2 (Base Directed Graph). The base directed graph of a given directed

multigraph H = (V,M) is a directed graph B(H) = (V,E) where

E = {(v, u) | ∃(v, U) ∈M s.t. u ∈ U}.

Definition 3 (Multi-DAG). A directed multigraph H = (V,M) is a multi-DAG if it

has a single “source” node s ∈ V with no incoming multiedges and its base directed

graph B(H) is acyclic. Additionally, we refer to the set of nodes in V with no outgoing

multiedges as the set of “sink” nodes which is denoted by T ⊂ V .

Intuitively speaking, a multi-DAG is simply a directed multigraph with no

“cycles”. “Acyclicity” in directed multigraphs can be extended from the definition of

acyclicity in the underlying directed graph.

Each multipath in a multi-DAG H = (V,M) can be generated by starting

with a single multiedge at the source, and then choosing inflow many (i.e. as many as

the number of incoming edges of the multipath in B(H)) successor multiedges at the

internal nodes until we reach the sink nodes in T . An example of a multipath is given

in Figure 3.1. Recall that paths were described as bit vectors π of size |E| where the

1-bits were the edges in the path. In multipaths, however, each multiedge m ∈ M is

associated with a non-negative count πm that can be greater than 1.
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Figure 3.1: On the left we give an example of a multi-DAG. The source s and the nodes

in the first layer each have two multiedges depicted in red and blue. The nodes in the

next layer each have one multiedge depicted in green. An example of multipath in the

multi-DAG is given on the right. The multipath is represented as an |M |-dimensional

count vector π. The grayed multiedges are the ones with count πe = 0. All non-zero

counts πm are shown next to their associated multiedges m.

Definition 4 (Multipath). Given a multi-DAG H = (V,M), let3 π ∈ N|M | in which

πm is associated with the multiedge m ∈ M . For every vertex v ∈ V , define the in-

flow πin(v) :=
∑

m∈M(in)
v

πm and the outflow πout(v) :=
∑

m∈M(out)
v

πm. We call π a

multipath if it has the properties below:

1. The outflow πout(s) of the source s is 1.

2. For each vertex v ∈ V −T −{s}, the outflow is equal to the inflow, i.e. πout(v) =

πin(v).

3N is the set of non-negative integers.
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Multipath Learning Problem. Having established all definitions for multipaths,

we shall now define the problem of online learning of multipaths on a given multi-DAG

H = (V,M) as follows. In each trial, the algorithm randomly predicts with a multipath

π. Then for each multiedge m ∈ M , the adversary reveals a loss `m ∈ [0, 1] incurred

during that trial. The linear loss of the algorithm during this trial is given by π · `.

Observe that the online shortest path problem is a special case when |T | = 1 and |U | = 1

for all multiedges (v, U) ∈M .

In the remainder of this section, we generalize the algorithms in Section 3.1

to the online learning problem of multipaths. Moreover, we also introduce a faster

prediction technique for CH.

3.2.1 Expanded Hedge on Multipaths

We implement EH efficiently for learning multipaths by considering each mul-

tipath as an expert. Recall that each multipath can be generated by starting with a

single multiedge at the source and choosing inflow many successor multiedges at the

internal nodes. Multipaths are composed of multiedges as components and with each

multiedge m ∈M , we associate a weight wm. We maintain a distribution W over mul-

tipaths defined in terms of the weights w ∈ R|M |≥0 on the multiedges. The distribution

W will be in stochastic product form which is defied as below.

Definition 5 (Stochastic Product Form). The distribution W over the multipaths is in

stochastic product form in terms of the weights w if it has the following properties:

1. The weights are in product form, i.e. W (π) =
∏
m∈M (wm)πm.
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2. The weights are stochastic, i.e.
∑

m∈M(out)
v

wm = 1 for all v ∈ V −T .

3. The total path weight is one4 , i.e.
∑
πW (π) = 1.

Using these properties, sampling a multipath from W can be easily done as

follows. We start with sampling a single multiedge at the source and continue sampling

inflow many successor multiedges at the internal nodes until the multipath reaches the

sink nodes in T . Observe that πm indicates the number of times the multiedge m is

sampled through this process. EH updates the weights of the multipaths as follows:

W new(π) =
1

Z
W (π) exp(−ηπ · `)

=
1

Z

( ∏
m∈M

(wm)πm

)
exp

[
−η

∑
m∈M

πm `m

]

=
1

Z

∏
m∈M

(
wm exp

[
− η `m

]
︸ ︷︷ ︸

:=ŵm

)πm
.

Thus the weights wm of each multiedge m ∈ M are updated multiplicatively

to ŵm by multiplying the wm with the exponentiated loss factors exp [−η `m] and then

renormalizing with Z.

Generalized Weight Pushing. We generalize the weight pushing algorithm of Mohri

[2009b] to multipaths to reestablish the three canonical properties of Definition 5. Ob-

serve that for every multiedge m ∈ M , ŵm = wm exp(−η`m). The new weights are

W new(π) = 1
Z Ŵ (π) where Ŵ (π) :=

∏
m∈M (ŵm)πm . The generalized weight pushing

algorithm takes a set of arbitrary weights on the multiedges ŵm and changed them into

Stochastic Product Form.
4 The third property is implied by the first two properties. Nevertheless, it is mentioned for the sake

of clarity.
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Note that the new weights W new(π) = 1
Z Ŵ (π) sum to 1 (i.e. Property (3)

holds) since Z normalizes the weights. Our goal is to find new multiedge weights wnew
m

so that the other two properties hold as well, i.e. W new(π) =
∏
m∈M (wnew

m )πm for all

multipaths π and
∑

m∈M(out)
v

wnew
m = 1 for all nonsinks v. For this purpose, we introduce

a normalization Zv for each vertex v ∈ V :

Zv :=
∑
π∈Pv

Ŵ (π). (3.3)

where Pv is the set of all multipaths sourced from v and sinking at T . Intuitively, Zv is

the normalization constant for the subgraph sourced at v ∈ V and sinking in T . Thus

for a sink node v ∈ T , Zv = 1. Moreover Z = Zs is the normalization factor for the

multi-DAG H where s ∈ V is the source node. The generalized weight pushing finds all

Zv’s recursively starting from the sinks and then it computes the new weights wnew
m for

the multiedges to be used in the next trial:

1. For sinks v ∈ T , Zv = 1.

2. Recursing backwards in the multi-DAG, let Zv =
∑

m∈M(out)
v

ŵm
∏
u∈U :m=(v,U) Zu

for all non-sinks v.

3. For each multiedge m = (v, U), wnew
m := ŵm

(∏
u∈U Zu

)
/Zv.

Figure 3.2 illustrates an example of the weight pushing algorithm. For sim-

plicity, we demonstrate this algorithm on a regular DAG, that is, a multi-DAG where

|U | = 1 for all multiedges (v, U) ∈ M . The DAG on the left shows the unnormalized
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Figure 3.2: Example of weight pushing for regular DAGs i.e. when |U | = 1 for all

multiedges (v, U)∈M . (Left) the unnormalized weights ŵm for all multiedges/edges m

in the DAG. (Middle) the normalizations Zv for all vertices v∈V using the Steps 1 and 2

of the weight pushing algorithm. (Right) the new weights wnew
m which are in Stochastic

Product Form using the Step 3 of the weight pushing algorithm.

weights ŵm for all multiedges/edges m in the DAG. In the DAG in the middle, we com-

pute all the normalizations Zv for all vertices v ∈ V using Steps 1 and 2 of the weight

pushing algorithm. Finally, in the DAG on the right, we find the new weights wnew
m

which are in Stochastic Product Form using Step 3 of the weight pushing algorithm.

Lemma below proves the correctness and time complexity of this generalized weight

pushing algorithm.

Lemma 11. The weights wnew
m generated by the generalized weight pushing are in

Stochastic Product Form (see Definition 5) and for all multipaths π,
∏
m∈M (wnew

m )πm =

1
Zs

∏
m∈M (ŵm)πm. Moreover, the weights wnew

m can be computed in O(c |M |) time where

c is an upper-bound on the branching factor of each multiedge (i.e. for all m = (v, U) ∈

M , |U | < c).
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Proof. First, we show that the recursive relation in Step 2 and the initialization in

Step 1 hold for Zv defined in Equation (3.3). For a sink node v ∈ T , the normalization

constant Zv is vacuously 1. Thus Step 1 is justified. To prove the recursive relation in

Step 2, consider any non-sink v ∈ V − T . We “peel off” the first multiedge leaving v

and then recurse:

Zv =
∑
π∈Pv

Ŵ (π) =
∑

m∈M(out)
v

∑
π∈Pv

starts with m

Ŵ (π).

Recall that Ŵ (π) =
∏
m′∈M (ŵm′)

πm′ . Thus, we can factor out the weight ŵm

associated with multiedge m ∈ M
(out)
v . Assume the multiedge m comprised of edges

from the node v to the nodes u1, . . . , uk. Notice, excluding m from the multipath, we

are left with k number of multipaths from the ui’s:

Zv =
∑

m∈M(out)
v

∑
π∈Pv

starts with m

Ŵ (π)

=
∑

m∈M(out)
v

ŵm
∑

π1∈Pu1

∑
π2∈Pu2

· · ·
∑

πk∈Puk

k∏
i=1

Ŵ (πi).

After factoring ŵm out, the sum
∑
π1∈Pu1

∑
π2∈Pu2

· · ·
∑
πk∈Puk

iterates over

all combinations of all multipaths sourced from all ui’s associated with the multiedge m.

Recall that Pui is the set of all multipaths sourced from ui and sinking at T . Since each

πi iterates over all multipaths in Pui , we can turn the sum of products into product of
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sums as below:

Zv =
∑

m∈M(out)
v

ŵm
∑

π1∈Pu1

∑
π2∈Pu2

· · ·
∑

πk∈Puk

k∏
i=1

Ŵ (πi)

=
∑

m∈M(out)
v

ŵm
∑

π1∈Pu1

Ŵ (π1)
∑

π2∈Pu2

· · ·
∑

πk∈Puk

k∏
i=2

Ŵ (πi))

︸ ︷︷ ︸
does not depend on π1∈Pu1

=
∑

m∈M(out)
v

ŵm

 ∑
π2∈Pu2

· · ·
∑

πk∈Puk

k∏
i=2

Ŵ (πi)

 ∑
π1∈Pu1

Ŵ (π1)


= · · · (Repeating for each sum

∑
πj∈Puj

)

=
∑

m∈M(out)
v

ŵm

k∏
i=1


∑
π∈Pui

Ŵ (π)

︸ ︷︷ ︸
Zui


=

∑
m∈M(out)

v

ŵm

k∏
i=1

Zui . (3.4)

Equation (3.4) justifies Step 2. Now we prove that the new weight assignment

in Step 3 will result in Stochastic Product Form with correct distribution. For all

v ∈ V − T and for all m ∈ M (out)
v , set wnew

m := ŵm

∏
u:(v,u)∈m Zu

Zv
(Step 3). Property (2)

of Definition 5 (stochasticity) is true since for all v ∈ V − T :

∑
m∈M(out)

v

wnew
m =

∑
m∈M(out)

v

ŵm

∏
u:(v,u)∈m Zu

Zv

=
1

Zv

∑
m∈M(out)

v

ŵm
∏

u:(v,u)∈m

Zu

︸ ︷︷ ︸
Zv

= 1. (Equation (3.4))

We now prove that Property (1) of Definition 5 (product form) is also true
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since for all π ∈ Ps:

∏
m∈M

(wnew
m )πm =

∏
v∈V−T

∏
m∈M(out)

v

(wnew
m )πm

=
∏

v∈V−T

∏
m∈M(out)

v

(
ŵm

∏
u:(v,u)∈m Zu

Zv

)πm

=

 ∏
v∈V−T

∏
m∈M(out)

v

(ŵm)πm

  ∏
v∈V−T

∏
m∈M(out)

v

(∏
u:(v,u)∈m Zu

Zv

)πm .
Notice that

∏
v∈V−T

∏
m∈M(out)

v

(∏
u:(v,u)∈m Zu

Zv

)πm
telescopes along the multi-

edges in the multipath π. After telescoping, since Zv = 1 for all v ∈ T , the only

remaining term will be 1
Zs

where s is the souce node. Therefore we obtain:

∏
m∈M

(wnew
m )πm =

 ∏
v∈V−T

∏
m∈M(out)

v

(ŵm)πm

 [ ∏
v∈V−T

∏
m∈Mv

(∏
u:(v,u)∈m Zu

Zv

)πm]

=

[ ∏
m∈M

(ŵm)πm

] [
1

Zs

]

=
1

Zs

∏
m∈M

(ŵm)πm = W new(π).

Regarding the time complexity, we first focus on the the recurrence relation

Zv =
∑

m∈Mv
ŵm

∏
u:(v,u)∈m Zu. Note that for each v ∈ V , Zv can be computed in

O(c |M (out)
v |). Thus the computation of all Zv’s takes O(c |M |) time. Now observe that

wnew
m for each multiedge m = (v, U) ∈ M can be found in O(c) time using wnew

m =

ŵm

∏
u∈U Zu
Zv

. Hence the computation of wnew
m for all multiedges m ∈ M takes O(c |M |)

time. Therefore the generalized weight pushing algorithm runs in O(c |M |) time.

�
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Regret Bound. In order to apply the regret bound of EH we have to initialize the

distribution W on multipaths to the uniform distribution. This is achieved by setting all

ŵm to 1 followed by an application of generalized weight pushing. Note that Theorem 8

is a special case of the theorem below when |U | = 1 for all multiedge (v, U) ∈ M and

|T | = 1.

Theorem 12. Given a multi-DAG H = (V,M) with designated source node s ∈ V and

sink nodes T ⊂ V , assume N is the number of multipaths in H from s to T , L∗ is the

total loss of best multipath, and D is an upper-bound on the 1-norm of the count vectors

of the multipaths (i.e. ‖π‖1 ≤ D for all multipaths π). Then with proper tuning of the

learning rate η over the trials, EH guarantees the following regret bound:

REH ≤
√

2L∗D logN +D logN .

3.2.2 Component Hedge on Multipaths

We implement CH efficiently for learning of multipaths in a multi-DAG H =

(V,M). Here the multipaths are the objects which are represented as |M |-dimensional

count vectors π (Definition 4). The algorithm maintains an |M |-dimensional mixture

vector f in the convex hull of count vectors. This hull is the following polytope over

weight vectors obtained by relaxing the integer constraints on the count vectors:

Definition 6 (Unit-Flow Polytope). Given a multi-DAG H = (V,M), let f ∈ R|M |≥0 in

which fm is associated with m ∈ M . Define the inflow fin(v) :=
∑

m∈M(in)
v

fm and the

outflow fout(v) :=
∑

m∈M(out)
v

fm. f belongs to the unit-flow polytope of H if it has
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the following properties:

1. The outflow fout(s) of the source s is 1.

2. For each vertex v ∈ V −T −{s}, the outflow is equal to the inflow, i.e. fout(v) =

fin(v).

In each trial, the weight of each multiedge fm is updated multiplicatively to

f̂m = fm exp(−η`m) and then the weight vector f̂ is projected back to the unit-flow

polytope via a relative entropy projection:

fnew := arg min
f∈unit-flow polytope

∆(f ||f̂), where ∆(a||b) =
∑
i

ai log
ai
bi

+ bi − ai.

This projection is achieved by repeatedly cycling over the vertices and project

onto the local flow constraints at the current vertex. This method is called iterative

Bregman projections [Bregman, 1967]. The following lemma shows that projection to

each local flow constraint is simply equivalent to scaling the in- and out-flows to the

appropriate values.

Lemma 13. The relative entropy projection to the local flow constraint at vertex v ∈ V

is done as follows:

1. If v = s, normalize the fout(v) to 1.

2. If v ∈ V −T −{s}, scale the incoming and outgoing multiedges of v such that

fout(v) := fin(v) :=
√
fout(v) · fin(v).
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Proof. Formally, the projection f of a given point f̂ ∈ R|M |≥0 to constraint C is the

solution to the following:

arg min
f∈C

∑
m∈M

fm log

(
fm

f̂m

)
+ f̂m − fm.

C can be one of the two types of constraints mentioned in Definition 6. We

use the method of Lagrange multipliers in both cases. Observe that if |U | = 1 for all

multiedge m = (v, U) ∈M , then the updates in Koolen et al. [2010] are recovered.

Constraint Type 1. The outflow from the source s must be 1. Assume fm1 , . . . , fmd

are the weights associated with the outgoing multiedges m1, . . . ,md from the source s.

Then:

L(f , λ) :=
∑
m∈M

fm log

(
fm

f̂m

)
+ f̂m − fm − λ

 d∑
j=1

fmj − 1


∂L

∂fm
= log

fm

f̂m
= 0 −→ fm = f̂m ∀m ∈M − {m1, . . . ,md}

∂L

∂fmj
= log

fmj

f̂mj
− λ = 0 −→ fmj = f̂mj exp(λ) (3.5)

∂L

∂λ
=

d∑
j=1

fmj − 1 = 0. (3.6)

Combining equations (3.5) and (3.6) results in normalizing fm1 , . . . , fmd , that

is:

∀j ∈ {1..d} fmj =
f̂mj∑d
j′=1 f̂mj′

.

Constraint Type 2. Given any internal node v ∈ V − T − {s}, the outflow from

v must be equal to the inflow of v. Assume f
(in)
1 , . . . , f

(in)
a and f

(out)
1 , . . . , f

(out)
b are
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the weights associated with the incoming and outgoing multiedges from/to the node v,

respectively. Then:

L(w, λ) :=
∑
m∈M

f log

(
fm

f̂m

)
+ f̂m − fm − λ

(
b∑

b′=1

f
(out)
b′ −

a∑
a′=1

f
(in)
a′

)
∂L

∂fm
= log

fm

f̂m
= 0 −→ fm = f̂m ∀m non-adjacent to v

∂L

∂f
(out)
b′

= log
f

(out)
b′

f̂
(out)
b′

− λ = 0 −→ f
(out)
b′ = f̂

(out)
b′ exp(λ) ∀b′ ∈ {1..b} (3.7)

∂L

∂f
(in)
a′

= log
f

(in)
a′

f̂
(in)
a′

+ λ = 0 −→ f
(in)
a′ = f̂

(in)
a′ exp(−λ) ∀a′ ∈ {1..a} (3.8)

∂L

∂λ
=

b∑
b′=1

f
(out)
b′ −

a∑
a′=1

f
(in)
a′ = 0. (3.9)

Letting β = exp(λ), for all a′ ∈ {1..a} and all b′ ∈ {1..b}, we can obtain the

following by combining equations (3.7), (3.8) and (3.9):

β

(
b∑

b′=1

f̂
(out)
b′

)
=

1

β

(
a∑

a′=1

f̂
(in)
a′

)
−→ β =

√√√√∑a
a′=1 f̂

(in)
a′∑b

b′=1 f̂
(out)
b′

∀ b′ ∈ {1..b}, f (out)
b′ = f̂

(out)
b′

√√√√∑a
a′′=1 f̂

(in)
a′′∑b

b′′=1 f̂
(out)
b′′

,

∀ a′ ∈ {1..a}, f (in)
a′ = f̂

(in)
a′

√√√√∑b
b′′=1 ŵ

(out)
b′′∑a

a′′=1 ŵ
(in)
a′′

.

This indicates that to enforce the flow conservation property at each internal

node, the weights must be multiplicatively scaled up/down so that the new outflow and

inflow is the geometric average of the old outflow and inflow. �

Prediction. In this step, the algorithm needs to randomly predict with a multipath π

from a distribution D such that ED[π] = f . In Component Hedge and similar algorithms
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[Helmbold and Warmuth, 2009, Koolen et al., 2010, Yasutake et al., 2011, Warmuth and

Kuzmin, 2008], D is constructed by decomposing f into a convex combination of small

number of objects. In this section, we give a new and more direct prediction method

for multipaths. We construct a distribution D with the right expectation in Stochastic

Product Form (Definition 5) by defining a new set of weights w using the flow values f .

For each multiedge m = (v, U) ∈ M , we set the weight wm = fm/fin(v). The induced

distribution will be in Stochastic Product Form with the right expectation ED[π] = f .

This gives us a faster prediction method as the decomposition is avoided. Lemma 14

shows the correctness and time complexity of our method.

Lemma 14. For each multiedge m = (v, U) ∈ M , define the weight wm = fm/fin(v).

Let the distribution D over the multipaths be D(π) :=
∏
m∈M (wm)πm. Then:

1. D is in Stochastic Product Form.

2. ED[π] = f .

3. Constructing D from the flow values f can be done in O(c|M |) time where c is an

upper-bound on the branching factor of each multiedge (i.e. for all m = (v, U) ∈

M , |U | < c).

Proof. D(π) is in product form by construction. The weights are also stochastic since

for each non-sink vertex v:

∑
m∈M(out)

v

wm =
∑

m∈M(out)
v

fm
fin(v)

=
1

fin(v)

∑
m∈M(out)

v

fm =
1

fin(v)
fout(v) = 1
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Thus the D is in Stochastic Product Form (Definition 5). Now we show that

D will result in the desired expectation. Let f̂ := ED[π] be the flow induce by D.

Denote f̂in(v) :=
∑

m∈M(in)
v

f̂m. Let v1, . . . , vn be a topological order of the vertices in

the underlying DAG. We use strong induction on n to show that f̂in(v) = fin(v) for all

v ∈ V . For v1 = s this is true since f̂in(s) = fin(s) = 1. For i > 1:

f̂in(vi) =
∑

m=(v,U)∈M(in)
vi

wm f̂in(v)

=
∑

m=(v,U)∈M(in)
vi

wm fin(v) (Inductive hypothesis)

=
∑

m=(v,U)∈M(in)
vi

fm
fin(v)

fin(v) (Definition of wm)

=
∑

m=(v,U)∈M(in)
vi

fm = fin(vi)

and that completes the induction. Now for each multiedge m = (v, U) ∈M we have:

f̂m = f̂in(v)wm = f̂in(v)
fm
fin(v)

= fm

Thus f = f̂ .

To construct D, we must find all the weights wm. To do so, we will have

two passes over the set of multiedges M . In the first pass, we compute all incoming

flows fin(v) for all v ∈ V in O(c|M |) time. Then in the second pass we find all the

weights wm = fm
fin(v) in O(|M |) time. Having constructed D, we can efficiently sample a

multipath with the right expectation. �
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Regret Bound. The regret bound for CH depends on a good choice of the initial

weight vector f init in the unit-flow polytope. We use an initialization technique similar

to the one discussed in Section 2.2.2. Instead of explicitly selecting f init in the unit-

flow polytope, the initial weight is obtained by projecting a point f̂
init

outside of the

polytope to its inside. This yields the following regret bounds.

Theorem 15. Given a multi-DAG H = (V,M), let D be an upper-bound on the 1-norm

of the count vectors of the multipaths (i.e. ‖π‖1 ≤ D for all multipaths π). Also denote

the total loss of the best multipath by L∗. Then with proper tuning of the learning rate

η over the trials, CH guarantees:

RCH ≤
√

2L∗D (log |M |+ logD) +D log |M |+D logD.

Moreover, when the multipaths are bit vectors, then:

RCH ≤
√

2L∗D log |M |+D log |M |.

Proof. According to Koolen et al. [2010], with proper tuning of the learning rate η,

the regret bound of CH is:

RCH ≤
√

2L∗∆(π||f init) + ∆(π||f init), (3.10)

where π ∈ N|M | is the best multipath and L∗ its loss. Define f̂
init

:= 1
|M | 1

where 1 ∈ R|M | is a vector of all ones. Now let the initial point f init be the relative

entropy projection of f̂
init

onto the unit-flow prolytope5

f init = arg min
f∈P

∆(f ||f̂
init

).

5This computation can be done as a pre-processing step.
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Now we have:

∆(π||f init) ≤ ∆(π||f̂
init

) (Generalized Pythagorean Thm.)

=
∑
m∈M

πm log
πm

f̂ init
m

+ f̂ init
m − πm

=
∑
m∈M

πm log
1

f̂ init
m

+ πm log πm + f̂ init
m − πm

≤
∑
m∈M

πm(log |M |) +
∑
m∈M

πm log πm +
∑
m∈M

1

|M |
−
∑
m∈M

πm (3.11)

≤ D(log |M |) +D logD + |M | 1

|M |
−
∑
m∈M

πm

≤ D log |M |+D logD.

Thus, by Inequality (3.10) the regret bound will be:

RCH ≤
√

2L∗D (log |M |+ logD) +D log |M |+D logD.

Note that if π is a bit vector, then
∑

m∈M πm log πm = 0, and consequently,

the expression (3.11) can be bounded as follows:

∆(π||f init) ≤
∑
m∈M

πm(log |M |) +
∑
m∈M

πm log πm +
∑
m∈M

1

|M |
−
∑
m∈M

πm

≤ D(log |M |) + |M | 1

|M |
−
∑
m∈M

πm

≤ D log |M |.

Again, using Inequality (3.10), the regret bound will be:

RCH ≤
√

2L∗D log |M |+D log |M |.

�
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Notice that by setting |U | = 1 for all multiedge (v, U) ∈ M and |T | = 1,

the algorithm for path learning in Koolen et al. [2010] is recovered. Also observe that

Theorem 9 is a corollary of Theorem 15 since every path is represented as a bit vector

and |M | = |E| ≤ |V |2.

3.2.3 Stochastic Product Form vs Mean Form

We discussed the efficient implementation of the two algorithms of EH and CH

for learning multipaths. The EH algorithm maintains a weight vector w ∈ R|M | in the

Stochastic Product Form. These weights define a distribution over all multipaths. On

the other hand, the CH algorithm keeps track of a flow vector f ∈ R|M | in the Mean

Form. These flows define a mean vector over all multipaths and belong to the unit-flow

polytope.

For any distribution over the multipaths, there is a unique expectation/mean

of the counts of the multiedges according to the given distribution. This expectation is

represented by a flow vector. If the distribution is in Stochastic Product Form with the

weight vector w, the flow vector can be computed efficiently using a dynamic program-

ming algorithm. Initializing with the source s, we set the in-coming flow fin(s) = 1.

Then, using the recursive equation fm = wmfin(s) for all m ∈M (out)
s , we find the flows

of the out-going multiedges from the source s by partitioning the in-flow according to its

out-going weights. Having computed the flows of all the out-going multiedges, we can

find the in-flows of some of the vertices which are connected to the source. By apply-

ing the aforementioned recursion over the vertices of H in the topological order of the
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Figure 3.3: Mapping between Stochastic Product Form in EH and Mean Form in CH.

underlying base directed graph B(H), we can find the flows of all the multiedges. This

procedure can be done in O(c|M |) time where c is an upper-bound on the branching

factor of each multiedge (i.e. for all m = (v, U) ∈M , |U | < c).

Conversely, by applying the Lemma 14 on a given flow vector f , we can find

the weights w defining the distribution D in the Stochastic Product Form such that

it has the right expectation ED[π] = f . In general if we assume no structure on the

distributions over the multipaths, there could be several different distributions with

the expectation f . However, if we limit the distributions to the Stochastic Product

Form, then the resulting distribution D is unique. This is because the in-flows should

be distributed according to the local weights in the Stochastic Product Form.

This establishes a 1-1 and onto mapping between the Stochastic Product Form
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of EH and the Mean Form of CH (see Figure 3.3). Both directions of the mapping have

the additional crucial property of preserving the mean.

3.3 Online Dynamic Programming with Multipaths

We consider the problem of online learning of combinatorial objects whose

offline optimization problem can be solved efficiently via a dynamic programming al-

gorithm with arbitrary min-sum recurrence relation. This is equivalent to repeatedly

solving a variant of the same min-sum dynamic programming problem in successive

trials.

We will use our definition of multi-DAG (Definition 3) to describe a represen-

tation of the dynamic programming problem. The vertex set V is a set of subproblems

to be solved. The source node s ∈ V is the “complete subproblem” (i.e. the original

problem). The sink nodes T ⊂ V are the base subproblems. A multiedge from a node

v ∈ V to a set of nodes U ⊂ V means that a solution to the subproblem v may use

solutions to the (smaller) subproblems in U . Denote the set of all multiedges by M . A

step of the dynamic programming recursion is thus represented by a multiedge. Denote

the constructed directed multigraph by H = (V,M). A subproblem is never solved more

than once in a dynamic programming. Therefore base directed graph B(H) is acyclic

and H is a multi-DAG.

There is a loss associated with any sink node in T . Also with the recursions

at the internal node v a local loss will be added to the loss of the subproblems that
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depends on v and the chosen multiedge m ∈M (out)
v leaving v. We can handle arbitrary

“min-sum” recurrences:

OPT(v) =


LT (v) v ∈ T

min
m∈M(out)

v
{
∑

u:(v,u)∈mOPT(u)+LM (m)} v ∈ V − T .

The problem of repeatedly solving an arbitrary min-sum dynamic program-

ming problem over trials now becomes online learning of multipaths in H. Note that

due to the correctness of the dynamic programming, every possible solution to the

dynamic programming can be encoded as a multipath in H and vice versa.

The loss of a given multipath is the sum of LM (m) over all multiedges m in the

multipath plus the sum of LT (v) for all sink nodes v at the bottom of the multipath.

To capture the same loss, we can alternatively define losses over the multiedges M .

Concretely, for each multiedge m = (v, U) define `m := LM (m) +
∑

u∈U 1{u∈T }LT (u)

where 1{·} is the indicator function6.

3.4 Applications

In this section, we apply our algorithms to various instances of online dynamic

programming. In each instance, we define the problem, explore the dynamic program-

ming representation and obtain the regret bounds.

6 The alternative losses over the multiedges may not be in [0, 1]. However, it is straight-forward to
see if `m ∈ [0, b] for some b, the regret bounds for CH and EH will scale up accordingly.
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3.4.1 Binary Search Trees

Recall again the online version of optimal binary search tree (BST) problem

[Cormen et al., 2009]: We are given a set of n distinct keys K1 < K2 < . . . < Kn. In

each trial, the algorithm predicts with a BST. Then the adversary reveals a probability

vector p ∈ [0, 1]n with
∑n

i=1 pi = 1. For each i, pi indicates the search probability for

the key Ki. The loss is defined as the average search cost in the predicted BST which

is the average depth7 of all the nodes in the BST:

loss =
n∑
i=1

depth(Ki) · pi.

Convex Hull of BSTs. Implementing CH requires a representation where not only

the BST polytope has a polynomial number of facets, but also the loss must be linear

over the components. Since the average search cost is linear in the depth(Ki) variables, it

would be natural to choose these n variables as the components for representing a BST.

Unfortunately the convex hull of all BSTs when represented this way is not known to be

a polytope with a polynomial number of facets. There is an alternate characterization

of the convex hull of BSTs with n internal nodes called the associahedron [Loday, 2005].

This polytope has polynomial in n many facets but the average search cost is not linear

in the n components associated with this polytope8. Thus CH cannot be applied to

associahedron.

7Here the root starts at depth 1.
8Concretely, the ith component is ai bi where ai and bi are the number of nodes in the left and right

subtrees of the ith internal node Ki, respectively.
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The Dynamic Programming Representation. The optimal BST problem can be

solved via dynamic programming [Cormen et al., 2009]. Each subproblem is denoted by

a pair (i, j), for 1 ≤ i ≤ n + 1 and i− 1 ≤ j ≤ n, indicating the optimal BST problem

with the keys Ki, . . . ,Kj . The base subproblems are (i, i − 1), for 1 ≤ i ≤ n + 1 and

the complete subproblem is (1, n). The BST dynamic programming problem uses the

following min-sum recurrence:

OPT(i, j)=


0 j= i−1

mini≤r≤j{OPT(i, r−1)+OPT(r+1, j)+
∑j

k=i pk} i≤j.

This recurrence always recurses on 2 subproblems. Therefore for every multiedge

(v, U) we have |U | = 2. The associated multi-DAG has the subproblems/vertices

V = {(i, j)|1 ≤ i ≤ n+ 1, i− 1 ≤ j ≤ n}, source s = (1, n) and sinks T = {(i, i− 1)|1 ≤

i ≤ n + 1}. Also at node (i, j), the set M
(out)
(i,j) consists of (j − i + 1) many multiedges.

The rth multiedge leaving (i, j) comprised of 2 edges going from the node (i, j) to the

nodes (i, r − 1) and (r + 1, j). Figure 3.4 illustrates the underlying multi-DAG and the

multipath associated with a given BST.

Since the above recurrence relation correctly solves the offline optimization

problem, every multipath in the DAG represents a BST, and every possible BST can

be represented by a multipath of the 2-DAG. We have |M | = O(n3) multiedges which

are the components of our new representation. The loss of each multiedge leaving (i, j)

is
∑j

k=i pk and is upper bounded by 1. Most crucially, the original average search cost

is linear in the losses of the multiedges and the unit-flow polytope has O(n3) facets.
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Figure 3.4: (Left) An example of a multipath in blue in the underlying multi-DAG. The

nodes in T represent the subproblems associated with the “gaps” e.g. (3, 2) represents

the binary search tree for all values between the keys 2 and 3. (Right) its associated

BSTs of n = 5 keys. Note that each node, and consequently multiedge, is visited at

most once in these multipaths.
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Regret Bound. As mentioned earlier, the number of binary trees with n nodes is the

nth Catalan number. Therefore N = (2n)!
n!(n+1)! ∈ (2n, 4n). Also note that each multipath

representing a BST consists of exactly D = n multiedges. Thus using Theorem 12, EH

achieves a regret bound of O(n
√
L∗). Moreover, since |M | = O(n3), using Theorem 15,

CH achieves a regret bound of O(n
1
2 (log n)

1
2

√
L∗).

3.4.2 Matrix-Chain Multiplication

Given a sequence A1, A2, . . . , An of n matrices, our goal is to compute the

product A1×A2× . . .×An in the most efficient way. Using the standard algorithm for

multiplying pairs of matrices as a subroutine, this product can be found by a specifying

the order which the matrices are multiplied together. This order is determined by a

full parenthesization: A product of matrices is fully parenthesized if it is either a single

matrix or the multiplication of two fully parenthesized matrix products surrounded by

parentheses. For instance, there are five full parenthesizations of the productA1A2A3A4:

(A1(A2(A3A4)))

(A1((A2A3)A4))

((A1A2)(A3A4))

(((A1A2)A3)A4)

((A1(A2A3))A4).

We consider the online version of matrix-chain multiplication problem [Cormen

et al., 2009]. In each trial, the algorithm predicts with a full parenthesization of the
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product A1 × A2 × . . . × An without knowing the dimensions of these matrices. Then

the adversary reveals the dimensions of each Ai at the end of the trial denoted by

di−1 × di for all i ∈ {1..n}. The loss of the algorithm is defined as the number of scalar

multiplications in the matrix-chain product in that trial. The goal is to predict with

a sequence of full parenthesizations minimizing regret which is the difference between

the total loss of the algorithm and the total loss of the single best full parenthesization

chosen in hindsight. Observe that the number of scalar multiplications in the matrix-

chain product cannot be expressed as a linear loss over the dimensions of the matrices

di’s.

The Dynamic Programming Representation. Finding the best full parenthesiza-

tion can be solved via dynamic programming [Cormen et al., 2009]. Each subproblem

is denoted by a pair (i, j) for 1 ≤ i ≤ j ≤ n, indicating the problem of finding a full

parenthesization of the partial matrix product Ai . . . Aj . The base subproblems are (i, i)

for 1 ≤ i ≤ n and the complete subproblem is (1, n). The dynamic programming for

matrix chain multiplication uses the following min-sum recurrence:

OPT(i, j) =


0 i = j

mini≤k<j{OPT(i, k)+OPT(k + 1, j)+di−1 dk dj} i < j.

This recurrence always recurses on 2 subproblems, thus for all multiedges m =

(v, U) ∈ M we have |U | = 2. The associated multi-DAG has the subproblems/vertices

V = {(i, j) | 1 ≤ i ≤ j ≤ n}, source s = (1, n) and sinks T = {(i, i) | 1 ≤ i ≤ n}. Also at

node (i, j), the set M
(out)
(i,j) consists of (j−i) many multiedges. The kth multiedge leaving
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Figure 3.5: Given a chain of n = 4 matrices, the multipath associated with the full

parenthesization (A1((A2A3)A4)) is depicted in blue.

(i, j) is comprised of 2 edges going from the node (i, j) to the nodes (i, k) and (k+ 1, j).

The loss of the kth multiedge is di−1 dk dj . Figure 3.5 illustrates the multi-DAG and

multipaths associated with matrix chain multiplications.

Since the above recurrence relation correctly solves the offline optimization

problem, every multipath in the multi-DAG represents a full parenthesization, and every

possible full parenthesization can be represented by a multipath of the multi-DAG. We

have |M | = O(n3) multiedges which are the components of our new representation.

Assuming that all dimensions di are bounded as di < dmax for some dmax, the loss

associated with each multiedge is upper-bounded by (dmax)3. Most crucially, the original

number of scalar multiplications in the matrix-chain product is linear in the losses of

the multiedges and the unit-flow polytope has O(n3) facets.
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Regret Bounds. It is well-known that the number of full parenthesizations of a se-

quence of n matrices is the nth Catalan number [Cormen et al., 2009]. Therefore

N = (2n)!
n!(n+1)! ∈ (2n, 4n). Also note that each multipath representing a full parenthe-

sization consists of exactly D = n − 1 multiedges. Thus, incorporating (dmax)3 as the

loss range for each component and using Theorem 12, EH achieves a regret bound

of O(n (dmax)
3
2

√
L∗). Moreover, since |M | = O(n3), using Theorem 15 and consid-

ering (dmax)3 as the loss range for each component , CH achieves a regret bound of

O(n
1
2 (log n)

1
2 (dmax)

3
2

√
L∗).

3.4.3 Knapsack

Consider the online version of the knapsack problem [Kleinberg and Tardos,

2006]: We are given a set of n items along with the capacity of the knapsack C ∈ N.

For each item i ∈ {1..n}, a heaviness hi ∈ N is associated. In each trial, the algorithm

predicts with a packing which is a subset of items whose total heaviness is at most the

capacity of the knapsack. After the prediction of the algorithm, the adversary reveals

the profit of each item pi ∈ [0, 1]. The gain is defined as the sum of the profits of the

items picked in the packing predicted by the algorithm in that trial. The goal is to

predict with a sequence of packings minimizing regret which is the difference between

the total gain of the algorithm and the total gain of the single best packing chosen in

hindsight.

Note that this online learning problem only deals with exponentially many

objects when there are exponentially many feasible packings. If the number of packings
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is polynomial, then it is practical to simply run the Hedge algorithm with one weight

per packing. Here we consider a setting of the problem where maintaining one weight

per packing is impractical. We assume C and hi’s are in such way that the number of

feasible packings is exponential in n.

The Dynamic Programming Representation. Finding the optimal packing can

be solved via dynamic programming [Kleinberg and Tardos, 2006]. Each subproblem is

denoted by a pair (i, c) for 0 ≤ i ≤ n and 0 ≤ c ≤ C, indicating the knapsack problem

given items 1, . . . , i and capacity c. The base subproblems are (0, c) for 0 ≤ c ≤ C

and the complete subproblem is (n,C). The dynamic programming for the knapsack

problem uses the following max-sum recurrence:

OPT(i, c) =



0 i = 0

OPT(i− 1, c) c < hi

max{OPT(i− 1, c), pi+OPT(i− 1, c− hi)} else.

This recurrence always recurses on 1 subproblem. Thus the multipaths are

regular paths and the problem is essentially the online longest-path problem with several

sink nodes. The associated DAG has the subproblems/vertices V = {(i, c) | 0 ≤ i ≤

n, 0 ≤ c ≤ C}, source s = (n,C) and sinks T = {(0, c) | 0 ≤ c ≤ C}. Also at node

(i, c), the set M
(out)
(i,c) consists of two edges going from the node (i, c) to the nodes (i−1, c)

and (i − 1, c − hi). Figure 3.6 illustrates an example of the DAG and a sample path

associated with a packing.

Since the above recurrence relation correctly solves the offline optimization
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Figure 3.6: An example with C = 7 and (h1, h2, h3) = (2, 3, 4). The packing of picking

the first and third item is highlighted.

problem, every path in the DAG represents a packing, and every possible packing can

be represented by a path of the DAG. We have |M | = |E| = O(nC) edges which are

the components of our new representation. The gains of the edges going from the node

(i, c) to the nodes (i− 1, c) and (i− 1, c− hi) are 0 and pi, respectively. Note that the

gain associated with each edge is upper-bounded by 1. Most crucially, the sum of the

profits of the picked items in the packing is linear in the gains of the edges and the

unit-flow polytope has O(nC) facets.

Regret Bounds. We turn the problem into an equivalent shortest-path problem by

defining a loss for each edge e ∈ E as `e = 1− ge in which ge is the gain of e. Call this

new DAG Ḡ. Let LḠ(π) be the loss of path π in Ḡ and GG(π) be the gain of path π in

G. Since all paths contain exactly D = n edges, the loss and gain are related as follows:

LḠ(π) = n − GG(π). According to our initial assumption logN = O(n). Thus using
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Theorem 12 we obtain:

G∗ − E[GEH] = (nT − L∗)− (nT − E[LEH])

= E[LEH]− L∗ = O(n
√
L∗).

Notice that the number of multiedges/edges is |M | = |E| = O(nC) and each

path consists of D = n edges. Therefore using Theorem 15 we obtain:

G∗ − E[GCH] = (nT − L∗)− (nT − E[LCH])

= E[LCH]− L∗ = O(n
1
2 (log nC)

1
2

√
L∗).

3.4.4 k-Sets

Consider the online learning of the k-sets [Warmuth and Kuzmin, 2008]: We

want to learn subsets of size k of the set {1..n}. In each trial, the algorithm predicts

with a k-set. Then, the adversary reveals the loss of each element `i for i ∈ {1..n}.

The loss is defined as the sum of the losses of the elements in the k-set predicted by

the algorithm in that trial. The goal is to predict with a sequence of k-sets minimizing

regret which is the difference between the total loss of the algorithm and the total loss

of the single best k-set chosen in hindsight.

The Dynamic Programming Representations. Finding the optimal k-set can

be solved via dynamic programming. Each subproblem is denoted by a pair (i, j) for

0 ≤ j ≤ k and j ≤ i ≤ j + n − k, indicating the j-set problem over the set {1, . . . , i}.

The base subproblem is (0, 0) and the complete subproblem is (n, k). The dynamic

programming for the k-set problem uses the following min-sum recurrence:
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Figure 3.7: An example of k-set with n = 7 and k = 3. The 3-set of (1, 0, 0, 1, 1, 0, 0) is

highlighted.

OPT(i, j) =



0 i = j = 0

OPT(i− 1, 0) j = 0

OPT(i− 1, i− 1)+`i j = i

min{OPT(i− 1, j),OPT(i− 1, j − 1)+`i} otherwise.

This recurrence always recurses on 1 subproblem. Thus the multipaths are

regular paths and the problem is essentially the online shortest-path problem from a

source to a sink. The associated DAG has the subproblems/vertices V = {(i, j) | 0 ≤

j ≤ k, j ≤ i ≤ j+n− k}, source s = (n, k) and sink T = {(0, 0)}. Also at node (i, j),

the set M
(out)
(i,j) consists of two edges going from the node (i, j) to the nodes (i − 1, j)

and (i − 1, j − 1). Figure 3.7 illustrates an example of the DAG and a sample path

associated with a k-set.
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Since the above recurrence relation correctly solves the offline k-set problem,

every path in the DAG represents a k-set, and every possible k-set can be represented by

a path of the DAG. We have |M | = |E| = 2k(n−k)+n edges which are the components

of our new representation. The losses of the edges going from the node (i, j) to the nodes

(i− 1, j) and (i− 1, j − 1) are 0 and `i, respectively. Note that the loss associated with

each edge is upper-bounded by 1. Most crucially, the sum of the losses of the predicted

k-set is linear in the losses of the edges and the unit-flow polytope has O(k(n − k))

facets.

Regret Bounds. The number of k-sets is N =
(
n
k

)
. Also note that each path

representing a k-set consists of exactly D = n edges and its loss is bounded by k.

Thus, using Theorem 12, EH achieves a regret bound of O(k (log n)
1
2

√
L∗). More-

over, since |E| = O(k(n − k)), using Theorem 15, CH achieves a regret bound of

O(n
1
2 (log k(n− k))

1
2

√
L∗).

Remark. The convex hull of the k-sets in its original space, known as capped probabil-

ity simplex, is well-behaved. This polytope has n+1 facets and the exact relative entropy

projection to this polytope can be found efficiently [Warmuth and Kuzmin, 2008]. Thus

applying CH in the original space will result in more efficient algorithm with better

bounds of O(k
1
2 (log n)

1
2

√
L∗). Nevertheless, an efficient implementation of the EH

algorithm can be obtained via our online dynamic programming framework. Interest-

ingly, in the special case of the k-set, the regret bounds of EH is also O(k
1
2 (log n)

1
2

√
L∗)

[Kivinen, 2010].
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Figure 3.8: All cuttings of a rod of length n = 4 and their profits given (p1, p2, p3, p4) =

(.1, .4, .7, .9).

3.4.5 Rod Cutting

Consider the online version of rod cutting problem [Cormen et al., 2009]: A

rod of length n ∈ N is given. In each trial, the algorithm predicts with a cutting, that

is, it cuts up the rod into smaller pieces of integer length. Then the adversary reveals

a profit pi ∈ [0, 1] for each piece of length i ∈ {1..n} that can be possibly generated out

of a cutting. The gain of the algorithm is defined as the sum of the profits of all the

pieces generated by the predicted cutting in that trial. The goal is to predict with a

sequence of cuttings minimizing regret which is the difference between the total gain

of the algorithm and the total gain of the single best cutting chosen in hindsight. See

Figure 3.8 as an example.
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Figure 3.9: An example of rod cutting problem with n = 4. The cutting with two

smaller pieces of size 2 is highlighted.

The Dynamic Programming Representation. Finding the optimal cutting can

be solved via dynamic programming [Cormen et al., 2009]. Each subproblem is simply

denoted by i for 0 ≤ i ≤ n, indicating the rod cutting problem given a rod of length

i. The base subproblem is i = 0, and the complete subproblem is i = n. The dynamic

programming for the rod cutting problem uses the following max-sum recurrence:

OPT(i) =


0 i = 0

max0≤j≤i{OPT (j)+pi−j} i > 0.

This recurrence always recurses on 1 subproblem. Thus the multipaths are

regular paths and the problem is essentially the online longest-path problem from the

source to the sink. The associated DAG has the subproblems/vertices V = {0, 1, . . . , n},

source s = n and sink T = {0}. Also at node i, the set M
(out)
i consists of i edges going

from the node i to the nodes 0, 1, . . . , i − 1. Figure 3.9 illustrates the DAG and paths

associated with the cuttings.

Since the above recurrence relation correctly solves the offline optimization

problem, every path in the DAG represents a cutting, and every possible cutting can be

represented by a path of the DAG. We have |M | = |E| = O(n2) multiedges/edges which
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are the components of our new representation. The gains of the edges going from the

node i to the node j (where j < i) is pi−j . Note that the gain associated with each edge

is upper-bounded by 1. Most crucially, the sum of the profits of all the pieces generated

by the cutting is linear in the gains of the edges and the unit-flow polytope has O(n)

facets.

Regret Bounds. Similar to the knapsack problem, we turn this problem into a

shortest-path problem: We first modify the graph so that all paths have equal length

of n (which is the length of the longest path) and the gain of each path remains fixed.

We apply a method introduced in György et al. [2007], which adds O(n2) vertices and

edges (with gain zero) to make all paths have the same length of D = n. Then we define

a loss for each edge e as `e = 1 − ge in which ge is the gain of e. Call this new DAG

Ḡ. Similar to the knapsack problem, we have LḠ(π) = n−GG(π) for all paths π. Note

that in both G and Ḡ, there are N = 2n−1 paths. Thus using Theorem 12 we obtain9

G∗ − E[GEH] = (nT − L∗)− (nT − E[LEH])

= E[LEH]− L∗ = O(n
√
L∗).

Notice that the number of multiedges/edges in Ḡ is |M | = |E| = O(n2) and

9We are over-counting the number of cuttings. The number of possible cutting is called partition

function which is approximately eπ
√

2n/3/4n
√

3 [Cormen et al., 2009]. Thus if we run the Hedge
algorithm inefficiently with one weight per cutting, we will get a better regret bound by a factor of
4
√
n.
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each path consists of D = n edges. Therefore using Theorem 15 we obtain:

G∗ − E[GCH] = (nT − L∗)− (nT − E[LCH])

= E[LCH]− L∗ = O(n
1
2 (log n)

1
2

√
L∗).

3.4.6 Weighted Interval Scheduling

Consider the online version of weighted interval scheduling problem [Kleinberg

and Tardos, 2006]: We are given a set of n intervals I1, . . . , In on the real line. In

each trial, the algorithm predicts with a scheduling which is a subset of non-overlapping

intervals. Then, for each interval Ij , the adversary reveals pj ∈ [0, 1] which is the profit

of including Ij in the scheduling. The gain of the algorithm is defined as the total

profit over chosen intervals in the scheduling in that trial. The goal is to predict with a

sequence of schedulings minimizing regret which is the difference between the total gain

of the algorithm and the total gain of the single best scheduling chosen in hindsight.

See Figure 3.10 as an example. Note that this problem is only interesting when there

are exponential in n many combinatorial objects (schedulings).

The Dynamic Programming Representation. Finding the optimal scheduling

can be solved via dynamic programming [Kleinberg and Tardos, 2006]. Each subproblem

is simply denoted by i for 0 ≤ i ≤ n, indicating the weighted scheduling problem for

the intervals I1, . . . , Ii. The base subproblem is i = 0, and the complete subproblem is

i = n. The dynamic programming for the weighted interval scheduling problem uses
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Figure 3.10: An example of weighted interval scheduling with n = 6

the following max-sum recurrence:

OPT(i) =


0 i = 0

max{OPT(i− 1),OPT(pred(i))+pi} i > 0.

where

pred(i) :=


0 i = 1

max{j<i, Ii∩Ij=∅} j i > 1.

This recurrence always recurses on 1 subproblem. Thus the multipaths are

regular paths and the problem is essentially the online longest-path problem from the

source to the sink. The associated DAG has the subproblems/vertices V = {0, 1, . . . , n},

source s = n and sink T = {0}. Also at node i, the set M
(out)
i consists of 2 edges going

from the node i to the nodes i − 1 and pred(i). Figure 3.11 illustrates the DAG and

paths associated with the scheduling for the example given in Figure 3.10.
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Figure 3.11: The underlying DAG associated with the example illustrated in Figure

3.10. The scheduling with I1, I3, and I5 is highlighted.

Since the above recurrence relation correctly solves the offline optimization

problem, every path in the DAG represents a scheduling, and every possible scheduling

can be represented by a path of the DAG. We have |M | = |E| = O(n) multiedges/edges

which are the components of our new representation. The gains of the edges going from

the node i to the nodes i− 1 and pred(i) are 0 and pi, respectively. Note that the gain

associated with each edge is upper-bounded by 1. Most crucially, the total profit over

chosen intervals in the scheduling is linear in the gains of the edges and the unit-flow

polytope has O(n) facets.

Regret Bounds. Similar to rod cutting, this is also the online longest-path problem

with one sink node. Like the rod cutting problem, we modify the graph by adding O(n2)

vertices and edges (with gain zero) to make all paths have the same length of D = n and

change the gains into losses. Call this new DAG Ḡ. Again we have LḠ(π) = n−GG(π)

for all paths π. According to our initial assumption logN = O(n). Thus using Theorem
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12 we obtain:

G∗ − E[GEH] = (nT − L∗)− (nT − E[LEH])

= E[LEH]− L∗ = O(n
√
L∗).

Notice that the number of multiedges/edges in Ḡ is |M | = |E| = O(n2) and

each path consists of D = n edges. Therefore using Theorem 15 we obtain:

G∗ − E[GCH] = (nT − L∗)− (nT − E[LCH])

= E[LCH]− L∗ = O(n
1
2 (log n)

1
2

√
L∗).

3.5 Conclusions and Future Work

We developed a general framework for online learning of combinatorial objects

whose offline optimization problems can be efficiently solved via “min-sum” dynamic

programming algorithms. Table 3.2 gives the performance of EH and CH in our dynamic

programming framework and compares it with the Follow the Perturbed Leader (FPL)

algorithm. FPL additively perturbs the losses and then uses dynamic programming to

find the solution of minimum loss (see Section 1.3). FPL is always worse than EH and

CH. CH is better than both FPL and EH in all cases except k-set. In the case of k-sets,

CH can be better implemented in the original space by using the capped probability

10The loss of a fully parenthesized matrix-chain multiplication is the number of scalar multiplications
in the execution of all matrix products. This number cannot be expressed as a linear loss over the
dimensions of the matrices. We are thus unaware of a way to apply FPL to this problem using the
dimensions of the matrices as the components.
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Problem FPL EH CH

Optimal Binary O(n (log n)
1
2

√
L∗) O(n

√
L∗) O(n

1
2 (log n)

1
2

√
L∗)

Search Trees *Best*

Matrix-Chain — O(n (dmax)
3
2

√
L∗) O(n

1
2 (log n)

1
2 (dmax)

3
2

√
L∗)

Multiplications 10 *Best*

Knapsack O(n (log n)
1
2

√
L∗) O(n

√
L∗) O(n

1
2 (log nC)

1
2

√
L∗)

*Best*

k-sets O(k
1
2 n

1
2 (log n)

1
2

√
L∗) O(k

1
2 (log n)

1
2

√
L∗) O(n

1
2 (log k(n− k))

1
2

√
L∗)

*Best*

Rod Cutting O(n (log n)
1
2

√
L∗) O(n

√
L∗) O(n

1
2 (log n)

1
2

√
L∗)

*Best*

Weighted Interval O(n (log n)
1
2

√
L∗) O(n

√
L∗) O(n

1
2 (log n)

1
2

√
L∗)

Scheduling *Best*

Table 3.2: Performance of various algorithms over different problems in the full informa-

tion setting. C is the capacity in the Knapsack problem, and dmax is the upper-bound

on the dimension in matrix-chain multiplication problem.

simplex as the polytope [Warmuth and Kuzmin, 2008, Koolen et al., 2010] rather than

the dynamic programming representation and the unit-flow polytope.

We conclude with a few remarks:

• For EH, projections are simply a renormalization of the weight vector. In con-

trast, iterative Bregman projections are often needed for projecting back into the

polytope used by CH [Koolen et al., 2010, Helmbold and Warmuth, 2009]. These

methods are known to converge to the exact projection [Bregman, 1967, Bauschke

and Borwein, 1997] and are reported to be very efficient empirically [Koolen et al.,

2010]. For the special cases of Euclidean projections [Deutsch, 1995] and Sinkhorn

Balancing [Knight, 2008], linear convergence has been proven. However we are un-
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aware of a linear convergence proof for general Bregman divergences.

• We hope that many of the techniques from the expert setting literature can be

adapted to learning combinatorial objects that are composed of components. This

includes lower bounding weights for shifting comparators [Herbster and Warmuth,

1998] and sleeping experts [Bousquet and Warmuth, 2002, Adamskiy et al., 2012].

• In this chapter, we studied the online learning problem in full information setting,

where the learner receives the loss of its choice in such a way that the loss of any of

the possible solution can be easily computed. In the bandit setting, however, the

learner only observes the loss it incurs. In the multipath learning problem, this

means that the learner only observes the loss of its predicted multipath and the

losses on the multiedges are not revealed. The algorithms in bandit settings usually

apply EH or CH over the surrogate loss vector which is an unbiased estimation

of the true unrevealed loss vector [Cesa-Bianchi and Lugosi, 2012, György et al.,

2007, Audibert et al., 2013, 2011]. Extending our methods to the bandit settings

by efficiently computing the surrogate loss vector is a potentially fruitful future

direction of this research.

• Online Markov Decision Processes (MDPs) [Even-Dar et al., 2009, Dick et al.,

2014] is an online learning model that focuses on the sequential revelation of an

object using a sequential state based model. This is very much related to learning

paths and the sequential decisions made in our dynamic programming framework.

Connecting our work with the large body of research on MDPs is a promising
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direction of future research.

• There are several important dynamic programming instances that are not included

in the class considered in this paper: The Viterbi algorithm for finding the most

probable path in a graph, and variants of Cocke-Younger-Kasami (CYK) algorithm

for parsing probabilistic context-free grammars. The solutions for these problems

are min-sum type optimization problem after taking a log of the probabilities.

However taking logs creates unbounded losses. Extending our methods to these

dynamic programming problems would be very worthwhile.
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Chapter 4

Online Non-Additive Path Learning

One of the core combinatorial online learning problems is learning a min-

imum loss path in a directed graph. Examples are machine translation, automatic

speech recognition, optical character recognition and computer vision. To represent

the structure in these problems, the object may be decomposed in possibly overlap-

ping substructures corresponding to words, phonemes, characters, or image patches.

The substructures can be represented as a directed graph where each edge represents a

different substructure to be predicted.

The number of paths (which serve as experts), is typically exponential in the

size of the graph. Extensive work has been done to develop efficient algorithms when

the loss is “additive”, i.e. losses are assigned to the edges and the loss of a path is the

sum over the losses of the edges along that path. A variety of algorithms have been

developed in the full information and various bandit settings exploiting the additivity of

the loss [Takimoto and Warmuth, 2003, Kalai and Vempala, 2005, Koolen et al., 2010,
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Figure 4.1: Combining two different translators (blue and red). There are 64 interleaved

translations represented as paths. BLEU score measures the overlap in n-grams between

sequences. In this illustration, a 4-gram is a sequence of 4 words e.g. “like-to-drink-tea”.

György et al., 2007, Cesa-Bianchi and Lugosi, 2012].

However, in modern machine learning applications like machine translation,

speech recognition and computational biology, the loss of each path is often not additive

in the edges along the path. For instance, in machine translation, the BLEU score

similarity determines the loss, which is essentially defined as the inner product of the

count vectors of the n-gram occurrences in two sequences, where often n = 4 (see

Figure 4.1). In some computational biology tasks, the losses are in terms of measures

such as the gappy n-gram similarity which can also be represented as the inner product

of the (discounted) count vectors of the n-gram occurrences, where these occurrences

are allowed to have gaps. In other applications, like speech recognition and optical

character recognition, the loss is based on edit-distance. As the performance of the

algorithms in these applications are measured via these non-additive loss functions, it

is natural to seek learning algorithms optimizing these losses directly. This motivates

our study of online path learning for non-additive losses.

One of the applications is ensemble structured prediction. This application

becomes important particularly in the bandit setting. Assume one wishes to combine
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the outputs of different translators as in Figure 4.1. Instead of comparing oneself to

the outputs of the best translator, the comparator is the best “interleaved translation”

where each word in the translation can come from a different translator. Computing

the loss (such as BLEU score) of each path can be costly, which requires the learner to

resort to learning from partial feedback.

Online path learning with non-additive losses has been previously studied in

Cortes et al. [2015b]. This work focuses on the full information case, providing efficient

implementations of Expanded Hedge [Takimoto and Warmuth, 2003] and Follow-the-

Perturbed-Leader [Kalai and Vempala, 2005] algorithms under some technical assump-

tions on the outputs of the experts.

In this chapter, we develop algorithms for online path learning in the full

information as well as various bandit settings. In the full information setting, we design

an efficient algorithm that enjoys regret guarantees that are more favorable than those of

Cortes et al. [2015b] and at the same time does not require any additional assumptions.

To the best of our knowledge, our algorithms in the bandit setting are the first efficient

methods for learning with non-additive losses in this scenario.

The key technical tools used in this work are weighted automata and trans-

ducers [Mohri, 2009a]. We transform the original path graph A (e.g. Figure 4.1) to an

intermediate graph A′. The paths in A are mapped to the paths in A′, but now the

losses in A′ are additive along the paths. Remarkably, the size of A′ does not depend

on the size of the alphabet (word vocabulary in translation tasks) from which the out-

put labels of edges are drawn. The construction of A′ is highly non-trivial and is our
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primary contribution. The alternate graph A′ in which the losses are additive allows us

to extend many well-known algorithms in the literature to the path learning problem.

This chapter is structured as follows. We introduce the path learning setup in

Section 4.1. We give an overview of weighted finite automata in Section 4.2. In Sec-

tion 4.3, we explore the large family of non-additive count-based gains and introduce

the alternate graph A′ using automata and transducers tools. We introduce our algo-

rithms for three settings of full information, semi-bandit and full bandit in Section 4.4.

Then we extend our results to gappy count-based gains in Section 4.5. The application

of our method to the ensemble structured prediction is explored in Section 4.6. Going

beyond count-based gains, in Section 4.7, we give an efficient implementation of the

EXP3 algorithm for the full bandit setting with arbitrary (non-additive) gains.

4.1 Basic Notation and Setup

We describe our path learning setup in terms of finite automata. Let A denote

a fixed acyclic finite automaton. We call A the expert automaton. A admits a single

initial state and one or several final states which are indicated by bold and double

circles, respectively, see Figure 4.2(a). Each transition of A is labeled with a unique

name. Denote the set of all transition names by E. An automaton is deterministic if no

two outgoing transitions from a given state admit the same name, thus our automaton

A is deterministic by construction. An accepting path is a sequence of transitions from

the initial state to a final state. The expert automaton A can be viewed as an indicator
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Figure 4.2: (a) The expert automaton denoted by A labeled with transition names.

(b) The output of expert automaton at round t denoted by outt(A) labeled with the

outputs outt(e) for each transition e. (c) The name and output of each transition

together separated by a ‘:’.

function over strings in E∗ such that A(π)=1 iff π is an accepting path. Each accepting

path serves as an expert and we equivalently refer to it as a path expert. The set of all

path experts is denoted by P.

In each round t = 1, . . . , T , each transition e ∈ E outputs a symbol from a

finite non-empty alphabet Σ and is denoted by outt(e) ∈ Σ. The prediction of each

path expert π ∈ E∗ at round t is the sequence of output symbols along its transitions

on that round and is denoted by outt(π) ∈ Σ∗. Also let outt(A) be the automaton with

the same topology as A where each transition e is labeled with outt(e), see Figure 4.2

(b).

At each round t, a target sequence yt ∈ Σ∗ is presented to the learner. The

gain/loss of each path expert π is U(outt(π), yt) where U : Σ∗ ×Σ∗ −→ R≥0. Our focus

is U functions that are not necessarily additive along the transitions in A. For example,

U can be either a distance function (e.g. edit-distance) or a similarity function (e.g.

n-gram gain with n ≥ 2).
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Figure 4.3: Information revealed in different settings: (a) full information (b) semi-

bandit (c) full bandit. The name of each transition e and its output symbol (if revealed)

are shown next to it separated by a ‘:’. The blue path indicates the path expert predicted

by the learner at round t.

We consider standard online learning scenarios of prediction with path experts.

In each round t ∈ [T ], the learner picks a path expert πt and predicts with its prediction

outt(πt). The learner receives a gain of U(outt(πt), yt). Depending on the setting,

the adversary may reveal some information about yt and the output symbols of the

transitions (see Figure 4.3). In the full information setting, yt and outt(e) for every

transition e in A are shown to the learner. In the semi-bandit setting, the adversary

reveals yt and outt(e) for every transition e along πt. In full bandit setting, U(outt(πt), yt)

is the only information that is revealed to the learner. The goal of the learner is to

minimize the regret which is defined as the cumulative gain of the best path expert

chosen in hindsight minus the cumulative expected gain of the learner.
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4.2 Overview of Weighted Finite Automata

In this section, we give an overview of deterministic Weighted Finite Automata

(WFA). We also formally describe the properties and operations of WFAs. WFA and

its machinery will be used in the later sections of this chapter.

A deterministic finite automaton is a 5-tuple (Q,Σ, δ, q0, F ) where Q is a finite

set of states, Σ is a finite set of input symbols called the alphabet, δ : Q × Σ → Q is

a transition function, q0 ∈ Q is the initial state , and F ⊆ Q is a set of final states. A

deterministic WFA W is a deterministic finite automaton whose transitions and final

states carry weights. Let w(e) denote the weight of a transition e and wf (q) the weight

at a final state q ∈ F . Recall that an accepting path is a path ending in a final state.

The weight W(π) of an accepting path π is defined as the product of its constituent

transition weights and the weight at the final state: W(π) := (
∏
e∈π w(e)) ·wf (dest(π)),

where dest(π) denotes the final state that π ends with.

Observe that in a deterministic WFA, final states can have out-going tran-

sitions. So accepting paths can pass through several final states. Thus once a path

reaches a final states, it can either stay and end in that final state, or move on and

continue with one of the out-going transitions.

Sampling accepting paths from a deterministic WFA W is straightforward

when it is stochastic, that is when the weights of all outgoing transitions and the final

state weight (if the state is final) sum to one at every state. One can start from the

initial state and randomly draw a transition according to the probability distribution
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defined by the outgoing transition weights and proceed similarly from the next state,

until a final state is reached.

In the rest of this section, we describe two important operations of WFAs.

First we go over a more general version of the weight-pushing algorithm [Mohri, 1997,

2009a, Takimoto and Warmuth, 2003]. Then we describe an important binary operation

called intersection [Mohri, 2009a].

4.2.1 Weight Pushing

In Chapter 3, we gave an overview of the weight pushing algorithm for paths

in a DAG and extended the algorithm for multipaths in a multi-DAG. The sink nodes

(i.e. final states) in the DAG and multi-DAG did not carry any weight. In this section,

we describe a more general version of the weight pushing algorithm for WFAs whose

final states admit weights and may have out-going transitions.

If an acyclic WFA is not stochastic, we can efficiently compute an equivalent

stochastic WFA W′ from any W using the weight-pushing algorithm [Mohri, 1997, 2009a,

Takimoto and Warmuth, 2003]: W′ admits the same states and transitions as W and

preserves the ratios of the weights of the accepting paths from the initial state to a final

state; but the weights along the paths are redistributed so that W′ is stochastic.

Given an acyclic WFA W, the weight pushing algorithm [Mohri, 2009a] com-

putes an equivalent stochastic WFA. The weight pushing algorithm is defined as follows.

For any state q in W, let d[q] denote the sum of the weights of all accepting paths from
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q to final states:

d[q] =
∑
π∈P(q)

(∏
e∈π

w(e)

)
· wf (dest(π)),

where P(q) denotes the set of paths from q to final states in W. Because we have

assumed that W is acyclic, these d[q]s can be computed simultaneously for all qs using a

dynamic programming algorithm starting from the final states and going in the reverse

direction of the topological order of W [Mohri, 2009a]. The weight pushing algorithm

performs the following steps. For any transition (q, q′) ∈ E such that d[q] 6= 0, its weight

is updated as below:

w(q, q′)← d[q]−1w(q, q′) d[q′].

For any final state q, update its weight as follows:

wf (q)← wf (q) d[q]−1.

Mohri [2009a] showed that the resulting WFA is guaranteed to preserve the ratios of the

weights of the accepting paths and to be stochastic . For an acyclic input WFA such as

those we are considering in this chapter, the computational complexity of weight-pushing

is linear in |W| which is defined as the sum of the number of states and transitions of

W.

4.2.2 Intersection of WFAs

The intersection of two WFAs A1 and A2 is a WFA denoted1 by A1 ◦A2 that

accepts the set of sequences accepted by both A1 and A2 and the weights of paths are

1 The circle notation ‘◦’ may look unconventional as the notation ‘∩’ is common for “intersection”.
However, since this operation will be generalized to the composition operation in finite state transducers
later in this chapter, we use the same notation for both.

111



defined for all π by2

(A1 ◦A2)(π) = A1(π) ·A2(π).

There exists a standard efficient algorithm for computing the intersection WFA [Mohri,

2009a]. States Q ⊆ Q1 ×Q2 of A1 ◦A2 are identified with pairs of states Q1 of A1 and

Q2 of A2, as are the set of initial and final states. Transitions are obtained by matching

pairs of transitions from each WFA and multiplying their weights:

(
q1

a|w1−→ q′1, q2
a|w2−→ q′2

)
⇒ (q1, q2)

a|w1·w2−→ (q′1, q
′
2).

The worst-case space and time complexity of the intersection of two determin-

istic WFA is linear in the size of the automaton the algorithm returns. In the worst

case, this can be as large as the product of the sizes of the WFA that are intersected (i.e.

O(|A1||A2|). This corresponds to the case where every transition of A1 can be paired

up with every transition of A2. In practice far fewer transitions can be matched.

Notice that when both A1 and A2 are deterministic, then A1 ◦ A2 is also

deterministic since there is a unique initial state (pair of initial states of each WFA)

and since there is at most one transition leaving q1 ∈ Q1 or q2 ∈ Q2 labeled with a given

symbol a ∈ Σ.

2The terminology of intersection is motivated by the case where the weights are either 0 or 1, in
which case the set of paths with non-zero weights in A1 ◦A2 is the intersection of the sets of paths with
with weight 1 in A1 and A2.
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4.3 Count-Based Gains

In many applications such as machine translation, natural language processing,

speech recognition and computational biology, path gains are not additive: they cannot

be expressed as a sum over some transition gains. Many of the most commonly used

gains in these areas belong to the broad family of count-based gains. They are defined in

terms of the number of occurrences of a fixed set of patterns L = {θ1, θ2, . . . , θp} in the

sequence output by a path expert. These patterns may be n-grams, that is sequences

of n consecutive symbols, as in a common gain approximation of the BLEU score in

machine translation, a set of relevant subsequences of variable-length in computational

biology, or patterns described by complex regular expressions in pronunciation modeling

and other natural language processing tasks.

For any sequence y ∈ Σ∗, let Θ(y) ∈ Rp denote the vector whose kth component

is the number of occurrences or matches of pattern θk in y, k ∈ [p]. This can be extended

to the case of weighted occurrences where more emphasis is assigned to some patterns θk

whose occurrences are then multiplied by a factor αk > 1, and less emphasis to others.

The count-based gain function U at round t for a path expert π in A given the target

sequence yt is then defined as follows:

U(outt(π), yt) := Θ(outt(π)) ·Θ(yt) ≥ 0. (4.1)

Such gains are not additive even in the case of n-grams. Consider, for example, the

special case of 4-gram-based gains for the graph of expert outputs shown in Figure 4.1.

There are |Σ|4 unique 4-grams, thus, for any path π, Θ(outt(π)) is in R|Σ|4 . In contrast,
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the number of transitions is only 12. Thus, it is not hard to see that in general it is not

possible to assign weights to transitions so that gain of each path is the sum of these

weights along that path. Thus, standard online path learning algorithms for additive

losses or gains do not apply here. The challenge of learning with non-additive gains

is even more apparent in the case of gappy count-based gains which allow for gaps of

varying length in the patterns of interest, with each gap discounted exponentially as a

function of its length. We defer the study of gappy-count based gains to Section 4.5.

How can we design efficient algorithms for online path learning with such

non-additive gains? Can we design algorithms with favorable regret guarantees with

such non-additive gains for all three settings of full information, semi-bandit, and full

bandit? The key idea behind our solution is to design a new automaton A′ whose paths

correspond the paths in A, and crucially, A′ admits additive gains. We will construct

A′ by defining a set of context-dependent rewrite rules, which can be compiled into a

finite-state transducer TA. The context-dependent automaton A′ can then be obtained

by composition of the transducer TA with A. In addition to playing a key role in the

design of our algorithms (Section 4.4), A′ provides a compact representation of the gains

since its size is substantially less that the dimension p (number of patterns).

4.3.1 Context-Dependent Rewrite Rules

We will use context-dependent rewrite rules to map A to the new representation

A′. These are rules that admit the following general form:

φ→ ψ/λ ρ,
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A

(a)

0

1

2

e1

e2

e3

TA

(b) ε e1 #e1e3
e1: ε

e2: ε
e3: ε

e3: #e1e3
e2: ε

e1: ε e1: ε

e2: ε

e3: ε

Figure 4.4: (a) An expert automaton A; (b) associated context-dependent transducer

TA for bigrams where every state is a final state. ε denotes the empty string. Inputs

and outputs are written next to the transitions separated by a ‘:’.

where φ, ψ, λ, and ρ are regular expressions over the alphabet of the rules. These rules

must be interpreted as follows: the input φ is to be replaced by the output ψ whenever

it is preceded by λ and followed by ρ. Thus, λ and ρ represent the left and right contexts

of application of the rules. The rule fires whenever the input is matched in the given

context (i.e. left and right contexts).

Several types of rules can be considered depending on their being obligatory

or optional, and on their direction of application, from left to right, right to left or

simultaneous application [Kaplan and Kay, 1994]. We will be only considering rules

with simultaneous applications where given a set of rules, the matching and rewriting

steps for all rules are done at the same time. Additionally, we assume that the outputs

of the rules can be written in any order.

Such context-dependent rules can be efficiently compiled into a finite-state

transducer (FST), under the technical condition that they do not rewrite their non-

contextual part [Mohri and Sproat, 1996, Kaplan and Kay, 1994]. An FST is a finite

automaton whose transitions are augmented with an output label, in addition to the
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familiar input label.3

An FST T over an input alphabet Σ and output alphabet Σ′ defines an indicator

function over the pairs of strings in Σ∗ × Σ′∗. Given x ∈ Σ∗ and y ∈ Σ′∗, T(x, y) = 1 if

there exists a path from an initial state to a final state with input label x and output

label y, and T(x, y) = 0 otherwise. Figure 4.4 (b) shows an example.

To define our rules, we first introduce the alphabet E′ which is the set of

transition names for the target automaton A′. These should capture all possible contexts

of length r where r is the length of some pattern θk:

E′ = {#e1 · · · er | e1 · · · er is a path of length r in A, r ∈ {|θ1|, . . . , |θp|}}.

where the ‘#’ symbol “glues” e1, · · · , er ∈ E together and forms one single symbol in

E′. We will have one context-dependent rule of the following form for each element

#e1 · · · er ∈ E′:

e1 · · · er → #e1 · · · er/ε ε. (4.2)

Thus, in our case, the left- and right-contexts are the empty strings, meaning that

the rules can apply (simultaneously) at every position. In the special case where the

patterns θk are the set of n-grams, then r is fixed and equal to n. Figure 4.4 shows

the result of the rule compilation in that case for n = 2. This transducer inserts #e1e2

whenever e1 and e2 are found consecutively and otherwise outputs the empty string.

We will denote the resulting FST by TA.

3Additionally, the rules can be augmented with weights, which can help us cover the case of weighted
count-based gains, in which case the result of the compilation is a weighted transducer [Mohri and Sproat,
1996]. Our algorithms and theory can be extended to that case.
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4.3.2 Context-Dependent Automaton A′

To construct the context-dependent automaton A′, we will use the composition

operation. Let TA denote the FST obtained as just described. The composition of A

and TA is an FST denoted4 by A ◦ TA and defined as the following product of two 0/1

outcomes for all inputs:

∀x ∈ E∗, ∀y ∈ E′∗ : (A ◦ TA)(x, y) := A(x) · TA(x, y).

There is an efficient algorithm for the composition of FSTs and automata [Pereira

and Riley, 1997, Mohri et al., 1996, Mohri, 2009a], whose worst-case complexity is in

O(|A| |TA|). The automaton A′ is obtained from the FST (A◦TA) by projection, that is

by simply omitting the input label of each transition and keeping only the output label.

Thus, if we denote by Π the projection operator, A′ is defined as A′ = Π(A ◦ TA).

Observe that A′ admits a fixed topology (states and transitions) over all rounds

t ∈ [T ]. It can be constructed in a pre-processing stage using the FST operations of

composition and projection. Additional FST operations such as ε-removal and min-

imization can help further optimize the automaton obtained after projection [Mohri,

2009a].

Notice that the transducer TA of Figure 4.4(b) is deterministic, that is no two

transitions leaving a state admit the same input label. In general, when the patterns

θk are n-grams, TA can be constructed to be deterministic without increasing its size:

the number of transitions coincides with the number of elements in E′. More generally,

4 We purposefully use the same symbol ‘◦’ for both intersection and composition operations as the
latter is a generalization of the former [Mohri, 2009a].
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the result of the rule compilation can be determinized using transducer determinization

[Mohri, 2009a]. We can therefore assume in the following that TA is deterministic. In

that case, TA assigns a unique output to a given path expert in A. Proposition 16

ensures that for every accepting path π in A, there is a unique corresponding accepting

path in A′. Figure 4.5 shows the automata A and A′ in a simple case and how a path

π in A is mapped to another path π′ in A′.

Proposition 16. Let A be an expert automaton and let TA be a deterministic transducer

representing the rewrite rules (4.2). Then for each accepting path π in A there exists a

unique corresponding accepting path π′ in A′ = Π(A ◦ TA).

Proof. To establish the correspondence, we introduce TA as a mapping from the

accepting paths in A to the accepting paths in A′. Since TA is deterministic, for each

accepting path π in A (i.e. A(π) = 1), TA assigns a unique output π′, that is TA(π, π′) =

1. We show that π′ is an accepting path in A′. Observe that

(A ◦ TA)(π, π′) = A(π) · TA(π, π′) = 1× 1 = 1,

which implies that A′(π′) = Π(A ◦ TA)(π′) = 1. Thus for each accepting path π in A

there is a unique accepting path π′ in A′. �

The size of the context-dependent automaton A′ depends on the expert au-

tomaton A and the set of the lengths of the patterns. Notice that, crucially, its size is

independent of the size of the alphabet Σ. Section 4.6 analyzes more specifically the

size of A′ in the important application of ensemble structure prediction with n-gram

gains. In this application, the size of A′ is exponential in terms of n. However, since n
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A

(a) 0 1 2 3

e1

e4

e2

e5

e3

e6

A′

(b) 0

2

2’

3

#e1e2

#e4e2

#e1e5

#e4e5

#e2e3

#e2e6

#e5e3

#e5e6

Figure 4.5: (a) An example of the expert automaton A. (b) the associated context-

dependent automaton A′ with bigrams as patterns. The path π = e1e5e3 in A and its

corresponding path π′ = #e1e5#e5e3 in A′ are marked in blue.

usually takes small values in many real world applications (i.e. n ≤ 5), the size of A′ is

essentially polynomial in terms of the size of A.

Recall that the standard online learning scenario consists of T rounds. In each

round t ∈ [T ], the learner picks a path expert πt in A, predicts with its prediction

outt(πt), and receives a gain of U(outt(πt), yt), where yt is the target sequence. We

define an equivalent online learning scenario on A′.

At any round t ∈ [T ] and for any #e1 · · · er ∈ E′, let outt(#e1 · · · er) denote

the sequence outt(e1) · · · outt(er), that is the sequence obtained by concatenating the

outputs of e1, . . . , er. Let outt(A
′) be the automaton with the same topology as A′

where each label e′ ∈ E′ is replaced by outt(e
′). The gain of each transition in A′ can be

computed based on the target sequence yt. Once yt is known, the representation Θ(yt)

can be found, and consequently, the additive contribution of each transition of A′. The

following theorem proves the additivity of the gains in A′.

Theorem 17. At any round t ∈ [T ], define the gain ge′,t of the transition e′ ∈ E′ in A′

by ge′,t := [Θ(yt)]k if outt(e
′) = θk for some k ∈ [p] and ge′,t := 0 if no such k exists.
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Then, the gain of each path π in A at trial t can be expressed as an additive gain of the

corresponding unique path π′ in A′:

∀t ∈ [T ], ∀π ∈ P : U(outt(π), yt) =
∑
e′∈π′

ge′,t .

Proof. By definition, the ith component of Θ(outt(π)) is the number of occurrences

of θi in outt(π). Also, by construction of the context-dependent automaton based on

rewrite rules, π′ contains all path segments of length |θi| of π in A as transition labels in

A′. Thus every occurrence of θi in outt(π) will appear as a transition label in outt(π
′).

Therefore the number of occurrences of θi in outt(π) is

[Θ(outt(π))]i =
∑
e′∈π′

1{outt(e
′) = θi}, (4.3)

where 1{·} is the indicator function. Thus, we have that

U(outt(π), yt) = Θ(yt) ·Θ(outt(π)) (definition of U)

=
∑
i

[Θ(yt)]i [Θ(outt(π))]i

=
∑
i

[Θ(yt)]i
∑
e′∈π′

1{outt(e
′) = θi} (Equation (4.3))

=
∑
e′∈π′

∑
i

[Θ(yt)]i 1{outt(e
′) = θi}︸ ︷︷ ︸

=ge′,t

,

which concludes the proof. �

As an example, consider the automaton A and its associated context-dependent

automaton A′ shown in Figure 4.5, with bigram gains and Σ = {a, b}. Here, the patterns

are (θ1, θ2, θ3, θ4) = (aa, ab, ba, bb). Let the target sequence at trial t be yt = aba. Thus

Θ(yt) = [0, 1, 1, 0]T . The automata outt(A) and outt(A
′) are given in Figure 4.6.
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outt(A)

(a) 0 1 2 3

a

b

b

b

a

a

outt(A
′)

(b) 0

2

2’

3

ab,1

bb,0

ab,1

bb,0

ba,1

ba,1

ba,1

ba,1

Figure 4.6: (a) the automaton outt(A) of A in Figure 4.5(a), with bigram gains and

Σ = {a, b}. (b) the automaton outt(A
′) given yt = aba. The additive gain contributed

by each transition e′∈E′ in A′ is written on it separated by a comma from outt(e
′).

4.4 Algorithms

In this section, we present algorithms and associated regret guarantees for

online path learning with non-additive count-based gains in the full information, semi-

bandit and full bandit settings. The key component of our algorithms is the context-

dependent automaton A′.

In what follows, we denote the length of the longest path in A′ by K, an

upper-bound on the gain of each transition in A′ by B, the number of path experts by

N , and the number of transitions and states in A′ by M and Q, respectively. We note

that K is at most the length of the longest path in A since each transition in A′ admits

a unique label.

Remark. The number of accepting paths in A′ could be equal or less than the number

of accepting paths in A. In some degenerate cases, several paths π1, . . . , πk in A may

correspond to one single path π′ in A′. This implies that π1, . . . , πk in A will always

consistently have the same gain in every round and that is the additive gain of π′ in
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A′. Thus, if π′ is predicted by the algorithm in A′, either of the paths π1, . . . , πk can be

equivalently used for prediction in the original expert automaton A.

4.4.1 Full Information: Context-dependent Component Hedge Algo-

rithm

In the full information setting, Koolen et al. [2010] gave an algorithm for

online path learning with non-negative additive losses, the Component Hedge (CH)

algorithm, that admits the tightest regret guarantees guarantees in terms of the relevant

combinatorial parameters of the problem: B,N,M,Q,K. For count-based losses, Cortes

et al. [2015b] provided an efficient Rational Randomized Weighted Majority (RRWM)

algorithm. This algorithm requires the use of determinization which is only shown to

have polynomial computational complexity under some additional technical assumptions

on the outputs of the path experts. In this section, we present an extension of CH, the

Context-dependent Component Hedge (CDCH), for the online path learning problem

with non-additive count-based gains. CDCH has better regret guarantees than RRWM

(i.t.o. problem parameters) and can be efficiently implemented without any additional

assumptions.

Our CDCH algorithm requires a modification of A′ such that all paths admit

an equal number K of transitions (same as the longest path). This modification can be

done by adding at most (K − 2)(Q − 2) + 1 states and zero-gain transitions [György

et al., 2007]. Abusing the notation, we will denote this new automaton by A′ in this

subsection. At each iteration t, CDCH maintains a weight vector wt in the unit-flow
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polytope P over A′, which is a set of vectors w ∈ RM such that

∑
q

w(s, q) = 1 and for all q ∈ Q′,
∑

q′:(q′,q)∈E′
w(q′, q) =

∑
q′:(q,q′)∈E′

w(q, q′),

where s denotes the initial state of A′. For each t ∈ {1, . . . , T}, we observe the gain

of each transition gt,e′ , and define the loss of that transition as `e′ = B − gt,e′ . After

observing the loss of each transition e′ in A′, CDCH updates each component of w as

ŵ(e′)← wt(e
′) exp(−η `t,e′) (where η is a specified learning rate), and sets wt+1 to the

relative entropy projection of the updated ŵ back to the unit-flow polytope by solving

the following convex optimization problem:

wt+1 = argmin
w∈P

∑
e′∈E′

(
w(e′) ln

w(e′)

ŵ(e′)
+ ŵ(e′)− w(e′)

)
.

CDCH predicts by decomposing wt into a convex combination of at most |E′| paths

in A′ and then sampling a single path according to this mixture as described below.

Recall that a path A′ uniquely identifies a path in A which can be recovered in time K.

Therefore, the inference step of CDCH algorithm takes at most time polynomial in |E′|

steps. To determine a decomposition, we find a path from the initial state to a final

state with non-zero weights on all transitions, remove the largest weight on that path

from each transition on that path and use it as a mixture weight for that path. The

algorithm proceeds in this way until the outflow from initial state is zero. The following

theorem gives a regret guarantee for CDCH algorithm.

Theorem 18 (Koolen et al. [2010]). With proper tuning, the regret of CDCH is bounded
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as below:

∀ π∗ ∈ P :
n∑
t=1

U(outt(π
∗), yt)−U(outt(πt), yt) ≤

√
2T B2K2 log(KM)+BK log(KM).

The regret bounds of Theorem 18 are in terms of the count-based gain U(·, ·).

Cortes et al. [2015b] gave regret guarantees for RRWM algorithm with count-based

losses defined by − logU(·, ·). In Section 4.4.4, we show that the regret associated with

− logU is upper-bounded by the regret bound associated with U. Observe that, even

with this approximation, the regret guarantees that we provide for CDCH are tighter

by a factor of K. In addition, our algorithm does not require additional assumptions

for an efficient implementation compared to RRWM algorithm of Cortes et al. [2015b].

4.4.2 Semi-Bandit: Context-dependent Semi-Bandit Algorithm

György et al. [2007] presented an efficient algorithm for online path learn-

ing with additive losses. In this section, we present a Context-dependent Semi-Bandit

(CDSB) algorithm extending that work to solving the problem of online path learning

with count-based gains in a semi-bandit setting. To the best of our knowledge, this is

the first efficient algorithm for this problem.

As the algorithm of György et al. [2007], CDSB makes use of a set C of covering

paths with the property that, for each e′ ∈ E′, there is an accepting path π in C such

that e′ belongs to π. At each round t, CDSB keeps track of a distribution pt over all N

path experts by maintaining a weight wt(e
′) on each transition e′ in A′ such that for each

q ∈ Q′,
∑

q′ : (q,q′)∈E′ wt(q, q
′) = 1, w(q, q′) ≥ 0 for all q, q′ ∈ Q′ and pt(π) =

∏
e′∈π wt(e

′),
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for all accepting paths π in A′. Therefore, the WFA A′ is stochastic and we can sample

a path π in at most K steps by selecting a random transition at each state according

to the distribution defined by wt at that state.

Once a path π′t in A′ is sampled, we observe the gain of the corresponding

path πt in A, which define the gain along each transition e′ of π′t that are denoted

by gt,e′ . CDSB sets ŵ(e′) = wt(e
′) exp(ηg̃t,e′), where g̃t,e′ = (gt,e′ + β)/qt,e′ if e′ ∈ π′t

and g̃t,e′ = β/qt,e′ otherwise. Here, η, β > 0 and γ ∈ [0, 1] are parameters of the

algorithm and qt,e′ is the flow through e′ in A′, which can be computed using a standard

shortest-distance algorithm over the probability semiring [Mohri, 2009a]. Finally, we

use the weight-pushing algorithm [Mohri, 1997] to turn A′ into an equivalent stochastic

WFA with weights wt+1. The computational complexity of each of the steps above is

polynomial in the size of A′. The following theorem provides a regret guarantee for

CDSB algorithm. This result provides the first favorable regret guarantee for online

path learning with (gappy) count-based gains in semi-bandit setting.

Theorem 19 (György et al. [2007]). Let C denote the set of “covering paths” in A′.

For any δ ∈ (0, 1), with proper tuning, the regret of the CDSB algorithm can be bounded,

with probability 1− δ, as:

∀ π∗ ∈ P :

n∑
t=1

U(outt(π
∗), yt)−U(outt(πt), yt) ≤ 2B

√
TK

(√
4K|C| lnN +

√
M ln

M

δ

)
.

4.4.3 Full Bandit: Context-dependent ComBand Algorithm

Here we present an algorithm for online path learning with count-based gains in

the full bandit setting. Cesa-Bianchi and Lugosi [2012] gave an algorithm for online path
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learning with additive gains, ComBand. Our generalization, called Context-dependent

ComBand (CDCB), is the first efficient algorithm with good regret guarantees for learn-

ing with count-based gains in this setting.

As with CDSB, CDCB maintains a distribution pt over all N path experts by

using a stochastic WFA A′ with weights wt on the transitions. To make a prediction,

we sample a path in A′ according to a mixture distribution qt = (1− γ)pt + γµ, where

µ is a uniform distribution over path in A′. Note that this sampling can be efficiently

implemented as follows. Define a WFA A′′ with the same topology and transition names

as A′ and weight of one on each transition of A′′ and apply the weight-pushing algorithm

to obtain an equivalent stochastic automaton. A′′ defines a uniform distribution of the

set of path experts P. These steps can be carried out offline before running CDCB.

Next, we select A′ with probability 1−γ or A′′ with probability γ and sample a random

path π from the randomly chosen stochastic weighted automaton.

After observing the scalar gain gπ of the chosen path, CDCB computes a

surrogate gain of each transition e′ in A′ via g̃t,e′ = gπPvπ, where P is the pseudo-inverse

of E[vπv
T
π ] and vπ ∈ {0, 1}M is a bit representation of the path π. As for CDSB, we set

ŵ(e′) = wt(e
′) exp(−ηg̃t,e′) and update A′ via weighted-pushing to compute wt+1. We

obtain the following regret guarantees for CDCB:

Theorem 20 (Cesa-Bianchi and Lugosi [2012]). Let λmin denote the smallest non-zero

eigenvalue of E[vπv
T
π ] where vπ ∈ {0, 1}M is the bit representation of the path π which

is distributed according to the uniform distribution µ. With proper tuning, the regret of
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CDCB can be bounded as follows:

∀ π∗ ∈ P :
n∑
t=1

U(outt(π
∗), yt)− U(outt(πt), yt) ≤ 2B

√√√√( 2K

Mλmin
+ 1

)
TM lnN.

4.4.4 Gains U vs Losses − log(U)

In some context, the count-based losses are defined by − logU(·, ·). For in-

stance, Cortes et al. [2015b] gave regret guarantees for RRWM algorithm with count-

based losses defined by− logU(·, ·). Here we show that the regret associated with− logU

is upper-bounded by the regret bound associated with U.

Let U be a non-negative gain function. Also let π∗ ∈ P be the best comparator

over the T rounds. The regret associated with U and − logU, which are respectively

denoted by RG and RL, are defined as below:

RG :=
T∑
t=1

U(outt(π
∗), yt)− U(outt(πt), yt),

RL :=
T∑
t=1

− log(U(outt(πt), yt))− (− log(U(outt(π
∗), yt))).

Observe that if U(outt(πt), yt) = 0 for any t, then RL is unbounded. Otherwise, let us

assume that there exists a positive constant α > 0 such that U(outt(πt), yt) ≥ α for all

t ∈ [1, T ]. Note for count-based gains, α ≥ 1, since all components of the representation

Θ(·) are non-negative integers. Therefore, next proposition shows that for count-based

gains we have RL ≤ RG.

Proposition 21. Let U be a non-negative gain function. Assume there exists a positive

constant α > 0 such that U(outt(πt), yt) ≥ α for all t ∈ [1, T ]. Then RL ≤ 1
αRG.
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Proof. The following chain of inequalities hold:

RL =
T∑
t=1

− log(U(outt(πt), yt))− (− log(U(outt(π
∗), yt)))

=
T∑
t=1

log(
U(outt(π

∗), yt)

U(outt(πt), yt)
)

=
T∑
t=1

log(1 +
U(outt(π

∗), yt)− U(outt(πt), yt)

U(outt(πt), yt)
)

≤
T∑
t=1

U(outt(π
∗), yt)− U(outt(πt), yt)

U(outt(πt), yt)
(since log(1 + x) ≤ x)

≤ 1

α

T∑
t=1

U(outt(π
∗), yt)− U(outt(πt), yt) (since U(outt(πt), yt) ≥ α)

≤ 1

α
RG,

and the proof is complete. �

4.5 Extension to Gappy Count-Based Gains

We extend the results in Section 4.3 to a larger family of non-additive gains

called gappy count-based gains: the gain of each path depends on the discounted counts

of gappy occurrences of the members of a finite language L = {θ1, . . . , θp} ⊂ Σ∗ of output

symbols Σ along that path. In a gappy occurrence, there can be “gaps” between symbols

of the pattern. The count of a gappy occurrence will be discounted multiplicatively by

γk where γ ∈ [0, 1] is a fixed discount rate and k is the total length of gaps. For example,

the gappy occurrences of the pattern θ = aab in a sequence y = babbaabaa with discount

rate γ are

• b a b b a a b a a, length of gap = 0, discount factor = 1
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• b a b b a a b a a, length of gap = 3, discount factor = γ3

• b a b b a a b a a, length of gap = 3, discount factor = γ3

which makes the total discounted count of gappy occurrences of θ in y to be 1 + 2 · γ3.

Each sequence of symbols y ∈ Σ∗ can be represented as a discounted count vector

Θ(y) ∈ Rp of gappy occurrences of the patterns whose ith component is “the discounted

number of gappy occurrences of θi in y”. The gain function U is defined in the same way5

as in Equation (4.1). A typical instance of such gains is gappy n-gram gains where L is

the set of all n-grams consisting of |Σ|n many patterns (e.g. bigrams L = {aa, ab, ba, bb}

for Σ = {a, b} and n = 2).

The key to extending our results in Section 4.3 to gappy n-grams is an ap-

propriate definition of the alphabet E′, the rewrite rules, and a new context-dependent

automaton A′. Once A′ is constructed, the algorithms and regret guarantees presented

in Section 4.4 can be extended to gappy count-based gains. As far as we know, this

provides the first efficient online algorithms with good regret guarantees for gappy count-

based gains in full information, semi-bandit and full bandit settings.

Context-Dependent Rewrite Rules. We extend the definition of E′ so that it also

encodes the total length k of the gaps: For every θi of length |θi| and non-negative

integers k, we introduce elements (#e1e2 . . . e|θi|)k where e1, e2, . . . , e|θi| represent all

possible elements in E:

E′ =
{

(#e1 · · · er)k | e1 · · · er ∈ E, r ∈ {|θ1|, . . . , |θp|}, k ∈ Z, k ≥ 0
}
.

5 The regular count-based gain can be recovered by setting γ = 0.
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Note that the discount factor in gappy occurrences does not depend on position of the

gaps. Exploiting this fact, for each pattern of length n and total gap length k, we

save
(
k+n−2

k

)
times less output symbols by encoding the number of gaps as opposed to

encoding the positions of the gaps.

Next, we extend the rewrite rules in order to incorporate the gappy occurrences.

Given e′ = (#ei1ei2 . . . ein)k, for all path segments ej1ej2 . . . ejn+k of length n + k in A

where {is}ns=1 is a subsequence of {jr}n+k
r=1 with the same initial and final elements (i.e.

i1 = j1 and in = jn+k):

ej1ej2 . . . ejn+k −→ (#ei1ei2 . . . ein)k/ε ε.

Similar to the non-gappy case in Section 4.3, the simultaneous application of all these

rewrite rules can be efficiently compiled into a FST TA. The context-dependent trans-

ducer TA maps any sequence of transition names in E, indicating a path segment in A,

into a sequence of corresponding gappy occurrences. The example below shows how TA

outputs the gappy trigrams given a path segment of length 5 as input:

e1, e2, e3, e4, e5
TA−−→(#e1e2e3)0, (#e2e3e4)0, (#e3e4e5)0,

(#e1e2e4)1, (#e1e3e4)1, (#e2e3e5)1, (#e2e4e5)1,

(#e1e2e5)2, (#e1e4e5)2, (#e1e3e5)2.

The Context-Dependent Automaton. Similar to Section 4.3.2, we construct the

context-dependent automaton as A′ := Π(A ◦ TA) which has a fixed topology through

trials. Note that the rewrite rules are constructed in such way that different paths in A
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and rewritten differently. Therefore TA assigns a unique output to a given path expert

in A. Proposition 16 ensures that for every accepting path π in A, there is a unique

corresponding accepting path in A′.

At any round t∈ [T ] and for any e′=(#ei1ei2 . . . ein)k, define

outt(e
′) := outt(ei1) . . . outt(ein).

Let outt(A
′) be the automaton with the same topology as A′ where each label e′∈E′ is

replaced by outt(e
′). Given yt, the representation Θ(yt) can be found, and consequently,

the additive contribution of each transition of A′. Theorem 22 proves the additivity of

the gains in A′.

Theorem 22. Given the trial t and discount rate γ ∈ [0, 1], for each transition e′ ∈ E′

in A′ define the gain ge′,t := γk [Θ(yt)]i if outt(e
′) = (θi)k for some i and k and ge′,t := 0

if no such i and k exist. Then the gain of each path π in A at trial t can be expressed

as an additive gain of π′ in A′:

∀t ∈ [1, T ], ∀π ∈ P : U(outt(π), yt) =
∑
e′∈π′

ge′,t .

Proof. By definition, the ith component of Θ(outt(π)) is the discounted count of gappy

occurrences of θi in outt(π). Also, by construction of the context-dependent automaton

based on rewrite rules, π′ contains all gappy path segments of length |θi| of π in A as

transition labels in A′. Thus every gappy occurrence of θi with k gaps in outt(π) will

appear as a transition label (θi)k in outt(π
′). Therefore the discounted counts of gappy
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occurrences of θi in outt(π) is

[Θ(outt(π))]i =
∑
e′∈π′

∑
k

γk 1{outt(e
′) = (θi)k}. (4.4)

Therefore, the following holds:

U(outt(π), yt) = Θ(yt) ·Θ(outt(π)) (definition of U)

=
∑
i

[Θ(yt)]i [Θ(outt(π))]i

=
∑
i

[Θ(yt)]i
∑
e′∈π′

∑
k

γk 1{outt(e
′) = (θi)k} (Equation (4.4))

=
∑
e′∈π′

∑
i

∑
k

γk [Θ(yt)]i 1{outt(e
′) = (θi)k}︸ ︷︷ ︸

=ge′,t

,

and the proof is complete. �

We now can extend the algorithms and regret guarantees presented in Sec-

tion 4.3 to gappy count-based gains. As far as we know, this provides the first efficient

online algorithms with good regret guarantees for gappy count-based gains in full infor-

mation, semi-bandit and full bandit settings.

4.6 Applications to Ensemble Structured Prediction

The algorithms discussed in Section 4.4 can be used for the online learning

of ensembles of structured prediction experts, and as a result, significantly improve

the performance of algorithms in a number of areas including machine translation,

speech recognition, other language processing areas, optical character recognition, and

computer vision. In structured prediction problems, the output associated with a model
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h is a structure y that can be decomposed and represented by ` substructures y1, . . . , y`.

For instance, h may be a machine translation system and yi a particular word.

The problem of ensemble structured prediction can be described as follows.

The learner has access to a set of r experts h1, . . . , hr to make an ensemble predic-

tion. Therefore, at each round t ∈ [1, T ], the learner can use the outputs of the r

experts outt(h1), . . . , outt(hr). As illustrated in Figure 4.7(a), each expert hj consists

of ` substructures hj = (hj,1, . . . , hj,`).

h1

...
...

hr

(a)

0

0

1

1

· · ·

· · ·

`

`

h1,1 h1,2 h1,`

hr,1 hr,2 hr,` A

(b)

0 1 · · · `

h1,1

hr,1

. . .

h1,2

hr,2

. . .

h1,`

hr,`

. . .

Figure 4.7: (a) the structured experts h1, . . . , hr. (b) the expert automaton A allowing

all combinations.

Represented by paths in an automaton, the substructures of these experts can

be combined together. Allowing all combinations, Figure 4.7(b) illustrates the expert

automaton A induced by r structured experts with ` substructures. The objective of

the learner is to find the best path expert which is the combination of substructures

with the best expected gain. This is motivated by the fact that one particular expert

may be better at predicting one substructure while some other expert may be more

accurate at predicting another substructure. Therefore, it is desirable to combine the

substructure predictions of all experts to obtain the more accurate prediction.
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Consider the online path learning problem with expert automaton A in Fig-

ure 4.7(b) with non-additive n-gram gains described in Section 4.3 for typical small

values of n (e.g. n = 4). We construct the context-dependent automaton A′ via a set

of rewrite rules. The rewrite rules are as follows:

hj1,i+1, hj2,i+2, . . . , hjn,i+n → #hj1,i+1hj2,i+2 . . . hjn,i+n / ε ε,

for all j1, . . . , jn ∈ [1, r], i ∈ [0, ` − n]. The number of rewrite rules is (` − n + 1) rn.

We compile these rewrite rules into the context-dependent transducer TA, and then

construct the context-dependent automaton A′ = Π(A ◦ TA).

The context-dependent automaton A′ is illustrated in Figure 4.8. The tran-

sitions in A′ are labeled with n-grams of transition names hi,j in A. The context-

dependent automaton A′ has `−n+1 layers of states each of which acts as a “memory”

indicating the last observed (n−1)-gram of transition names hi,j . With each intermedi-

ate state (i.e. a state which is neither the initial state nor a final state), a (n−1)-gram is

associated. Each layer contains rn−1 many states encoding all combinations of (n− 1)-

grams ending at that state. Each intermediate state has r incoming transitions which

are the n-grams ending with (n−1)-gram associated with the state. Similarly each state

has r outgoing transitions which are the n-grams starting with (n− 1)-gram associated

with the state.

The number of states and transitions in A′ are Q = 1 + rn(` − n) and M =

rn(`− n+ 1), respectively. Note that the size of A′ does not depend on the size of the

output alphabet Σ. Also notice that all paths in A′ have equal length of K = `−n+ 1.
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0 1 i− 1 i `− n+ 1

...
...

...
... rn−1

#h∗,1 . . . h∗,n

#h∗,i . . . h∗,i+n−1

Figure 4.8: The context-dependent automaton A′ for the expert automaton A depicted

in Figure 4.7(b).

Furthermore the number of paths in A′ and A are the same and equal to N = r`.

We now apply the algorithms introduced in Section 4.4.

4.6.1 Full Information: Context-dependent Component Hedge Algo-

rithm

We apply the CDCH algorithm to this application in full information setting.

The context-dependent automaton A′ introduced in this section is highly structured.

We can exploit this structure and obtain slightly better bounds comparing to the general

bounds of Theorem 18 for CDCH.

Theorem 23. Let B denote an upper-bound for the gains of all the transitions in A′, and

T be the time horizon. The regret of CDCH algorithm on ensemble structured prediction
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with r predictors consisting of ` substructures with n-gram gains can be bounded as

RegretCDCH ≤
√

2T B2 (`− n+ 1)2 n log r +B (`− n+ 1)n log r.

Proof. First, note that all paths in A′ have equal length of K = `− n+ 1. Therefore

there is no need of modifying A′ to make all paths of the same length. At each trial

t ∈ [T ], we define the loss of each transition as `t,e′ := B − gt,e′ . Extending the results

of Koolen et al. [2010], the general regret bound of CDCH is

RegretCDCH ≤
√

2T K B2 ∆(vπ∗ ||w1) +B∆(vπ∗ ||w1), (4.5)

where vπ∗ ∈ {0, 1}M is a bit vector representation of the best comparator π∗, w1 ∈

[0, 1]M is the initial weight vector in the unit-flow polytope, and

∆(w||ŵ) :=
∑
e′∈E′

(
we′ ln

we′

ŵe′
+ ŵe′ − we′

)
.

Since the initial state has rn outgoing transitions, and all the intermediate states have

r incoming and outgoing transitions, the initial vector w1 = 1
rn1 falls into the unit-flow

polytope, where 1 is a vector of all ones. Also vπ∗ has exactly K = ` − n + 1 many

ones. Therefore:

∆(vπ∗ ||w1) = (`− n+ 1)n log r (4.6)

Combining the Equations (4.5) and (4.6) gives us the desired regret bound. �

4.6.2 Semi-Bandit: Context-dependent Semi-Bandit Algorithm

In order to apply the algorithm CDSB in semi-bandit setting in this appli-

cation, we need to introduce a set of “covering paths” C in A′. We introduce C by
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partitioning all the transitions in A′ into rn paths of length ` − n + 1 iteratively as

follows. In each iteration, we choose an arbitrary path π from the initial state to a

final state. We add π to the set C and remove all its transitions from A′. Notice that

the number of incoming and outgoing transitions for each intermediate state are always

equal throughout the iterations. Also note that in each iteration, the number of out-

going edges from the initial state decreases by one. Therefore after rn iterations, C

contains a set of rn paths that partition the set of transitions in A′.

Furthermore, observe that the number of paths in A′ and A are the same and

equal to N = r`. The Corollary below is a direct result of Theorem 19 with |C| = rn.

Corollary 24. For any δ ∈ (0, 1), with proper tuning, the regret of the CDSB algorithm

can be bounded, with probability 1− δ, as:

RegretCDSB ≤ 2B (`− n+ 1)
√
T

(
√

4 rn ` ln r +

√
rn ln

rn(`− n+ 1)

δ

)
.

4.6.3 Full Bandit: Context-dependent ComBand Algorithm

We apply the CDCB algorithm to this application in full bandit setting. The

Corollary below, which is a direct result of Theorem 20, give regret guarantee for CDCB

algorithm.

Corollary 25. Let λmin denote the smallest non-zero eigenvalue of E[vπv
T
π ] where

vπ ∈ {0, 1}M is the bit representation of the path π which is distributed according to

the uniform distribution µ. With proper tuning, the regret of CDCB can be bounded as
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follows:

RegretCDCB ≤ 2B

√√√√T

(
2(`− n+ 1)

rn(`− n+ 1)λmin
+ 1

)
rn (`− n+ 1) ` ln r.

4.7 Path Learning for Full Bandit and Arbitrary Gain

In this section, we go beyond count-based gains and present a general algorithm

for path learning in the full bandit setting, when the gain function admits no known

structure. The algorithm, EXP3-AG, is an efficient execution of EXP3 for path learning

with arbitrary gains using weighted automata and graph operations.

We start with a brief description of the EXP3 algorithm of Auer et al. [2002],

which is an online learning algorithm designed for the full bandit setting over a set of

N experts. The algorithm maintains a distribution wt over the set of experts, with w1

initialized to the uniform distribution. At each round t ∈ [T ], the algorithm samples an

expert It according to wt and receives (only) the gain gt,It associated to that expert.

It then updates the weights multiplicatively via the rule wt+1,i ∝ wt,i exp(η g̃t,i) for all

i ∈ [N ], where g̃t,i =
gt,i
wt,i

1{It = i} is an unbiased surrogate gain associated with expert

i. The weights wt+1,i are then normalized to sum to one.6

In our learning scenario, each expert is a path in A. Since the number of

paths is exponential in the size of A, maintaining a weight per path is computationally

intractable. We cannot exploit the properties of the gain function since it does not

admit any known structure. However, we can make use of the graph representation of

6 The original EXP3 algorithm of Auer et al. [2002] mixes the weight vector with the uniform
distribution in each trial. Later Stoltz [2005] showed that the mixing step is not necessary.
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Vt

0|1 1|1 2|1

else|1

· · · k|exp(
η gπt,t
Wt(πt))

e1|1

ρ|1

e2|1
ρ|1

e3|1

ρ|1

ek|1
ρ|1

E|1

E|1

Figure 4.9: The update WFA Vt. The weight of each state and transition is written

next to its name separated by “|”:
e|weight−−−−−−→

the experts. We will show that the weights of the experts at round t can be compactly

represented by a deterministic stochastic WFA Wt (see Section 4.2 for the definition

and properties). We will further show that sampling a path from Wt and updating Wt

can be done efficiently.

The WFA Wt can be efficiently updated using the standard WFA operation of

intersection (see Section 4.2.2) with a WFA Vt representing the multiplicative weights

that we will refer to as the update WFA at time t. Vt is a deterministic WFA that

assigns weight exp(η g̃t,π) to path π. Thus, since g̃t,π = 0 for all paths but the path

πt sampled at time t, Vt assigns weight 1 to all paths π 6= πt and weight exp
( ηgt,πt
Wt(πt)

)
to πt. Vt can be constructed deterministically as illustrated in Figure 4.9, using ρ-

transitions (marked with ρ in green). A ρ-transition admits the semantics of the rest :

it matches any symbol that is not labeling an existing outgoing transition at that state.

For example, the ρ-transition at state 1 matches any symbol other than e2. ρ-transitions

lead to a more compact representation not requiring the knowledge of the full alphabet.
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This further helps speed up subsequent intersection operations [Allauzen et al., 2007]).

By definition, the intersection of Wt and Vt is a WFA denoted by (Wt ◦ Vt)

that assigns to each path expert π the product of the weights assigned by Wt and Vt:
7

∀π ∈ P : (Wt ◦ Vt)(π) = Wt(π) · Vt(π).

Since both Wt and Vt are deterministic, their intersection (Wt ◦ Vt) is also

deterministic. The WFA Wt+1 we obtain after an update may not be stochastic, but we

can efficiently compute an equivalent stochastic WFA W′ from any W using the weight-

pushing algorithm [Mohri, 1997, 2009a, Takimoto and Warmuth, 2003] described in

Section 4.2.1. The following lemma shows that the weight assigned by EXP3-AG to

each path expert coincides with those defined by EXP3.

Lemma 26. At each round t ∈ [T ] in EXP3-AG, the following properties hold for Wt

and Vt:

Wt+1(π) ∝ exp(η
t∑

s=1

g̃s,π), Vt(π) = exp(η g̃t,π),

where g̃s,π = (gs,π/Ws(π)) · 1{π = πs}.

Proof. Consider Vt in Figure 4.9 and let πt = e1e2 . . . ek be the path chosen by

the learner. Every state in Vt is a final state. Therefore Vt accepts any sequence of

transitions names. Moreover, since the weights of all transitions are 1, the weight of any

accepting path is simply the weight of its final state. The construction of Vt ensures

that the weight of every sequence of transition names is 1, except for πt = e1e2 . . . ek.

7The terminology of intersection is motivated by the case where the weights are either 0 or 1, in
which case the set of paths with non-zero weights in Wt ◦Vt is the intersection of the sets of paths with
with weight 1 in Wt and Vt.

140



Therefore the property of Vt is achieved:

Vt(π) =


exp

(
η gt,π
Wt(π)

)
π = πt

1 otherwise

To prove the result for Wt+1 we use induction on t. Consider the base case

of t = 0. W1 is initialized to the automaton A with all weights being one. Therefore

the weights of all paths are equal to 1 before weight pushing (i.e. W1(π) ∝ 1). The

inductive step is as follows:

Wt+1(π) ∝Wt(π) · Vt(π) (definition of composition)

= exp(η
t−1∑
s=1

g̃s,π) · exp(η g̃t,π) (induction hypothesis)

= exp(η
t∑

s=1

g̃s,π).

�

Algorithm 5 Algorithm EXP3-AG

1: W1 ←− A

2: For t = 1, . . . , T

3: Wt ←−WeightPush(Wt)

4: πt ←− Sample(Wt)

5: gπt,t ←− ReceiveGain(πt)

6: Vt ←− UpdateWFA(πt,Wt(πt), gt,πt)

7: Wt+1 ←−Wt ◦ Vt

Algorithm 5 gives the pseudocode of EXP3-AG. The time complexity of EXP3-

AG depends mostly on intersection operation in line 7. The worst-case space and time
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complexity of the intersection of two deterministic WFA is linear in the size of the

automaton the algorithm returns. However, due to specific structure of Vt, the size of

Wt ◦Vt can be shown to be at most O(|Wt|+ |Vt|) where |Wt| is the sum of the number

of states and transitions in Wt. This is significantly better than the worst case size of

the intersection in general (i.e. O(|Wt||Vt|). Recall that Wt+1 is deterministic. Thus

unlike the algorithms of Cortes et al. [2015b], no further determinization is required.

Lemma 27 guarantees the efficiency of EXP3-AG algorithm.

Lemma 27. The time complexity of EXP3-AG at round t is in O(|Wt|+ |Vt|). More-

over, in the worst case, the growth of |Wt| over time is at most linear in K where K is

the length of the longest path in A.

Proof. Figure 5 gives the pseudocode of EXP3-AG. The time complexity of the

weight-pushing step is in O(|Wt|), where |Wt| is the sum of the number of states and

transitions in Wt. Lines 4 and 6 in Algorithm 5 take O(|Vt|) time. Finally, regarding

line 7, the worst-case space and time complexity of the intersection of two deterministic

WFA is linear in the size of the automaton the algorithm returns. However, the size

of the intersection automaton Wt ◦ Vt is significantly smaller than the general worst

case (i.e. O(|Wt||Vt|)) due to the state “else” with all in-coming ρ-transitions (see

Figure 4.9). Since Wt is deterministic, in the construction of Wt ◦ Vt, each state of

Vt except from the “else” state is paired up only with one state of Wt. For example,

if the state is the one reached by e1e2e3, then it is paired up with the single state of

Wt reached when reading e1e2e3 from the initial state. Thus |Wt ◦ Vt| ≤ |Wt| + |Vt|,
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and therefore, the intersection operation in line 7 takes O(|Wt|+ |Vt|) time which also

dominates the time complexity of EXP3-AG algorithm.

Additionally, observe that the size |Vt| is in O(K) where K is the length of the

longest path in A. Since |Wt+1| = |Wt ◦Vt| ≤ |Wt|+ |Vt|, in the worst case, the growth

of |Wt| over time is at most linear in K. �

The following upper bound holds for the regret of EXP3-AG, as a direct con-

sequence of existing guarantees for EXP3 [Auer et al., 2002].

Theorem 28 (Auer et al. [2002]). Let U > 0 be an upper bound on all path gains:

gt,π ≤ U for all t ∈ [T ] and all path π. Then, the regret of EXP3-AG with N path

experts is upper bounded by U
√

2T N logN .

The
√
N dependency of the bound suggests that the guarantee will not be

informative for large values of N . However, the following known lower bound shows

that in the absence of any assumption about the structure of the gains, the dependency

cannot be improved in general [Auer et al., 2002].

Theorem 29 (Auer et al. [2002]). Let U > 0 be an upper bound on all path gains:

gt,π ≤ U for all t ∈ [T ] and all path π. Then, For any number of path experts N ≥ 2

there exists a distribution over the assignment of gains to path experts such that the

regret of any algorithm is at least 1
20U min{

√
T N, T}.
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4.8 Conclusion and Open Problems

We considered a large family of non-additive count-based gains and their gappy

extension for the path learning problem. From the original graph, we constructed an

intermediate automaton in such a way that every path in the original graph corresponds

to a path in the intermediate automaton. The equivalent gains in this intermediate

automation are additive. Using this construction, we were able to apply the well-known

algorithms in the literature for the full information, semi and full bandit settings to

non-additive path learning problem. Then we applied our methods to the important

application of structured ensemble prediction. Finally, going beyond count-based gains,

we developed an efficient implementation of the EXP3 algorithm for the path learning

problem in full bandit setting with any (non-additive) gains.

We conclude with two open problems. We assumed here that the expert au-

tomaton A is acyclic and the language of patterns L is finite. Solving the non-additive

path learning problem with cyclic expert automaton together with (infinite) regular

language of patterns remains as an open problem.

In this work, regardless of the data and the setting, the context-dependent

automaton A′ is constructed in advance as a pre-processing step. Is it possible to

construct A′ gradually as the learner goes through trials? Can we build A′ incrementally

in different settings and keep it as small as possible as the algorithm is exploring the

set of paths and learning about the revealed data.
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Chapter 5

Conclusions and Future Work

We developed efficient algorithms for learning combinatorial objects. We ex-

plored a wide variety of combinatorial objects consisting of components, such as Huffman

trees, permutations, binary search trees, k-sets, paths and multipaths. The main chal-

lenge in this learning task is the large number of objects which is exponential in terms

of the number of components.

We introduced extended formulation techniques to develop learning algorithms

for a new class of combinatorial objects. Standard approaches for learning combinatorial

objects (e.g. Component Hedge of Koolen et al. [2010]) typically works with the convex

hull of the objects. These approaches, however, cannot be applied to objects whose

convex hull is a polytope with too many facets. We fixed this problem by proposing

the XF-Hedge algorithm. XF-Hedge uses auxiliary representations of such objects that

are constructed by extended formulation techniques. The convex hull of the objects

in these auxiliary representations has an efficient characterization with polynomially
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many facets. This allowed us to extend algorithms like Component Hedge to the class

of objects with extended formulations of polynomial size.

As a special – but yet general – family of constructing extended formulations,

we then focused on arbitrary dynamic programming with min-sum recurrence relations.

The graph of subproblems served as the auxiliary representation where each object was

described by a subgraph called multipath. The structure of the multipath representation

and the additivity of the loss over its components allowed us to implement Component

Hedge and Expanded Hedge.

Finally, we studied the path learning problem in a automaton with non-additive

gains. We presented new online algorithms for path learning with non-additive count-

based gains for the three settings of full information, semi-bandit and full bandit. The

key component of our algorithms is the definition and computation of an auxiliary au-

tomaton called context-dependent automaton which admits additive gains. This enabled

us to use existing algorithms designed for additive gains.

In the remaining of this chapter, we discuss the main areas of future work to

investigate:

More Applications with Extended Formulations. In this thesis, we introduced

the extended formulation techniques for learning combinatorial objects. In particu-

lar, we provided efficient algorithms when the extended formulation is constructed by

(1) sorting networks (Chapter 2) and (2) dynamic programming (Chapter 3). We pro-

pose to investigate other techniques of constructing extended formulation to develop
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efficient and effective learning algorithms such as (3) disjunctive programming [Kaibel,

2011] and (4) branched polyhedral systems (BPS) [Kaibel and Loos, 2010].

Extension to Bandit Settings. The main focus of this thesis was the full informa-

tion setting where the adversary reveals the entire loss vector in each trial. In contrast

in full- and semi-bandit settings, the adversary only reveals partial information about

the loss. Significant work has already been done in learning combinatorial objects in

full- and semi-bandit settings [Audibert et al., 2011, György et al., 2007, Audibert et al.,

2013, Kveton et al., 2015, Cesa-Bianchi and Lugosi, 2012]. The bandit algorithms for

learning combinatorial objects usually proceed as follows. First an unbiased estimation

of the complete loss vector is computed (called surrogate loss) based on the partial infor-

mation about the loss revealed by the adversary. Then Component Hedge or Expanded

Hedge is applied with the surrogate loss.

This thesis only did limited work in the bandit settings for combinatorial ob-

jects. Can we extend our work in full information setting to semi- and full bandit

settings?

Computing the surrogate loss in bandit typically requires finding the probabil-

ity of occurrence of the components and/or co-occurrence of the pairs of components.

Efficient algorithms are developed for this computation for different applications. For

example, in additive multipath learning, dynamic programming algorithms are used to

compute the probability of occurrence of each multiedge in the chosen multipath (see

Section 3.2). Can we extend these algorithms to other combinatorial objects?
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