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Abstract

A PDP model of human analogical reasoning is presented
which is designed to incorporate psychologically realistic
processing capacity limitations. Capacity is defined in
terms of the complexity of relations that can be processed
in parallel. Relations are represented in the model by
computing the tensor product of vectors representing
predicates and arguments. Relations in base and target are
superimposed. Based on empirical evidence of capacity
limitations, the model is limited to processing one
quaternary relation in parallel (rank 5 tensor product).
More complex relations are processed by conceptual
chunking (recoding to fewer arguments, but with loss of
access to some relations) or segmentation (processing
components of the structure serially). The model processes
complex analogies, such as heat flow-water flow, and
atom-solar system, while remaining within capacity
limitations.

Introduction

The growth of parallel processing models of human
analogical reasoning raises the question of the complexity
of structures which humans can map in parallel. A good
case can be made for parallel processing in analogies
(Holyoak & Thagard, 1989) but it is implausible that the
most complex analogies can be processed entirely in
parallel. The Rutherford analogy between the hydrogen
atom and the solar system (Gentner, 1983; Holyoak &
Thagard, 1995) entails a very complex set of relationships,
and it is far from clear that humans process the entire
structure in parallel. If computational models are to be
psychologically realistic, a means must be found for
quantifying the complexity of structures that can be
processed in parallel. It is also necessary to explain how
problems that exceed this capacity are processed. The
Structured Tensor Analogical Reasoning (STAR) model
was designed to incorporate realistic human information
processing capacities into a PDP model of analogy. An
earlier version of the model (Halford, Maybery, O'Hare, &
Grant, 1994) did not handle problems that exceeded human
capacity to process structures in parallel. In this paper we
present extensions of the model which introduce a number
of new processes, and handle more complex tasks.

An analogy is a structure-preserving map from a base or
source to a target (Gentner, 1983). The structure of base and
target are coded in the form of one or more relations. In the
simple proportional analogy cat:kitten::horse:foal the base
would be coded as MOTHER-OF(cat kitten) and the target
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as MOTHER-OF(horse,foal). More complex analogies
might comprise ternary and higher rank relations, or they
might be coded as a higher-order relation which provides an
overarching structure, and which has first-order relations as
arguments. In general, a first-order relation has objects as
arguments, and a second-order relation has first-order
relations as arguments, and so on.

Capacity and complexity

The complexity of structures in base or target can be
quantified by the complexity of relations, which may be
defined by the number of arguments. A binary relation (e.g.
BIGGER-THAN) has two arguments, and a ternary relation
has three arguments (e.g. LOVE-TRIANGLE is a ternary
relation, and has arguments comprising three people, two of
whom love a third). Each argument can be instantiated in
more than one way. For example, each argument of
BIGGER-THAN can be instantiated in an arbitrarily large
number of ways (e.g. BIGGER-THAN(horse,mouse),
BIGGER-THAN(whale,dolphin) etc.). Consequently, each
argument provides a source of variation, or dimension, and
thereby makes a contribution to the complexity of the
relation. In general, an N-ary relation R,(a,a2,....,a,) is a
subset of the cartesian product S1xS2x...XSp). It is the set
of ordered n-tuples {(ay,az,....,a5) | R(aj,ajz.....,ap) is true}.
An N-ary relation can be thought of as a set of points in N-
dimensional space. Relations of higher dimensionality
(more arguments) impose higher processing loads.

We have proposed (Halford et al., 1994; Halford &
Wilson, submitted) that processing capacity of higher
cognitive processes can be quantified in terms of this
dimensionality concept. Assessment of the working
memory literature, plus some specific experimentation, has
led to the conclusion that adult humans can process a
maximum of four dimensions in parallel, equivalent to one
quaternary relation (Halford, 1993; Halford, et al., 1994;
Halford & Wilson, submitted). Structures more complex
than this must be processed by either conceptual chunking
or segmentation.

Conceptual chunking is recoding a concept into fewer
dimensions. For example the ternary relation R(a,b,c) can
be chunked to a binary relation R'(a,b/c) by combining b,c
into a single argument. The relation between a and b/c can
be computed, but the relation between b and ¢ cannot,
because they are processed as a single argument. R(a,b,c)
can also be chunked to a unary relation, R"(a/b/c) in which
a,b,c constitute a single dimension, and relations between
them cannot be computed. A relation can also be chunked
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to a single entity, in which predicate and argument(s) are
not distinguished. In our tensor product representations, this
is represented by a single vector. Chunked representations
can also be unpacked so as to return to the original relation.

The chunking principles are: (1) a chunk functions as a
single entity, predicate or argument, in a relation. (2) no
relations can be accessed between items within a chunk. (3)
relations between the chunk and other items, or other
chunks, can be represented.

Segmentation is decomposing tasks into steps small
enough not to exceed processing capacity, as in serial
processing strategies.

The Model

An N-ary relation, R(ay,a3,....,ay) is a binding between a
relation symbol or predicate, R, and the arguments
a1,a2,....,ap In the STAR model, relations are represented
as the tensor product of vectors representing the predicate
and each argument. Thus, given a set of unary relations R1
on a set A, the relations are represented in a vector space
VR1 and the members of A in a vector space Vju, a
relational instance rl(a) (i.e. “rl is true of a") where rl €
R1 and a € A is represented by a tensor v;1)®vj, in the
tensor product space VR1®V a. Similarly, if R2 is a set of
binary relations on AxB, then the representation space for
these binary relations would be denoted VR2®VA®Vp, and
a particular relational instance r2(a,b) by the tensor
vi2®v,a®vy. This notation extends naturally to any number
of arguments — for example, the quaternary relational
instance r4(a,b,c,d) would be represented by
Vi@V, ®vp®vc®vy. Conceptual chunking is implemented
by convolution of the vectors in the tensor product, in the
limiting case to a single vector. Segmentation is
implemented by processing one tensor product
representation at a time.

The relations in base and target are superimposed on the
same tensor product, as shown in Figure 1A, and the
mathematical treatment is given in Halford et al. (1994).

feeds, protects,
mother-of, loves,
larger-than

foal kitten

cat,
horse

Figure 1A: Tensor product repressentation
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Simple proportional analogy

The representation of base and target in the analogy
cat:kitten::horse:foal is shown in Figure 1A. There is a
vector representing the predicate MOTHER-OF, and other
predicates such as LOVES, FEEDS, PROTECTS,
LARGER-THAN. The first arguments of both base and
target are superimposed on one vector, and the second
arguments on another, as shown. Predicate-argument
bindings other than those essential to the problem are
represented (e.g. LARGER-THAN(mare,rabbit)) to
demonstrate that the model can select the appropriate
solution and avoid irrelevancies.

The solution of the problem cat:kitten::mare:? is
presented schematically in Figure 1B. In the first step, the
input is cat:kitten and the output is all the predicates that
have "cat" and "kitten" as arguments (a "predicate bundle").
That is, the output represents the set { MOTHER-OF,
LOVES, FEEDS, PROTECTS, LARGER-THAN}.

cok Tensor
Memory
) \
| predicate bundle
kitten {MOTHER_OFetc.}
- Tensor
Memory
T
predicate bundle

argument bundle

{foal

{MOTHER_OF.etc.}

Figure 1B: Processing of a simple analogy.

In the second step, this predicate bundle is used as input,
together with "mare". The output is an "argument bundle"
representing all possible solutions. The possible solutions
can be recognized by computing the inner product of vectors
representing each possible solution with the output vector.
Alternatively, it can be done by an auto-association
technique (Chappell & Humphreys, 1994) which selects the
most appropriate solution.

Notice that "foal" is not the only valid solution. For
example, "rabbit" is a syntactically correct solution because
cat:kitten::mare:rabbit is a valid analogy. The base can be
represented as LARGER-THAN(cat kitten) and the target as
LARGER-THAN(mare,rabbit). The preferred solution "foal"
can be justified on a number of grounds however. One is
the salience of predicates. MOTHER-OF is a more salient
predicate relating "cat" and "kitten” than is LARGER-
THAN, because of the stronger associations between terms
such as "kitten" and the mother-infant relation. Second, the



solution "foal" fits more predicates than does “rabbit". The
solution "foal" is consistent with all the predicates
MOTHER-OF(mare, foal), LOVES(mare, foal),
FEEDS(mare, foal), PROTECTS(mare, foal), LARGER-
THAN(mare, foal). However "rabbit" fits only onc
predicate: LARGER-THAN(mare,rabbit). The model can
use both salience and the number of predicates consistent
with a solution to produce an analogy corresponding to the
one which we would find most satisfying. Therefore the
model acknowledges that more than one solution is
syntactically consistent, but can distinguish between
solutions according to their plausibility.

Analogies with higher rank relations

More complex analogies can be processed. Analogies based
on ternary relations can be processed using Rank 4 tensor
products, VROV A®VE®V . An example would be when
premises representing two asymmetric binary relations are
mapped into a conventional ordering schema, such as top to
bottom. The premises Tom is happier than John, John is
happier than Mark might be mapped into a top-down
schema in which Tom is in the top position, John in the
middle, and Mark in the bottom. The base is
MONOTONICALLY-HIGHER((top,middle,bottom) and the
target is MONOTONICALLY -HAPPIER(Tom John,Mark).
This can be represented by a Rank 4 tensor product, as
shown in Figure 2. Concepts based on quaternary relations
(e.g. proportion a/b = c/d) can be represented in Rank 5
tensor products in analogous fashion. The representation
and processing of other complex concepts in the architecture
of this model are discussed elsewhere (Halford, 1993;
Halford & Wilson, submitted).

These representations have two important properties,
which we call flexibility and derivation. Flexibility means
that there must be no fixed input or output. To represent
the relation Rp(aj,a,,...,a,), it must be possible to use the
predlcale and any n- % arguments as inputs, and compute the
remaining argument as output. Similarly, it must be
possible to retrieve the predicate, given the arguments as
input. Both these functions were illustrated with the simple
proportional analogy discussed above, and they are
important to analogical reasoning generally. Derivation
means that it must be possible to derive lower dimensional
relations. Given a representation of the n-ary relation
Rn(aj.ay,....a ), it mushb&i possible to derive all the (n-1)-
ary mduced ré‘atlons R. i (ay.. 02 1841 -2 ) all the
(n 2)-ary induced relatlons R. 831

,a,), and so on. This droperty lS a
anaioglcal reasoning.

l+1
SO used iJn

Complex Analogies - Serial and Parallel

Processing

The main focus of this paper is analogies which are too
complex to be completely represented in parallel. We will
consider two examples, the analogy between water-flow and
heat-flow, and the Rutherford analogy between the structure
of the solar system and the structure of the hydrogen atom
(Falkenhainer, Forbus, & Gentner, 1989).
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A  Premises:

Tom is happier than John.
John is happier than Mark.,

base schema

top above  middle abovi bottom
target . .
(problemTom happier John Mr» Mark
representation) '1an than
B

monotonically-higher
monotonically-happier

bottom

Figure 2.Mapping of ternary relation into ordering schema
(A) with tensor product representation (B).

The water flow-heat flow analogy is shown in Figure 3.

The figure shows that water-flow is caused by pressure-
difference. The component relations are
GREATER(PRESSURE(vesselA),PRESSURE(vesselB))
and FLOW(vesselA,vesselB,water,pipe). There is a higher-
order relation CAUSE which has pressure-difference and
water-flow as arguments. The way this complex structure
can be represented in the model without exceeding
processing capacity limitations is shown in Figure 3.
Pressure-difference and water-flow are each chunked to a
single vector, by convolution. Cause is then represented as
a binary relation, with the chunked representations of
pressure-difference and water-flow as arguments.
The model can actively represent the causal relation between
pressure-difference and water-flow, but cannot
simultaneously represent the structure of the pressure-
difference and water-flow concepts, because these are
chunked into single entities. These must be unpacked in
order for their constituent structure to be represented.
However while the constituent structure of pressure-
difference and water-flow are being actively represented, the
overarching causal relation between them cannot be.



CAUSE

GREATER FLOW (vessel A, vessel B, water, pipe)

PRESSURE (vessel A)

LIQUID (water)
GREATER

N

DIAMETER (vessel A) ~ DIAMETER (vessel B)
CAUSE (pressure-difference, water-flow)

PRESSURE (vessel B)
FLAT-TOP (water)

GREATER (pressure-vessel-A, pressure-vessel-B)

FLOW (water, vessel A, vessel B, pipe)

Figure 3. Representation of water-flow.

The Rutherford analogy is represented, as in the model of
Falkenhainer et al. (1989) in Figure 4. The orbital motion
of a planet around the sun is caused by the difference in
mass between planet and sun, and by the gravitational
attraction between planet and sun. In analogous fashion, the
orbital motion of an electron around the nucleus of an atom
is caused by the difference in mass and the electrostatic
attraction of the bodies. As with water-flow and heat-flow,
the structures are represented in a hierarchy in which higher-
order predicates have chunked lower-order relations as
arguments. The hierarchy has more levels however than in
the case of water-flow and heat-flow. Distracting irrelevant
relations, such as the temperature difference between sun
and planet, are also represented.

The model works by matching relations in base to
relations in target one at a time, staying within the
limitation of not representing more than one quaternary
relation in parallel. The model can move either up or down
the tree looking for matches, which are accumulated in a
match matrix, and checked to ensure that the uniqueness and
correspondence properties of structure mappings are
maintained. The uniqueness property means that mappings
are one-to-one. The correspondence property means that if a
predicate P in structure 1 is mapped to a predicate P' in
structure 2, the arguments of P are mapped to the
arguments of P', and vice versa. Matches which violate
these properties are rejected. Each match that is made adds
an increment to a structural evaluation score, which is
designed to assess the consistency of the matches made.

The operation of the model was also assessed by
presenting it with the following base, and testing to see
whether a mapping to target 1 or target 2 was preferred.

Cause

T

Cause And Revolves-Around(planet,sun)

Gravity Attracts(sun,planet) Greater-Than

Mass(planet) Temperature(sun)
Temperature(planet)

Mass(sun)

Cause

Opposite-Sign  Attracts(nucleus,electron)

Charge(nucleus)  Charge(electron)

Revolves-Around(electron,nucleus)
Greater-Than

Mass(nucleus) Mass(electron)

Figure 4: Representation of atom-solar system analogy.

Base:

John is anxious

John's anxiety is caused by a thesis
John's anxiety affects his thesis

Targe: I:

Joan is anxious

Joan's anxiety is caused by an exam
Joan's anxiety affects her sleep

Target 2:

Martin is anxious

Martin's anxiety is caused by his obesity
Martin's anxiety affects his obesity

Target 2 is more structurally similar to the base than is
target 1. This is reflected in the output of the model, which
was able to perform both mappings, but gave a higher
structural evaluation score to the mapping between base and
target 2.

The representation of each relation in the hierarchy is
based on tensor products, and is distributed. However in the
present version of the model the movement up and down
the tree, from one relation to another, and the compilation
of the structural evaluation score, is implemented by a
conventional C-program. Means of implementing this
aspect in a PDP architecture are being investigated now.
However the logic of the model will remain essentially as
at present.



The model implies that complex analogies must entail a
combination of parallel and serial processing because
parallel processing of the entire structure would exceed
capacity limitations. The task is segmented into relations,
with parallel processing within each relation, but serial
processing between relations. This is implemented by
coding each relation as a tensor product which binds
predicate and argument vectors, and permits predicates and
arguments to be recovered. These vectors can be convolved
into a single vector, which can be an argument to a higher-
order predicate, enabling a hierarchy of relations to be
represented. The computational cost of high-rank tensor
products provides a natural explanation for the processing
load imposed by complex relations. The model can handle
complex analogies, such as water flow-heat flow and atom-
solar system, while remaining within psychologically
realistic capacity limitations.
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