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Abstract  

Supported sub-nano clusters are intriguing catalysis, which can present an ensemble of 

many distinct and easily interconverting geometric states to the reactive medium in catalytic 

conditions. Each of these states can contribute to catalysis with a unique reaction rate. We argue 

that such sub-nano cluster catalysts can in principle show a non-Arrhenius behavior, thanks to their 

structural fluxionality. However, it is unlikely to see this in practice due to the stringent 

requirements on the heights of the reaction barriers involved. Furthermore, we demonstrate that 

the ensemble average rate constant which was previously proposed to be used for the ensemble of 

fluxional clusters to describe the catalytic properties of the system is the same as Tolman’s formula 

proposed in 1920. Note that in this study we only isolate the dynamicity of clusters as one factor 

that can affect the kinetics of catalysis. We also propose that calculating 1
!!
(〈𝐸"#〉 − 〈𝐸$〉) as a 

function of T can be used as a good indicator of a possible non-Arrhenius behavior. 
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1. Introduction 

The impressive empirical relationship between the rate constant of a reaction and its 

activation energy, which was proposed by Svante Arrhenius1 in 1889, and is still widely used in 

catalysis, can be written as 

𝑘(𝑇) = 𝐴𝑒%
&"
!!" (1) 

, where A is the pre-exponential factor, Ea is the activation energy, and kB is the Boltzmann 

constant.2–4 Recently, it has been shown that, for dynamic catalytic interfaces, metastable 

structures of the catalyst rather than the global minimum can play an important role in defining the 

thermodynamic and the kinetic properties of the interfaces.5–7 Perhaps the most dramatic example 

of such an interface are supported nano- and sub-nano clusters. The potential energy surface of 

metal clusters can have several stable structures (local minima) with different energies. The 

difference between the energies originates from their differences in geometries and electronic 

structures (chemical bonding, spin states). Since different isomers have different structure, spin 

state, and energy, their frontier molecular orbitals look differently and have different energetics. 

This affects their interaction with the reagents, and the resultant reaction pathways and barriers. 

An ensemble-average approach was introduced to capture the contribution of important low-lying 

isomers to the properties of such systems.8–10 For the kinetics, one can define the ensemble average 

rate constant based on the all thermally-accessible isomers populated at reaction temperature as11,12 

𝑘'() =,𝑃*𝐴*𝑒
%&",$
!!"

(

*

 (2) 

, where Pi is the Boltzmann population of isomer i at temperature T, which can be written as  

𝑃* ≈
𝑒
%&$
!!"

∑ 𝑒
%&$
!!"*

 (3) 

, assuming that only the electronic energy contribution is important, and ignoring the degeneracy. 

In general, if we neglect the temperature-dependence of the pre-exponential factor, the ln(k) vs. 

1/T plot should be linear, and the slope of this plot is equal to –Ea/kB. For an ensemble of fluxional 

clusters, we can use kens defined in equation (2) and calculate the slope of ln(kens) vs. 1/T plot as 
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𝑠𝑙𝑜𝑝𝑒 =
𝑑(𝑙𝑛𝑘'())

𝑑 61𝑇7
=

1
𝑘+
8
∑ 𝐸*𝑒

%&$
!!"(

*

∑ 𝑒
%&$
!!"(

*

−
∑ (𝐸* + 𝐸,,*)𝑒

%(&$/&",$)
!!"(

*

∑ 𝑒
%(&$/&",$)

!!"(
*

: (4) 

(See Appendix A for detailed derivation). As can be seen from equation (4), the first term in 

parentheses is nothing but the ensemble average energy of the reactants 〈𝐸$〉 and the second term 

can be interpreted as the ensemble average energy of the transition states 〈𝐸"#〉. Hence, we can 

write the activation energy corresponding to an ensemble of fluxional clusters as 

〈𝐸,〉 = 〈𝐸"#〉 − 〈𝐸$〉 (5) 

Equation (5) shows that the activation energy of an ensemble of fluxional clusters can be written 

as the difference between the ensemble average energies of the transition states and the reactants 

corresponding to all thermally-accessible isomers at the reaction temperature. This finding is, in 

fact, similar to what Tolman13 proposed in 1920 based on a statistical mechanic approach. He 

suggested that the activation energy of a reaction can be defined as the difference in the average 

energy of reacting species minus the average energy of reactant species. Moreover, Truhlar,14 

using reactive cross sections in collision theory, further expanded Tolman’s interpretation of the 

activation energy. Recently, Piskulich et al.15 wrote an informative feature article on the 

interpretation of activation energies for dynamical processes, and the new approaches that use the 

fluctuation theory to determine the activation energy for an arbitrary dynamical time scale at a 

single temperature. Here, based on what we proposed in equations (2) – (5), we try to investigate 

whether fluxional catalytic clusters are able to exhibit a non-Arrhenius behavior solely due to their 

fluxionality. First, we investigate some hypothetical ensembles of clusters each characterized by a 

certain barrier of the catalyzed reaction, and then we discuss whether or not the effect is physically 

feasible in an actual catalytic system. Here we should emphasize that the effect of the adsorbate 

coverage, which can influence both the number and types of sites available at a heterogeneous 

surface, on the kinetics of the reaction has been studied before using ab intio modeling;16 it is not 

the main focus of this study. Moreover, in the original Arrhenius paper,1 he proposed his reaction 

rate model based on the inversion of cane sugar reaction by acids and never took into account the 

effect of coverage. In general, it is more informative to isolate each parameter (fluxionality in this 

case) and examine its isolated influence on our models.  
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 In each theoretical ensemble case study, we set the relative energy of each isomer Ei, and 

its corresponding activation energy Ea,i, in order to calculate kens. Then for each case study we 

calculate R2 corresponding to the ln(kens) vs. 1/T plot in the range of 300 – 1000 K as a measure of 

linearity of the plot to determine whether the ensemble shows a non-Arrhenius behavior or not. 

Note that it has been shown that hundreds of isomers can be found especially for gas phase clusters 

by exploring the PES;5,6,8,17 however, that does not mean that all of these structures contribute to 

the catalysis. Based on the Boltzmann population, only isomers which are within ~0.4 eV relative 

to the global minimum can have non-negligible populations at reaction temperatures (~ 700 K), 

while hirer-energy isomers remain unpopulated and thus, irrelevant to the catalysis. As a result, 

the ensemble energetics in this study are chosen such that they resemble realistic catalytic 

systems.5,9,11,18 Furthermore, we assume that the observed activation energy, which is an ensemble 

average over the activations energies of all thermally-accessible isomers, rather than activation 

energy for each isomer will change as a function of temperature due to the change in the Boltzmann 

populations. Also, we assume that the pre-exponential factor is similar for different isomers of the 

same cluster (so no change as a function of T), while the activation energies are different. Since 

these isomers have different energies and stabilities, we believe it is a fair assumption to make. 

Since these isomers have different energies and stabilities, we believe it is a fair assumption to 

make. 

 

2. Results and Discussion 

In the first case study, we choose an ensemble of two isomers with the relative energies of 

E1 = 0 and E2 = 0.05 eV, which is not atypical in cluster catalysts. Then, we explore different 

combinations of Ea,1 and Ea,2 in the reasonable range of 0 – 2 eV with the step size of 0.01 eV, 

resulting in 40,000 different combinations. Figure 1a shows the whole search space, and Figure 1b 

shows the most significant part of the search space (low R2), which constitutes of a very small 

region of the overall search space. As can be seen, based on the R2 value obtained for all different 

combinations of Ea,1 and Ea,2, the majority of search space shows a clear Arrhenius behavior of the 

ensemble. There is only a very small region in which R2 significantly deviates from 1.0, and that 

requires a very small Ea,1. In fact, for the ensemble of two isomers to show a non-Arrhenius 

behavior the activation energy corresponding to the global minimum (Ea,1) should be less than ~ 



 6 

0.025 eV. This small activation barrier makes the ensemble unlikely to exist (and show its non-

Arrhenius behavior) in practice. It is also possible that the very small barrier may be indicative of 

a chemically unstable catalyst isomer 1. For example, such a cluster could strongly and irreversibly 

bind the products of the reaction step. Note that other possible relative energies in the ensemble 

have also been explored (summarized in Figure S1). It is clear from Figure S1 that the non-

Arrhenius region still constitutes a small fraction of the overall search space. However, the larger 

the difference between E1 and E2, the smaller the region corresponding to the non-Arrhenius 

behavior. This is not unexpected since in that case the ensemble will become more and more 

dominated by the single global minimum structure. 

 

 
Figure 1. (a) R2 value obtained from 40,000 different combinations of Ea,1 and Ea,2 in the range of 0 – 2 

eV for the ensemble of two isomers with relative energies E1 = 0 and E2 = 0.05 eV. (b) The region with 

low R2 values (Ea,1 < 0.2 eV) is zoomed on. The temperature range in which R2 is calculated is 300 – 

1000 K.  

 

E
a,
1
(e
V
)

Ea,2 (eV) Ea,2 (eV)

(a) (b)
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 In the next example we look at a more realistic catalytic system: an ensemble of 5 catalyst 

isomers with the relative energies of E1 = 0, E2 = 0.01, E3 = 0.10, E4 = 0.15, and E5 = 0.20 eV. The 

energy distribution was chosen such that the included local minima get populated enough to affect 

the rate proportionally to their Boltzmann populations. Note that the search space of activation 

energies grows exponentially with the number of isomers; therefore, based on the results obtained 

for the ensemble of 2 isomers we change the step size from 0.01 eV to 0.1 eV for the activation 

energies between 0.1 – 2.0 eV (the less interesting region) but keep 0.01 eV as the step size for the 

activation energies between 0 – 0.1 eV (the more interesting region). This approach ensures that 

we still explore the important part of the search space but at the same time it keeps the 

computational cost at a reasonable level. All R2 along with their corresponding Ea,i values can be 

found in the SI. Some of the Ea,i combinations with more realistic barriers along with their 

corresponding R2 are summarized in Table 1. 

Table 1. R2 corresponding to ln(kens) vs. 1/T plot of an ensemble of 5 isomers with the energy distribution 
of E1 = 0, E2 = 0.01, E3 = 0.10, E4 = 0.15, and E5 = 0.20 eV obtained for different combinations of activation 
energies. The temperature range in which R2 is calculated is 300 – 1000 K. 

Ensemble Ea,1 (eV) Ea,2 (eV) Ea,3 (eV) Ea,4 (eV) Ea,5 (eV) R2 (lnkens vs. 1/T) 

1 0.90 0.01 0.80 0.60 0.70 0.7298 

2 1.90 0.01 1.80 1.60 1.70 0.7286 

3 2.00 0.01 1.90 1.80 1.90 0.7290 

4 0.60 0.01 1.80 0.50 0.20 0.7853 

5 1.90 0.02 1.80 1.60 1.70 0.9468 

6 0.01 0.20 1.80 0.20 1.80 2 × 10–5 

7 0.01 1.90 1.00 0.70 1.60 0.4683 

8 0.01 0.01 0.08 1.70 0.30 0.6433 

9 0.02 0.40 1.40 0.30 0.80 0.7987 

 

It is clear from Table 1 that there are some ensembles with low R2 in which Ea,2 rather than Ea,1 is 

the smallest barrier. In these cases, the reaction kinetics is dominated by the second isomer rather 

than the global minimum. On the other hand, there are many cases where the global minimum 

isomer has the smallest barrier and still the ensemble shows a non-Arrhenius behavior. However, 

in all cases that show a non-Arrhenius behavior, there should be at least one barrier lower than 

0.02 eV, and no cases were found where R2 < 0.8 and all Ea,i > 0.02 eV. Note that the energy of 
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the isomer 2 in the ensemble is very close to the energy of the global minimum, which is something 

that can happen in practice. This can affect the ensemble rate constant if the barriers corresponding 

to these isomers are significantly different which is apparent from Table 1. Nevertheless, there are 

some cases in which Ea,1 = Ea,2 and the ensemble still shows a non-Arrhenius behavior (see, for 

example,  ensemble 8 in Table 1).  

Figure 2 shows how the ensemble behaves as the barrier becomes larger (Ea,2 changes from 

0 to 0.05 eV), while other parameters of the ensemble are kept constant. We choose ensemble 2 

from Table 1 as an example in this case. One can see that for Ea,2 < 0.02 eV the plot is clearly non-

Arrhenius; however, once Ea,2 becomes larger than that the ensemble shows the Arrhenius 

behavior. Furthermore, the plots in Figure 2 are similar to the ones that can be found in the Marcus 

inverted region.19–25 

 

 
Figure 2. (a) – (f) Arrhenius plots of the ensemble of 5 isomers with relative energies of E = [0, 0.01, 0.1, 

0.15, 0.2 eV] and activations energies of Ea = [1.90, Ea,2, 1.80, 1.60, 1.70 eV] in the temperature range of 

300 – 1000 K as a function of Ea,2. Note that for Ea,2 > 0.05 eV the plot becomes completely linear. (R2 > 

0.99) 
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In addition, we investigate how the energy distribution in the ensemble can affect the R2. 

In this case, we keep the activation energies constant and instead change the relative energies of 

the isomers in the ensemble. As an example, we choose ensemble 2 from Table 1 which was found 

in the previous search and change the relative energies in the ensemble. Note that, once the relative 

energies become large, they no longer contribute to the ensemble; therefore, the energies should 

be chosen such that each isomer still can contribute to the ensemble rate constant. The obtained 

results are summarized in Table 2. Here, once the energy of second isomer relative to the global 

minimum reaches 0.05 eV, the correlation value becomes ~ 0.98 and the plot becomes linear. 

 

Table 2. R2 of lnkens vs. 1/T plot of an ensemble of 5 isomers with the activation energies of Ea,1 = 1.90, Ea,2 

= 0.01, Ea,3 = 1.80, Ea,4 = 1.60, and Ea,5 = 1.70 eV obtained for different combinations of activation energies. 

The temperature range in which R2 is calculated is 300 – 1000 K. 

E1 (eV) E2 (eV) E3 (eV) E4 (eV) E5 (eV) R2 (lnkens vs. 1/T) 

0 0.001 0.01 0.10 0.15 0.5585 

0 0.01 0.10 0.15 0.20 0.7286 

0 0.02 0.10 0.15 0.20 0.9024 

0 0.05 0.10 0.15 0.20 0.9775 

 

Furthermore, as can be seen from Figure 2, there is a maximum value for the reaction rate 

constant for the ensemble of 5 isomers. According to equation (5), the slope of the ln(kens) vs. 1/T 

plot is %1
!!
(〈𝐸"#〉 − 〈𝐸$〉). At the maximum of the plot the slope is zero; hence, to test the validity 

of equation (5) one can calculate %1
!!
(〈𝐸"#〉 − 〈𝐸$〉) for the ensemble of interest, find the 

temperature at which the slope is zero, and compare it to the temperature that the plot itself shows 

at maximum. This shows that, for an ensemble, calculating %1
!!
(〈𝐸"#〉 − 〈𝐸$〉) as a function of T is 

a good indicator whether the catalyst would show a non-Arrhenius behavior. To test it, we calculate 
%1
!!
(〈𝐸"#〉 − 〈𝐸$〉) as a function of T for all cases shown in Figure 2 (see Figure 3). Based on Figure 

3, the temperatures at which the slope becomes zero for Ea,2 = 0, 0.001, 0.01, 0.15, 0.02, and 0.05 

eV are 439, 463, 660, 767, 880, and 2094 K respectively. This is in full agreement with Figure 2. 

Note that, for Ea,2 = 0.05 eV, we do not see the peak in the range of 300 – 1000 K. The change in 
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slope sign is apparent for the cases where Ea,2 < 0.02 eV in the temperature range of 300 – 1000 

K, and that results in a non-Arrhenius behavior. 

 
Figure 3. Slope of the ln(kens) vs. 1/T line as a function of temperature for the ensemble of 5 isomers 

shown in Figure 2. The temperatures at which the slope becomes zero for Ea,2 = 0, 0.001, 0.01, 0.15, 0.02, 

and 0.05 eV are 439, 463, 660, 767, 880 and 2094 K respectively. 

 

 In practice, several systems have been found in which the global minimum structure of the 

catalyst is not the one responsible for the kinetics of the reaction, i.e., a metastable structure with 

higher energy than the global minimum is found to have lower reaction barrier than that of the 

global minimum.11,26 As an example, we look at the ethane dehydrogenation reaction catalyzed by 

Pt4/SiO2 and Pt4Sn3/SiO2.23 Figure 4 shows the barriers for each thermally-accessible isomer of 

Pt4/SiO2 and Pt4Sn3/SiO2 as well as the Arrhenius plot (ln(kens) vs. 1/T) obtained for Pt4/SiO2 and 

T (K)

Ea,2 = 0.0 eV

Ea,2 = 0.001 eV

Ea,2 = 0.01 eV
Ea,2 = 0.015 eV

Ea,2 = 0.05 eV

Ea,2 = 0.02 eV
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Pt4Sn3/SiO2. It is clear that both plots show a highly linear behavior even in the case of Pt4Sn3/SiO2 

where the second local minimum structure has the highest rate constant. Comparing to theory, we 

can attribute this result to the relatively high barriers of the clusters compared to the theoretical 

investigations, which showed that at least one isomer should have a barrier less than 0.02 eV. In 

fact, this is one of the main reasons that in practice we do not see non-Arrhenius behavior for the 

ensemble of fluxional clusters due solely to their dynamicity. It is obvious that other factors such 

as change in the mechanism of the reaction due to the presence of a metastable isomer, or change 

of catalyst composition due to a particular reactivity of some of its states, can result in deviating 

from the Arrhenius behavior; however, such cases are not the focus of this study. 

 
Figure 4. (a) Arrhenius plot of ethylene dehydrogenation reaction catalyzed by Pt4/SiO2 and Pt4Sn3/SiO2 

in the temperature range of 300 – 1000 K. (b) Rate constants and barriers calculated for each of the 3 

isomers of Pt4/SiO2 and Pt4Sn3/SiO2 populated at reaction temperature (700 K).  

 

We should also note that, as can be seen from equation (4), both the thermodynamic (change 

in the Boltzmann population distribution as a function of temperature) and kinetic (different 

activation energies for different isomers) contributions to the observed rate will play roles in the 

ensemble not showing a non-Arrhenius behavior. The ensemble approach can lead to a different 

view of reaction kinetics in addition to thermodynamics. Chemically distinct states of the catalyst 
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get populated as T increases, and, if these states have barriers significantly different from that of 

the global minimum, the Arrhenius plot should be nonlinear.  

3. Conclusions 

 In summary, we propose a simple modification to the Arrhenius equation using an 

ensemble-average representation is to write the ensemble rate constant in terms of rate constant of 

every state weighted by Boltzmann populations. Moreover, non-Arrhenius behavior can be found 

in an ensemble of cluster catalysts when at least one of the local minima has a barrier significantly 

lower (< 0.02 eV) than other local minima. Note that the number of isomers which are energetically 

close to, or even degenerate with, the global minimum is another key factor for the ensemble to 

have a nonlinear Arrhenius plot. On the other hand, due to the significantly small barrier 

requirement, which is in the order of magnitude of kT at room temperature, such a system might 

not be easily found in practice. 

 

Appendix A 

Ensemble average rate constant is defined as 

𝑘'() =,𝑃*𝐴*𝑒
%&",$
!!"

(

*

 (A.1) 

Which can be expanded as  

𝑘'() =
∑ 𝑒

%&$
!!"𝐴*𝑒

%&",$
!!"(

*

∑ 𝑒
%&$
!!"(

*

=
∑ 𝐴*𝑒

%(&$/&",$)
!!"(

*

∑ 𝑒
%&$
!!"(

*

 (A.2) 

By taking the derivate and assuming that 𝐴* is temperature independent we arrive at 
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𝑑(𝑙𝑛𝑘'())

𝑑 61𝑇7
=
−𝑇2

𝑘'()
𝑑𝑘'()
𝑑𝑇

=
−𝑇2

𝑘'()
⎝

⎜
⎛∑

(𝐸* + 𝐸,,*)
𝑘+𝑇2 𝐴*𝑒

%(&$/&",$)
!!"(

* ∑ 𝑒
%&$
!!"(

*

(∑ 𝑒
%&$
!!"(

* )2

−
∑ 𝐴*𝑒

%(&$/&",$)
!!"(

* ∑ 𝐸*
𝑘+𝑇2 𝑒

%&$
!!"(

*

(∑ 𝑒
%&$
!!"(

* )2
⎠

⎟
⎞

 

(A.3) 

Equation (A.3) can be further simplified as 

𝑑(𝑙𝑛𝑘'())

𝑑 61𝑇7
=

−1
𝑘+𝑘'()

8
∑ (𝐸* + 𝐸,,*)𝐴*𝑒

%(&$/&",$)
!!"(

*

∑ 𝑒
%&$
!!"(

*

−
∑ 𝐴*𝑒

%(&$/&",$)
!!"(

* ∑ 𝐸*𝑒
%&$
!!"(

*

(∑ 𝑒
%&$
!!"(

* )2
: (A.4) 

Substituting 𝑘'() into equation (A.4) we get 

𝑑(𝑙𝑛𝑘'())

𝑑 61𝑇7
=
−1
𝑘+
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!!"(
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(A.5) 

Which can be simplified as  

𝑑(𝑙𝑛𝑘'())

𝑑 61𝑇7
=
−1
𝑘+

8
∑ (𝐸* + 𝐸,,*)𝐴*𝑒

%(&$/&",$)
!!"(
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∑ 𝐴*𝑒
%(&$/&",$)

!!"(
*

−
∑ 𝐸*𝑒
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!!"(

*

∑ 𝑒
%&$
!!"(

*

: (A.6) 

By assuming 𝐴* is almost the same for the isomers in the ensemble we arrive at our final formula: 

𝑑(𝑙𝑛𝑘'())

𝑑 61𝑇7
=
−1
𝑘+

(〈𝐸"#〉 − 〈𝐸$〉) =
−〈𝐸,〉
𝑘+

 (A.7) 
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Note that we can still include the influence of the pre-exponential factor by using equation (A.6) 

instead of (A.7) if we are concerned about the difference between the pre-exponential factor of 

different isomers in the ensemble. 
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Plot which shows the Ea,i search space obtained from 40,000 different combinations of Ea,1 and 

Ea,2 in the range of 0 – 2 eV for the ensemble of two isomers with different relative energies E1 = 

0 and E2 = 0.10, 0.15, 0.20, 0.25, 0.40, and 0.50 eV.  
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