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ABSTRACT OF THE DISSERTATION

Mathematical modeling of signaling and synthetic networks in single cells

by

Jangir Selimkhanov

Doctor of Philosophy in Bioengineering

University of California, San Diego, 2014

Professor Jeff Hasty, Chair

Recent advances in quantification methods of regulatory and signaling gene net-

works has lead to an increasing amount of data that has opened the door for improved

understanding of cell behavior. The key to that understanding is through the use of

mathematical models that can explain existing data as well as help generate new hy-

potheses through prediction. Refinement of these models with new experimental data

creates a feedback loop, where modeling drives experiments while newly generated data

constrain the model. Mathematical principles underlying various models can then give

us insight into basic biological principles that describe network dynamics. In this thesis,

several different applications of mathematical modeling are used to help further our un-

derstanding of signaling and synthetic gene networks. First, mathematical modeling is

used to explain the underlying mechanisms in coupling of two synthetic gene oscillators

to each other as well as to the host environment, which leads to the observed non-trivial

biological behavior. Second, focusing on a specific signaling protein network, charac-

xiv



terized by transcription factor nuclear factor kappa B (NF-κB), mathematical modeling

is used to understand how the underlying the cell-to-cell variability leads to variability

in the response of the system to gradually increasing levels of the network-activating tu-

mor necrosis factor alpha (TNFα). Finally, information-theoretic approach is applied to

three different signaling networks to help gain insight into the role that various sources

of noise and various forms of network responses play in signal transduction.

xv



Chapter 1

Introduction

In studies of gene networks, mathematical modeling has been an instrumental

tool in helping us understand various biological systems and design synthetic ones. Use

of ordinary differential equations, for example, has been key to describing cell popula-

tion dynamics (77;112;70), while probability theory has helped us understand the nature

of noise in single cell behavior38;114. The key to effective modeling of biological sys-

tems is to define the role that the model will have in helping us understand something

about the system of interest. In many cases, it turns out that simpler models, with fewer

number of parameters, may lead to more insightful conclusions that are less dependent

on understanding of every single detail of the network. These models provide us with

general principles underlying the specific biological system in question.

One important aspect of biological systems that mathematical models help us

with is the dynamics of gene regulation inside the cell. The cell is never in a steady state

as it constantly responds to internal and external stimuli. Mathematical modeling gives

us the theory, which we can use to capture dynamic behavior and understand the effect

gene network architecture has on signal propagation and processing. Models can also

help us to design synthetic gene networks with specific functions, acting as blue prints

that guide engineering of synthetic circuits. They can also help troubleshoot those same

circuits, when they do not work in a specific system, by providing an easy test system

1
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that does not require a huge time investment. In the the next few chapters, I hope to

illustrate how many of these benefits of mathematical modeling have come though in

helping us understand variety of biological systems.



Chapter 2

Rapid and tunable post-translational

coupling of genetic circuits

2.1 Introduction

One promise of synthetic biology is the creation of genetic circuitry that en-

ables the execution of logical programming in living cells. Such “wet programming” is

positioned to transform a wide and diverse swath of biotechnology ranging from thera-

peutics and diagnostics to water treatment strategies. While progress in the development

of a library of genetic modules continues apace96;125;136;152, a major challenge for their

integration into larger circuits is the generation of sufficiently fast and precise communi-

cation between modules80;31. An attractive approach is to integrate engineered circuits

with host processes that facilitate robust cellular signaling100. In this context, recent

studies have demonstrated that bacterial protein degradation can trigger a precise re-

sponse to stress by overloading a limited supply of intracellular proteases43;92;21. Here,

we use protease competition to engineer rapid and tunable coupling of genetic circuits

across multiple spatial and temporal scales. We characterize coupling delay times that

are more than an order of magnitude faster than standard transcription-factor based cou-

pling methods (less than one minute compared with ∼20-40 minutes) and demonstrate

3



4

tunability through manipulation of the linker between the protein and its degradation

tag. We use this mechanism as a platform to couple genetic clocks at the intracellular

and colony level, then synchronize the multi-colony dynamics to reduce variability in

both clocks. We show how the coupled clock network can be used to encode indepen-

dent environmental inputs into a single time series output, thus enabling the possibility

of frequency multiplexing in a genetic circuit context. Our results establish a general

framework for the rapid and tunable coupling of genetic circuits through the use of na-

tive queueing processes such as protein degradation.

2.2 Fast degradation coupling

In order to engineer rapid coupling between synthetic genetic modules, we de-

veloped a post-translational coupling platform that operates via shared degradation by

the ClpXP protease (Fig. 2.1a). In this scheme, all LAA-tagged components68 are dy-

namically linked via competition for a limited number of proteases21;49, such that tagged

modules remain tightly aligned (1±1 min, GFP-CFP curve pairs in Fig. a) despite

significant induction delay (31±5 min, inducer-GFP offset in Fig. a). This coupling

method produces delays that are more than an order of magnitude faster than standard

transcription-factor based coupling methods (∼20-40 min)118;62. To illustrate directly

the response time that can be achieved by coordinating module output via modulating

ClpXP activity, we show that low levels (90 µM) of externally provided H2O2 “inducer”

rapidly (< 2 min, our experimental timestep) and reversibly modulates the concentration

of constitutively expressed GFP in a ClpXP-dependent manner (Fig. b). Here, H2O2

reduces the native substrate load on ClpXP by obstructing RssB, the adapter protein

that targets the alternative sigma factor σS for degradation by ClpXP94;43;92. Since σS

is continuously produced and degraded by ClpXP, inactivating its rate-limiting adapter

protein results in an instantaneous increase in the effective ClpXP degradation rate for

LAA-tagged proteins109.

We systematically explored the coupling mechanism by driving a constitutive
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module with a quorum-sensing (c). As the pacemaker, the quorum clock generates

density-dependent synchronous oscillations at the colony level via acyl-homoserine lac-

tone (AHL), a small molecule capable of synchronizing cellular behavior across dis-

tances up to 100 µm27. Using microfluidic devices40 we observed the colony-level ex-

pression of the constitutive module, finding oscillating expression synchronized to the

quorum clock (Fig. 2.1c, top right). We then constructed a library of degradation tags by

adding a series of variable-length spacer regions between the downstream protein and

its degradation tag. Spacer regions contained between one and five copies of the amino

acid sequence “TS” and their effects on offset time compared to that of a previously

published alternate degradation tag (Fig. 2.5b-f). While all spacer sequences produced

synchronous activation dynamics, the degradation dynamics of the downstream module

were offset depending on the length of the linker sequence, where longer linkers pro-

duced greater GFP-CFP offset time (Fig. 2.1C, bottom). Thus, our ClpXP coupling

platform rapidly links genetic modules via shared degradation, where the strength and

timing of coupling can be tuned by changing the degradation kinetics of individual mod-

ules.

2.3 Degradation coupled genetic oscillators

In order to engineer coupling between genetic modules capable of generating

their own dynamics, we designed a circuit containing the quorum clock and a variant

of a previously described intracellular clock (Fig. 2.2a)127. This plac/ara-1 intracellular

clock variant retains the fast dynamics and simple genetic architecture of the published

PLlacO-1 negative feedback oscillator, yet its period is tunable by both isopropyl β-D-1-

thiogalactopyranoside (IPTG) and arabinose in the presence of chromosomal araC. We

first used small microfluidic devices (100 cells) and observed fast and asynchronous in-

tracellular clock oscillations without quorum clock contribution, since the quorum clock

requires a critical colony size to function. In larger devices (5,000 cells), we observed a

transition from asynchronous oscillations to identical intracellular/quorum clock oscil-
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lations as the population grew larger (Fig. 2.2b). In the case of the larger population, the

substrate load on ClpXP during the quorum clock pulse is sufficient to shift the intra-

cellular clock out of its oscillatory regime, enabling complete linkage between the two

clocks despite their vastly different spatial and temporal scales. Thus, despite lacking

a mode of cell-cell communication itself, the intracellular clock is effectively synchro-

nized at the colony level via ClpXP-mediated coupling with the quorum clock.

We found that changing the intracellular clock period of individual cells indi-

rectly tuned the quorum clock period, where IPTG values associated with longer intra-

cellular clock periods inversely produced shorter quorum clock periods (Fig. 2.2c). We

developed a computational model of the oscillator network involving a form of load-

mediated pulse frequency modulation to explain this effect (Fig. 2.2d-f). Between cou-

pled pulses, the intracellular clock accelerates the quorum pulse onset via load-mediated

decreases in the degradation rate of LuxI, where larger intracellular clock load produces

higher levels of the AHL-synthase (Fig. 2.2e, left and Fig. 2.6a-e). During the coupled

pulse, contributions of the intracellular clock leave the duration of the pulse itself un-

changed (Fig. 2.2e, left: model and right: experimental). Linking the intracellular and

quorum clocks via degradation also yielded an expansion in the oscillatory regime for

the coupled system with respect to flow rate compared to the quorum clock alone (Fig.

2.2f). In this way, the intracellular clock continually excites the quorum clock to fire,

enabling more robust function at higher external flow rates (Fig. 2.7a-c).

2.4 Multispectral genetic frequency encoding

With a platform for rapidly coupling genetic clocks at multiple scales, we sought

to engineer a system capable of frequency encoding information from both clocks into

the multispectral time series of a single reporter (Fig. 2.3a). Here, the measured output

of the intracellular clock reporter contains contributions from its own fast intracellular

clock dynamics between slow quorum clock bursts. Since the range of natural peri-

ods for the faster plac/ara-1 intracellular clock is fully separated from the slower quorum
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clock127;27;107, both IPTG/arabinose and flow rate inputs can be encoded into frequency-

modulated oscillations in the time domain where they can be independently extracted by

Fourier transform. Thus, the measurement of a single clock history reveals the activities

both underlying clock networks.

We began by characterizing the frequency response curves for both the intracel-

lular and quorum clocks in isolation, finding ranges of 7-25 min and 55-95 min, respec-

tively, when sweeping IPTG/arabinose and flow rate inputs (Fig. 2.3b, top: intracellular

clock in araC+ strain and bottom: quorum clock, original study data27). We then mea-

sured trajectories taken from the coupled clock system and extracted the frequency com-

ponents of both clocks by Fourier transform (Fig. 2.3c). In sweeping IPTG/arabinose

inducers, we found the frequency response of the intracellular clock contribution to the

multispectral reporter to be unchanged by the inclusion of the quorum clock, where the

intracellular frequency response to IPTG/arabinose was equivalent to the isolated clock

(Fig. 2.3d, top: coupled and Fig. 2.3b, top: isolated). We then swept flow rates at 3

fixed inducer levels, finding distinct response curves for the quorum clock contribution

to the multispectral reporter shifted in accordance with our model for ClpXP-mediated

frequency modulation by the intracellular clock (Fig. 2.3d, bottom). Thus, to decode a

given pair of IPTG/arabinose and flow rate inputs, we first recover the intracellular clock

frequency as a measure of IPTG/arabinose and then use the corresponding quorum clock

response curve to measure flow rate.

2.5 Array level oscillator coupling

To extend rapid coupling to greater spatial scales, we added a genetic H2O2 sig-

naling106 cassette to the network and observed synchronization at the multi-colony level

(Fig. 2.4a). In conducting these experiments, we also observed H2O2 -mediated inter-

action between the native stress response network and our synthetic circuit at ClpXP

(Fig. 2.4b). In the original design, H2O2 synchronized quorum clock oscillations by

transcriptional upregulation of the lux promoter via the aerobic response control sys-
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tem ArcAB106. In addition to transcriptional increase (Fig. 2.4c, top), we found an

increase in the apparent degradation rate with H2O2 (Fig. 2.4c, bottom and Fig. 2.8a-

b), consistent with increased ClpXP activity in response to externally provided H2O2

. The coupled increases in transcriptional output and effective ClpXP degradation rate

in response to H2O2 also tightens the period distribution at the multi-colony level by

mitigating the effects of period variation in an individual colony (Fig. 2.4c, top and Fig.

2.8c-d).

Engineering synthetic circuits composed of interacting modules is an ongoing

effort96;125;136;152 that has generally relied on transcription and translation, with less at-

tention paid to post-translational coupling mechanisms51. Protease competition offers

the advantages of rapid response, modularity with distinct recognition sequences, and

simultaneous control over multiple circuits with protease adapters89;50. More gener-

ally, in natural biological networks, competition for cellular resources (e.g., metabo-

lites, enzymes, transcription factors, binding sites) produces nonlinear coupling effects

that serve to reduce noise, increase sensitivity to input concentrations, and discriminate

between multiple inputs49;18;97;17;129. We envision that coordinating engineered circuits

via built-in cellular processes—what we term “host-linked” coupling—has the potential

to produce more sophisticated circuits by facilitating robust signaling between synthetic

modules.

2.6 Methods and additional experimental results

2.6.1 Data analysis

Single cell and individual trap fluorescent trajectories were obtained from time-

lapse images using our previously developed algorithms? 106 and builtin MATLAB R©

functions. We identified peaks and troughs from these trajectories and used these val-

ues to calculate periods and amplitudes. To calculate the coupling delay in Figure 1A

and offset time in 1C we measured the difference between the 10% amplitude points
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of trajectory pairs. The induction time was measured from induction start time to 10%

amplitude of the induced module. To extract both frequencies from time series data, we

performed Fourier transforms using the Lomb-Scargle algorithm. We used two sequen-

tial transforms to isolate each component separately. First, we used a band-pass filter (5

- 25 min) to extract the fast intracellular clock component. Then, we filtered out these

fast frequencies using a second band-pass filter (75 - 150 min) to extract the slower quo-

rum clock component. Finally, we overlay the 2 power spectra, preserving the relative

amplitude of the peaks.

2.6.2 Degradation tag experiments

In addition to exploring the effect of variable-length linker (TS repeats) on the

phase-shift in module degradation (Fig. 2.5c-f), we tested a well characterized AAV

degradation tag3. In Andersen et al, GFP-AAV was shown to have 50% higher half-

life than GFP-LAA. In this study, downstream module (CFP-AAV) showed a delay in

degradation relative to the driver module (GFP-LAA) that was similar to that of the 2

TS-linker sequence (Fig. 2.5b bottom). Further characterization is required to determine

the differences in the mechanism of action between variable-length TS linker sequence

before the SspB binding region and the AAV degradation tag. While CFP to GFP bleed-

over is more significant than GFP to CFP bleed-over, the CFP to GFP bleed-over is

not relevant to our experiment in Figure 1a, where the induced protein (GFP) drives the

protein level of the coupled protein (CFP). Thus, we performed an experiment to test the

potential for bleeding from sfGFP into CFP fluorescence channel by activation sfGFP

with 10nM AHL in a strain that lacked CFP fluorophore. We saw no change in CFP

fluorescence while sfFGP increased as expected (Fig. 2.5b top).

2.6.3 NFB helps H2O2 synchronize oscillations between colonies

We defined the inter-pulse (wait) time as the time between the 10% downlsope

point of one peak and 10% upsope point of the following peak (Fig. 2.5a).The mean
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QS inter-pulse time decreased with addition of IPTG (0.5mM) to the coupled system,

while the time of each pulse stayed constant. In addition, we find that QS trajecto-

ries from the coupled oscillator system showed significantly lower variability without

IPTG as compared to 0.5mM IPTG (Fig. 2.7a-b). These results suggests that stronger

NFB (0mM IPTG) associated with higher NFB protein production127 leads to shorter

and more robust inter-pulse behavior in the coupled system. In large biopixel devices,

less robust colony-level oscillations prevent H2O2 from effectively coupling neighbor-

ing pixels, resulting in unsynchronized QS oscillations (No NFB in Fig. 2.7c). NFB

reduces inter-pulse duration noise, which allows H2O2 to synchronize QS oscillations in

neighboring colonies in biopixel devices (0.1mM IPTG in Fig. 2.7c). Increasing NFB

strength, further

2.6.4 H2O2 increases protein degradation rate

Our analysis of H2O2 synchronized quorum clock trajectories showed decrease

in the period and increase in the amplitude of oscillations (Fig. 2.4b Top). H2O2 syn-

chronization leads to clear reduction of the degradation time in these trajectories (Fig.

2.8a). One of the significant contributors to the decrease in the period is the increase

in the activity of ClpXP targeted proteins, which we quantified as the rate of CFP fluo-

rescence decrease from the peak time to the 10% downslope time. Figure 2.8b shows a

significant increase in the ClpXP degradation rate (3X) due to H2O2 coupling.

2.7 Model formulation

2.7.1 QS oscillator

To describe dynamic behavior of uncoupled QS oscillator, we expanded on the

delay-differential equation model presented in27. In addition to the equations for LuxI

(I), AiiA (A), internal AHL (Hi), external AHL (He), we included AHL substrate (S),

consisting of acyl-ACPs and S-adenosylmethionine (SAM)? , to account for the slow-
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ing down of Hi production while the number of LuxI molecules is still on the rise.

Transcription, translation, and maturation rate of proteins are combined into a single

time-delay parameter τH . Transcriptional activation by the LuxR and AHL complex

(2 of each LuxR and AHL molecules) give delayed production term P (τH), which de-

pends on the past concentration of internal AHL, Hi(t − τH). We assumed a constant

level of LuxR since it is not tagged for fast degradation and has a large amount of

genetic copies on the plasmid (it is on colE1 twice and p15A once). We used hill coef-

ficient of 4 in accordance with? to account for high AHL cooperativity possibly due to

AHL-LuxR polymerazation. Diffusion of AHL through cell membrane is described by

terms proportional to D, while dilution of external AHL is described by the term pro-

portional to µ. Cell density parameter d was incorporated into the system to account for

the difference in the total cell volume and media volume. Enzymatic degradation terms

proportional to γI and γA describe enzymatic degradation of LuxI and AiiA respectively

through Michaelis-Mentent kinetics. Different values of kI and kA represent different

preferential binding dynamics of LuxI and AiiA to ClpXP.

∂A

∂t
= CAP (τH)− γA(A/kA)

1 + A/kA + I/kI
(2.1)

∂I

∂t
= CIP (τH)− γI(I/kI)

1 + A/kA + I/kI
(2.2)

∂Hi

∂t
=

bI(S/kS)

1 + S/kS
− γHA(Hi/kH)

1 +Hi/kH
+D(He −Hi) (2.3)

∂He

∂t
= − d

1− d
D(He −Hi)− µHe (2.4)

∂S

∂t
= S0 − S −

bI(S/kS)

1 + (S/kS)
(2.5)

P (τH) = α0 + αH(H(t−τH)/h0)4

1+(H(t−τH)/h0)4

Experimentally relevant scaled parameters used with this model are described in

“Model parameter values”.
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2.7.2 NFB oscillator

To describe dynamic behavior of NFB oscillator, we used a single delay-differential

equation for LacI (L) based on86. Transcription, translation, and maturation of proteins

are lumped together into time-delay parameter τL. Transcriptional inactivation of LacI

gives the delayed production term Q(τL), which depends on the past concentration of

LacI, L(t − τL). Enzymatic degradation of LacI is described by the term proportional

to γL through Michaelis-Mentent kinetics. Parameter C in production expression Q

represents the effect of IPTG on the strength of LacI repression.

∂L

∂t
= Q(τL)− γL(L/kL)

1 + L/kL
(2.6)

Q(τL) = αL

1+(L(t−τL)/C)2

The dynamics of the above model accounted for most of the experimental re-

sults. To resolve the amplitude increase in the NFB oscillator when coupled to the QS

oscillator during the QS pulse we had to include reporter dynamics with equations for

YFP precursor (Yp) and mature YFP (Ym). These additional equations are not required

to explain the QS dynamics in the coupled system. Experimentally relevant scaled pa-

rameters used with this model are shown in “Model parameter values”.

∂L

∂t
= Q(τL)− γL(L/kL)

1 + L/kL + Yp/kL + Yp/kL
(2.7)

∂Yp
∂t

= Q(τL)− γL(Yp/kL)

1 + L/kL + Yp/kL + Ym/kL
− Yp (2.8)

∂Ym
∂t

= Yp −
γL(Ym/kL)

1 + L/kL + Yp/kL + Ym/kL
(2.9)

Q(τL) = αL

1+(L(t−τL)/C)2

2.7.3 Coupled NFB and QS oscillators

Coupling of the two oscillators was accomplished by increasing the effective

”queueing” effect through CplXP degradation21. In the uncoupled case, the degradation



13

of the two oscillator components would be independent, ClpXP
1+QS

+ ClpXP
1+NFB

, while in the

coupled scenario, ClpXP
1+QS+NFB

, the degraded components end up in the same degradation

term. To couple NFB and QS oscillators through ClpXP degradation, we added LuxI

and AiiA from QS system to the degradation expressions in NFB system and LacI (L)

from NFB system to the degradation expression in QS system.

∂A

∂t
= CAP (τH)− γA(A/kA)

1 + A/kA + I/kI + L
(2.10)

∂I

∂t
= CIP (τH)− γI(I/kI)

1 + A/kA + I/kI + L
(2.11)

∂Hi

∂t
=

bI(S/kS)

1 + S/kS
− γHA(Hi/kH)

1 +Hi/kH
+D(He −Hi) (2.12)

∂He

∂t
= − d

1− d
D(He −Hi)− µHe (2.13)

∂S

∂t
= S0 − S −

bI(S/kS)

1 + (S/kS)
(2.14)

∂L

∂t
= Q(τL)− γL(L/kL)

1 + L/kL + A+ I
(2.15)

P (τH) = α0 + αH(H(t−τH)/h0)4

1+(H(t−τH)/h0)4

Q(τL) = αL

1+(L(t−τL)/C)2

Experimentally relevant scaled parameters used with this model are described in

“Model Parameter Values”. We varied the flow µ, IPTG concentration C, and arabinose

concentration αL to recapture many of the experimental findings.

Leader cell wait time shortening

To understand the multicellular dynamics of QS pulse activation we constructed

a model with two identical cells that share external AHL (He). We first considered a

QS only system consisting of two cells with slightly different constitutive production of

AiiA and LuxI. In this system, the slower cell couples to the faster one, suggesting that

cells whose QS pulse fires first cause QS pulse activation in the nearby cells through

AHL cell-to-cell communication (Fig. 2.6a). Next we added NFB to cell 1 in a two-cell
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system, resulting in period shortening of that cell. As the result, when the two cells were

linked through external AHL, the slower cell 2 (without NFB), coupled to the faster cell

1 (Fig. 2.6b). Consequently, even though NFB might be out of phase in different cells,

the onset of QS pulse in the faster cells can initiate the propagation of the QS pulse

through the rest of the cells in the nearby region. This effect further reduces cell-cell QS

variability, which we see from period variability reduction in a 20-cell model (Fig. 2.6d).

We added noise to constitutive production of AiiA and LuxI proteins (α0 = 0.6 ± 0.1)

of each of the 20 cells and showed period variability reduction in synched vs unsynched

cells (Fig. 2.6e).

2.7.4 QS and H2O2 coupled through queueing

To describe dynamic behavior of QS oscillator in response to H2O2 produced

during LuxI fluorescent reporter expression, we added a differential equation describing

production and degradation of H2O2 (Vi and Ve) to the QS oscillator delay-differential

equation model. We assumed that the production of H2O2 is dependent on the con-

centration of LuxI, which is under the same promoter as the CFP fluorescent protein.

Degradation of H2O2 by catalase is proportional to its concentration. H2O2 affects the

QS oscillator in two characteristic ways. First, ArcA, which is under normal conditions

partially represses Lux promoter, is inactivated under oxidizing conditions triggered by

H2O2 , relieving Lux repression and increasing LuxI and AiiA production. We model

this phenomenon by adding a multiplier to the production term that is dependent on

H2O2 concentration. Second, H2O2 has been shown to reduce ClpXP load, leading to

increased rate of AiiA and LuxI degradation. Again, we model this behavior by adding

a multiplier in front of the degradation term, dependent on H2O2 concentration. Finally,

H2O2 can freely diffuse across cell membrane, which we describe a diffusion term char-

acterized by diffusion parameter DV . Extracellular H2O2 (Ve) can further leave the

system with the rate proportional to its concentration.
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∂A

∂t
= CAP (αH , τ)− (1 + Vi)

γA(A/kA)

1 + A/kA + I/kI
(2.16)

∂I

∂t
= CIP (αH , τ)− (1 + Vi)

γI(I/kI)

1 + A/kA + I/kI
(2.17)

∂Hi

∂t
=

bI(S/kS)

1 + S/kS
− γHA(Hi/kH)

1 +Hi/kH
+D(He −Hi) (2.18)

∂He

∂t
= − d

1− d
D(He −Hi)− µHe (2.19)

∂S

∂t
= S0 − S −

bI(S/kS)

1 + (S/kS)
(2.20)

∂V

∂t
=

δ(I/CI)

1 + I/CI
− Vi +DV (Ve − Vi) (2.21)

∂Ve
∂t

=
d

1− d
DV (Ve − Vi)− µV ∗ Ve (2.22)

P (τH) = (1 + fpV )(α0 + αH(H(t−τH)/h0)4

1+(H(t−τH)/h0)4
)

H2O2 increases QS period robustness

As we have mentioned before, reduction in inter-pulse duration leads to reduc-

tion in period variability arising from noise. Incorporating H2O2 effects on QS oscillator

into our model (see above) results in several major changes in QS trajectory. First, as

expected the amplitude of QS and the downslope time of QS decrease with addition of

H2O2 (Fig. c). The result of these two effects also results in shortening of inter-pulse

duration, which leads to more robust QS oscillations (Fig. 2.8d). We simulated the

model to obtain at least 50 period measurement for period CV calculation. The noise

was introduced into the model through addition of a noisy production term (αv = ±0.1)

to the delayed production term P (τH) = αv + (1 + fpV )(α0 + αH(H(t−τH)/h0)4

1+(H(t−τH)/h0)4
) .

Interestingly, our model shows that individual effects of H2O2 activation of lux

promoter and increase in ClpXP activity result in the increase the CV of the QS period

(Fig. 2.8d). With respect to increased ClpXP activity, higher CV is mainly due to the

resulting longer inter-pulse duration (Fig. 2.8c green). Increased lux promoter activity,

however, leads to more variable degradation due to higher pulse amplitude variability.
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The two countering H2O2 effects seem to cancel each other’s variability generating more

robust QS oscillations.

Fitting model parameters to experimental results

To fit the NFB period data from experiments we used the following parameter

scaling functions for the LacI production term (Q(τL) = αL

1+(L(t−τL)/C)2
) to fit IPTG and

arabinose (ARA) concentrations:

alphaL ∝ AA +DA

(ARA
CA

)HA

(1+ARA
CA

)HA

AA = 0.2758, DA = 1.6291, CA = 0.5638, HA = 0.9029

C ∝ AC +DC

( IPTG
CC

)HC

(1+ IPTG
CC

)HC

AC = 0.0968, DC = 60.8510, CC = 8.2451, HC = 0.4334

Similarly we fit the model flow term µ to the experimental flow values using the

following function

µ = Aµµ
2 +Bµµ+ C

Aµ = 1.2e− 7, Bµ = 0.0022, Cµ = −0.11

Model parameter values

CA = 1 (AiiA copy number); CI = 4 (LuxI copy number); γA = 8 (ClpXP degra-

dation of AiiA); γI = 8 (ClpXP degradation of LuxI); KA = 1 (AiiA binding affinity

to ClpXP); KI = 0.2 (LuxI binding affinity to ClpXP); α0 = 0.6 (Lux promoter basal

production); αH = 3 (Lux promoter AHL induced production); h0 = 0.1 (AHL promoter

binding affinity); τH = 1 (delay in LuxI and AiiA production); b = 1 (AHL synthesis

rate by LuxI); kS = 25 (AHL substrate binding affinity to LuxI) ; S0 = 50 (basal AHL

substrate production); γH = 1 (AHL degradation rate by AiiA); kH = 0.1 (AHL binding

affinity to AiiA);D = 0.8 (AHL diffusion across the membrane); d = 0.1 (cell density); µ
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= 0.5 (flow rate); αL = 1 (LacI/YFP production rate); C = 0.0025 (LacI promoter binding

affinity); τL = 0.7 (delay in LacI/YFP production); kL = 0.001 (LacI/YFP binding affin-

ity to ClpXP); γL = 0.05 (ClpXP degradation of LacI/YFP); δ = 1 (H2O2 production due

to QS fluorophores); CI = 2 (Michaelis constant); fp = 1.3 (strength of H2O2 activation

of LuxI promoter); DV = 8 (H2O2 diffusion across membrane); µV = 0 (extracellular

H2O2 dilution)
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Figure 2.1: A rapid post-translational coupling platform based on shared degradation. (A)
We measured the delays associated with module-module coordination by ClpXP (1±1 min)
and input-output response via transcription/translation (31±5 min) in a single experiment
by inducing the lux promoter and tracking the response of sfGFP-LAA (lux promoter)
and CFP-LAA (plac/ara-1promoter) in single cells (55 cell trajectories). (B) Rapid (< 2
min, our experimental timestep) induction of protein degradation by externally provided
H2O2 produces reversible changes in ClpXP load in response to obstruction of RssB94;43;92.
(C) To use post-translational coupling to drive downstream modules, we linked a quorum
clock to a constitutively expressed fluorescent protein via the addition of identical LAA
tags. With identical degradation tags, the constitutive module couples tightly to the quorum
pacemaker. The addition of a variable-length linker (TS repeats) before the degradation tag
phase-shifts the degradation dynamics, where longer linkers produced longer delays. The
error bars indicate s.d. of offset time, centered at the mean (50-200 cells for each TS-linker
length).
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in larger populations once the quorum clock fires. Despite lacking a mode of cell-cell com-
munication itself, the coefficient of variation of the intracellular clock drops markedly via
host-linked coupling with the quorum clock (bottom, data from 28 single cell traces). (C)
IPTG reduces the intracellular clock period in small cell populations without the quorum
clock (blue) and increases the coupled period in larger populations with the quorum clock
(red). Each data point taken from 10-30 oscillatory peaks. The error bars indicate s.e.m. of
the period, centered at the mean. (D) In our computational model, load-mediated coupling
allows the intracellular clock to modulate the quorum clock period via degradation cou-
pling at ClpXP, where the intracellular clock continues oscillating between coupled pulses
and accelerates the pulse onset. (E) This adaptive form of pulse frequency modulation en-
sures that the pulse dynamics remain unchanged while the inter-pulse duration is adjusted
(left: model and right: experimental, 6-9 oscillatory peaks) The error bars indicate s.e.m.
of relative quorum clock period. (F) This mechanism also makes the coupled system more
robust by enabling oscillation at higher media flow rates.
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Figure 2.3: Genetic multispectral encoding. (A) Separate IPTG/arabinose and flow rate
inputs are encoded into frequency-modulation oscillations that can be measured from the
time series of the reporter for the intracellular clock. This engineered system is capable
of encoding information from two underlying networks into a single multispectral time
series. (B) Frequency response curves generated from experimental data and computational
models for the intracellular clock (top, data from 30 single cell traces each) and quorum
clock (bottom, model applied to data from the original study27) in isolation. The error bars
indicate s.e.m. of the period, centered at the mean. (C) In the coupled system, frequency-
modulated oscillations from both clocks can be observed in the output of the intracellular
clock and extracted by inverse Fourier transform (inset). (D) Independent recovery of both
IPTG/arabinose and flow rate inputs, where the frequency response of the intracellular
clock to IPTG/arabinose is equivalent to the isolated clock (top) and the frequency response
of the quorum clock is shifted by the intracellular clock (bottom). Periods calculated from
5-10 single cell traces for each condition. The error bars indicate s.e.m. of the period,
centered at the mean.



21

20 30 40 50
0

0.5

1

Degradation Time (min)

N
or

m
al

iz
ed

 A
m

pl
itu

de
 (a

.u
.)

 

60 100 140
0

40

80

 

A
m

pl
itu

de
 (a

.u
.)

Period (min)

− 
+ 

A B C
−  
+ ClpXP

ndh

H2O2

Redox-Signaling (RS)

luxI CFPaiiA

LuxR-AHL
Quorum-Sensing Oscillator (QS)

1

5

10

Bi
op

ix
el

 N
um

be
r

0 100 200 300
Time (min)

 

0

0.5

1

Fl
uo

re
sc

en
ce

 (a
.u

.)

σ s

Clock Network

lacI

Negative-Feedback Oscillator (NFB)

IPTG
YFP

H2O2

H2O2

H2O2

H2O2

H2O2

Figure 2.4: Post-translational coupling at the multi-colony level. (A) At the multi-colony
level, interaction of H2O2 generated by redox signaling with the cellular stress response
network synchronizes quorum clock oscillations between colonies. Traces taken from 10
separate colonies across the array. (B) Host-linked oscillations change distinct aspects of
the waveform in response to H2O2 produced by the enzymatic activity of NDH. With H2O2
, oscillations have larger amplitudes and steeper downslopes, revealing increases in both
transcription and degradation produced by the interaction of the synthetic clock network
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Figure 2.5: Increasing length of the TS linker sequence results in increasing downstream
module degradation delay. (A) Detailed breakdown of single fluorescent trajectory analy-
sis. Peaks are identified in red, troughs in green, upslope 10% points in purple and downs-
lope 10% points in dark beige. The two period measurements are peak to peak and the time
between two successive 10% upslope points. (B) Top: sfGFP does not show bleed-over into
CFP fluorescence channel. Induction of sfGFP with 10nM AHL (dashed line) showed in-
crease in fluorescence of sfGFP, which was not detected in CFP channel. Bottom: the use
of the published AAV degradation tag3 shows delay in the downstream module degrada-
tion of 15min. (C) Without the TS linker sequence, there is very little delay in downstream
module degradation. (D) Single TS linker sequence results in 10 min delay. (E) Double TS
linker sequence results in 16 min delay, similar to that of AAV degradation sequence. (F)
5-TS linker sequence results in 25 min delay (data shown in panels c-f was used to generate
Fig. 2.1C).
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slightly different constitutive production of AiiA and LuxI (α0). At t = 100min the two
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(E) Period variability after cell synching (red) is lower than in individual cells (blue).
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Chapter 3

Genetic circuits in Salmonella

typhimurium

3.1 Introduction

Synthetic biology has rapidly progressed over the last decade and is now posi-

tioned to impact important problems in health and energy. In the clinical arena, the field

has thus far focused primarily on the use of bacteria and bacteriophages to overexpress

therapeutic gene products. The next generation of multi-gene circuits will control the

triggering, amplitude, and duration of therapeutic activity in vivo. This will require a

host organism that is easy to genetically modify, leverages existing successful circuit

designs, and has the potential for use in humans. Here, we show that gene circuits that

were originally constructed and tested in E. coli translate to Salmonella typhimurium,

a therapeutically relevant microbe with attenuated strains that have exhibited safety in

several human clinical trials. These strains are essentially non-virulent, easy to geneti-

cally program, and specifically grow in tumor environments. Developing gene circuits

on this platform could enhance our ability to bring sophisticated genetic programming

to cancer therapy, setting the stage for a new generation of synthetic biology in clinically

relevant microbes.

26
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An explosion of DNA sequencing 63, synthesis87, and manipulation46 technolo-

gies has driven the development of synthetic genetic programs of increasing complexity

in living cells148;100;69. Underlying this work is the hope that engineered biological sys-

tems will be used to solve important problems in energy and health over the coming

years. Initially inspired by electronic circuits, researchers began by designing small

transcriptional switches45 and oscillators37. These early successes fostered a grow-

ing population of physicists, computer scientists, and engineers that aimed to apply an

engineering-based methodology to the design of biological systems. In the past decade,

substantial success has been achieved using this genetic circuits approach termed syn-

thetic biology148;100;55.

Multi-gene logic gates capable of integrating environmental signals have been

constructed in bacteria133, yeast115, and mammalian cells52. Electronics-inspired net-

works have included counters44, pulse generators10, filters126;62, and communication

modules154;10. Sophisticated circuits can now be controlled by light, yielding genetic

programs readily tunable both in vitro132 and in vivo in live animals153. Dynamic genetic

clocks have been constructed that function at the single-cell128, colony28, and multi-

colony106 level in growing bacterial populations, and even in mammalian cells136. In a

recent study, redox signaling mediated by H2O2 vapor permitted the synchronization of

millions of oscillating bacteria across an LCD-like sensor array106.

Early efforts toward clinical applications have utilized bacteria4;151;35;113;36 and

bacteriophages82;83 (viruses that infect bacteria) to perform therapeutic functions in vivo.

Commensal bacteria have been engineered to fight diabetes35, HIV113, and cholera36 by

producing and delivering therapeutic agents directly in the human microbiome. Because

certain bacteria grow preferentially in hypoxic environments, a number of studies have

engineered cancer-fighting bacteria to selectively attack tumors4;151. Toward still an-

other application, a pair of studies has engineered phages to produce foreign enzymes,

making them far more potent than their unmodified counterparts at dispersing bacterial

biofilms82;83.

In most of these cases, the genetic programs involved were responsible for over-
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expressing target genes, similar to traditional genetic engineering where genes are added,

removed, or modified one at a time in a stepwise fashion. To truly achieve its clinical

potential, synthetic biology must continue to do what has made it successful: engineer

progressively more complex, multi-input networks in which the triggering, amplitude,

and duration of therapeutic activity is controllable. This will require using hosts that

are easy to genetically modify and compatible with the clinical requirements regarding

safety, immunogenicity, and drug resistance. While bacteriophage and adenovirus have

their advantages, viruses have smaller genomes and therefore have a narrower range of

genetic modifications, frequently induce host resistance, and are highly cell-type spe-

cific93;108.

As one potential bridge between organisms such as E. coli and clinically relevant

microbes, Salmonella typhimurium is a bacterial anti-cancer platform that is closely re-

lated to E. coli, has been extensively studied in vivo for therapeutic applications41;105;58;78;42;81

and has been shown to be safe in human clinical trials57;139;102. The development of at-

tenuated strains has utilized auxotrophy and phoPQ deletions to suppress virulence cell

invasion and virulence58. Lipid A mutations have been generated to reduce immuno-

genicity, stimulating a much weaker immune response than wild-type strains81. Despite

this reduced potency, systemically injected S. typhimurium cells retain their ability to

target and selectively replicate within tumors, displaying a thousand-fold growth prefer-

ence relative to other organs41;105;42;81;58. Their motility allows them to follow chemical

gradients and penetrate deep into the tumor vasculature65;66, much further than passively

diffusing small molecules41. And many of these strains also display innate oncolytic ac-

tivity, regressing tumors simply by growing in them105;99;81;64.

Perhaps the most important property of S. typhimurium for synthetic biology is

the ease of genetic modification. It is a model organism whose genome is sequenced88,

has knockout collections, and the genetic tools are almost identical to E. coli. S. ty-

phimurium is capable of stably expressing recombinant DNA from plasmid-based cir-

cuits in vivo. This approach has already been used to produce a number of therapeutic

compounds directly within tumors, but most often via “always on“ expression of well-
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established genes58;53;103. This work has laid the foundation for more sophisticated func-

tionality, such as programmed delivery profiles that take advantage of plasmid instabil-

ity26. Such a focus will merge the dynamic sensing, production, and delivery capabilities

of genetic circuits with the native tumor seeking and penetration of S. typhimurium.

3.2 Experimental results

In order to test the degree to which existing synthetic circuits function in S. ty-

phimurium, we transformed the attenuated strain ELH430 (SL1344 ∆phoPQ, gift of

Elizabeth Hohmann, MGH)61 with several genetic oscillator constructs. First, we tested

a single-plasmid variant of a published single-cell gene oscillator128. Using our mi-

crofluidic platform40;23, we observed robust oscillations for all S. typhimurium cells

over many generations (Fig. 3.1A,B). While the qualitative period-inducer relation-

ship was similar to E. coli, the curve was shifted toward faster periods as compared to

E. coli strain JS006 (MG1655 ∆araC,lacI) (Fig. 3.1C). In contrast, we initially expected

S. typhimurium to oscillate slower since longer division times generally result in period

lengthening128. When we measured the dependence of oscillatory period on tempera-

ture in S. typhimurium, we found the trend qualitatively similar to E. coli, where lower

temperatures (and therefore longer doubling times) resulted in longer oscillatory periods

(Fig. 3.1D). We therefore hypothesized that the faster oscillations in S. typhimurium are

not due to growth rate differences, but rather a strain-dependent factor such as mean

promoter level, transcription rate, or enzymatic degradation rate.

To explore this quantitatively, we used automated single-cell tracking using a

previously developed algorithm95 to compare a large number of single-cell time courses

from S. typhimurium and E. coli . Oscillators are an ideal circuit to quantify strain-

specific parameters such as transcription and degradation rates since they allow for

hundreds of measurements in a single experiment. For each oscillatory period, the

trough-to-peak and peak-to-trough slopes were measured. Since the ClpXP degrada-

tion machinery is likely saturated22, the peak-to-trough slope yields an estimate for the
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Figure 3.1: A fast, robust, and tunable genetic oscillator in S. typhimurium. (A) Timelapse
fluorescence microscopy depicting asynchronous oscillations in a growing colony of S. ty-
phimurium. (B) A single-cell trajectory extracted from image data. (C) Period vs. inducer
concentration for S. typhimurium compared to original data taken in E. coli. The trends
are qualitatively similar yet S. typhimurium is shifted toward shorter periods. Points are
experimental measurements fit to a line generated by computational modeling. (D) Period
vs. temperature for S. typhimurium compared to original data taken in E. coli with similar
trends.
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zeroth-order enzymatic degradation rate in degrade-and-fire oscillators85. Interestingly,

we found that the apparent enzymatic degradation rate in S. typhimurium was roughly

1.5-fold that of E. coli (Fig. 3.4A). In our computational model of the oscillator, this

increase reproduced the experimentally observed period-inducer relationship (Fig. B).
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Figure 3.2: A synchronized quorum of genetic clocks in S. typhimurium. (A) Timelapse
fluorescence microscopy depicting coherent oscillations at the colony-level for a growing
colony of S. typhimurium. (B) A colony trajectory extracted from image data that illustrates
the regularity of oscillations over time. (C) Period vs. flow rate for S. typhimurium com-
pared to original data taken in E. coli. S. typhimurium displays much higher periods that
appear to be independent of flow rate.

Next, we transformed S. typhimurium with a quorum-sensing oscillator that had

been previously characterized in E. coli28, and observed coherent, colony-level oscilla-

tions for more than 48 hours (Fig. 3.2A,B). Here, we found that the period-flow rate

dependence was markedly different in S. typhimurium than in the original study, where

oscillatory period was much longer and changed very little across a wide range of flow

rates (Fig. 3.4C). Interestingly, while increased degradation rate resulted in faster os-
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cillations for single-cells (Fig. 3.4B), our computational model correctly predicts the

opposite trend for the quorum-sensing oscillator when degradation is increased (Fig.

3.4C).
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Figure 3.3: A genetic toggle switch in S. typhimurium. (A) A time course of fluorescence
output that illustrates switching by both IPTG and ATC quantified by flow cytometry in
periodically diluted batch culture experiments. (B) Raw flow cytometer data illustrating
switching by 2mM IPTG and (C) 500 ng/µl ATC.

Finally, we tested the original genetic toggle switch, plasmid pIKE10745. In this

circuit, a transient pulse of IPTG inducer turns the switch ON and reporter expression is

maintained at a high level. A second pulse of ATC inducer turns the switch OFF, drop-

ping reporter expression indefinitely. In periodically diluted batch culture experiments

similar to the original study, we used flow cytometry to observe robust switching and

bistability when inducing with either 2 mM IPTG or 500 ng/ul dox in cultures growing

at 37 C (Fig. 3.3A-C). Interestingly, the fluorescence level at which S. typhimurium set-

tled after we removed IPTG was lower than the same circuit in E. coli (Fig. 3.3A). We



33

suspected that the differences in apparent degradation and expression rates (Fig. 3.4A)

might explain this change, since the steady-state repressor balance would be adjusted.

To test this hypothesis, we used the original computational model of the toggle

switch45 and quantified the steady-state expression level over time for strain parameters

measured in E. coli and S. typhimurium. We found that the S. typhimurium parameters

reproduced the experimentally observed curves, where expression rises to a higher level

when switched ON then decays to a lower steady-state when IPTG is removed (Fig.

3.4D). While these parameters are particularly important for dynamic circuits, they can

also impact the performance of stable switches since repressors are continuously being

produced and degraded.

3.3 Conclusions and outlook

A central issue in the design of genetic circuits is the degree to which native and

engineered networks should be integrated. Synthetic biology began by fully isolating

itself from the strain background, using it solely to supply energy, enzymatic machin-

ery, and a cellular volume in which to function. In contrast, industrial applications

in medicine and energy have commonly utilized a variety of microbes for their native

networks120;148;2. As our biological knowledge of native networks and our ability to

engineer new circuits has improved, it has become increasingly possible to blend these

two strategies100.

S. typhimurium is an ideal strain for clinical synthetic biology since it is closely

related to E. coli, well studied in vivo, has safety precedence for clinical trials in humans,

and displays a thousand-fold growth preference for tumor environments41;105;58;78. Mov-

ing to other microbes for clinical and industrial purposes will require the determination

of the critical strain parameters that define the space of bacteria capable of hosting ge-

netic circuits. Next steps will involve measurement of these parameters and testing

circuits in strains of interest that are further removed in the phylogenetic tree150. One

such roadmap would begin with more distantly related gamma proteobacteria like Pseu-
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Figure 3.4: Computational modeling of S. typhimurium genetic circuits. (A) Compar-
ison of enzymatic degradation rate between S. typhimurium and E. coli generated from
automated single-cell tracking. Degradation rate is approximately 1.5X higher in S. ty-
phimurium. (B) A higher degradation rate results in the shorter periods observed exper-
imentally for the single-cell oscillator. (C) In contrast, increased degradation rate results
in longer periods for the quorum-sensing oscillator that are comparatively unchanged with
flow rate. (D) Increased degradation and expression rates produce the experimentally ob-
served behavior for the S. typhimurium toggle switch.



35

domonas aeruginosa before moving outside the phylum to alpha proteobacteria such as

Calubacter crescentus. Additionally, individual components and modules can also re-

ceive a ”portability” score that estimate the degree to which they translate to other hosts.

For example, while lacI- and tetR-based circuits are nearly universal, more generally

the function of other components are likely to be more sensitive to strain-specific pa-

rameters. This work will enable synthetic biology to move beyond E. coli into a diverse

range of microbes for clinical and industrial applications.

3.4 Microscopy and microfluidics

We used a microscopy system similar to our recent studies28. Fluorescent images

were taken at 4X every 30 seconds using the EMCCD camera (20ms exposure, 97%

attentuation) or 2 minutes (2s exposure, 90% attenuation) using a standard CCD camera

to prevent photobleaching or phototoxicity.

In each device, E. coli cells are loaded from the cell port while keeping the media

port at sufficiently higher pressure than the waste port below to prevent contamination.

Cells were loaded into the cell traps by manually applying pressure pulses to the lines

to induce a momentary flow change. The flow was then reversed and allowed for cells

to receive fresh media with 0.075% Tween which prevented cells from adhering to the

main channels and waste ports.

To measure fluid flow rate before each experiment, we measured the streak

length of fluorescent beads (1.0 µm) upon 100 ms exposure to fluorescent light. We

averaged at least 1,000 data points for each.

We used several microfluidic devices over the course of the study. For single-

cell oscillators (Fig. 3.1), we used a previously described device consisting of a trapping

region and a dynamic switch95. Traps have dimensions 40 µm wide x 50 µm long x 0.95

µm high, with the long sides open to media flow. Since E. coli and S. typhimurium cells

have a 1 µm diameter, the trap maintains growing cells in a monolayer. For colony

oscillators (Fig. 3.2), we used a previously described device consisting of arrays of
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square trapping regions28;106. Trap dimensions were always 100 µm x 85 µm x 1.65 µm

high and spacing between traps was 25 µm. This size allows cells to grow in a colony

arrangement rather than a monolayer, while still allowing quantitative measurement of

colony fluorescence.

3.5 Degradation and production rate quantification

Single cell fluorescence trajectories were obtained from time-lapse movies using

custom software previously developed in MATLAB95. Each cell fluorescence trajectory

represents the median GFP fluorescence signal inside that cell over time. Using built-in

MATLAB functions we identified the peaks and troughs for each trajectory. The degra-

dation rate was calculated by taking the amplitude change from peak to the successive

trough and dividing by the time change between the peak and the trough. These peak-

to-trough sections of the trajectory represent the time when the production of GFP is

repressed and the observed dynamics are solely driven by degradation of GFP. Similarly

we calculated the net production rate, by calculating the amplitude change from trough

to successive peak and dividing by the time change between the trough and the peak.

The measurement gives the net production rate, which includes the degradation of the

protein.

We find the mean degradation rate for E. coli to be 0.024 (0.001 s.e.) and mean

net production rate to be 0.035 (0.002 s.e.). For S. typhimurium the mean degradation

rate was estimated to be 0.035 (0.002 s.e.) and mean net production rate to be 0.044

(0.002 s.e.).

3.6 Modeling

To generate the plot in Figure 3.4D, we used previously described genetic toggle

switch model45. We included three additional parameters to model the effects of IPTG

(CIPTG), ATC (CATC), and dilution (D) on the synthesis and degradation of proteins:
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∂u

∂t
=

CIPTG(0,1)
αu

1 + vn
− (γu +D)u

∂v

∂t
=

CATC(0,1)
αv

1 + un
− (γv +D)v

In this model, we set n=2 to allow for cooperativity of repression of both pro-

moters. CIPTG0 and CATC0 were set to 1 for the case of no inducers present. Next, we

used metropolis algorithm to find the rest of the parameters to fit the qualitative nature

of the curves from Figure 3.1A. The parameters found to generate the E. colicurve were:

CIPTG1 = 1.25,CATC1 = 1.68,αu = 4.28,αv = 5.80,γu = 1.76,γv = 2.37,D = 0.11.

The parameters found to generate the S. typhimuriumcurve were: CIPTG1 = 1.25,

CATC1 = 1.68,αu = 11.00,αv = 8.36,γu = 4.86,γv = 3.21,D = 0.08. It is inter-

esting to note that the optimized parameters show higher production and degradation as

well as lower dilution for S. typhimuriumcurve relative to E. colicurve, which correlates

well with our experimental measurements.

The dynamics of single cell oscillator were modeled using previously described

model for activator (a2) and repressor (r4) proteins128. The production and degradation

of these proteins is described by the following set of reactions:
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P
a/r
0,0

ba/r−−→ P
a/r
0,0 +ma/r

P
a/r
1,0

αba/r−−−→ P
a/r
1,0 +ma/r

ma
ta−→ ma + auf

mr
tr−→ mr + ruf

auf
kfa−−→ a

ruf
kfr−−→ r

a+ a
kda−−−⇀↽−−−
k−da

a2

r + r
kdr−−⇀↽−−
k−dr

r2

r2 + r2
kt−−⇀↽−−
k−t

r4

auf
λf(X)−−−→ ∅

ruf
f(X)−−−→ ∅

a
λf(X)−−−→ ∅

r
f(X)−−−→ ∅

a2
λf(X)−−−→ ∅

r2
f(X)−−−→ ∅

r4
f(X)−−−→ ∅

We updated the degradation function F (X) to include dilution as follows:

f(X) =
γ

ce +X
+DX

Here, X is the total number of ssrA tags in the system (one for each monomeric

version, two for dimers, and four for tetramers, including proteins bound to operator

sites). We varied the parameter γ from 1x to 2x to evaluate the effect of degradation dif-

ference between E. coliand S. typhimuriumon the period of oscillation calculated from
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single cell model simulations. Dilution rate was calculated from experimentally mea-

sured cell half life as ln(2)
T 1

2

.

To model the dynamics of the quorum-sensing oscillator, we used our previously

described model for intracellular concentrations of LuxI (I), AiiA (A), internal AHL

(Hi), and external AHL (He)28,

∂A

∂t
= CA[1− (d/d0)

4] G(α, τ)− γAA

1 + f(A+ I)
−DA (3.1)

∂I

∂t
= CI [1− (d/d0)

4] G(α, τ)− γII

1 + f(A+ I)
−DI (3.2)

∂Hi

∂t
=

bI

1 + kI
− γHAHi

1 + gA
+D(He −Hi)−DHi (3.3)

∂He

∂t
= − d

1− d
D(He −Hi)− µHe +D1

∂2He

∂x2
(3.4)

To model the difference in periods of oscillation between E. coliand S. typhimurium

we varied the degradation parameters γA and γI . We looked at the changes in the pe-

riod over different values of the flow rate parameter µ, while varying the degradation

prapameters from 1x to 2x of the original model value. To account for the difference in

doubling time between the two strains, we introduce exponential decay terms into the

model to account for dilution in addition to the enzymatic degradation terms. We add

terms −DI , −DHi, and −DH to the first three equations respectively, with D = ln(2)
T 1

2

.

We then looked at how the change in doubling time affected the period of both strains

shown in Figure 3.2D.
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Chapter 4

Dual delayed feedback provides

sensitivity and robustness to the NF-κB

signaling module

4.1 Introduction

Many cellular stress-responsive signaling systems exhibit highly dynamic be-

havior with oscillatory features mediated by delayed negative feedback loops. What

remains unclear is whether oscillatory behavior is the basis for a signaling code based

on frequency modulation (FM) or whether the negative feedback control modules have

evolved to fulfill other functional requirements. Here, we use experimentally calibrated

computational models to interrogate the negative feedback loops that regulate the dy-

namic activity of the transcription factor NF-κB. Linear stability analysis of the model

shows that oscillatory frequency is a hard-wired feature of the primary negative feed-

back loop and not a function of the stimulus, thus arguing against an FM signaling

code. Instead, our modeling studies suggest that the two feedback loops may be tuned

to provide for rapid activation and inactivation capabilities for transient input signals

of a wide range of durations; by minimizing late phase oscillations response durations

40
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may be fine-tuned in a graded rather than quantized manner. Further, in the presence of

molecular noise the dual delayed negative feedback system minimizes stochastic excur-

sions of the output to produce a robust NF-κB response.

Many important signal transduction pathways contain a negative feedback motif

consisting of an activator that activates its own repressor. Activated repression is capable

of generating oscillatory behavior141 and has been observed to do so in biological sys-

tems such as the Hes1 regulatory protein which controls neuronal differentiation124, the

p53-Mdm2 system that mediates the DNA damage response75, and the NF-κB (Q04207)

signaling network that governs the immune response and inflammation59;101.

The role of activated repression is well understood in the context of transient

signaling as functioning to limit the duration of the induced activity. Indeed, misregula-

tion of the negative feedback mechanisms that control NF-κB and p53 has been shown to

generate prolonged inflammatory or genotoxic stress responses, respectively, that lead to

cell death or chronic disease143;134. Further, negative feedback can sensitize and speed-

up responses to weak or transient input signals122 when compared to constitutive atten-

uation mechanisms.

In contrast, the physiological role of oscillatory signaling behavior remains poorly

understood. Recent work has shown that, in the calcium stress pathway in yeast, the

frequency of nuclear localization of a stress-response transcription factor can be mod-

ulated by the magnitude of the extracellular calcium concentration, and this frequency

modulation results in a coordinated expression of target genes19. In the NF-κB and

p53 signaling systems, the function of oscillations is still unknown. Oscillations in p53

activity were proposed to represent a counting mechanism that quantizes the response,

ensuring a robust but appropriate amount of activity for a specific degree of DNA dam-

age84. An alternate view was proposed in which oscillations of the p53-controlling ATM

kinase activity allow for periodic sampling of the damaged DNA to track its repair and,

if necessary, drive further p53 signaling to sustain the repair programs11. Oscillations

in NF-κB activity were proposed to determine which genes would be transcriptionally

induced, thereby representing a temporal code that conveys information about the stim-
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ulus to gene promoters101. However, it is not clear whether or not the frequency encodes

information in this systems as no differences in NF-κB target gene expression were ob-

served between oscillating and non-oscillating genetic variants9.

Recent work has demonstrated that oscillations in NF-κB activity can be gen-

erated by pulsatile stimulation with TNFα (P06804)6. However, an analysis of the

repeated activation of NF-κB that is driven by an oscillating signal provides little in-

formation about the role of oscillations that naturally arise with persistent stimulation.

Thus, the role(s) of oscillations in NF-κB activity remains unclear and several questions

are still unanswered: Do these oscillations convey information encoded in the frequency

to downstream processes? Do they function to generate a periodically recurring phase of

sensitivity to stimuli or regulatory crosstalk representing a potential “counting” mecha-

nism? Do they “quantize” the output signal, thus specifying robust units of activity? Or,

are the oscillations caused by persistent signaling simply a non-functional by-product of

the requirement for the negative feedback architecture to enable sensitive, fast responses

to transient stimuli?

Mathematical models comprised of a small number of equations have led to a

greater understanding of biological processes in terms of molecular interactions, diffu-

sion, dose responses, gradient sensing, the role stochasticity in gene expression and in

fate decisions76;74;5;7. Although several models of networks with autoregulation have

been developed77;112;70, most of these networks do not incorporate delays. In signaling,

however, such elegant models often do not faithfully reproduce the dynamic behavior of

the signaling system because actual biological networks involve many molecular inter-

actions that tend to slow overall signal processing. Larger models comprised of many

molecular species and parameters have proven useful in exploring dynamic signaling

behavior via computational simulations in conjunction with experimental studies, but

they are analytically intractable and therefore do not provide the degree of conceptual

insights that small models do.

Here we pursue an alternative approach to modeling NF-κB signaling. We con-

struct a new model that replaces cascading reactions with a single but delayed compound
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reaction that enables both recapitulation of experimentally observed dynamics and the

use of powerful analytical tools. With these tools, we explore the physiological func-

tion of the dynamic behavior of NF-κB produced by the activated repression mechanism

mediated by its inducible inhibitors, IκBα (Q9Z1E3) and IκBε (O54910). The mathe-

matical analysis results in predictions that are addressed experimentally and thus lead to

fundamental insights about the function and origins of this signaling system.

4.2 Results

4.2.1 NF-κB model formulation

The basic structure of the NF-κB signaling module is shown in Figure 4.1A59.

In resting cells, NF-κB is sequestered in the cytoplasm by IκB proteins. Cellular stim-

ulation leads to activation of the IκB kinase (IKK) which phosphorylates IκB proteins

thus targeting them for degradation. Upon degradation of IκB proteins, NF-κB moves

into the nucleus and activates hundreds of target genes including the predominant IκB

isoform, IκBα. Synthesized IκBα enters the nucleus, binds to NF-κB, and the IκBα-

NF-κB complex is exported back to the cytoplasm. Thus, the core feature of the NF-κB

signaling module is a negative feedback loop mediated by IκBα. This can be abstracted

to a simple motif in which x (NF-κB) activates y (IκBα), y represses x, and repression

of x by y is relieved by K (active IKK) (Figure 4.1B).

Using this motif as a guide, we formulated our model of the IκBα-mediated NF-

κB response as a set of 9 reactions and 6 variables. Specifically, the model assumes

that the total number of the NF-κB molecules (X) is conserved, however they can exist

either in free/nuclear form (x) or sequestered outside of nucleus within the IκBα-NF-

κB complex ([xy]). The model contains non-delayed reactions for the binding of free

NF-κB to the unbound IκBα promoter (d0y) to form the bound IκBα promoter (d1y),

binding of IκBα protein (y) to free NF-κB to form the IκBα-NF-κB complex, constitu-

tive degradation of IκBα, and induced degradation of free and bound IκBα proteins by
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the active IκB kinase IKK (K) producing free NF-κB. In contrast, a compound delayed

reaction describes the synthesis of IκBα protein. This reaction involves a time delay

τy, which represents the time needed for transcription, translation, nuclear import and

export, and protein-protein interactions.

Using experimentally validated assumptions, we reduced the set of mass-action

kinetics equations for the 9 reactions to a single delay-differential equation:

Ẏ (y) = ayd0y(yτ ) + byd1y(yτ )− gyy −KryY (y) (4.1)

where Y (y) = y[1 + cyX/(1 + cyy)] is the total IκBα concentration (the sum of free

IκBα (y) and IκBα bound to NF-κB), d0y(y) = Fdy/[F + X/(1 + cyy)], d1y(y) =

Xdy/[F (1 + cyy) +X], are the probabilities for the IκBα promoter to be free or bound

to NF-κB, respectively, F = f1/f0, cy = ky/(k−y + Kry), and the subscript τ denotes

the variable taken at time t− τy (see Methods for details of the derivation).

Mirroring the biological system, the non-dimensional time-dependent parame-

ter K(t), which characterizes the active IKK concentration, is used as the proxy input

signal. The first term in the r.h.s. of Eq. 4.1 represents constitutive synthesis from the

unbound IκBα promoter, the second term represents induced synthesis from the NF-

κB-bound IκBα promoter, the third term represents constitutive degradation of IκBα

protein, and the fourth term represents IKK-induced degradation of IκBα. Values of

K ∼ 1 correspond to the rate of IKK-induced degradation of NF-κB-IκBα complex

which is of the same magnitude as unbound IκBα. Nuclear NF-κB level x at any time

can be determined directly from IκBα levels via x = X/(1 + cyy). The time delay τy

is incorporated in the synthesis terms: we assume that the rate of production of new

proteins at time t depends on the state of the system at time t − τy. Incorporating

this time delay allows us to explore the behavior of the negative feedback loop without

simulating the full set of reactions associated with it. We obtained values for the time

delay and for the other model parameters by calibrating the behavior of the model with

experimental results. As a starting point, we used parameter values from biochemical
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measurements67. However, some modifications were necessary because these values

represent the rates of single reaction steps and the model contains compound reactions.

To validate the model, we compared it to experiments. In response to a persis-

tent input signal (starting at time t = 0), our simulations of the IκBα-mediated negative

feedback system show pronounced oscillations in nuclear NF-κB levels with an oscilla-

tion period of about 90 minutes (Figure 4.1C). Oscillations with a similar period were

observed experimentally when mutant cells containing only the IκBα feedback loop

were persistently stimulated with the inflammatory cytokine TNF (Figure 4.1D).

To address the dynamics of the wild-type NF-κB system that feature both IκBα

and IκBε feedback loops, we expanded the model to include an additional 9 reactions

and 4 variables involving IκBε (Tables 3, 4). Following the same reduction procedure

(see Methods for derivation), we derived a deterministic model consisting of two cou-

pled delay-differential equations for the concentrations of the two IκB isoforms, IκBα

(y) and IκBε (z),

Ẏ = ayd0y(yτ , zτ ) + byd1y(yτ , zτ )− gyy −KryY (4.2)

Ż = m [azd0z(yτ , zτ ) + bzd1z(yτ , zτ )]− gzz −KryZ (4.3)

where Y = y[1 + cyX/(1 + cyy + czz)], Z = z[1 + czX/(1 + cyy + czz)], d0y,0z =

Fdy,z/(F + x), d1y,1z = xdy,z/[F + x], x = X/(1 + cyy + czz), cy,z = ky,z/(k−y,−z +

Kry,z), and yτ = y(t − τy), zτ = z(t − τz). Parameter 0 < m < 1 here is the scaling

factor which characterizes the relative strength of the secondary feedback loop.

In Eqs. 4.2 and 4.3, Y represents total IκBα (the sum of free IκBα (y) and IκBα

bound to NF-κB ([xy]), and Z represents total IκBε (the sum of free IκBε (z) and IκBε

bound to NF-κB ([xz])). The terms in the r.h.s. of Eqs. 4.2 and 4.3 again represent

constitutive synthesis from the identical unbound IκBα and IκBε promoters, induced

synthesis from the NF-κB-bound promoters, constitutive degradation of IκBα and IκBε

proteins, and IKK-induced degradation of IκBα and IκBε. Nuclear NF-κB levels are

determined directly by IκBα and IκBε levels. Parameter values for the IκBα-mediated

reactions were determined in the previous section. For the IκBε feedback reactions, we
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use the same parameter values except for the constitutive synthesis and the constitutive

degradation rates, which were chosen based on experimental measurements67

4.2.2 Is the oscillation period a function of the stimulus?

The advantage of our modeling approach is that it allows for analytical studies

of the network dynamics. Here, we perform a linear stability analysis of the delay-

differential equation (4.1) to identify the characteristic period and decay rate of NF-κB

oscillations produced when input signal is present (K > 0). For sufficiently large K,

induced synthesis and degradation are much stronger than basal ones, so the latter can

be neglected (ay = gy = 0).

Expressing y via Y and substituting it into d0y, d1y yields a closed equation for

Y in the form

Ẏ = G(Yτ )−KryY (4.4)

where Yτ = Y (t− τy) and the function G(·) has the form

G(Y ) = dy
bycy(X − Y )− by + by

√
(cy(X − Y )− 1)2 + 4cyX

2cyF + cy(X − Y )− 1 +
√

(cy(X − Y )− 1)2 + 4cyX
(4.5)

The fixed point Ys (stationary solution) of this equation is given by the algebraic equation

G(Ys) = KryYs (4.6)

The stability of this solution is determined by the eigenvalue of the linearized equation

(4.4) linearized near the fixed point Ys (see Methods for details). The corresponding

eigenvalue can be found in terms of the Lambert function W (z) defined via WeW = z,

λ = τ−1y W (Bτye
Kryτy)−Kry (4.7)

The imaginary part of λ gives the oscillation frequency ω = 2πf , and the (negative)

real part of λ gives the decay rate δ of oscillations. Plotting the period (T = 1/f )

(Figure 4.2A) and decay (δ) (Figure 4.2B) of the oscillations as a function of the delay
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reveals a strong dependence. In contrast, the signaling perturbation K (the active IKK

kinase) that acts as the input for the model determines the amplitude of the response

but only negligibly affects the period or the oscillation decay (Figure 4.2B). The math-

ematical reason for this asymmetry is that the imaginary part of the Lambert function

W (x) for negative values of its argument changes very weakly for arguments below −2

(ImW (−2)] = 1.67..., ImW (−20) = 2.27...) and asymptotically approaches π for

very large negative values of the argument. This is why the period of dampened oscilla-

tions (2πτy/Im[W (Bτye
Kryτy)]) depends strongly on delay τy and only very weakly on

K. Meanwhile, the real part of the eigenvalue λ (the decay rate) is linearly proportional

to K because of the second term in Eq.(4.7) and also strongly depends on τy because

of the first term. Thus, we find that the period is highly dependent on the delay but is

rather insensitive to changes in the input level. This is confirmed by direct simulations of

the full nonlinear equation (4.1), where time series of x are plotted for several different

values of τy and K (Figure 4.9). Since variations of stimulus do not lead to significant

frequency modulation of NF-κB activity, oscillations of NF-κB are unlikely to encode

information about the stimulus.

4.2.3 Damping of oscillations in a dual delayed feedback loop sys-

tem

The main qualitative difference between the one-loop system considered in the

previous section, and the wild-type NF-κB module is the presence of another IκB iso-

form, IκBε, which also provides negative feedback regulation on NF-κB activity (Fig-

ure 4.3A, B), however with slower kinetics67. Experimental and computational work has

shown that IκBε-mediated feedback can cause damping of IκBα-mediated oscillations67

and (Figure 4.3C). More recent computational work has predicted that IκBε-mediated

feedback desynchronizes oscillations but does not dampen oscillations in single cells6.

Thus, the mechanism by which IκBε-mediated feedback produces damped oscillations

at the population level is not well established. Furthermore, it is unknown whether the
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damping function of the IκBε-mediated feedback loop has evolved to achieve a specific

regulatory function or may simply be a secondary consequence of another function. We

hypothesize that the primary role of the second feedback loop is to mitigate oscillatory

behavior produced by the first feedback loop.

To address our hypothesis that IκBε-mediated feedback specifically evolved to

dampen IκBα-mediated oscillations, we performed a parameter optimization procedure

on the wild-type model (Eqs. 4.2 and 4.3) to determine the IκBε synthesis parameters

that result in maximum damping. To characterize the degree of damping, we chose the

maximum peak-trough difference after 6 hrs as a metric for the persistence of oscilla-

tions. According to the definition of this performance metric, “optimal damping” occurs

when this metric is minimized. In our optimization procedure, we varied two important

parameters, the time delay of the second feedback loop τz and the scaling factormwhich

simultaneously varies the rates of constitutive and induced synthesis of IκBε. Choosing

m = 0 is equivalent to the complete removal of the IκBε-mediated negative feedback

loop while m = 1 represents the case in which the inducible synthesis rates for IκBε are

the same as for IκBα. The two-dimensional optimization search is shown in a color map

(Figure 4.3D) indicating that the performance metric is minimized at m = 0.3, τz = 72.

Time course simulations with the optimized parameter set show a high degree of damp-

ing (Figure 4.3G) similar to what is observed experimentally (Figure 4.3C).

To determine whether these optimized parameter values correspond to observa-

tions, we measured relevant parameter values experimentally. The synthesis delays for

IκBα and IκBε were determined by measuring IκBα and IκBε mRNA levels in a time

course of TNF-treated murine embryonic fibroblasts (MEFs) in multiple independent

experiments (Figure 4.3E, S2A,B). The measured delay for IκBα was 25.8 ± 5.4min,

and 59.4 ± 12.8min for IκBε, which agrees well with the model prediction for optimal

damping.

Since it is difficult to measure the promoter strength experimentally, we em-

ployed an implicit way of comparing experiment with the model. To relate the parame-

ter value m to experimental measurements, we set m = 0.3 in the model and calculated
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the ratio of peak values for IκBα and IκBε proteins Rm, which we found to be equal

3.9. Then we measured the ratios of basal (unstimulated) to peak protein levels for IκBα

and IκBε in experiment via quantitative Western blots of whole cell lysates generated

during a TNF time course. These were compared to recombinant protein standards to

derive absolute molecule number per cell. Peak IκBα protein levels were measured to

be 379,800 molecules per cell, and IκBε 71,300 molecules per cell, with both values

being subject to an estimated 25% error (Figure 4.3F, S2C,D). These protein levels cor-

respond to the experimental peak values ratio Re = 5.3 which is close to the model

prediction Rm = 3.9.

4.2.4 Duration encoding in a dual delayed negative feedback loop

system

We next addressed why the NF-κB signaling module may have evolved to pro-

duce oscillatory behavior if the oscillation frequency is not a function of the stimulus

and does not constitute a signaling code. We first simulated persistent stimulation of

a variant NF-κB system without feedback (we assume that IκBα is constitutively pro-

duced, so d0y = 1, d1y = 0 in Eq. 4.1) and found that this system produces long

term, non-oscillatory NF-κB activity (Figure 4.4A Top, blue line). As TNF is secreted

in bursts and therefore perceived by surrounding cells as transient or pulse stimulation,

we then performed stimulations of pulses 15, 30, and 45 min in duration. In the negative

feedback-deficient NF-κB system, the pulses resulted in transient responses that were

attenuated very slowly. Faster attenuation can be achieved by increasing the constitutive

synthesis rate, ay. Increasing ay by two orders of magnitude results in pulse NF-κB

responses to transient stimuli, but the responsiveness (in amplitude) is much reduced

(Figure 4.12).

We then performed similar simulations in a single negative feedback loop NF-

κB system and found that this network topology allows for a rapid shutdown of NF-κB

activity for transient inputs (Figure 4.4A Middle). This suggests that the NF-κB net-
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work may have evolved from a pathway without feedback to a pathway with a single

negative feedback loop to allow for a more sensitive transient response. Although the

negative feedback indeed allows for greater sensitivity, a secondary consequence is that

pronounced oscillations arise when the input signal persists for a long time period (Fig-

ure 4.4A Middle, blue line). The addition of a second negative feedback loop with a

different time delay can help to dampen these oscillations, while preserving the respon-

siveness of the signaling module to transient stimuli (Figure 4.4A Bottom).

By plotting the duration of the response (above a given threshold) we investi-

gated what may be called “temporal dose response curves” of the single and dual feed-

back systems (Figure 4.4B). The dual feedback system has a response duration close to

60 min for short pulses (< 100 min), and a duration proportional to the input duration

for longer pulses. The single feedback system has the same behavior as the dual feed-

back system for short inputs, but for longer inputs the single feedback system produces

a quantized response with the same output duration for several different input durations.

Our analysis indicates that a dual feedback system is able to produce temporally graded

responses, whereas a single feedback system that oscillates does not. Given that the

duration of the second phase of the NF-κB response to TNF is a critical determinant

of gene expression programs59, we suggest that the NF-κB system has evolved a dual

feedback system that allows for NF-κB activity whose duration is more closely related

to the duration of the cytokine stimulus.

This fine temporal control, achieved via dual negative feedback, may be critical

for complex cytokine-mediated cell-to-cell interactions involved in the adaptive immune

response present in vertebrates, but may not be necessary for innate patogen-induced im-

mune responses. We hypothesized that, on an evolutionary timescale, the appearance of

dual negative feedback loops that regulate NF-κB activity may coincide with the transi-

tion from an innate to an adaptive immune system. To address this hypothesis, we used

BLASTP with an E-value cutoff of 1e-25 to search for homologs of the mouse IκBα

and IκBε protein sequences in other organisms (see Methods). We found homologs for

both IκBα and IκBε, not only in other mammals (such as chimp, dog, platypus), but
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also in other vertebrate classes including fish, amphibians, and birds (Figure 4.5). Thus,

dual negative feedback regulation of NF-κB activity appears to be present in all organ-

isms with adaptive immunity. In contrast, we did not find any invertebrate organisms

with homologs for both IκBα and IκBε (Figure 4.5). Therefore, invertebrates, which

lack adaptive immunity, also appear to lack the potential for dual negative feedback

regulation of NF-κB mediated by IκBα and IκBε suggesting that the temporal control

achieved with this regulatory architecture is not necessary for innate immune responses.

4.2.5 Robustness to fluctuations in a dual delayed negative feedback

loop system

Thus far, we have examined the response of the network to transient stimulation

in the absence of fluctuations. However, it is well known that noise in gene expression

can cause significant variability in cellular responses135;131;39;119;77;144. Sometimes this

variability can be beneficial56, but in most cases, noise has a detrimental effect on the

robustness of cellular functions. Mechanisms have presumably evolved to mitigate the

unwanted effects of noise, especially in signaling pathways. In this section we examine

the variability in the response of the NF-κB module that arises due to intrinsic and

extrinsic noise, and we demonstrate that the dual-feedback loop architecture allows for

a more robust response than the single feedback loop system. Further, we investigate

how the relative contribution of intrinsic and extrinsic fluctuations depends on the size

of the system.

The concentration of signaling molecules such as NF-κB can vary significantly

between cells34. This variability in protein levels represents a source of extrinsic noise.

We examined the variability in the response of the network to fluctuations in the to-

tal level of NF-κB and fluctuations in the IKK input level by simulating the network

behavior with total NF-κB levels and active IKK levels distributed within a certain

rage around their nominal values. The coefficient of variation (CV) in peak nuclear

NF-κB levels and the CV in late-phase nuclear NF-κB levels is defined as CV =
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2(xmax−xmin)/(xmax +xmin) where xmax (xmin) are the maximum (minimum) values

of NF-κB at the peak or during the late phase. NF-κB late-phase response is defined as

the nuclear NF-κB level following the trough after the first peak response. In Text S1

we compare the extrinsic CV in the peak and the late phase for various values of IKK

and NF-κB (see Figure 4.13).

Intrinsic noise arises from the stochastic nature of biochemical processes such

as transcription and translation39. To examine the response of the NF-κB signaling

module in the presence of intrinsic genetic noise, we used the Gillespie algorithm47

modified according to15 to perform stochastic simulations of both regular and delayed

biochemical reactions included in our delayed feedback model. These latter reactions

are initiated at times dictated by their respective rates, but the numbers of molecules are

only updated after the time delay since the reaction initiation.

We ran stochastic simulations of both a single and dual feedback system and es-

timated the ensemble average 〈X〉 of the number of NF-κB moleculesX and the magni-

tude of fluctuations as characterized by the standard deviation ∆X = [〈X − 〈X〉〉2]1/2

and the coefficient of variation CV = ∆X/〈X〉. To determine how the variability in

the response varies with the magnitude of the input and the size of the system, we de-

termined the CV in peak nuclear NF-κB levels and the CV in late-phase nuclear NF-κB

levels for several values of IKK (Figure 4.6A,C) and for systems with up to 100,000

NF-κB molecules (Figure 4.6B,D). In Figure 4.6, we also plot CV values for extrinsic

variations (±20%) in total NF-κB at several values of IKK (Figure 4.6A,C) and CV

values for extrinsic variations in IKK (±20%) for several different system sizes (Figure

4.6B,D). We find that, even with this relatively low level (±20%) of extrinsic variabil-

ity in IKK and NF-κB protein levels34, variability in the response of the network is

dominated by extrinsic noise for large systems (> 10, 000 NF-κB molecules).

The CV in late-phase nuclear NF-κB levels is similar for extrinsic and intrinsic

noise when the size of the system is reduced to 1000 NF-κB molecules. Next, we inves-

tigated the behavior of the NF-κB signaling module in this regime where intrinsic noise

levels become significant by analyzing stochastic simulations produced with a system
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with total NF-κB levels set to 1000 molecules. We ran stochastic simulations of all

three systems studied deterministically above: no-feedback, single negative feedback,

and dual negative feedback (Figure 4.7). Note that ensemble-averaged time series agree

with the deterministic simulations very well (Figure 4.14). In the case of no feedback

(Figure 4.7A) there is a strong robust response to the incoming persistent signal as char-

acterized by the low values of the coefficient of variation. However, as we have seen

above in Figure 4.4A, the major flaw of this system is its slow response to the pulse-like

signals. Next, we simulated the 9 biochemical reactions included in the IκBα-mediated

single negative feedback loop (Figure 4.7B). In single runs the first peak in nuclear NF-

κB levels appears to be very robust, as illustrated by Figure 4.7B Top. The CV is lowest

(< 0.2) during the first peak in nuclear NF-κB indicating that this portion of the re-

sponse is very robust. Subsequent peaks in this undamped system lead to higher CV

(> 0.5) in the later portion of the response.

Next, we performed stochastic simulations of the 18 biochemical reactions in-

cluded in the dual delayed feedback model (with both IκBα- and IκBε-mediated feed-

back) (Figure 4.7C). In the dual feedback model, as in the single IκBα-mediated feed-

back model, there is a very robust first peak. However, unlike the single IκBα-mediated

feedback model, in the dual feedback system the noise levels remain at a low level

(< 0.5) following the first peak in nuclear NF-κB (Figure 4.7C Bottom). Thus, the

dual feedback architecture allows for lower noise levels also in the later portion of the

response.

What is the underlying reason for the robustness of the initial response from this

circuit? The main source of intrinsic noise lies in the transcription and translation of

IκB isoforms, since they are transcribed from single genes. In contrast, fluctuations

in protein degradation and transport processes are relatively small, because the copy

numbers of the corresponding molecules are large. In the NF-κB network, the peak in

nuclear NF-κB levels that occurs following stimulation is produced via the degradation

of IκB proteins that bind and sequester NF-κB in the cytoplasm. Thus, we argue that

robustness of the initial response of the NF-κB circuit is explained by the fact that it
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uses the sequestering mechanism and does not rely on the protein production.

To test this hypothesis, we simulated the behavior of an alternative network that

relies on transcription of auto-repressor, rather than the degradation of inhibitor pro-

teins, for signaling (Figure 4.7D). This system can be modeled with two variables: x,

the number of repressor molecules, and d, the binary state of the promoter (d = 0 cor-

responds to the unbound promoter and d = 1 corresponds to bound promoter), and with

four reactions (binding and unbinding of the repressor to the promoter, degradation of

the repressor, and delayed synthesis of the repressor with rateK(t)(1−d) whereK(t) is

the external signal (Tables S2, S3). The input signal activates the production of the auto-

repressor which after a certain time delay binds to the promoter and terminates further

synthesis. Deterministically, this circuit also provides a desired response to a persistent

stimulation with a large well-defined first peak. However, stochastic simulations reveal

significant differences in the noise performance of this design as compared with the NF-

κB circuit (note that the agreement between deterministic and stochastic simulations is

less accurate in this case because of the strong promoter fluctuations (Figure 4.14D).

Activation of the auto-repressor network is much less robust than the activation of the

NF-κB network (cf. Figure 4.7D and Figures 4.7B,C). In fact, in the auto-repressor net-

work, the coefficient of variation is highest (> 1) during the initial peak (Figure 4.7D

Bottom). These results confirm our conjecture that the sequestering mechanism incorpo-

rated in the design of the NF-κB network gives rise to a much more robust activation of

NF-κB than alternative networks that rely on transcription for activation and signaling.

This finding is in accord with recent work33 where the sequestering of Cdc20 protein

was also implicated in the noise resistance of the spindle assembly checkpoint.

As we mentioned previously, recent computational work has suggested that per-

sistent oscillations are present in wild-type cells with both IκBα- and IκBε-mediated

feedback but stochastic variability leads to desynchronization among individual cells

and therefore produces damped oscillations at the population level6;104. Our computa-

tional results demonstrate that, although stochastic oscillations are still present in indi-

vidual cells with both IκBα- and IκBε-mediated feedback (Figure 4.7C), the oscillatory
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propensity can be greatly reduced by the second feedback loop in the wild-type NF-κB

signaling module. Further, stochastic simulations of the dual-feedback network reveal

highly synchronized damped oscillations (Figure 4.15C) with cellular variations due to

intrinsic noise becoming significant only when the system size is drastically reduced

(Figure 4.7C).

To show that our results are not limited to the conceptual NF-κB model intro-

duced above, we simulated the more detailed stochastic NF-κB model formulated in104,

which explicitly incorporates IKKK/IKK signaling cascade and NF-κB shuttling be-

tween the nucleus and the cytoplasm (see Methods and Figure 4.16A). One of the key

assumptions made in the model104 is that the strong stochasticity of the NF-κB response

is caused by the slow and stochastic binding/dissociation of NF-κB to the corresponding

promoters of IκBα, IκBε, and A20 target genes. The slow rates chosen by the authors

for these reactions lead to the high variability of oscillatory dynamics among cells (Fig-

ure 4.16B). However, there is experimental evidence that the binding time of NF-κB

may be significantly shorter, at least in certain types of cells. According to Fluorescence

Recovery After Photobleaching (FRAP) measurements in HeLa cells14, the typical time

scale of NF-κB binding to the target promoters is on the order of a second rather than

minutes, suggesting more rapid equilibration between the NF-κB-bound promoters and

the pool of unbound nuclear NF-κB molecules. We found that increasing the binding

and dissociation rates by 102...103 times profoundly changes the dynamics of the sig-

naling system. NF-κB trajectories become more regular, suggesting that the behavior

of individual cells translates more directly into the behavior of the population (Figure

4.16C). After adjusting the binding/dissociation rates along with a few other parameters,

the updated model recapitulated the population response to chronic TNFα stimulation

under various genetic conditions (WT, IκBε−/−, and A20−/−) (Figure 4.17) in agree-

ment with earlier experimental results59;67;149.

To quantify the magnitude of the late oscillatory NF-κB response to a chronic

TNFα stimulation, we chose as a metric the average maximum peak-trough difference

5 hrs after initial stimulation. This quantity can be computed in two different ways.
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The mean single-cell variability can be characterized by the magnitude Ms found by

computing the maximum peak-trough differences for individual trajectories, and then

averaging them over all trajectories:

Ms = 〈max
t>5h
{N(t)} −min

t>5h
{N(t)}〉 (4.8)

The population-level variability can be characterized by the magnitude Mp which is

found by first computing an average trajectory and then computing its maximum peak-

trough difference:

Mp = max
t>5h
{〈N(t)〉} −min

t>5h
{〈N(t)〉} (4.9)

If the stochasticity is small, these two measures are similar, however for strong stochas-

ticity they may differ significantly. Using these metrics, we first confirmed that for the

parameter values adopted by104, the model shows significant single-cell oscillations both

in the IκBε−/− and in the WT, independently of the time delay in the IκBε loop (Ms, Fig-

ure 4.8A), but the population-averaged response shows significant oscillation dampening

for the time delay around 45 min (Mp, Figure 4.8C). However, for our re-parameterized

model with fast binding/dissociation, the stochasticity of individual trajectories is small,

and both metrics show similar trend: the amplitude of oscillations in the WT is strongly

suppressed at the optimal time delay of 45 min both for the population average (Figure

4.8B) and the individual cells (Figure 4.8D), which falls within the margin of error of

our experimental results (Figure 4.3D).

4.3 Discussion

In this work we have developed a minimal model of the NF-κB signaling path-

way that uses a small number of reactions (some of them compound) thus making it

amenable to mathematical analysis. Previously, another simplified model of NF-κB sig-

naling was developed in which a massive overshoot in IκBα resulted in an effective

slowing of signaling dynamics73, and produced spiky oscillations that are not seen in

physiological conditions. Our model, which utilizes an explicit time delay, recapitulates



57

experimentally observed signaling behavior. It demonstrates that models with explicit

time delays can be useful for investigating the mechanistic basis of the dynamic behavior

of signaling pathways.

Using this model, we explored the potential role of NF-κB oscillations which are

observed in a variant of the NF-κB signaling module with the secondary negative feed-

back loop involving IκBε, disabled. In particular, we addressed the question of whether

the frequency of these oscillations contains information, as in neurons which sometimes

encode information in the frequency of action potentials12 and in the activation of the

transcription factor NF-AT which is responsive to the number of Ca2+ pulses32. By

analyzing the oscillatory response of a system regulated solely by the IκBα-mediated

negative feedback loop, we found that both the frequency and the decay rate of the

oscillations produced by this system are highly dependent on the internal parameters

of the circuit, but are not sensitive to changes in the input signal levels. This result

suggests that the oscillatory frequency does not encode information about the stimulus.

Hence, stimulus-specific gene expression is unlikely determined by stimulus-specific

frequencies of NF-κB oscillations. If there is a temporal code for stimulus-specific gene

expression it is unlikely to involve frequency modulation, but may involve amplitude

modulation over time.

When a second feedback regulator, IκBε, is added to the model, the oscilla-

tions caused by a persistent stimulation are significantly dampened, in agreement with

our earlier findings67. By performing an optimization procedure, we determined that

the specific experimentally observed parameter values for the synthesis delay and peak

protein abundance of both IκB isoforms correspond to maximal efficiency of damping.

These findings suggest that the second feedback (IκBε) has evolved to produce damping

of the oscillatory behavior of the first feedback (IκBα). Furthermore, we demonstrated

that this finding is not limited to our simple model, but can be expanded to more com-

plex models. For example, in a recent model by104 with fast binding/unbinding rates of

NF-κB the secondary IκBε feedback leads to a reduction in NF-κB oscillations in indi-

vidual cells. However, cell-cell variability and extrinsic noise can further reduce NF-κB
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oscillations on a population level.

From the evolutionary perspective, we have a peculiar situation in which a sig-

naling module apparently first developed a negative feedback loop that made it prone to

oscillations, and then added a secondary loop which mitigated these oscillations. This

brings the question, if oscillatory responses are not beneficial to the cell, why has the

primary negative feedback appeared in the system in the first place? By comparing

transient response of several variants of signaling modules (0-, 1- and 2-feedback loop

designs) in the presence of stochastic fluctuations we showed that the primary negative

feedback loop involving the release of sequestered NF-κB proteins created a strong,

rapid, and robust response to short pulses of active IKK signal. However, for longer

signals a single-feedback-loop system exhibits a suboptimal “temporal dose response

behavior” that leads to a quantized response to signals of different durations. In con-

trast, the dual feedback network generates response durations that are proportional to

the stimulus input durations. Fine-tuning of the response duration may be reflective

of a signaling code in which duration of NF-κB activity may be a key determinant of

stimulus-specific gene expression program.

Cytokines such as TNFα facilitate adaptive responses at the effector stages90.

The evolution of cytokines is associated with the evolution of an adaptive immune sys-

tem to allow for coordination of various cell types98. Unlike pathogen exposure, cy-

tokines are produced during varying amounts of time thereby generating time-varying

signals. Our analysis showed that the dual negative feedback module is more capable

at distinguishing differences in the duration of incoming signals. This function is im-

portant for the transduction of cytokine signals, but not pathogen signals. Our BLASTP

analysis indeed demonstrates that the evolution of the dual negative feedback system

may correlate with the evolution of adaptive immunity.
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4.4 Methods

4.4.1 Derivation of the deterministic model

Using mass action kinetics, the full set of reactions for the dual feedback loop

NF-κB system (Tables 2, 4) can be expressed by the following ODEs:

ẋ = −f0d0yx+f1d1y−kyyx+k−y[xy]+Kry[xy]−f0d0zx+f1d1z−kzzx+k−z[xz]+Krz[xz]

(4.10)
˙[xy] = kyyx− k−y[xy]−Kry[xy] (4.11)

ẏ = ayd0y(t− τy) + byd1y(t− τy)− kyyx+ k−y[xy]− gyy −Kryy (4.12)

˙d0y = −f0d0yx+ f1d1y (4.13)

˙d1y = f0d0yx− f1d1y (4.14)

˙[xz] = kzzx− k−z[xz]−Krz[xz] (4.15)

ż = azd0z(t− τz) + bzd1z(t− τz)− kzzx+ k−z[xz]− gzz −Krzz (4.16)

˙d0z = −f0d0zx+ f1d1z (4.17)

˙d1z = f0d0zx− f1d1z (4.18)

The total number of κB binding sites on each promoter is conserved:

d0y + d1y = dy (4.19)

d0z + d1z = dz (4.20)

We assume that the total amount of NF-κB in the cell X is conserved

X = x+ d1y + d1z + [xy] + [xz] = const. (4.21)

Since the number of binding sites available for NF-κB protein is small, we can

neglect the amount of NF-κB bound to the IκBα and IκBε promoters, so

X = x+ [xy] + [xz] (4.22)
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Solving Eq. 4.22 for x yields:

x = X − [xy] + [xz] (4.23)

DNA binding reactions are usually fast, so we can assume that they are at quasi-equilibrium

at all times,

f1d1y = f0d0yx (4.24)

f1d1z = f0d0zx (4.25)

Using Eqs. 4.19 and 4.20, substituting into Eqs. 4.24 and 4.25, and solving for d0y, d1y,

d0z, d1z yields:

d0y =
Fdy
F + x

(4.26)

d1y =
xdy
F + x

(4.27)

d0z =
Fdz
F + x

(4.28)

d1z =
xdz
F + x

(4.29)

where F = f1/f0.

We also assume quasi-equilibrium for IκBNF-κB binding reactions,

kyyx = k−y[xy] +Kry[xy] (4.30)

kzzx = k−z[xz] +Krz[xz] (4.31)

Substituting [xy] and [xz] from Eqs. 4.30 and 4.31 into Eq. 4.23 yields:

x = X − [kyyx/(k−y +Kry)]− [kzzx/(k−z +Krz)] (4.32)

Now we can solve Eq. 4.32 for x

x =
X

1 + kyy/(k−y +Kry) + kzz/(k−z +Krz)
(4.33)
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and substitute it in Eqs. 4.12 and 4.16. These equations contain both fast and slow

terms. However, it is easy to see that rate equations for variables Y = y + [xy] and

Z = z + [xz] contain only slow terms:

Ẏ = ayd0y(t− τy) + byd1y(t− τy)− gyy −KryY (4.34)

Ż = azd0z(t− τz) + bzd1z(t− τz)− gzz −KrzZ (4.35)

Y and Z can in turn be expressed via y and z by:

Y = y[1 + cyX/(1 + cyy + czz)] (4.36)

Z = z[1 + czX/(1 + cyy + czz)] (4.37)

where cy = ky/(k−y + Kry) and cz = kz/(k−z + Krz). Equations 4.34–4.35

combined with definitions Eqs. 4.26–4.29, 4.33, 4.36, and 4.37 represent a closed sys-

tem of two delay-differential equations 2, 3 for the dual-feedback NF-κB module. Set-

ting Z = z = 0 in these equations leaves us with a single delay-differential equation for

the single feedback loop system Eq. 1.

4.4.2 Details of the linear stability analysis

The fixed point Ys of Eq. (4.4) is given by the algebraic equation (4.6). Unfor-

tunately, Eq. (4.6) does not permit finding Ys in explicit form. However, this calcula-

tion can be significantly simplified if the total number of NF-κB proteins is large, so

cyX � 1, then y can be neglected as compared with total Y . Then x = X − Y , and

d1y = dy(X − Y )/(F +X − Y ), and expression (4.5) for G(Y ) simplifies:

G(Y ) =
bydy(X − Yτ )
F +X − Yτ

(4.38)

Now the stationary level of Y can be obtained explicitly

Ys =
bydy +Kry(F +X)−

√
(bydy +Kry(F +X))2 − 4KrybydyX

2Kry
(4.39)
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The stability of this stationary solution is determined by the linearized equation

(4.4) for a small perturbation ξ near Ys,

ξ̇ = Bξτ −Kryξ (4.40)

where ξ = Y −Ys, subscript τ again indicates the delayed value of ξ taken at time t− τ ,

and B = dG(Ys)/dY . Using formula (4.38) we obtain

B =
bydyF

(F +X − Ys)2
(4.41)

where Ys is given by Eq. (4.39). The eigenvalue λ of the linearized equation (4.40) is

found by substituting ξ = ξ0 exp(λt), yielding the transcendental equation

λ = Be−λτy −Kry (4.42)

whose solution is given by Eq. (4.7).

4.4.3 Stochastic model formulation

For the analysis of a full NF-κB system, we adopted the basic structure of the

NF-κB model formulated in104 which in turn was based on the population-level model

first proposed in59. The structure of the model is shown in Figure 4.16A. In resting cells,

NF-κB is sequestered in the cytoplasm by IκB proteins. In response to TNFα stimu-

lation, IKKK protein becomes active, and activates IKK kinase. IKK phosphorylates

IκB proteins targeting them for degradation. Upon degradation of IκB proteins, NF-κB

moves into the nucleus and activates hundreds of target genes. In the model, we focus

on the dynamics of three genes associated with the negative feedback of the system.

Following NF-κB activation, synthesized A20 proteins attenuate TNFα signal by re-

pressing IKKK and IKK transitions into their active states. NF-κB also binds IκBα and

IκBε protein promoters, which following translation in the cytoplasm, translocate back

into the nucleus and bind free NF-κB sequestering it out of the nucleus. In addition, IκB

proteins are directly responsible for NF-κB dissociation from the DNA.
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The biological processes in the model were interpreted through stochastic and

deterministic representations similar to104. Nuclear transport, complex formation, syn-

thesis, transcription, and translation were described through a set of ordinary differential

equations. Regulation of gene activity through NF-κB binding and dissociation from

DNA was modeled using stochastic representation. The time-evolution of the system

was accomplished through a hybrid simulation algorithm that uses Gillespie algorithm47

to evaluate the state of stochastic processes and an ODE solver to compute the state of

deterministic processes.

4.4.4 Details of the BLASTP search for IκBα and IκBε homologs

We performed two BLASTP searches (using default parameters) to search for

IκBα and IκBε homologs. The mouse IκBα protein sequence (gi28386026) was used

as the query for the first search. The mouse IκBε protein sequence (gi2739158) was

used as the query for the second search. We used an E-value of 1e-25 as a cutoff for

both searches.

Note that we selected only unique homologs for both IκBα and IκBε in all ver-

tebrates. We did not find unique IκBε homologue for several vertebrates. We expect

that this is due to the fact that complete genomes are not currently available for these

organisms.

4.4.5 Cell culture experiments

Immortalized murine embryonic fibroblasts59 were chronically stimulated with

10ng/mL TNF (Roche) and IκBα and IκBε mRNA and protein levels were monitored

by RNase Protection Assay (RPA) and Western Blot, respectively, as previously de-

scribed67. RPA results for each time course were quantitated using ImageQuant software

(GE Healthcare) and used to determine the time of half-maximal inducibility between

basal and peak mRNA levels for IκBα and IκBε (Figure 4.10 A,B). Western Blot results

were also quantitated with ImageQuant software and used to determine the time point
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of peak expression. The basal abundances of IκBα and IκBε protein were determined

via comparison to a standard curve of recombinant IκB protein (R Tsu, JD Kearns, C

Lynch, D Vu, K Ngo, S Basak, G Ghosh, A Hoffmann in preparation). The peak abun-

dances of IκBα and IκBε were determined via multiplication of the basal value by the

fold inducibility at the peak time point (Figure 4.10 C,D). Experimental levels of nuclear

NF-κB in cells with only the IκBα-mediated negative feedback loop intact and in wild-

type cells containing both IκBα- and IκBε-mediated negative feedback were determined

by EMSAs in59.

4.4.6 Extrinsic noise in dual negative feedback loop system

We find that the CV in peak nuclear NF-κB increases linearly with extrinsic

variation in total NF-κB and with extrinsic variation in IKK with identical CV values

for both the single and dual feedback models (Figure 4.13A,B). In contrast, the CV in

late-phase (asymptotic) NF-κB levels are significantly lower in the dual feedback sys-

tem than in the single feedback system. We varied the magnitude of extrinsic noise by

changing the spread of parameters (total NF-κB and IKK) from 0% to 50%. The CV

in late-phase NF-κB for the dual feedback system increases linearly from 0 to approxi-

mately 1 as the range of total NF-κB (Figure 4.13C) and IKK (Figure 4.13D) is increased

to ±50%, while the CV in late-phase NF-κB for the single feedback system increases

from approximately 1.6 to 1.9 (Figure 4.13C,D). Thus, in the presence of extrinsic varia-

tions in IKK and total NF-κB, the dual feedback system allows for a late-phase response

which is more robust than the response produced by the single feedback system.

4.4.7 Details of the full stochastic model

For the analysis of a full NF-κB system, we adopted the basic structure of the

NF-κB model formulated in Paszek et al.104. The structure of the model is shown in

Figure 4.16A. The biological processes in the model were interpreted through stochas-

tic and deterministic representations. Nuclear transport, complex formation, synthe-
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sis, transcription, and translation were described through a set of ordinary differential

equations (ODEs). Regulation of gene activity through NF-κB binding and dissocia-

tion from DNA was modeled using stochastic representation. The time-evolution of the

system was accomplished through a hybrid simulation algorithm that uses Gillespie al-

gorithm48 to evaluate the state of stochastic processes and an ODE solver to compute

the state of deterministic processes. Full details of the model can be found in Longo

et al.79.
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Figure 4.1: Oscillatory behavior from a system with a single negative feedback loop. (A)
Diagram of the IκBα-NF-κB signaling module. (B) Diagram of a system with a single
delayed negative feedback loop. (C) Nuclear NF-κB levels (x) in response to persistent
stimulation as a function of time produced using our delayed feedback model. (D) Ex-
perimental levels of nuclear NF-κB (determined by EMSAs) in cells with only the IκBα-
mediated negative feedback loop intact (data from59).
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the second feedback loop m and τz towards maximizing the oscillations damping. The
optimization method minimizes peak-minus-trough differences six hours after the onset of
stimulation, the global minimum occurs at τz = 72 min, m = .3. The black dot indicates
the experimentally measured parameter values (τz = 59 min, m = .2). Note that m was
not measured directly. The value ofm corresponding to the experimentally measured value
of Re was determined with the model (Figure 4.11). (E) Experimental measurements of
IκBα and IκBε synthesis delays. (F) Experimental values for peak IκBα and IκBε protein
levels. (G) Simulated time course of nuclear NF-κB levels (x) for the single feedback
system and for the optimized dual feedback system in response to persistent stimulation
with K = 2.
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Figure 4.15: Stochastic simulation results with 100,000 total NF-κB molecules. Four
NF-κB networks were considered: no feedback loops (A), only IκBα-mediated negative
feedback (B), the NF-κB network with both IκBα- and IκBε-mediated negative feedback
(C), and an alternative auto-repressive network (D). The top panel in each group shows
four typical runs of stochastic simulations for each network, the middle panel shows the
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Figure 4.16: Oscillatory behavior from NF-κB signaling system. (A) Diagram of the
NF-κB signaling network model adopted from Paszek et. al (2010). In resting cells, NF-
κB is sequestered in the cytoplasm by IκB proteins. In response to TNFα stimulation,
IKKK protein becomes active, activating IKK kinase. In turn, IKK phosphorilates IκB
proteins targeting them for degradation. Upon degradation of IκBα, NF-κB moves into the
nucleus and activates hundreds of target genes. In the model, we describe the dynamics
of three genes associated with the negative feedback of the system. Following NF-κB
activation, synthesized A20 proteins attenuate TNFα signal by repressing IKKK and IKK
transitions into their active states. NF-κB also binds IκBα and IκBε protein promoters,
which following translation in the cytoplasm, translocate back into the nucleus and bind
up free NF-κB sequestering it out of the nucleus. In addition, IκB proteins are directly
responsible for NF-κB dissociation from the DNA. (B) Nuclear NF-κB levels in response
to persistent stimulation as a function of time computed using Paszek et. al (2010) wildtype
model. (C) Nuclear NF-κB levels in response to persistent stimulation as a function of time
computed using our re-parameterized model. Black curve represents an average of 500 cell
trajectories.
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Figure 4.17: Nuclear NF-κB response in A20 and IκBε knockout models to chronic TNFα
stimulation. The results for the updated model (C,D) shows close similarity, in NF-κB
population dynamics, to the results obtained using Paszek et. al (2010) wildtype model
(A,B) for both IκBε knockout (A,C) and A20 knockout (B,D) models. Black trajectories
represent the average of 500 cell trajectories.



Chapter 5

NF-κB response to in-vivo mode of

TNFα induction

5.1 Introduction

Nuclear factor kappa B (NF-κB) is a well-studied global regulator of gene ex-

pression that coordinates the cellular response to a variety of external stimuli such as

tumor necrosis factor alpha (TNFα), which is critical in inflammation and immunity.

NF-κB is normally sequestered in the cytoplasm by IκB proteins, but it translocates into

the nucleus upon TNFα stimulation and acts to regulate a variety of downstream genes

before it is shuttled out of the nucleus through IκB-binding back into the cytoplasm. Os-

cillation dynamics of NF-κB shuttling have been implicated in the functional dynamics

of subsequent gene expression but it remains to be determined to what extent dynamic

stimulation of the system affects nuclear-cytoplasmic NF-κB shuttling. Until recently,

due to the limitations of experimental technology, most NF-κB activity has been stud-

ied in response to ”step” function of TNFα induction. In-vivo, cells are normally ex-

posed to gradual increase in external TNFα concentration25. With recently developed

mammalian microfluidic culture platform71, we can now consider how gradual ”ramp”

TNFα-induction affects NF-κB signaling. Comparing the difference in NF-κB dynam-

82
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ics in response to ”step” and ”ramp” TNFα induction allows us to gain insight into the

properties of the signaling network. Using mathematical modeling of the network, we

are further able to understand the possible noise aspects of the network.

5.2 Experimental results

In order to study the effects of different TNFα induction profiles on the dynamics

of NF-κB we used a cell line expressing a fluorescent p65-dsRED fusion protein (fused

to relA component of NF-κB) and a nuclear H2B-GFP marker. The latter was required

to effectively track single cell NF-κB profiles for up to 10hrs. Using recently developed

microfluidic cell culture device, which allows for delivery of controlled TNFα dynamic

profile, we were able to induce the cells with a persistent step and gradually increasing

linear ramp stimulation profiles71. In addition, two different levels of TNFα (1ng/ml

and 10ng/ml) were applied to the cells. Overall, four induction conditions were consid-

ered: 10ng/ml TNFα step, 10ng/ml TNFα ramp (5.8hr), 1ng/ml TNFα step, and 1ng/ml

TNFα ramp (3.1hr). The difference in the time of the ramps was due to the difficulty of

setting up ramp time without exposing cell to TNFα prior to the experiment. Over 80

single cell NF-κB response trajectories were obtained for each of the conditions. NF-κB

response was measured by the mean nuclear fluorescence (p65-dsRED).

Virtually all cells responded to all four TNFα induction conditions (> 90%) with

some (> 50%) showing oscillatory behavior (> 3 oscillatory peaks). Of the responders,

the general form of the response consisted of TNFα-condition-dependent initial peak

amplitude and relatively TNFα-independent secondary peak response (Fig. 5.1 and

5.5A). Cells showed much stronger and more variable NF-κB initial peak amplitude re-

sponse to step TNFα induction relative to ramp profile (Fig. 5.1AB and 5.2AC) Initial

response peak for ramp experiments was slower and more variable than for step stimula-

tions (Fig 5.2CD). The timing of the initial peak was slower for the lower concentration

of TNFα induction, while the amplitude of the response was higher for higher TNFα

concentration. Overall, we find that the variability of the initial amplitude response did
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not match the variability of the timing of initial response.

5.3 Modeling results

To help understand the variability associated with initial peak response, we adopted

a simplified deterministic version of earlier described model of TNFα-induced NF-κB

activation (Chapter 4). Based on our previous discussion, the intrinsic stochasticity of

protein production was found to be insignificant. We removed IKKK complex from the

model and instead reformulated IKK complex dynamics with a modified 4-state descrip-

tion. The active form of IKK, which is responsible for IκB degradation, was defined by

two different states, with one being more active (IKKa+) than then other (IKKa). IKKa

is part of a loop, where the activation of IKKn is proportional to TNFα concentration.

We included a variable threshold parameter (r) for TNFα activation, which leads to

variable temporal response observed in experimental data. IKKa is then converted to an

inactive form IKKi, which cannot target IκB for degradation, before returning to neutral

state, IKKn. IKKa can also reversibly enter a more active state, IKKa+, which represses

its own formation. This dynamic is responsible for TNFα independent IκB degradation

response. The dynamics downstream of IKK activation describe IKK dependent degra-

dation of IκB proteins leading to NF-κB translocation into the nucleus, where NF-κB

binding to DNA results in production of IκB proteins, which in turn helps remove NF-

κB from the nucleus (Fir 5.1A). The model consists of 8 ordinary differential equations,

and one delayed differential equation describing the production of IκB. There are 25 pa-

rameters, of which, 17 associated with NF-κB dynamics were adopted from the earlier

described model. The rest of the parameters, upstream of NF-κB loop, were fitted to

the mean amplitude and timing of initial response and the amplitude of the secondary

response using well known metropolis algorithm.

We then simulated extrinsic noise, by varying the values of total IKK, total NF-

κB, delay, and TNFα threshold (r) parameters according to uniform distributions (500

simulated trajectories). We fitted the range of variability for each of the parameters,
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obtaining NF-κB initial and secondary response distributions that are qualitatively very

similar to our experimental findings (Fig. 5.4 and 5.5B). While the fit is not perfect, due

to simplicity of the model, the model is able to explain the increased variability in the

timing of the initial NF-κB response to ramp TNFα induction and the variable amplitude

of the NF-κB initial response to step TNFα induction profile. Our model shows more

variable initial peak response to ramp TNFα activation, which is most likely due to our

ability to detect very low amplitude response in our model relative to experimental data,

where measurement noise plays a significant factor.

5.4 Discussion

Using novel microfluidic experimental setup, we were able to characterize single-

cell NF-κB initial response using dynamic TNFα stimulation profile. Our findings, cor-

roborated by our model, show that the effect of variability in cell-to-cell parameters

on the variability of response timing is abated when cells are exposed to TNFα in a

stepwise manner. In ramp experiments that mimic an in-vivo profile of induction, we

observe enhanced variability as each cell is gradually exposed to its own minimum level

of TNFα required to elicit NF-κB translocation response. Furthermore, the cell-to-cell

variability contributes to the variability in amplitude response regardless of the TNFα

concentration. These results indicate that there are significant quantitative differences in

cell responses to step versus linear ramp activation be TNFα. Since ramp profile TNFα

activation is a more accurate representation of the signal cells experience in vivo, the

focus on the timing of initial NF-κB response requires further attention. The proposed

model also suggests a new IKK activation mechanism consisting of two different active

states for IκB kinase, which requires further experiment validation. Another key ques-

tion raised by our findings is what is the key biological role for cell-to-cell variability in

the timing of the response?
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5.5 Model equations

˙NFκB = c5a · IκB NFκB + kd1a · IκB NFκB − ka1a ·NFκB · IκB +

+kc2a(IKKa+ ε · IKKa+) · IκB NFκB −

−ki1 ·NFκB + ke1 ·NFκB (5.1)

˙nNFκB = −ka1a · kv · nIκB · nNFκB + kd1a · nIκB NFκB −

−ke1 · nNFκB + +c5a · nIκB NFκB + ki1 ·NFκB (5.2)

˙IκB = c1a · q1 · nNFκB(τ)

q1 · nNFκB(τ) + q2a · nIκB(τ)
− c4a · IκB

−kc1a(IKKa+ ε · IKKa+) · IκB − ka1a · IκB ·NFκB −

−ki3a · IκB + ke3a · nIκB + kd1a · IκB NFκB (5.3)

˙nIκB = −ka1a · kv · nIκB · nNFκB + ki3a · IκB − ke3a · nIκB +

+kd1a · nIκB NFκB (5.4)

˙IκB NFκB = ka1a · IκB ·NFκB − c5a · IκB NFκB −

−kc2a · (IKKa+ ε · IKKa+) · IκB NFκB −

−kd1a · IκB NFκB + ke2a · nIκB NFκB (5.5)

˙nIκB NFκB = ka1a · kv · nIκB ·NFκB − ke2a · nIκB NFκB −

−kd1a · nIκB NFκB − c5a · nIκB NFκB (5.6)

˙IKKn = kp · (KNN − IKKn− IKKa− IKKa+)−

(TNFα > r) · TNFα · ka · IKKn (5.7)

˙IKKa = (TNFα > r) · TNFα · ka · IKKn−

ki · IKKa− ks1 · IKKa
(1 + IKKa+/S)2

+ ks2 · IKKa+ (5.8)

˙IKKa+ =
ks1 · IKKa

(1 + IKKa+/S)2
− ks2 · IKKa+ (5.9)
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Figure 5.1: NF-κB nuclear localization in response to step and ramp TNFα activation.
(A) Single cell response (color) to 10 ng/ml TNFαstep induction (yellow). Mean NF-κB
response is in black. (B) Single cell response (color) to 10 ng/ml TNFαramp induction
(yellow). Mean NF-κB response is in black. (C) NF-κB response of 50 cells to step and
ramp TNFα activation shows fast and strong initial peak response to step relative to ramp
induction.
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Figure 5.2: Amplitude and timing statistics of initial peak NF-κB response. (A,B) Am-
plitude of initial NF-κB response is greater for step TNFα activation with increased vari-
ability among cells relative to ramp activation. Higher concentration of TNFα results in
higher amplitude response. The small difference between ramp responses between differ-
ent TNFα concentrations is possibly due to much longer ramp time for the 10ng/ml TNFα
concentration (5.8hrs vs 3.1hrs). (C,D) Timing of initial peak NF-κB response is signifi-
cantly slower in response to ramp TNFα activation. Higher concentration of TNFα leads
to faster and less variable timing of NF-κB response.
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Figure 5.3: NF-κB model with simulated single cell nuclear NF-κB trajectories. (A) Sim-
ple NF-κB model is characterized to well known negative feedback loop associated with
IκB binding and sequestering NF-κB molecules in the nucleus. Activation of NF-κB was
modeled through TNFα threshold activation of IKK complex, which exhibits two differ-
ent active states that target IκB for degradation. The IKKa+ state has negative feedback
and exhibits stronger IκB degradation that IKKa state. The different states allow for NF-
κBactivation that is independent of initial TNFα concentration. The model consists of 9
ODEs and 30 parameters with explicit delay in IκB production. Simulated single cell nu-
clear NF-κB trajectories (green) in response to step (B) and ramp (C) TNFα input (blue)
are similar to the experimental trajectories (Fig 5.1A) (mean of 500 simulated trajectories
is in black).
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Figure 5.4: Extrinsic noise in the model recapitulates experimental amplitude and timing
statistics with simulated initial peak NF-κB response. (A,B) Qualitatively the model is able
to recapture both the amplitude (A,B) and timing (C,D) of initial NF-κB response. Unlike
the experiment, the deterministic trajectories allow us to capture much lower amplitude
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to explain the broader initial peak time distribution of NF-κB response to ramp TNFα
activation.
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Figure 5.5: Secondary peak amplitude response distribution. (A) The amplitude of the
secondary peak response shows much less separation for different levels of TNFα and
induction profiles. The slight differences could be accounted for by measurement differ-
ences between associated with experimental setup. (B) The model supports the claim that
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Chapter 6

Accurate Information Transmission in

Dynamic Biochemical Signaling

Networks

6.1 Introduction

Stochasticity inherent to biochemical reactions (intrinsic noise) and variability in

cellular states (extrinsic noise) can degrade information transmitted through biochemical

signaling networks. Using a novel algorithm we analyzed the ability of temporal signal

modulation, i.e. dynamics, to reduce noise-induced information loss. In three signaling

pathways, Erk, Ca2+, and NF-κB, considering response dynamics reveals significantly

higher information transmission capacities than when these responses are reduced to

static signals. Theoretical analysis using information-theory formalism identified a key

role for dynamics in overcoming extrinsic noise in signal transduction. Numerical sim-

ulation and experimental measurement of information transmission in the Erk network

under partial inhibition confirm our theoretical predictions and show that signaling dy-

namics mitigate, and can potentially eliminate, information loss due to extrinsic noise.

By curbing the information-degrading effects of cellular variability dynamic responses

92
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substantially increase the accuracy of information transmission in biochemical signaling

networks.

The role of biological signaling networks is to reliably transmit specific informa-

tion about the extracellular environment to multiple intracellular downstream effectors,

allowing the cell to adjust its physiological state to changing conditions. The stochastic-

ity of molecular interactions (a.k.a noise in biological systems) can interfere with signal

transduction and degrade the transmitted information. How well signaling networks can

perform their core functions in the presence of noise is a fundamental question in signal

transduction. Information-theoretic approaches allow the estimation of the information

transmission capacity of noisy biochemical networks16;116;147;140;30;29;137;146;91;117;54;20;13.

Previous application of such method to the analysis of signaling networks suggested that

due to noise, cells lose most of the information about the concentration of ligands to the

extent that they can only reliably identify the presence of an activating ligand20;142. The

suggestion that noise degrades most of the information about the activating ligand was

surprising given the demonstrated ability of key signaling hubs to differentially respond

to multiple classes of ligands60;121;110;54, which indicates higher than binary information

transmission capacity. Furthermore, the recent application of an optogentic tool to mea-

sure single-cell dose responses has shown high precision in cellular Erk response that

persists over multiple hours138. Therefore it is unclear to what extent does noise actually

limits the information transmission capacity of a biochemical signaling networks.

6.2 Results

One possible resolution of these conflicting observations is based on the fact that

the information-theoretic analyses of signaling networks so far have solely been based

on a scalar static measurements done at a single time point, whereas in many cases the

information on activating ligands is encoded using a multivariate vector that contains

the single cell response at multiple time points60;121;54;111. Therefore, it is plausible that

the vector dynamic response has higher information transmission capacity than the pre-
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vious estimates based on singe time point measurements. To test this hypothesis, we

performed dynamical single cell measurements of three key signaling pathways (Fig-

ure 6.1): Erk activity (Figure 6.1C) as reported by the EKARev FRET biosensor1;72

in MCF10A cells in response to Epidermal Growth Factor (EGF), Ca2+ levels (Figure

6.1D) in MCF10A cells in response to ATP, and NF-κBactivity (Figure 6.1E) as reported

by the dynamic nucleo-cytoplasmic shuttling of EYFP-p65 in Raw264.7 cells in re-

sponse to Lipopolysaccharides. Fully automated computational image analysis allowed

us to measure the response of 910,121 cells. The large sample size was instrumental for

the analysis of high-dimensional multivariate dynamic responses. In all three pathways

there was substantial variability within the dynamic (Figure 6.1CDE) and static (Figure

6.1F) single cell responses across multiple levels of activating ligands.

To analyze the implication of noise on information loss we utilized an information-

theoretic approach to calculate the information transmission capacity of a dynamic sig-

naling network. The information transmission capacity (also referred to as channel ca-

pacity24) can be measured through the calculation of the maximal mutual information

between the measured response and the activating ligand level. To calculate the mutual

information of the dynamic response, we developed a new estimation algorithm that al-

lowed us to calculate the mutual information between a multivariate response (a vector)

and the activating ligand (a scalar). The algorithm uses continuous multi-dimensional

response data and is based on the estimation of the conditional probability density for

each cells response using k-nearest-neighbors approach. Using our new algorithm we

estimated the information transmission capacity of the dynamic response and several

types of static responses. For single time point static responses we saw that the trans-

mission capacity (< 1 bit) is indeed similar to what was found previously20;142 (Figure

6.2A) for all single time point estimates. However, in all three pathways, the trans-

mission capacity increases for a multivariate dynamic response (Figure 6.2B). Over-

all, across all three signaling pathways, the dynamic response had significantly higher

information transmission capacity than several possible static responses (Figure 6.2C,

p-value < 0.05 for all comparisons).
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Figure 6.1: Single cell measurement of the dynamic response of Erk, Ca2+ and NFkB. A.
Overview of single cell data analyzed in this work. B. Examples of single cell response
dynamic trajectories. CDE. Temporal histograms of several representative dosages for Erk
(C) Ca2+ (D) and NFkB (E) where the intensity of color reflects the probability density of a
cellular response at that magnitude at that time point. The scale of the y-axis in B and CDE
is the same for each pathway. The Arbitrary Units represent the FRET/CFP ratio reported
by the EKARev Erk biosensor (C), the nuclear intensity of Ca2+ indicator dye Flou-4 (D),
and the ratio of nuclear to cytoplasmic localization of an EYFP-p65 reporter (E). F. dose
response curves of maximal response in the three signaling pathways.

To elucidate the origins of the enhanced information transmission capacity of

dynamic signaling response we developed a mathematical theory using information the-

oretic formalism (Selimkhanov et al., in preparation). The key advancement of our the-

ory is that it explicitly accounts for the differences between the information-degrading

effects of intrinsic and extrinsic noise sources in the context of multivariate responses.

Intrinsic noise adds to the uncertainty in all dimensions (i.e. time points) independently

from each other. In contrast, extrinsic noise components are constrained by the signaling

network that generates the dynamics. Therefore the fluctuating components generated

by extrinsic noise are deterministically dependent on one another. As a result, intrinsic
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Figure 6.2: Information transmission capacity of static and dynamic Erk, Ca2+ and NFkB
responses. A. Information transmission capacity calculated from static univariate response
distribution based on all single time point measurements. B Information transmission ca-
pacity calculated from multivariate dynamic responses as a function of the dimension of
the multivariate vector. The multivariate vector was subsampled using a uniform grid cen-
tered on the middle time point. C Comparison of the multivariate vector (V) measurement
to several univariate and bivariate responses: max response amplitude (A), max response
time (T), max rate of response (D), ratio of max response amplitude to initial response am-
plitude (R). Errorbars are s.e.m from 6 (4) biological replicas for Erk (Ca2+) and jackknife
standard deviation for NFkB (5 iterations). The multivariate vector was significantly higher
than all univariate measures (p-values < 0.05, all comparisons).

and extrinsic noise sources have different effects on the information transmission ca-

pacity of multivariate responses. In the case of intrinsic noise, additional independent

measurements only contribute logarithmically to the overall information due to simple

ensemble averaging (in accord with earlier findings by Cheong et al.20). In the case of

extrinsic noise, dynamical measurements can provide complete information about the a
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priori uncertain internal state of the cell and therefore lead to a substantial gain in the

information about the activating ligand. Consequently, while an infinite number of mea-

surements are required to completely eliminate information loss due to intrinsic noise,

complete elimination of the information loss due to extrinsic noise only requires that the

effective dimension of the dynamic response (number of linearly independent response

measurements) is higher than the number of independent uncertain parameters which

determine the dynamics of the signaling network. Figure 6.3A shows how the increase

of response dimension allows cells to overcome the degrading effects of intrinsic and

extrinsic noise sources.

To test our analytical theory and demonstrate the ability of signaling dynamics

to overcome extrinsic noise we used computer simulations of Erk responses based on a

published model130. The mathematical model recapitulated the experimental data on Erk

dynamics ( Fig. 6.9) and allowed us to create Erk response distribution resulting solely

from extrinsic noise. Our theoretical analysis predicts that the multivariate dynamic

response can completely overcome the information loss that results from introduction

of extrinsic noise. To test this prediction, we created sets of simulated Erk trajectories

given an increasing number of input levels when the model parameters for Erk and Mek

varied according to uniform distribution (+/ − 20% mean value). The simulation re-

sults were used to calculate the mutual information between Erk response and activating

ligand. Our analysis (Figure 6.3B) supports the analytical prediction and shows that

indeed the dynamic multivariate response can transmit the complete information on the

activating ligand. In contrast, the information transmission capacity of a univariate re-

sponse based maximal Erk levels saturated and therefore was unable to faithfully trans-

mit the complete information about activating ligand. An intuitive demonstration for the

limitation of univariate response and the ability of multivariate response to overcome

extrinsic noise is shown in Figure 6.3CD. Figure 6.3C shows the simulated time series

of Erk pp for two input levels of EGF with a single parameter Mek randomly chosen

from a uniform distribution (+/ − 20% mean value). Superficially, the trajectories ap-

pear overlapping, but in fact, they are completely separable via the procedure known
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as embedding123. Plotting the frequency of Erk-pp at t = 9 and t = 24 minutes on a

two-dimensional plane (Figure 6.3D) shows that since there was only a single parameter

that was varied, the responses to a single input level lie on a one dimensional manifold

within the two-dimensional embedding space. The two one-dimensional manifolds for

different inputs are completely separated from each other (inset), but overlap consid-

erably in any one-dimensional projection. This simple example demonstrates how the

extrinsic variability of a single parameter can be completely eliminated with only two

time points.

The ratio of desired to spurious responses (also known as the signal to noise

ratio, or SNR) is an important property of communication channels and signaling net-

work. The mutual information between the input strength and the response is generally

determined by the systems SNR. But on a more quantitative level, the mutual informa-

tion depends on the properties of noise (intrinsic vs. extrinsic) and the type of response.

Our analytical theory describes mutual information for three different types of responses

as a function of SNR: (1) scalar responses that do not distinguish between intrinsic and

extrinsic noise, (2) redundant vector responses (repeated measurements) that can only

reduce intrinsic noise, and (3) dynamic responses that combine all the benefits of redun-

dant measurements with very efficient mitigation of extrinsic variability. To test these

results experimentally we varied the SNR in the Erk network using partial inhibition of

the Erk kinase MEK using six different dosages of the inhibitor U0126. At each MEK

inhibitor level we measured Erk response to eight EGF levels. Total 48 conditions were

measured in four biological replicas. At each MEK inhibitor level we calculated the

mutual information and the SNR using the single cell responses. Overall Figure 6.4 is

based on the single cell response of 535,107 cells overall. The theoretical estimate of

the mutual information for the static response, which only needs the overall SNR, is in

very good agreement with our experimental measurements. The theoretical prediction

of mutual information for the redundant case additionally requires the knowledge of

the ratio of intrinsic to extrinsic noise (IER). IER was estimated in two separate ways:

(1) by quantifying the fluctuations in the later (quasi-stationary) portion of the response
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Figure 6.3: Theoretical decomposition of information loss caused by intrinsic and ex-
trinsic noises. A graphical representation of the analytical expression for the gain from
overcoming intrinsic (cyan) and extrinsic (magenta) noise sources obtained form random
systems with three parameters. B information transmission capacity of dynamic (blue) and
static (maxmial response, green) calculated based on computational model of Erk where
only extrinsic noise contributed to cell response variability. C Example of Erk trajectory
variability for two different inputs levels (red and blue). Variability was generated using
a normal distribution of a single parameter, Mek concentration. D Two dimensional his-
togram (center) and marginal distributions (left and bottom) for the two input levels (shown
in red and blue) at two time points (T = 9 & 24min) from the trajectories shown in C. Since
only a single parameter was varried, the responses vary on a one dimensional manifold. As
a result, while the univariate marginal distributions show substantial response overlap, the
two dimensional distribution shows completely seperated response levels (inset).
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time series of our measured Erk data ( Fig. 6.13A). (2) Using the data from Toettcher

et al.138 that performed repeated measure of a single cell response ( Fig. 6.13A). The

predicted mutual information based on redundant responses using either of the IER es-

timates are significantly below the experimentally measured values. On the other hand,

the measured mutual information are in good agreement with the values predicted from

the dynamic model that was based on an Erk model and required additional estimation

of the effective number of unobserved system parameters ( Fig. 6.10). Overall this anal-

ysis demonstrates that the information gain from multivariate measurements is indeed

the direct result of the dynamic nature of Erk response.
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Figure 6.4: Measured information gain is a result of Erk dynamics ability to mitigate ex-
trinsic noise. Experimental measurement of the mutual information between Erk response
and EGF measured as a function of the response magnitude to noise ratio. Each pair of
markers (dot and cross) is based on calculations of SNR and mutual information from the
(dynamic and static) responses of 18,500 cells from an 8-well dose response experiment.
Overall 29 experiments that were done under six levels of the MEK inhibitor U0126 are
shown that included total of 535,107 single cells responses. Theoretical predictions of the
mutual information as a function of SNR for three types of responses: static scalar (red
line), redundant measurements where the multivariate response has no dynamics (dark and
light blue lines) calculated based on two independent estimates of IER, and dynamic re-
sponse (orange) that can mitigate both intrinsic and extrinsic noise.
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6.3 Discussion

The robustness of biological systems is epitomized by their ability to function

in the presence of large uncertainties145;8. A major source of uncertainty is the vari-

ability in cellular states, e.g. protein concentration within individual cells. We showed

that signaling dynamics allow biochemical networks to mitigate this major source of ex-

trinsic noise and thereby maximize the information transmission capacity of signaling

networks. Our estimates for the information transmission capacities should be consid-

ered as lower bounds since part of what we may refer to as intrinsic noise may in fact

be a result of experimental imperfections. As a result, the intrinsic to extrinsic ratio

may be lower than our estimates which would only further support the overall claim that

dynamic response increases the information transmission capacity. Furthermore, the in-

formation about the input ligand may be encoded in the dynamics of multiple signaling

molecules. While the theory and observations presented in this work focused on the

information transmission capacity of the dynamics of a single signaling molecule, the

extension of our results to the case of multiple signaling molecules responding to the

same ligand is straightforward. It is important to note that not all of the information

contained in the multivariate dynamical responses may actually be used by cells. Yet,

since reliable information transmission is a fundamental function of cellular signaling

networks, it is plausible that evolutionary pressures shaped the cellular machinery to

maximize the reliable decoding of multivariate dynamic signals.

6.4 Information transfer estimation from experimental

data

6.4.1 Algorithm derivation

To derive the algorithm for estimation of information transfer, we first consider

the type of experimental data that we have acquired, which will guide our general ap-
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proach. In our signal transduction networks, the input signal S is defined by m discrete

levels of extracellular ligand concentration (S = [s1, s2, ..., sm]). For each input signal

si we have ni output protein trajectories (Ri = [ri1, ri2, ..., rini
]), with each trajectory

occupying a single point in continuous Euclidean space of dimension d, where d is the

number of time points in each output trajectory. Combined, we have N =
∑m

i ni tra-

jectories in our response R array. The general breakdown of the data is as follows:

S =



s1

s2
...

si
...

sm


, R =



R1

R2

...

Ri

...

Rm


, si → Ri =



ri1

ri2
...

rij
...

rini


, rij = [rij,1, rij,2, . . . , rij,d]

To estimate the information transfer (I) between an input (S) and an output (R)

using well known formula

I(R;S) = H(R)−H(R|S). (6.1)

we need to calculate Shannon entropies H(R) and H(R|S). The general scheme of our

approach is shown in Fig 6.5. First, given that our data is continuous, we need to define

how we will estimate these entropies. For a continuous probability density f(x) of some

observable X , the Shannon entropy is defined as differential entropy

Hdiff(X) = −
∫ ∞
−∞

f(x)log2(f(x))dx. (6.2)

Following change of variable of integration, Equation 6.2 becomes

Hdiff(X) = −
∫ 1

0

log2(f(x))dy. (6.3)

where y =
∫ x
−∞ f(t))dt is the cumulative probability density. We can estimate y

by the cumulative probability distribution of Nx observations using



103

C(R; S) = max
Q

I(R; S) { ∑m
i= 1 qi = 1
qi ≥ 0

Q = [ q1, q2, ..., qm]

5. Information transfer

f (R = rij|S = sw) =
k

NwVdz(R = rij|S = sw)d
k

1. Estimate probability density (PD) using KNN estimator

f (Ri = rij|S = si)
2. Calculate conditional PDs

f(R = rij) =
m

∑
w= 1

qw f(R = rij|S = sw)

2. Calculate non-conditional PDs

Hdiff (R|S) = −
m

∑
i= 1

qi
ni

ni

∑
j= 1

log2( f(Ri = rij|S = si))

3. Calculate conditional entropy

Hdiff (R) = −
m

∑
i= 1

qi
ni

ni

∑
j= 1

log2( f(R = rij))

3. Calculate non-conditional entropy

I(R; S) = H(R) − H(R|S)
4. Mutual Information

Figure 6.5: General scheme for estimation of information transmission based on experi-
mentally obtained conditional responses.

Hdiff(X) = −
Nx∑
j=1

δjlog2(f(xj)), (6.4)

where δj is the probability of observing xj , P (X = xj).

Using Equation 6.4 as our basis, we will now illustrate how to obtain Hdiff(R|S)

and Hdiff(R), given that our experimental data only contains conditional probabilities of

a responses.

For the conditional case, Hdiff(R|S), since all ni responses in Ri are equally

likely, δj = 1
ni

, we can estimate probability density of a single response rij directly

from all the other responses to S = si,

Hdiff(Ri|S = si) = −
ni∑
j=1

1

ni
log2(f(Ri = rij|S = si)). (6.5)
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Here f(Ri = rij|S = si) represents the probability density of response rij in

Ri given all the other responses ri (in Ri) to the signal S = si. We will explain how

to estimate f(Ri = rij|S = si) later in the derivation. With the probability of a given

signal, qi = P (S = si), we can then sum the conditional entropies of each signal to get

overall conditional entropy,

Hdiff(R|S) =
m∑
i=1

qiHdiff(Ri|S = si) = −
m∑
i=1

qi

ni∑
j=1

1

ni
log2(f(Ri = rij|S = si)).

(6.6)

The case of estimating Hdiff(R) requires special attention, since we do not have

access to non-conditional probabilities of responses. The difficulty arises from the fact

that our estimate of non-conditional density of a single response, f(R = r) is dependent

on the probability of the input signals that generated all other responses. One approach

is to estimate probability density that a given response r occurred in response to a given

input signal (sw), for each of the signals in S, by effectively placing that response into

Rw and estimating the probability density for r is if it were also a response to sw. Us-

ing total probability, for every response r in R, we can estimate the probability density

within each set of responses Rw and sum over m such densities multiplied by the prob-

ability qw of the signal that generated responses in Rw, as follows

f(R = r) =
m∑
w=1

qwf(R = r|S = sw). (6.7)

Plugging 6.7 into 6.4, we get

Hdiff(R) = −
m∑
i=1

ni∑
j=1

δijlog2(f(R = rij)). (6.8)

The key difference between f(Ri = rij|S = si) and f(R = rij), is that the

former calculates the conditional probability density of a response among all other re-

sponses to the same signal, while the latter estimates non-conditional probability density

of a response combining probability theory and conditional probability density of the

response belonging to each of the subsets of responses Ri. To get δk we must account
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for the different probabilities associated with observing responses from different input

signals and the number of responses ni obtained for each input signal:

Hdiff(R) = −
m∑
i=1

qi
ni

ni∑
j=1

log2(f(R = rij)). (6.9)

Now that we have formulas for Hdiff(R) and Hdiff(R|S), we need to estimate the

probability densities f(R = r|S = si) in 6.7 and f(Ri = rij|S = si) in 6.5. This can

be accomplished with the k-nearest neighbor (KNN) estimator,

f(xj|X) =
k

NxVdz(xj|X)dk
(6.10)

where

Vd =
π

d
2

Γ(d
2

+ 1)
(6.11)

is the the volume of a unit sphere of dimension d (also dimension of xj), Nx is the

number of xj in X , and z(xj)k is the Euclidean distance to the kth nearest neighbor in

X from xj (loftsgaarden quesenberry 1965).

Applying this estimator to Equations 6.5 and 6.7, we get

Hdiff(R|S) = −
m∑
i=1

qi
ni

ni∑
j=1

log2(
k

niVdz(rij|Ri)dk
). (6.12)

Hdiff(R) = −
m∑
i=1

qi
ni

ni∑
j=1

log2(
m∑
w=1

qw
k

nwVdz(rij|Rw)dk
) (6.13)

where z(rij|Ri)k is the distance from response rj in Ri to the kth nearest neigh-

bor in Ri, while z(rij|Rw)k is the distance from response rij in Ri to the kth nearest

neighbor in Rw ( Figure 6.7).

Without the knowledge of qi, we are unable to estimate the information transfer

I(R;S) using Equations 6.13 and 6.12. However, the maximum information transfer

(C) can be calculated with

C(R;S) = max
Q
{I(R;S)}, (6.14)
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rij

 

R i

R w

Figure 6.6: Representation of k-nearest neighbor calculation for k = 5. The blue circle
radius is the distance to the fifth closest neighbor within the same input response repre-
sented by blue points. The green circle radius is the distance to the fifth closest neighbor to
a different input response (green points).

where Q = [q1, q2, ..., qm], such that
∑m

i=1 qi = 1 and qi ≥ 0 (Elements of

Information Theory, 2nd ed.). This corresponds to the maximum possible informatin

transfer between input S and output R.

6.4.2 Information transfer estimate validation

To test the accuracy of our algorithm, we first calculated the difference between

our entropy estimate of a multivariate Gaussian distribution (5000 samples) and the

exact analytical value of the entropy ( Figure 6.7 A). For k = 10, the KNN density

estimate differs by less than 5% from true value of probability density of a multivariate

Gaussian distribution of up to dimension d = 20. To calculate the maximum informa-

tion transfer C, we used fmincon function in Optimization ToolboxTM (MATLAB R©)

to optimize over possible qi. Using our algorithm (k = 10), we calculated C of two
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unit-variance Gaussian responses (5, 000 samples each), for increasing separation be-

tween their means ( Figure 6.7 B,C red curve). For comparison, we also used exact

values for entropies to calculate C, showing little difference between our method and

the exact information transfer C ( Figure 6.7 C blue curve). In addition, we looked at

how well our method does in the case of different number of responses to individual

signals as well as different variance in the distribution of responses to different signals

( Fig. 6.7D,E). In all cases, our algorithm does very well relative to true probability

densities of responses. Furthermore, we compared our ”bin-less” algorithm in the case

of one dimensional Gaussians against ”binned” algorithm described by Cheong et al.,

for increasing separation between two Gaussians, again finding very comparable results

( Fig 6.8A).

To correct for sample size bias, we adapted jackknife sampling procedure similar

to Cheong et al.20. Specifically, we computed information transfer (C) for sampled

fractions of the data (60%− 100%). Then, plotting (C) relative to the inverse of sample

size, we fitted a straight line to obtain the y-intercept corresponding to the information

transfer for infinite sample size ( Fig. 6.8B).

6.5 Additional calculations for model fitting

6.5.1 Erk model simulations

For numerical simulations, we adopted ODE model of Erk signaling network

from Sturm et al.130. The model incorporates dynamics from RasGTP through Raf and

Mek down to Erk phosphorilation. We used the input concentration of RasGTP as a

proxy for extracellular EGF, varying its value over several orders of magnitude. The

early dynamics of ERKpp generated by the model closely resemble the dynamics of

FRET signal recorded in experiments (Figure 6.9). Using this model, we were then able

to test some of the results predicted by the earlier discussed theory.



108

Simulations with extrinsic noise

To illustrate the effect of using multi-dimensional measurements to eliminate the

contribution of extrinsic noise to the information transfer of the system, we calculated

MI using model simulation trajectories of ERKpp as the response and the input RasGTP.

The range of input RasGTP (2500 to 22500) was chosen to minimize saturation at the

both ends of response. Except for ERK and MEK, model parameter values were kept

consistent with Strum et al.for all simulations. To generate extrinsic noise we randomly

sampled ERK and MEK values from uniform distributions (±20%) centered around the

nominal values presented in Strum et al.. The model was allowed to reach a steady

state with the chosen ERK and MEK parameters at the lowest value of RasGTP (2500),

before applying inducing amount of RasGTP. The model was simulated for 30min. As

the number of input levels of RasGTP within the input range increased, we found that the

multi-dimensional measurement of ERKpp (0 : 3 : 30min) resulted in MI equivalent

to the number of input levels (blue curve in Fig 6.3B). In stark contrast, the single

measurement MI shows a saturation around 2 bits (green curve in Fig 6.3B), which

is consistent with theoretical prediction that at least 3 measurements are required to

completely remove extrinsic noise.

To further demonstrate the underlying principles that allow for elimination of

extrinsic noise, we plot 50 ERKpp trajectories generated from two nearby input val-

ues of RasGTP (Fig 6.3C). The overlap between these trajectories might suggest that

it would be practically impossible to distinguish between the two input signal values.

Furthermore, considering two different time points (green lines), this is exactly the case

given the overlap between ERKpp response values at those time points (left and bottom

1-D histograms in Fig 6.3D). If we consider those two points together, however, we can

clearly see a separation between the two input levels as the 2-D histogram in Fig 6.3D

indicates.
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Fitting vector MI vs SNR data

To fit dynamic Erk response experimental inhibition data in Figure 3B (green

filled circles), we applied theoretical description of mutual information and SNR (see

Section IIC: Extrinsic and intrinsic noise) to our Erk model. We calculated sensitivi-

ties of Erk response at 10 equally spaced time points on the trajectory with respect to

the signal (Ras GTP) and 7 model protein parameters (Mek, Erk, Raf, Phase1, Phase2,

Phase3, Phase4) near the middle induction level and nominal parameter values. Con-

structing Gram matrices with these sensitivities, we were then able to calculate MI as

a function of SNR. We assumed equal coefficient of variation (CV) for all parameters.

Intrinsic noise was calculated based on experimental IER ratio. Varying the number of

parameters contributing to the extrinsic noise in the model, we were able to fit the mean

MI vs SNR curve to the experimental data (Supp Fig. 6.10. For a given number of

parameters, we generated the mean MI vs SNR curve for all combinations of parame-

ters. The best fit was obtained with two parameters accounting for the extrinsic noise

in the model. This could be thought of as the number of effective system parameters

contributing to extrinsic noise that our dynamic measurements can overcome.

6.5.2 Sampling dimension for vector response

To select the time points that should be part of the dynamic response vector for

increasing dimension of the vector in Figure 4B, we used a simple strategy. For a given

time frame of the trajectory (60min for ERK, 15min for calcium, 5hrs for NF-κB) and

chosen dimension N , we selected N + 2 equally spaced response values throughout

the given time frame, removing the first and the last values. For example, for vector of

dimension 1, we chose response value at the center of the given time frame, while for

dimension 2, we chose values located at the one third and two thirds points of the time

frame (Fig. 6.11).
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6.5.3 Experimental noise analysis

Signal-to-Noise Ratio (SNR)

To calculate Erk signal-to-noise ratio (SNR), we defined the signal magnitude

σ2
r as the variance of average responses over all m input levels of EGF:

σ2
r =

1

m

m∑
i=1

((
1

m

m∑
w=1

1

nw

nw∑
j=1

rwj)−
1

ni

ni∑
j=1

rij))
2 (6.15)

Noise magnitude was defined as the average of the variances of ni responses to

a single input level of EGF:

σ2
n =

1

m

m∑
i=1

(
1

ni

ni∑
j=1

(
1

ni

ni∑
w=1

riw − rij)2 (6.16)

SNR is then σ2
r/σ

2
n.

Autocorrelation of Erk response

We performed autocorrelation analysis on Erk trajectories to gain insight into our

time sampling of the data. According to the analysis, decay of autocorrelation function

shows that on average self-correlation is lost after 11min ( Fig. 6.12). This suggests that

Erk dynamics can on average be characterized by 6 points over 60min time frame.

Intrinsic-to-Extrinsic Ratio (IER)

To calculate Erk intrinsic-to-extrinsic noise ratio (IER) from our data, we de-

fined intrinsic noise as combination of stochasticity inherent to biochemical reactions

in signal transduction and measurement noise, while extrinsic noise was defined by the

variability in individual cell states. To estimate the upper bound on the experimental

IER, we used the fact that our sampling of Erk response was faster than Erk dynamics

(Autocorrelation of Erk response), to calculate intrinsic noise. Using second portion of

Erk trajectory, where Erk levels did not change significantly between successive time
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point measurements, we estimated the intrinsic noise (σ2
ξ ) as the variance of the differ-

ences in Erk expression between successive time points (Supp Fig. 6.13 red). To get the

extrinsic noise (σ2
e ), we estimated the total noise according to equation 6.16 (Supp Fig.

6.13 cyan) for the second portion of Erk trajectory, and simply subtracted the intrinsic

noise from the total noise. The mean IER (σ2
ξ/σ

2
e ) for all experimental conditions (69)

was estimated to be 0.024.

To estimate IER from Toettcher et al.138 data, we used a slightly different ap-

proach. Using hill function fit, presented in Toettcher et al., for each cell, we estimated

intrinsic noise as variance of the differences between experimental values and the model

fit ( Fig. 6.13 red). Similarly, to get the total noise, we fit the same function to all of the

points and calculated the variance of the differences between experimental values and

the model fit (Supp Fig. 6.13 cyan). To get extrinsic noise, we simply subtracted the

intrinsic noise from the total noise. The mean ration of intrinsic to extrinsic noise was

estimated to be 1.14.
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Figure 6.7: Information transfer algorithm validation. (A) Error of our entropy calculation
for multivariate Gaussian distribution (5000samples) using k-nearest neighbor density es-
timator (k = 10) for increasing dimension.(B) Sample 2 Gaussian (2D). (C) Information
transfer C between two unit-variance Gaussian (5, 000 samples each), calculated using our
entropy estimated algorithm k = 10 (green) and exact densities (blue). The insert shows
how our density estimate compares to true density for each of the 5000 points within one
Gaussians. Vary distance between two normal distributions (N = 1000, σ = 1). Vary size
of one of the two normal distributions (µ1 − µ2 = 1.5, σ = 1). Vary sigma of one of the
two normal distributions (µ1 − µ2 = 1.5, N = 1000)
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Figure 6.9: Model simulation comparison to experimental Erk FRET trajectories. (A)
Mean response of Erk FRET sensor to persistent EGF input. (B) ERKpp response trajec-
tories from simulations of the Erk model (Strum et al) for increasing amounts of RasGTP.
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Figure 6.10: Fitting Erk model to dynamic MI vs SNR data using analytic theory approach.
We used K number of parameters and RasGTP input level as the two fitting parameters for
the model. Grey MI vs SNR curves were obtained for are all combinations of K parameters
(out of 7). Colored curves (input RasGTP level) correspond to the mean of all of those
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highlighted box corresponds to the best fit for K and RasGTP level.
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Figure 6.13: Estimate of extrinsic and intrinsic noise in Erk data. (A) Using our data, in-
trinsic noise was estimated by the mean of squared errors between successive Erk trajectory
points (red). Total noise was estimated by the mean of squared errors (cyan) between single
Erk trajectory and average of all trajectories (green). Extrinsic ratio was obtained from the
difference between total noise and intrinsic noise. The mean ratio of intrinsic to extrinsic
noise was estimated to be 0.024. (B) Using Toettcher et al.data, we fit a hill function to
the data and calculated the mean squared error between the fit for each cell (intrinsic noise)
and between the fit for all points and each cell (total noise). The IER was estimated to be
1.14
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