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ARTICLE

Revealing ferroelectric switching character using
deep recurrent neural networks
Joshua C. Agar1,2,3*, Brett Naul 4, Shishir Pandya1, Stefan van der Walt 5, Joshua Maher1, Yao Ren6,

Long-Qing Chen7, Sergei V. Kalinin 8, Rama K. Vasudevan 8, Ye Cao6, Joshua S. Bloom4 &

Lane W. Martin 1,2*

The ability to manipulate domains underpins function in applications of ferroelectrics. While

there have been demonstrations of controlled nanoscale manipulation of domain structures

to drive emergent properties, such approaches lack an internal feedback loop required for

automatic manipulation. Here, using a deep sequence-to-sequence autoencoder we auto-

mate the extraction of latent features of nanoscale ferroelectric switching from piezo-

response force spectroscopy of tensile-strained PbZr0.2Ti0.8O3 with a hierarchical domain

structure. We identify characteristic behavior in the piezoresponse and cantilever resonance

hysteresis loops, which allows for the classification and quantification of nanoscale-switching

mechanisms. Specifically, we identify elastic hardening events which are associated with the

nucleation and growth of charged domain walls. This work demonstrates the efficacy of

unsupervised neural networks in learning features of a material’s physical response from

nanoscale multichannel hyperspectral imagery and provides new capabilities in leveraging in

operando spectroscopies that could enable the automated manipulation of nanoscale

structures in materials.
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The ability to create and manipulate domain structures in
ferroelectrics allows for the control of the phase and
polarization orientation and the local and macroscale sus-

ceptibilities (e.g., electrical, thermal, mechanical, optical), thus
providing a foundation for next-generation devices1–3. Early efforts
in this regard have focused on deterministically creating desired
domain structures. In, for example, tetragonal PbZr1−xTixO3,
controlling the elastic boundary conditions has provided access to
domains spanning simple monodomain to complex hierarchical
domain structures4–6. As the field has advanced, ingenious routes,
including compositional gradients7,8, superlattice structures9–11,
orientation control12,13, and engineered octahedral rotations14,
have been leveraged to control domain structures.

The majority of this work, however, has focused on the static
creation of desired domain structures6,15–18 or functional domain
walls,19,20 and thus lacks an internal self-regulating feedback loop
required for automatic operation in functional devices. To
deterministically manipulate ferroelectric domain structures
requires the ability to measure while in operation (i.e., in oper-
ando) and automatically identify a number of features (e.g.,
polarization orientation, switching pathways, domain-wall geo-
metry). Developments in multimodal spectroscopy now allow the
acquisition of data at both the appropriate time- and length scales
required to glean such information from ferroelectric materials
using techniques such as transmission electron microscopy21,22,
scanning-probe microscopy23,24, diffraction studies25,26, etc.27

The challenge, however, is that downstream analytical approaches
which project data into a human-interpretable form remain
underdeveloped and ill equipped for the complexity and magni-
tude of the data that can now be readily produced. In turn,
despite the extensive amount of expensive experiments con-
ducted, only an infinitesimally small fraction of the data collected
is translated into knowledge.

Solving this challenge requires looking beyond the borders of
nanoscience to fields such as social analytics28,29, natural-
language processing30,31, and sentiment analysis32,33, where
computational roadblocks are pervasive. For decades, standard
practice was to develop machine-learning algorithms to create
mathematical abstractions of the data based on characteristics of
preconceived importance. Recently, the availability of massive
datasets and specifically designed hardware has enabled features
once designed by human experts to be extracted using brute-force
computation. These representation learning tools generally rely
on building architectures of simple non-linear mathematical
functions which are optimized to relate the raw data to some
information or label34–36. These so-called deep-learning-neural-
network-based approaches have set new benchmarks for many
common machine-learning tasks including image37 and speech
recognition38, language translation39, and identification of human
intention32,33. While these deep-learning approaches have begun
to make meaningful inroads in, for example, genomics40, high-
energy physics41, and astronomy42, they have yet to be suffi-
ciently embraced in experimental nanoscience43–53.

Here, we develop a sequence-to-sequence neural network to
extract inference from band-excitation piezoresponse spectro-
scopy (BEPS). To test our approach, we conducted BEPS on
tensile-strained PbZr0.2Ti0.8O3 thin films wherein strain drives the
formation of a hierarchical c/a and a1/a2 domain structure. We
develop and train a deep-learning-neural-network-based sparse
autoencoder on piezoresponse hysteresis loops to demonstrate
parity with conventional empirical-analysis approaches. We then
apply this approach to extract insight from the resonance
response which has a form too complex to be properly analyzed
using techniques common in experimental materials science.
Using the information “learned”, we identify geometrically driven
differences in the switching mechanism which are related to

charged-domain-wall nucleation and growth during ferroelastic
switching. This insight could not have been extracted using
machine-learning approaches that have been previously applied
to materials spectroscopy and provides unprecedented informa-
tion about the nature of the specific domain-structure geometries
that should be explored to enhance local and macroscale sus-
ceptibilities. Furthermore, the ability to automate the extraction
of inference regarding ferroelectric-switching mechanisms from
multichannel nanoscale spectroscopy provides the first step (i.e.,
machine-learned discrimination) that could be used to design
real-time control systems capable of creation and verification of
interconversion of functional domain structures and interfaces.
The developed approach is extensible to other forms of multi-
dimensional, hyperspectral images (wherein there is a spectra at
each pixel) which are commonly acquired in experiments such as
time-of-flight secondary-ion mass spectrometry54,55, scanning
Raman56, electron energy loss spectroscopy57,58, etc. To promote
the utilization of this approach, we provide open access to all data
and codes in the form of a Jupyter notebook59 (Supplementary
Note 1). Ultimately, this work represents an example of how
unsupervised deep learning can highlight features relating to
ferroelectric physics overlooked by human-designed-machine-
learning algorithms, and how such approaches can be adapted to
analyze hyperspectral data more broadly.

Results
Synthesis of PbZr0.2Ti0.8O3 thin films with hierarchical domain
structures. We synthesized PbZr0.2Ti0.8O3/Ba0.5Sr0.5RuO3/
NdScO3 (110) heterostructures using pulsed-laser deposition
(Methods). The resulting films have a hierarchical domain struc-
ture with a sawtooth topography on two length scales (Fig. 1a–e),
as the result of primarily out-of-plane polarized c/a/c/a [with
enhanced out-of-plane (Fig. 1b) and suppressed in-plane (Fig. 1c)
piezoresponse] and fully in-plane polarized a1/a2/a1/a2 [with
suppressed out-of-plane and enhanced in-plane piezoresponse]
domain bands. This hierarchical domain structure emerges due to
the tensile strain which drives the c/a and a1/a2 domain variants to
be nearly energetically degenerate (Supplementary Note 2)6.

Band-excitation piezoresponse force microscopy. To char-
acterize the nanoscale-switching processes, we conducted BEPS
(Methods and Supplementary Note 3, Supplementary Figs. 2 and
3). Briefly, BEPS measures the piezoresponse in remanence
(across a band of frequencies near the cantilever resonance) fol-
lowing a perturbation from a bipolar-triangular switching wave-
form designed to fully switch the material. Following fitting, the
raw data from this experiment at every pixel (x, y size= 60, 60)
measures the amplitude (A), phase (ϕ), resonance frequency (ω),
and quality factor (Q) of the cantilever resonance, which are
qualitative measures of the piezoresponse, polarization direction,
stiffness, and dampening, respectively, at various voltages
(V length= 96). At the most basic level, visualization of the
switching processes can be achieved by creating movies from the
images of the signals throughout the switching process or by
plotting the response curves at a specific location or within a
predefined area (Supplementary Movie 1). Additionally, it is
common to compute at each tip position a piezoresponse loop
A cos ϕð Þ which can then be fit to a 15-parameter empirical
function. While such approaches are capable of visualizing large
differences in the piezoresponse they provide only limited
information into subtle differences of the response, which con-
tains important insight (Supplementary Note 4, Supplementary
Fig. 4). While in the raw form the data might occupy an N-
dimensional space, the information of physical significance lies on

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12750-0

2 NATURE COMMUNICATIONS |         (2019) 10:4809 | https://doi.org/10.1038/s41467-019-12750-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


a data manifold with a much lower dimensionality; however, we
have no means to predict the manifold.

Recognizing these limitations, statistical approaches of
machine learning have been applied to predict the data manifold,
thus allowing more insight to be extracted from BEPS data. To
demonstrate the necessity of the proposed deep-learning
approach, we have conducted careful analysis using linear
decomposition algorithms, including principal-component ana-
lysis and non-negative-matrix factorization, and a variety of
clustering algorithms (Supplementary Note 5–7, Supplementary
Figs. 5–7). All told, while these methods are able to identify the
most significant differences in the response, they have minimal
sensitivity to quantify subtle, yet physically significant, features.
This is at least in part due to the decoupling of the voltage (i.e.,
the time or temporal) dependence of the spectra which are viewed
as independent samples—meaning that these algorithms exclude
the history of when each data point was collected.

Inference from long–short-term memory recurrent auto-
encoder. Thus, what is required is to develop an approach that

considers the temporal dependence inherent in the data. To do
this, we developed a sequence-to-sequence deep learning neural
network based on a long–short-term memory (LSTM) recurrent
neural network (RNN) autoencoder (henceforth called the auto-
encoder) which acts as a feature extractor to derive inference
from BEPS spectra. LSTM neurons (described in Supplementary
Note 8, Supplementary Fig. 8) were chosen due to their success in
natural language processing (which is analogous in data structure
to spectra) wherein order of words (measurements) is impor-
tant60. The autoencoder architecture consists of an encoder,
which takes as an input a spectra and outputs a feature vector,
and a decoder, which takes this feature vector and returns the
input spectra (Fig. 2). By minimizing the mean-squared-
reconstruction error of the input spectra the autoencoder
“learns” a universal identity function. While building an arbi-
trarily complex identity function (where the large model capacity
assures overfitting) is a fruitless task, building an identity function
whose capacity is limited or strongly regularized can produce a
generalizable (i.e., with a limited number of characteristic vari-
ables) function capable of broader inference.

cc
/a

Topography

Lat. Amp

Vert. Amp

a

b

c

c
/a

c
/a

c/
a

a
1 /a

2

a
1 /a

2
a

1 /a
2

a
1 /a

2

d

H
ei

gh
t (

nm
)

0
0 1 2

2

4

6

Distance (µm)

c a

H
ei

gh
t (

nm
)

0
0 1

2

Distance (µm)

e

Height (nm)

Amplitude (Arb. U.)

60

Fig. 1 Surface topography of PbZr0.2Ti0.8O3 with hierarchical domain structures. a Three-dimensional tapping mode topography superimposed with
topographic information presented in nm as indicated. b, c Three-dimensional tapping mode topography superimposed with the b vertical and c lateral
piezoresponse amplitude. Color presented in arbitrary units defined by the color scale in the inset. Topographic line traces showing the surface topography
across the d c/a-a1/a2 bands (indicated by the dark-blue-dashed line in a) and e c/a bands (indicated by the dark-green-dashed line in a)

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12750-0 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:4809 | https://doi.org/10.1038/s41467-019-12750-0 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


More explicitly, the first encoding layer accepts a time series as
an input which, in this case, is the response from the 96 sequential
voltage steps. Each of the encoding layers is composed of LSTM
neurons (Nenc= 256)61 with an internal cell structure that enables
the retention of long- and short-term temporal dependencies.
During training, each layer outputs an abstract representation of
the data for each input spectra. To build more descriptive data
abstractions, it is typical to stack encoding layers (l= 3) forming
so-called deep neural networks. To minimize overfitting or
memorization, dropout (d= 20%)62 (which minimizes co-
adaptation by randomly removing some of the network
connections) was applied. The output from the encoder is then
passed to an embedding layer consisting of dense neurons
(Nemb= 16)63. This layer creates a low-dimensional representa-
tion of different characteristic responses. To make this repre-
sentation more interpretable, it is beneficial to impose sparsity
[i.e., minimize the number of non-zero activations (outputs)]. To
do this, two synergistic approaches were applied: First, we restrict
the outputs to non-negative values by selecting a rectified-linear
activation function (ReLu) (f xð Þ ¼ maxð0; xÞ). Secondly, we add
strong l1 regularization which adds an additional contribution to
the loss function proportional to the sum of the weights
λ
P

i Wij j� �
, thus only those activations which significantly

improve the model’s accuracy are non-zero (this can be visualized

in Supplementary Movies 2 and 3). The feature vector is then
passed to the decoder which is structured in an identical fashion
to the encoder [decoding layers (m= 3), each with 128 LSTM
neurons (Ndec= 128)]. The decoder takes the feature vector
and transforms it back into the original spectra, such that the
network can be optimized to minimize the loss function
composed of the mean-squared error and the l1 regularization
[ðloss ¼ 1

n

Pn
i¼1ðYi � bYiÞ2 þ λ

P
i jWijÞ, Supplementary Note 9,

Supplementary Fig. 9].
We begin by training the autoencoder to analyze the piezo-

response hysteresis loops extracted from BEPS (Methods). Since
every spectra analyzed by the autoencoder has a known pixel
position it is possible to visualize the “learned” information by
computing the output of the low-dimensional layer to form a real
space feature map. While this layer would permit an independent
feature map for each neuron, the addition of sparsity results in
most features having a null value. Here, we show two of the most
physically meaningful features (Fig. 3a, b), where the intensity of
the maps represents the degree of a “learned” characteristic
response form. To aid in the visualization of this information we
have provided a line trace of the average activation superimposed
on the average topography (Fig. 3c, d). The first feature map
(Fig. 3a) shows increased activation within the c/a bands which is
maximized on the peak side of the topographical features
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(Fig. 3c). To visualize what this activation is encoding, we use the
decoder of the autoencoder as a generator, allowing us to
manually manipulate the activation to see how this neuron alters
the piezoresponse (Supplementary Movie 4). From the generated
piezoresponse hysteresis loops, we observe an increase in the
magnitude and the squareness of the loops as we increase the
activation of this neuron, as would be expected for regions with
increasing c-like character (Fig. 3e). This suggests that the neuron
has “learned” the response associated with c domains and, since
the map has different magnitudes of response, it provides a way
to quantify the c-like switching character spatially. In total, this
reveals that the autoencoder is capable of deducing physically
interpretable inference from the data in an unsupervised fashion.
Moving on to the second feature map (Fig. 3b), we notice a
gradient in the activation which is maximized within the a1/a2
bands near the valley boundary which decreases in magnitude as
we transition towards the peak boundary (Fig. 3d). Visualizing
the loops as we increase this activation reveals a decrease in the
magnitude and the emergence of an intermediate step in the
piezoresponse loop (black arrow, Fig. 3f). This intermediate step
is related to a two-step, three-state (c→ a→ c) ferroelastic
switching process6.

It is important to reemphasize that this detailed spatial
variance was not apparent using conventional machine-learning
approaches. All told, this reveals that the autoencoder is capable
of “learning” a complex identity function where each neuron
controls a physically meaningful characteristic of the

piezoresponse. Not only is the autoencoder readily able to
differentiate regions of varied response which correlate to
different domain structure variants, but it is also able to quantify
the relative response character (i.e., how “x-like” the response is)
which reveals additional complexity. This deviates from tradi-
tional approaches which generally provide only qualitative
classification of behavior.

Having proven the capabilities of this approach, we applied a
similar methodology to interpret the cantilever-sample-contact
resonance (henceforth the resonance response) wherein the form
of the response has increased complexity which complicates
statistical analysis. We show three of the most physically
meaningful non-zero components (Fig. 4), obtained following
training (Methods). To use the extracted insight to understand
the physical mechanisms of response it is important to identify
the statistical distribution of the key response characteristics
“learned”. The first selected feature map (Fig. 4a) shows increased
activation within the c/a bands which is maximized near the
valley boundary (Fig. 4b). If we again use this autoencoder as a
generator (Supplementary Movie 5), we observe that the
resonance has a classic butterfly-shaped loop, however, as this
activation increases there is a gradual increase in the resonance
frequency as we approach the valley boundary (Fig. 4c). If we had
followed the traditional approach of merely studying how the
piezoresponse hysteresis loops vary as we move from the peak to
the valley boundary (Fig.4d), we would have observed essentially
no change, thus leaving uncovered new physical effects.
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Moving on to the second feature map (Fig. 4e), we observe a
gradient in the activation, which is maximized near the middle of
the a1/a2 band and tends towards zero at the valley boundary
(Fig. 4f). The generated resonance loops reveal a non-traditional
shape wherein upon application of bias the material undergoes
elastic hardening before eventually softening when switching
under both positive and negative bias (marked 1 and 2,
respectively, Fig. 4g). This type of resonance behavior during
switching has been related to a two-step, three-state (c→ a → c)
ferroelastic switching mechanism6. By computing the piezo-
electric hysteresis loops, we identify that these loops have an
intermediate step which plateaus at near-zero piezoresponse
when switching under both positive and negative bias (1 and 2,
respectively; Fig. 4h). The generated piezoresponse curves reveal
that as we decrease the magnitude of this activation (i.e., traverse
the a1/a2 band from the mid-point to the valley) we observe an

increase in the prevalence (magnitude of the concavity) of this
intermediate state when switching under positive bias; however,
such a change is not evident when switching under negative bias.

Finally, the third feature map (Fig. 4i) once again shows
increased activation within the a1/a2 bands; however, the gradient
in activation goes in the opposite direction from the previous map
(Fig. 4e), in that it is maximized near the valley boundary and
decreases as we approach the middle of the band (Fig. 4j). Upon
generating the resonance (Fig. 4k) and piezoresponse (Fig. 4l)
loops, we observe an asymmetric resonance switching behavior,
wherein near the valley boundary (i.e., high activation) hardening
only occurs when switching under positive bias (marked 1). As
we move towards the peak boundary (i.e., low activation),
however, hardening during switching occurs under both positive
and negative bias (green curves, Fig. 4h). An analogous trend in
the piezoresponse concavity is observed (Fig. 4l), where the
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intermediate concavity is only observed when switching under
positive bias when near the valley boundary (marked 1); yet, is
observed under both positive and negative bias when near the
peak boundary (green curve, marked 2).

Phase-field simulations of ferroelectric switching. To under-
stand the physical significance of the features identified by the
autoencoder requires consideration of the domain structure,
geometry, and switching processes. To guide our interpretation,
we conducted phase-field switching studies (of a model film with
a c/a domain structure) under a simulated tip bias (Methods,
Supplementary Note 10, Supplementary Fig. 10). From these
phase-field studies, we can observe the polarization as well as
the local energetics during the switching process. Prior to the
switching studies, the film exists in the up-poled state where the
film has nearly uniform electrostatic energy.

Starting with the first “learned” feature, which is most
pronounced when the tip is within the c domains near the valley
boundary, we observe a square piezoelectric hysteresis loop
(Fig. 5a) and an increase in the resonance frequency of the
cantilever (i.e., an increase in the elastic modulus, Fig. 5b). From
the initial state, phase-field simulations reveal that switching at
this position results in the nucleation of a down-poled domain
(Fig. 5c, top, Supplementary Movie 6). From the electrostatic
energy, we observe a region of increased energy below the newly
nucleated domain (Fig. 5c, arrow) as a result of the head-to-head
charged domain wall which exists between the nucleated domain
and the a domain. This electrostatic repulsion, from the growing
charged domain wall, increases the local modulus of the material,
which manifests as an increase in the cantilever resonance
frequency. When applying negative bias to the tip, the bias
reinforces the as-poled domain structure resulting in an
unremarkable change in both the domain structure and local
electrostatic energy (Fig. 5d).

Shifting our attention to the second “learned” feature, which is
most pronounced at the peak of the a domains, where we observe
intermediate concavities in the piezoresponse hysteresis loop
(Fig. 5e) and elastic hardening when switching under positive and
negative bias (Fig. 5f). Phase-field simulations reveal that
switching at this location, under positive bias, results in the
nucleation of a down-poled domain (Fig. 5g, top, Supplementary
Movie 7) with a head-to-head positively charged domain wall.
Turning our attention to the electrostatic energy we observe, as
expected, a significant increase in the electrostatic energy near
this charged domain wall (Fig. 5g, bottom, and indicated by the
arrow). Thus, as the tip bias is increased, the newly nucleated
domain grows laterally along the in-plane [100] and [010]
resulting in an increase in the charged-domain-wall area. This, in
turn, increases the stiffness, which manifests as an elastic
hardening step. This hardening process continues until the finite
volume probed by the tip is purely c-like, upon which application
of further bias results in softening to saturation. When applying
negative bias to the tip at this location, we observe the nucleation
of an up-poled domain within the a domain (Fig. 5h, top). This
up-poled domain must form a tail-to-tail negatively charged
domain wall. In turn, the presence of the charged domain wall
results in an increase in electrostatic energy (arrow, Fig. 5h,
bottom) near this charged domain wall, which results in elastic
hardening and softening to saturation with an identical mechan-
ism as described for the behavior when switching under
positive bias.

Finally, focusing on the third “learned” feature, which is most
pronounced within the a domain near the valley, we observed
intermediate concavities in the piezoresponse hysteresis loop
(Fig. 5i) and elastic hardening when switching only under positive

bias (Fig. 5j). Looking at the phase-field simulations under
positive tip bias (Fig. 5k, Supplementary Movie 8), we observe the
nucleation of a down-poled domain which is identical in form to
that observed near the peak boundary within the a domain. As
expected, the positive-bias branch of the piezoresponse loop and
the resonance response have a similar form to the switching
observed near the a-domain boundary, wherein the formation of
a charged domain wall (Fig. 5k, bottom, arrow) results in an
intermediate step in the piezoresponse loop and elastic hardening.
When switching under negative bias, phase-field simulations
reveal a different switching mechanism, wherein application of
bias results in the expansion of the up-poled domain into the a
domain, however, due to the geometry the domain is nominally
uncharged (Fig. 5l). As a result, there is no evidence of either an
intermediate concavity in the piezoresponse hysteresis loop nor a
hardening step. All told, by interpreting the features learned by
the autoencoder in the context of the domain structure and
switching process we are able to identify features in both the
piezoresponse hysteresis loops and resonance response related to
the formation of charged domain walls during the switching
process, which were not identified using conventional and linear
machine learning analysis approaches.

Discussion
In summary, we demonstrate how a deep sequence-to-sequence,
LSTM autoencoder can be used to “learn” characteristic
mechanisms of response from multichannel hyperspectral BEPS
which are overlooked by classical machine-learning approaches.
We train a sparse LSTM autoencoder capable of identifying
characteristic materials responses and quantify their relative sig-
nificance with spatial resolution. The increased aptitude of this
methodology stems from the inclusion of sequential dependence
inherent in the data. Specifically, using this approach we experi-
mentally measure and visualize changes in the elastic modulus
associated with nucleation and growth of charged domain walls
which form as a result of the hierarchal domain geometry in
tensile-strained PbZr0.2Ti0.8O3 thin films. This new capability
provides a process to quantify subtle differences in switching
mechanisms, providing a route towards the fully-automated and
feedback-controlled nanoscale manipulation of domain structures
and domain-wall geometries. Furthermore, this work establishes a
new methodology capable of learning mechanisms of response
from multichannel hyperspectral imagery which could be used for
a range of existing and emerging hyperspectral imaging mod-
alities in nanoscience.

More broadly, this work demonstrates a pathway towards the
use of statistical approaches which take seemingly incon-
sequential data and, through mathematical transformations, cre-
ates observations from which meaning can be deduced. While
such approaches have been used, most of these approaches have
neglected the physical structure (e.g., symmetry, time, etc.) which
provides a foundational basis for the data and the information
which it contains. We emphasize how the sequential dependence
of experimental data can be incorporated in such models, ana-
logous concepts could be applied to include spatial position,
symmetry, and both long- and short-range order, increasing their
aptitude in inducing meaningful inference regarding materials
systems and processes. This work paves the way for spectroscopic
techniques wherein the conventional scientific methods of
designing targeted experiments aimed at a specific hypothesis are
supplanted by approaches which collect all seemingly relevant
data, which can then be used to identify a hypothesis for
empirical testing. Furthermore, this ability to automate the for-
mation of fingerprints of physical processes from multichannel
spectroscopies provides increased capabilities towards the
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controlled manipulation of structure–properties in an automated
and self-regulating manner not possible with human-in-the-loop
processes.

Methods
Growth of epitaxial PbZr0.2Ti0.8O3 thin films. Four hundred-nm-thick
PbZr0.2Ti0.8O3 thin films were synthesized using pulsed-laser deposition by ablat-
ing a ceramic target of Pb1.1Zr0.2Ti0.8O3 using a KrF excimer laser (248 nm, LPX
305; Coherent), in an on-axis geometry with a 60 mm target-to-substrate spacing.
The PbZr0.2Ti0.8O3 films were grown on 30 nm Ba0.5Sr0.5RuO3-buffered NdScO3

(110) single-crystal substrates which were affixed to the heater using Ag paint. The
Ba0.5Sr0.5RuO3 bottom electrodes were grown at a heater temperature of 750 °C in a
dynamic oxygen pressure of 20 mTorr, by ablating a ceramic Ba0.5Sr0.5RuO3

target (Praxair) at a laser fluence and a repetition rate of 1.8 J/cm2 and 2 Hz,
respectively. The PbZr0.2Ti0.8O3 films were grown at a heater temperature of 600 °C
in a dynamic oxygen pressure of 50 mTorr, with a laser fluence and repetition
frequency of 1.9 J/cm2 and 14 Hz, respectively. Following growth, all hetero-
structures were cooled to room temperature in a static oxygen pressure of 760 Torr
at 5 °C/min.

Band-excitation piezoresponse spectroscopy. BEPS studies were performed at
the Center for Nanophase Materials Science (CNMS) at Oak Ridge National
Laboratory (ORNL) using a custom Cypher (Asylum Research) atomic force
microscope controlled with a Labview- and Matlab-based controller. A bipolar-
triangular-switching waveform was applied using a conductive scanning-probe tip
in a square grid measuring the cantilever response caused by the band-excitation
waveform in the time domain. Following processing with a fast-Fourier transform,
the cantilever resonance response was fit to a simple harmonic oscillator model,
allowing the extraction of piezoresponse amplitude, phase, cantilever resonance
frequency, and dissipation. The use of band excitation for these measurements is
crucial as it minimizes effects from changing tip–sample contact resonances that
can alter the observed response, enabling consistent measurements of piezo-
response throughout multiple dimensions (that is, frequency, spatial, voltage, time,
and so on; Supplementary Note 3). All measurements were carried out using Pt/Ir-
coated probe tips (NanoSensor PPP-EFM). Switching spectroscopy measurements
were measured at a resonance frequency of ~132 kHz (with a bandwidth of
60 kHz). The DC voltage was chosen such that the piezoelectric hysteresis loops
were saturated in both the positive and negative direction. The local piezoresponse
was measured at remanence (following a dwell time of 0.5 ms), with a BE waveform
of sinc character (peak-to-peak voltage of 1 V).

Neural-network structure and training. The LSTM RNN autoencoders were built
in Keras using the Tensorflow backend. The network trained on the piezoresponse
data had four encoding and decoding layers each of size 128. Dropout within the
encoding and decoding layer was fixed at 20%. The low-dimensional embedding
layer had a size of 16 and l1 regularization (λ= 1 × 10−5). Batch-normalization
layers were included prior to and following the low-dimensional embedding layer.
The network was trained using Adam as an optimizer with an initial learning rate
(L= 3 × 10−5) for 16,000 epochs. For the analysis of the resonance data the net-
work used was identical to the network used for the piezoresponse data with the
exception that the network was trained for 22,000 epochs. Training was completed
using a local workstation equipped with a NVIDIA Titan X graphics processing
unit (GPU) or on the Savio supercomputer cluster equipped with GPU nodes with
NVIDIA K80 GPUs. To accelerate the training of the generated responses formed,
after training the autoencoder sufficiently, the weights through the low-
dimensional layer were fixed and the decoder was trained for one million epochs
without dropout.

Phase-field simulations. A three-dimensional model was applied to simulate the
evolution of ferroelectric polarizations Pi ði ¼ 1; 2; 3Þð Þ of the PbZr0.2Ti0.8O3 (PZT)
thin film by numerically solving the time-dependent
Landau–Ginzburg–Devonshire (LGD) equations:64

∂Pi x; tð Þ
∂t

¼ �L
δF

δPi x; tð Þ ; i ¼ 1; 2; 3 ð1Þ

in which Pi is the polarization vector, x is the spatial position, t is the time, L is the
kinetic coefficient related to the domain wall mobility, and F is the total free energy
as shown below:65

F ¼
Z

V
fLand Pið Þ þ fGrad Pi;j

� �
þ fElas Pi; εij

� �
þ fElec Pi;Eið Þ

h i
dV ð2Þ

in which fLand Pið Þ, fGrad Pi;j
� �

; fElas Pi; εij
� �

; fElec Pi;Eið Þ represent the LGD free

energy density, gradient energy density, elastic energy density, and electrostatic
energy density, respectively. Details of these energy density terms as well as the
coefficients related to these energy terms are collected from literature.66 Here we
adopt a sixth-order polynomial expansion of Pi for fLand Pið Þ, and choose the
dielectric constant to be κ= 50 for PZT. The gradient energy coefficients are set to

be G11/G110= 0.6, where G110= 1.73 × 10−10 C−2 m4 N.67 The simulation size is a
realistic three-dimensional geometry sampled on a fine grid mesh of 128Δx ×
128Δx × 32Δx, where the grid size Δx= 1.0 nm. The film and substrate thickness
are 20Δx and 10Δx, respectively. A semi-implicit spectral method68 is used to solve
the time-dependent LGD equation, with periodic boundary conditions applied in
x1 and x2 directions, and thin film boundary conditions applied in x3 direction. The
initial structure consists of (100)a/(001)c preset domain structure. The entire thin
film is subjected to a homogeneous 0.3% tensile strain by the substrate. Electric bias

is modeled using a Lorentz function φ x; yð Þ ¼ φ0γ
2

r�að Þ2þγ2
where r is the distance from

the tip and γ is the half-width at half-maximum (HWHM) of applied bias φ0

� �
.

The tips are located near the c/a domain boundaries as described in the main text.
The average polarization in a 5Δx × 5Δx × 6Δx cuboid volume near the tip center is
collected to calculate the hysteresis loop.

Data availability
All data and analysis code is made available under the BSD 3-clause license at https://
github.com/jagar2/Revealing-Ferroelectric-Switching-Character-Using-Deep-Recurrent-
Neural-Networks. The source code can be obtained and cited using https://doi.org/
10.5281/zenodo.3405660. The raw data can be obtained and cited using https://doi.org/
10.5281/zenodo.1482091. This manuscript is also available as an executable Jupyter paper
at https://bit.ly/2nCLGDC.
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