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ARTICLE INFO ) _ ) o S )
In birds, male song has been extensively studied, but female vocalizations have received little attention.

Females of several North American species produce a unique vocalization, the nest departure call (NDC),
upon leaving nests. Producing NDCs has costs due to acoustical properties that make nests easy to locate
by predators. Thus, NDCs must also have benefits that balance or outweigh costs, and females should
modulate call production as costs and benefits change. We explored whether female song sparrows,
Melospiza melodia, adjust calling rate to reflect differential costs and benefits of calling induced by male
presence, male quality (measured by body mass and song complexity), nest predator presence and nest
height. Results suggest that calls benefit females by promoting male nest guarding and that females
display adaptive plasticity in call production. Specifically, calling rate increased when the male was
present, and male nest guarding increased when females gave an NDC. Females called less in the
presence of a model nest predator, probably because the perceived costs of predator attraction out-
weighed the benefits of male recruitment. Conversely, females with heavier mates called more, perhaps
because the efficacy of male nest guarding increases with mass. In addition, females called more from
elevated nests in the presence of the predator and decreased calling later in the day. Male song
complexity failed to predict calling rate, suggesting that this sexually selected trait does not reflect direct
benefits gained by producing an NDC. Plasticity in calling probably exists because context-appropriate
communication elevates fitness, whereas contextual mistakes in the decision to communicate result in
fitness declines.

© 2014 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
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song sparrow

The complex and prominent vocalizations of male songbirds are
the focus of extensive study (Nowicki & Searcy, 2004; Searcy &
Andersson, 1986). However, the subtler vocalizations of females
have received little attention (Gorissen & Eens, 2005; McDonald &
Greenberg, 1991). One unique type of female vocalization that has
been recorded in at least 15 species of North American passerines is
the nest departure call (NDC). NDCs are initiated upon leaving the
nest and have a characteristic acoustical structure (broadband
frequency, short note duration and repetitiveness) that makes nests
easy to localize and also acts to project flight trajectory (McDonald
& Greenberg, 1991; Fig. 1).

Passerine nests are vulnerable to predation, and nest depreda-
tion has played a pivotal role in driving the evolution of species-
level differences in incubation behaviour (Conway & Martin,
2000; Martin, 1995; Martin, Scott, & Menge, 2000; Ricklefs, 1969).
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Thus, the adaptive function of highly conspicuous calls, given from
nests and open to exploitation by predators, evades easy explana-
tion. Indeed, empirical research has demonstrated that giving NDCs
can increase nest predation rates (McDonald & Greenberg, 1991;
Yasukawa, 1989) as well as parasitism by brown-headed cow-
birds, Molothrus ater (Clotfelter, 1998). Thus, NDCs must have
benefits that override these costs. Previously hypothesized benefits
of calling include recruiting male vigilance for nest guarding during
female absence (McDonald & Greenberg, 1991; Yasukawa, 1989),
decreasing harassment of females by males that may mistake them
for territorial intruders (Beletsky & Orians, 1985; Edwards, 1987,
McDonald & Greenberg, 1991), advertising female receptivity,
discouraging settlement of other females on the territory, dis-
tracting predators (McDonald & Greenberg, 1991) and recruiting
males to mate-guard during incubation off-bouts (Fedy & Martin,
2009; McDonald & Greenberg, 1991).

However, due to the paucity of work on this behaviour, the
actual functions of these calls and the associated costs and benefits
remain poorly understood (McDonald & Greenberg, 1991). More-
over, communication systems have evolved to elevate fitness, but
signalling in the wrong context may result in fitness declines (Zuk &
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Figure 1. Nest departure call of a female song sparrow, shortly following a male song. Note the characteristic broadband frequency, short note duration and repetitiveness of the
call. Nest departure calls and nest departures are often associated with the male singing in close proximity to the nest.

Kolluru, 1998; Zuk, Simmons, & Rotenberry, 1995). Thus, individuals
should exhibit phenotypic plasticity in calling behaviour (Lima &
Dill, 1990; McNamara & Houston, 1996; Stearns, 1989). However,
no study has comprehensively investigated whether females adjust
calling behaviour in a context-dependent fashion to maximize
benefits and minimize costs. We address these gaps in under-
standing by addressing novel questions about the function and
context dependency of NDCs in female song sparrows, Melospiza
melodia. Our study had five primary objectives, which we outline
below.

First, we explored whether females plastically adjust NDC pro-
duction in a fashion consistent with the hypothesis that these calls
function as a signal to increase male vigilance during incubation
off-bouts. Given a male recruitment function, benefits of calling
should be high when the male is near and available to nest-guard,
but calling should have little adaptive benefit in absence of the
male, such that calling rate increases in the presence of the male.
The benefit of calling should also be manifest by an increase in male
nest-guarding behaviour during incubation off-bouts following an
NDC. Although the efficacy of nest guarding is unclear in the song
sparrow, the behaviour is well documented (Hatch, 1997;
Weatherhead, 1989), and as pointed out by Hatch (1997), it is un-
clear why the behaviour would persist if it has no potential to deter
predators.

Second, we sought to determine whether the presence of a nest
predator affects female call production. Avian nest predators have
highly developed auditory systems and may thus use NDCs to
locate nests (Eggers, Griesser, Nystrand, & Ekman, 2006; Martin,
1987a; Peluc, Sillett, Rotenberry, & Ghalambor, 2008). Thus, we
predicted that females would reduce call production in the pres-
ence of perceived corvid nest predation risk as an adaptive means
of reducing the likelihood of nest predation.

Third, we examined whether male quality modifies female
calling behaviour. Specifically, we considered effects of two in-
dicators of male quality on NDC production: body mass and song
complexity. More massive males may be larger or may be in better
body condition and have higher energy reserves. Thus, heavier
males may be more effective at nest defence either due to larger
size, or because they need to devote less time to foraging and self-
maintenance (Martin & Horn, 1993; Sproat & Ritchison, 1993;
Wallin, 1987; Winkler, 1992). In addition, greater mass may
reflect high territory quality, which may increase both foraging

efficiency and time available for vigilance (van de Crommenaker,
Komdeur, Burke, & Richardson, 2011; Drent & Daan, 1980;
Komdeur, 1992; Martin, 1987b; Svensson & Nilsson, 1995). Thus,
we predicted that benefits of calling and NDC production increase
with male body mass. Song complexity is the basis for female
choice in many species, including M. melodia (Nolan & Hill, 2004;
Nowicki & Searcy, 2004; Searcy, 1984; Searcy & Andersson, 1986;
Searcy & Yasukawa, 1996), and female choice of males with
complex songs may be motivated by direct benefits gained in the
form of paternal assistance. Thus, we predicted that benefits of
calling and NDC production would increase with male song
complexity (Buchanan & Catchpole, 2000; Hill, 1991; Hoelzer,
1989). However, an alternative hypothesis is that females choose
males with complex songs primarily for indirect benefits, and
males with more complex songs trade off mating effort against
paternal effort (Burley, 1988; Mgller & Thornhill, 1998;
Qvarnstrom, Pdrt, & Sheldon, 2000). In this case, nest-guarding
services and NDC production might decline with song
complexity. Furthermore, with respective to male quality in gen-
eral, we predicted that female call production would decline less
in the presence of the predator when the male was of higher
quality, since benefits of male recruitment and guarding might
offset costs of predator attraction in this case.

Fourth, we explored the effect of nest site location on calling
behaviour (Eggers et al., 2006; Martin, 1987a; Martin, 1995; Martin
et al,, 2000; Peluc et al., 2008). More concealed nests may be more
difficult to locate, lowering costs of calling. Indeed, across avian
taxa, NDCs are given almost exclusively by species occupying
marshland or grassland habitat, where dense cover may provide a
buffer against nest detection (McDonald & Greenberg, 1991).
Furthermore, among open-cup passerines, ground nests are subject
to the lowest predation rates, with nests elevated in the canopy or
shrubs experiencing higher depredation (Martin, 1993, 1995; Peluc
et al., 2008). In song sparrows at our study site, nests on the ground
tend to be more concealed than elevated nests (M. L. Grunst, A. S.
Grunst, & J. T. Rotenberry, personal observations). Moreover,
elevated nests are more exposed to attack from above by visually
oriented corvid predators (Martin, 1987a; Peluc et al., 2008). Thus,
we predicted that costs of calling at elevated nests would outweigh
benefits, resulting in higher calling rates at ground nests than at
elevated nests, and that this effect would be magnified in the
presence of the predator.
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Finally, our fifth objective was to establish whether NDC pro-
duction covaries with other aspects of incubation behaviour. Spe-
cifically, we were interested in whether recruitment of the male via
NDCs allows females to spend more time off the nest engaging in
self-maintenance activities, such that off-bout length increases and
overall nest attentiveness decreases as a function of giving the call.
By establishing whether male—female communication via the NDC
affects optimal patterns of incubation, we hoped to gain insight into
the underexplored contingency that interactions between mated
partners modify patterns of parental effort in biparental species
(Fedy & Martin, 2009).

METHODS
Study Species and Site

We studied NDCs in song sparrows breeding near the University
of California’s Sierra Nevada Aquatic Research Laboratory (SNARL)
on the eastern slope of the Sierra Nevada (Mono County, CA, US.A.,
37°36'51"N, 118°49'47"W). Focal pairs occupied territories along
the riparian corridors of Convict Creek and McGee Creek. Convict
Creek flows through SNARL. McGee Creek is located about 16 km
south of SNARL in the Inyo National Forest (37°33'20"N,
118°47'35”W). Both sites are at mid-elevation (2100—2500 m).
Interestingly, McDonald and Greenberg (1991) reported that
M. melodia females generally do not produce NDCs. However, fe-
males from Mandarte Island and around Puget Sound do produce
these calls (McDonald & Greenberg, 1991), as do females in our
study population.

In M. melodia, the female alone incubates, whereas both females
and males provision nestlings. However, males may contribute to
parental care during incubation via nest guarding. Nest guarding
may have a particularly potent impact on fitness during incubation
off-bouts, when the female leaves the nest to forage and engage in
other self-maintenance activities. In our song sparrow population,
the mean + SE incubation on-bout is 19.96 + 1.08 min (range 7.39—
48.44 min), and the mean off-bout length is 7.68 + 0.49 min (range
2.02—24.25 min) (Grunst, Grunst, & Rotenberry, n.d.-a, n.d.-b). Male
singing activity often increases near the nest during incubation off-
bouts of females (M. L. Grunst, A. S. Grunst, & J. T. Rotenberry,
personal observations).

High nest predation rates in our population (68.13%; Grunst
et al, n.d.-a, n.d.-b) may increase the selective importance of
NDCs and male nest guarding. We confirmed the identity of few
predators. However, long-tailed weasels, Mustela erminea, and
garter snakes (Thamnophis sp.) were seen removing nestlings.
Furthermore, nests also faced high parasitism by brown-headed
cowbirds, Molothrus ater (28.9%). Corvids, including western
scrub-jays, Aphelocoma californica, Stellar’s jays, Cyanocitta stelleri,
and black-billed magpies, Pica hudsonia, and small mammals,
including least chipmunk, Neotamias minimus, and deer mice, Per-
omyscus maniculatus, also contribute to predation on open-cup
passerine nests in eastern Sierra riparian corridors (Latif, Heath, &
Ballard, 2012).

Research Approach

Beginning in early May 2010—2012 we located and target-
netted breeding pairs of M. melodia as part of a larger study on
nesting behaviour. We used conspecific playback to lure males into
mist nets (all males in our data set except one were banded), but we
captured most females, and a few males, at nests. Because of the
greater difficulty in capturing females, 14 females included in our
data set were unbanded. However, unbanded females were easily
identified based on their vicinity to an active nest. We uniquely

banded birds with U.S. Geological Survey bands and an additional
combination of three coloured leg bands. The breeding season
extended through mid-August.

Field techniques were authorized by a U.S. Geological Survey
bird banding permit (23035-F), a California state collecting permit
(SC-11059), a federal migratory bird collecting permit (MB22670A-
0) and a special use permit from the Inyo National Forest
(MLD100008P). The Institutional Animal Care and Use Committee
of the University of California (protocol A-20100002E) approved all
animal use procedures.

Behavioural Observation and Predator Presentation Experiment

We located nests using a combination of systematic search and
behavioural observation (Martin & Geupel, 1993). Once nests were
located, we checked contents every 2—3 days to document nesting
status. On days 2—8 of the incubation period, or as soon as the nest
was located, we videorecorded nests using Canon 800 series cam-
corders under three experimental conditions: baseline, elevated
perceived nest predation risk and negative control. We elevated
perceived nest predation risk using a decoy and a recording of a
western scrub-jay (Peluc et al., 2008). We also initially included a
negative control treatment, consisting of a house finch, Haemorhous
mexicanus. However, finch treatments were recoded as baseline for
use in the final analyses (see below for justification). We placed
decoys 6—10 m from nests and 2 m off the ground, and projected
recordings of vocalizations using a MP3 player placed on the
ground below decoys. We concealed camcorders 3—6 m from nests
to prevent disturbance originating from the recording alone. Pre-
sentations were initiated between 0600 and 1400 hours Pacific
Daylight Time (PDT). We controlled for time of day and date in
statistical analyses. We performed all treatments on each nest
sequentially, on the same day, in randomly assigned order. Time
between treatments averaged 10 min, and each treatment lasted
approximately 2 h. Presentation order had no significant effect on
NDC production by females (generalized linear mixed effects
model, GLMM: Z = -0.59, § = —0.43 4+ 0.73, N = 409 observations,
57 nests, 43 females, 41 males, P = 0.55) or guarding behaviour of
males (GLMM: Z = —0.08, § = —0.05 + 0.56, N = 409 observations,
57 nests, 43 females, 41 males, P = 0.93). Models testing for an ef-
fect of presentation order on NDC production and guarding
behaviour included the strong effects of male presence and NDC
production, respectively (see Results). We measured nest height
after the nest failed or the nestlings fledged.

Data Extraction from Video Recordings

We extracted NDC behaviour for each off-bout that occurred
within the 2 h treatment period. Behaviour was extracted for a
random subset of nests recorded as part of a larger study on effects
of perceived predation risk on song sparrow incubation behaviour.
We previously established that female song sparrows respond to
scrub-jays as predators by reducing incubation attentiveness
(percentage of time spent incubating eggs) relative to that under
baseline conditions, but they do not alter incubation attentiveness
in response to the house finch (Grunst et al., n.d.-a, n.d.-b; see
Supplementary material, Table S1). Thus, we extracted data only on
NDC behaviour from 10 finch recordings (the process is time
intensive) and coded finch treatments as baseline for use in this
analysis. Preliminary analysis indicated that females did not reduce
calling behaviour in response to the finch, as would be expected if
the finch was perceived as a disturbance or if the noise of the
recording alone interfered with communication (GLMM: Z = 1.45,
B =113 +£0.78, P=0.14). We analysed NDC behaviour from a
sample including 427 nest departures, 61 nests, 41 males and 43
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females. We extracted NDC data for both the predator and baseline
treatments for 39 nests (336 nest departures, 30 males, 32 females),
for the baseline treatment alone for eight nests (33 nest departures,
8 males, 8 females) and for the predator treatment alone for 14
nests (58 nest departures, 16 males, 13 females). Results were
qualitatively the same when restricting the data set to the subset of
nests for which we conducted both baseline and predator trials. The
sample size for the final model predicting NDC production is
reduced since we only measured the body mass of 35 males. The
model used to test for covariation between NDC production and off-
bout length excluded 32 nest departures for which the off-bout
length was unknown because the recording ended before the fe-
male returned. In addition, we only measured the repertoire size of
36 males and the syllable diversity of 35 males. However, this
change in sample size only affected the initial model predicting
NDC production, male nest-guarding behaviour, and female incu-
bation attentiveness/off-bout length, because song complexity
traits were eliminated from final models due to nonsignificance.

We viewed recordings to determine when females departed
the nest and whether an NDC was given upon each departure.
Additionally, to determine whether the male was present before
female departure from the nest, we recorded whether the male
produced a song during the 3 min immediately prior to departure.
If a song was produced during this period, then the male was
considered present. The male was also occasionally seen during
this period, but in all such cases, he also produced a song. If a song
was not produced during this period, the male was considered
absent (coded 1, 0). As a metric of male nest guarding we recorded
whether the male produced a song in the 3 min following female
nest departure. If the male produced a song, or was seen, during
this period, he was considered present; if not, he was considered
absent (coded 1, 0). This procedure for determining male presence
could be prone to producing false negatives, since males might be
present, but not vocal. False negatives could reduce our ability to
detect a correlation between male presence and female calls, but
should not otherwise affect the validity of statistical tests. More-
over, since male song may serve as a signal to females that the
male is present and available to nest-guard, establishing a link
between male song and the production of NDCs is pertinent in
itself.

Measuring Body Mass and Song Complexity

Upon capture of males, we measured body mass (+0.1 g) using a
digital scale, unflattened wing chord (41 cm) using a wing scale
and tarsus length (£0.01 cm) using digital calipers. We used body
mass alone as a combined metric of male size and energy reserves,
because the linear correlation between body mass and tarsus
length was low and was not substantially improved by attempting
to model nonlinearity into the relationship between mass and
tarsus length (as suggested for the scaled mass index; Peig & Green
2009, 2010).

To obtain song of focal males, we used iMovie and Quicktime to
extract .wav audio files from mini DVD tapes containing video re-
cordings of incubation behaviour. We visualized 300 consecutive
songs or 450 total songs per male using Raven Pro (Cornell Lab of
Ornithology, Ithaca, NY, US.A.) (MacDougall-Shackleton et al.,
2009; Pfaff, Zanette, MacDougall-Shackleton, & MacDougall-
Shackleton, 2007). We measured two metrics of male song
complexity: song repertoire size and song syllable diversity. We
determined distinct song types upon song type switching in strings
of vocalizations. Once repertoire size was established, we deter-
mined the total number of syllables within each male’s repertoire
by identifying unique syllables across song types (MacDougall-
Shackleton et al., 2009).

Statistical Analysis

We used R 2.15.2 to conduct all statistical analyses (R
Development Core Team, 2012). To assess effects of male pres-
ence, predation risk, male quality and nest height on the decision to
produce an NDC, we used a generalized linear mixed effects model
(GLMM, binomial family) implemented by the Ime4 package in R
(Bates, Maechler, & Bolker, 2012). The dependent variable was
whether or not the female produced a call upon leaving the nest
(coded 1, 0). We included treatment (baseline, predator), male
presence (coded 1, 0), body mass, repertoire size, syllable diversity
and nest site elevation (O = on ground, 1 = off ground) in the model
as fixed effects. We initially allowed for two-way interactions be-
tween treatments and all other independent variables, since we
were interested in how costs associated with predator presence
would modify relationships. We also included time and date in the
model as covariates. When including date in statistical models, 1
May was coded as day 1. We entered nest number and male and
female identity as random effects.

Second, to assess the effect of NDC production, predator pres-
ence and male phenotype on male recruitment to guard the nest,
we again used a GLMM binomial model with guarding (coded 1, 0)
as the dependent variable. We included treatment, NDC (coded 1,
0), body mass, repertoire size, syllable diversity and nest site
elevation in the model as fixed effects and used the same interac-
tion and random terms as described above.

Third, to test for covariation between NDCs and incubation
behaviour, we used a linear mixed effects model (LMM; also
implemented by the Ime4 package in R) fitted using reduced
maximum likelihood, with the length of the off-bout immediately
following each nest departure entered as the dependent variable.
We entered treatment, NDC (coded 1, 0), male body mass, reper-
toire size, syllable diversity and nest site elevation as fixed effects,
and included the same interaction terms, random terms and
covariates as described above. We transformed off-bout length by
taking the cube root. We then used a linear mixed effects model to
examine whether overall nest attentiveness (percentage of time
incubating eggs) was influenced by the percentage of time that the
female gave an NDC, predator presence, male characteristics and
nest height. We squared incubation attentiveness to achieve
normality. We did not use interaction terms in this model, but again
included the same random terms and covariates described above.
We also reran the above models using male guarding behaviour
instead of NDC production as a predictor variable. We employed a
Satterthwaite approximation (implemented by the ImerTest pack-
age of R; Kuznetsova, Brockhoff, & Christensen, 2013) for estimating
degrees of freedom in LMM models. We sequentially reduced all
models until remaining predictors were significant (o = 0.05).

RESULTS
Characterization of NDCs and Male Guarding Behaviour

Song sparrow NDCs displayed the broadband frequency, short
note duration and repetitiveness characteristic of NDCs described
previously (Fig. 1). Females produced calls upon initiation of de-
parture from the nest, often shortly after the male sang close by
(Fig. 1). Overall, females produced NDCs at 33.72% of nest de-
partures during incubation. The majority of females (66%, 28/42
individuals) displayed variation in NDC behaviour, producing an
NDC upon some nest departures but not others. However, a few
females never (21%, 9/42 individuals) or always (12%, 5/42 in-
dividuals) produced an NDC when leaving the nest.

Overall, males were present and singing near the nest, and thus
determined to be guarding, following 65.33% of nest departures.
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The majority of males (68%, 28/41 individuals) displayed variation
in guarding behaviour, being present and singing near the nest
following some female departures but not others. However, a few
males never (10%, 4/41 individuals) or always guarded (22%, 9/41
individuals).

Variation in Predictor Variables

Song repertoire size of males ranged from 5 to 12 song types
(mean £ SD = 8.85 4-1.62 song types). Syllable diversity ranged
from 25 to 43 syllable types (mean + SD = 33.68 + 4.49 syllable
types). Body mass of males ranged from 18.4 to 22.2 g (mean
+ SD =20.5 4+ 0.91 g). Although repertoire size and syllable di-
versity were positively correlated (Spearman rank correlation:
rs = 0.55, N =28, P=0.56), neither variable was correlated with
body mass (repertoire size: rs = —0.26, N =28, P = 0.17; syllable
diversity: rs = —0.12, N =28, P = 0.56). Nest height ranged from
0 to 1.96 m (mean + SD = 0.24 + 0.23 m). Of the 61 nests moni-
tored, 43 (70%) were elevated in shrubs and 18 (30%) were located
on the ground. Time of recordings ranged from 0539 to 1512 hours
Pacific Standard Time (mean =+ SD = 1003 hours + 2.12 h). Date of
recording ranged from 22 May to 30 July (mean 4 SD =28
June + 18 days).

Nest Departure Call Production

Male presence, as indicated primarily through the production of
song prior to nest departure, was the strongest predictor of females’
decision to produce an NDC (Table 1). Females produced calls
during a significantly greater percentage of nest departures when
the male was present than when the male was absent (Fig. 2a). In
addition, females produced fewer NDCs in the presence of the
scrub-jay nest predator (Table 1, Fig. 2b). Females called more when
their mate was more massive, and they called less frequently later
in the day (Table 1). Finally, there was a positive interaction be-
tween nest site elevation and treatment, which reflected the fact
that females produced the call more often in the presence of the
predator when departing from elevated nests (Table 1). No other
interactions were significant (GLMM: P > 0.1 in all cases; Supple-
mentary Table S2) and female calling did not differ as a function of
male repertoire size or syllable diversity (GLMM: P > 0.1; Supple-
mentary Table S2).

Male Nest Guarding

Following female nest departure, males were significantly more
likely to guard the nest, as measured by the production of nearby
song, after an NDC was given than if the female produced no call
(GLMM: Z = 3.23, N = 427 nest departures, 61 nests, 43 females, 41
males, =118 +0.37, P=0.001; Fig. 2c). This pattern did not
depend on the presence of the nest predator, as there was no main

Table 1
Generalized linear mixed effects model (binomial family) predicting nest departure
call production by female song sparrows

Estimate (B+SE) z P (>|Z])
Intercept —23.63+9.89 -2.39 0.02
Male present 2.36+0.51 4.66 <0.001
Treatment —2.12+0.88* —2.42 0.01
Male body mass 1.19+0.48 2.50 0.01
Nest elevation 0.354+0.99 0.35 0.72
Time of day —0.36+0.13 -2.82 0.005
Treatmentxnest elevation 2.14+0.99 2.14 0.03

N = 358 nest departures, 52 nests, 42 females and 35 males.
* Predator (jay) treatment relative to baseline.

effect of predator presence and no interaction between NDCs and
the presence of a predator (P> 0.10 in all cases; Supplementary
Table S3). Male body mass, song complexity and nest site elevation
also failed to predict guarding behaviour, and there was no indi-
cation of additional interactions (P> 0.10 in all cases; Supple-
mentary Table S3). Model results were qualitatively the same when
we restricted the analysis to observations in which the male was
present before nest departure.

Covariation with Incubation Behaviour

Off-bout length was not significantly related to whether or not a
female produced an NDC, although in the initial full model there
was a trend towards a positive correlation between off-bout length
and whether an NDC was produced (LMM: P = 0.07; Supplemen-
tary Table S4). Rather, off-bout length was positively predicted by
an interaction between treatment and male mass (LMM:
F1302 =4.61, N = 329 observations, 52 nests, 42 females, 35 males,
B=0.13 +0.06, P=0.03), reflecting the fact that females took
longer off-bouts during the predator treatment if their mate was
heavier. In addition, females with elevated nests took longer off-
bouts (LMM: Fy3; =4.61, p=0.17 &+ 0.08, P=0.05). In the model
predicting off-bout length, the main effects of predator presence
and male body mass were not significant (LMM: Fj293 =2.92,
B=-0.09 4+ 0.06, P=0.09; LMM: Fi47 =101, §=-0.02 +0.05,
P = 0.31, respectively). Total nest attentiveness (percentage of time
spent incubating eggs) was unrelated to the percentage of time that
a female gave a departure call, or to any other variable (LMM:
P> 0.10, N= 84 observations, 45 nests, 35 females, 31 males;
Supplementary Table S5). When included in models predicting fe-
male incubation behaviours instead of NDC production, male
guarding was unrelated to both off-bout length (LMM: F; 235 = 0.24,
f=0.04 £0.10, P=0.62) and incubation attentiveness (LMM:
Fi56 =0.98, B =0.05+ 0.05, P=0.33). Significant and nonsignifi-
cant results for models predicting NDC production, nest guarding
and incubation behaviour are summarized in Table 2.

DISCUSSION

Our results are consistent with the hypothesis that NDCs given
by female song sparrows function to recruit male vigilance during
incubation off-bouts. Females called more often when the male was
present before nest departure, and males were also more likely to
nest guard (or at least be present near the nest and actively singing)
when the female gave the call. The increase in calling rate in the
presence of the male does not necessarily refute the alternative
hypothesis that calls act to decrease male harassment of the female
(Beletsky & Orians, 1985; Edwards, 1987; McDonald & Greenberg,
1991). Indeed, in red-winged, Agelaius phoeniceus, and yellow-
headed, Xanthocephalus xanthocephalus, blackbirds, males chase
females that leave the nest silently significantly more often than
they do females that vocalize upon nest departure. Thus, calls in
these species may function to decrease harassment, which might
otherwise distract females from adaptive incubation behaviour
(Beletsky & Orians, 1985; Edwards, 1987). Since we have no data on
chasing behaviour in song sparrows, we cannot discount the pos-
sibility that silent departures result in harassment. However, our
results do suggest that NDCs do not function to increase male mate-
guarding behaviour (Fedy & Martin, 2009). Specifically, males
usually remained in the vicinity of the nest during the incubation
off-bout following an NDC, rather than following the female, which
usually left the vicinity to forage.

In addition to helping to elucidate the function of NDC behav-
iour, our results also grant insight into observed increases in male
singing rates during the incubation stage (observed in song
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Figure 2. Percentage of nest departures during which female song sparrows produced (open bars) and did not produce (grey bars) nest departure calls (NDCs) relative to (a) the
presence or absence of their mate and (b) their perceived risk of nest predation from corvids (baseline vs jay). (c) Percentage of nest departures during which males performed
(open bars) and did not perform (grey bars) nest-guarding behaviour when their mates produced or did not produce NDCs.

sparrows by Foote & Barber, 2009), by suggesting that one function
of male singing may be to signal his presence to the female and
facilitate coordination of nest vigilance behaviour. Male singing
during incubation on-bouts may serve as an ‘all clear’ signal to the
female (Wickler, 1985: ‘watchman’s song’ hypothesis; Lima, 2009),
who may then be more likely to depart from the nest and to pro-
duce a nest departure call. Indeed, studies on house wren, Troglo-
dytes aedon (Johnson & Kermott, 1991), reed buntings, Emberiza
schoeniclus (Wingelmaier, Winkler, & Nemeth, 2007), and great tits,
Parus major (Lind, Dabelsteen, & McGregor, 1996), all indicate that
females are more likely to terminate incubation and depart the nest
when the male is singing nearby, which also suggests that male
song may act as a signal that no danger to the nest is imminent
(Lima, 2009). Furthermore, male song during incubation off-bouts
may serve as a signal to foraging females that the male is present
and guarding the nest. The male could then commence to signal in a

Table 2
Summary of main effects for nest departure call frequency of female song sparrows
and male guarding behaviour and incubation attentiveness/off-bout length

Dependent variable Independent variable Direction P
of effect
Nest departure Male presence + <0.001
call behaviour Nest predator presence - 0.01
Male body mass + 0.01
Repertoire size/syllable 0 0.62/0.53
diversity
Nest elevation 0 0.72
Time - 0.005
Date 0 0.90
Male guarding Nest departure call given + <0.001
behaviour Nest predator presence 0 0.42
Male body mass 0 0.60
Repertoire size/syllable 0 0.31/0.35
diversity
Nest elevation 0 0.64
Time 0 0.64
Date 0 0.99
Incubation Nest departure call given 0/trend + 0.83; 0.07
attentiveness; Nest predator presence 0 0.35; 0.61
off-bout length Male body mass 0 0.16; 0.19
Repertoire size/syllable 0 0.49/0.60;
diversity 0.96/0.17
Nest height trend —/— 0.08; 0.05
Time 0 0.15; 0.12
Date 0 0.10; 0.82

different fashion (perhaps via alarm calling) if the nest were
detected and threatened.

Given that NDCs function as signals to enhance male nest
guarding, calling behaviour may evolve in populations or species in
which nest guarding by males is especially important to fitness. In
populations with high rates of nest predation, producing NDCs to
promote male nest guarding may have high fitness benefits. On the
other hand, given characteristics of the NDC that make the vocalizer
easy to locate, producing the call may attract predators (McDonald
& Greenberg, 1991). Thus, females may elevate fitness by plastically
adjusting calling behaviour to target the intended receiver (the
male), while avoiding eavesdropping by predators (Zuk et al., 1995).
Indeed, calling rate declined when we experimentally elevated
perceived nest predation risk. Like other avian nest predators,
scrub-jays have highly developed auditory systems and may cue in
to NDCs when depredating nests (Eggers et al., 2006; Martin,
1987a; Peluc et al.,, 2008). Significantly, when not producing an
NDC, females often departed from the nest silently and commenced
alarm calling once off the nest (M. L. Grunst, A. S. Grunst, & J. T.
Rotenberry, personal observations). In contrast to NDCs, acoustical
characteristics of alarm calls, including high frequency and short
duration, make localization difficult (Caro, 2005; Klump & Shalter,
2010). Thus, switching from the NDC to the alarm call in the
context of high nest predation risk could provide a mechanism of
alerting the male to nest departure while reducing the probability
of nest detection.

In addition to predator presence, differences in the dominant
predator type might also affect the adaptive advantage of produc-
ing NDCs. In contrast to avian predators, other predator guilds such
as snakes have poor hearing, are unlikely to use calls to locate nests
and may selectively depredate lower nests as opposed to higher
ones (Martin, 1987a; Peluc et al., 2008). Furthermore, some types of
predators are easier to defend against, such that intensity and ef-
ficacy of nest defence may vary with predator type (Curio, 1975;
Kruuk, 1964; Patterson, Petrinovicha, & James, 1980; Winkler,
1992). If a predator is easily deterred, benefits of attracting the
male might outweigh costs. Thus, an intriguing possibility is that
females may actually increase calling rate when faced with pre-
dation threat from a different type of predator. We do not know the
relative contribution of predator guilds to nest depredation events
in our population. However, recent research on the predator com-
munity of open-cup nests in eastern Sierra riparian habitat
concluded that one or a few predator species do not predominate
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(Latif et al., 2012). Therefore, females may need to assess a complex
predator community when adjusting calling behaviour.

Females may also need to assess their mate’s willingness or
ability to nest-guard when determining whether to call. Indeed,
females were more likely to give an NDC if their mate was heavier.
More massive males may be in better body condition and may also
be larger, and may thus be more willing or able to defend nests
against predators, such that costs of attracting predators decline.
Indeed, we found that females mated to heavier males took longer
off-bouts than other females in the presence of the predator, but
not under baseline conditions, suggesting that heavier males may
be better able to protect the nest, ameliorating costs of longer off-
bouts for females. Alternatively, heavier males may have higher
energetic reserves that allow them to sing at higher rates, and may
consequently be more likely to signal their presence near the nest
to females. Studies in a number of bird species have reported a
positive correlation between nest-guarding intensity and body
condition (Martin & Horn, 1993; Sproat & Ritchison, 1993; Wallin,
1987; Winkler, 1992). In M. melodia, Rastogi, Zanette, and Clinchy
(2006) demonstrated that food-supplemented birds have more
time available for nest guarding and nest attentiveness than
unsupplemented controls. Guarding, as measured by male pres-
ence during incubation off-bouts, was uncorrelated with male body
mass in our study, suggesting that male willingness to defend the
nest did not play a dominant role. However, we did not directly
measure the intensity of male nest guarding, the tendency for
males to take risks to defend the nest, or efficacy of deterring
predators.

In contrast to body mass, NDC rate was unrelated to male song
complexity, suggesting that song may convey little information
regarding direct benefits provided by males via nest guarding. Male
nest guarding was similarly unrelated to song complexity, corrob-
orating this view. Interestingly, past studies on song sparrows have
reported that males with more complex song repertoires are in
superior body condition (Pfaff et al., 2007; Reid, Arcese, Cassidy,
Hiebert, et al., 2005; Reid, Arcese, Cassidy, Marr, et al., 2005; Reid,
Arcese, & Keller, 2003). Given positive correlations between mul-
tiple metrics of male quality one might expect similar correlations
to arise between NDC production and different male quality met-
rics. However, in contrast to past work on the song sparrow, body
mass and song complexity were uncorrelated in our population of
breeding males. Thus, nest departure calling behaviour of females
may be influenced by direct benefits associated with male body
mass independent of song complexity, which may communicate
indirect benefits.

In addition, females may also adjust calling behaviour based on
differences in nest placement that affect vulnerability to detection
by predators. We hypothesized that off-ground nests would be
more vulnerable to predation by corvids (Eggers et al., 2006;
Martin, 1987a; Peluc et al, 2008), such that females with
elevated nests would reduce calling rate more when confronted
with a predator. In support of this hypothesis, orange-crowned
warblers, Vermivora celata, nesting in shrubs decrease offspring
provisioning rates (another conspicuous parental behaviour) more
in response to the presence of an avian predator than do those
nesting on the ground (Peluc et al., 2008). However, we unex-
pectedly found that females departing from elevated nests actually
called more in the presence of the predator. This result may reflect
the fact that our study involved production of a conspicuous
auditory cue in addition to the visual cue of a nest visit. At
elevated nests, predators may be able to use the visual cue of fe-
male departure to locate the nest, whereas females may be able to
depart from ground nests invisibly. Thus, calling from a lower nest
may add a more substantial additional cost to departure itself than
calling from a more elevated nest. Given the possibility of

departure without detection from a lower nest, not calling may be
adaptive, despite the fact that the male may fail to recruit for nest
guarding. On the other hand, departure from a higher nest without
detection may be unlikely, such that it may be adaptive to call and
risk predator attraction to increase the probability of promoting
male vigilance. Interestingly, females with elevated nests also had
longer incubation off-bouts, which could arise if these females are
more tentative when returning to the nest, due to greater nest
conspicuousness.

Females also called less upon nest departure as the day pro-
gressed. The dependency of calling behaviour on time may be
related to temporal variation in predation risk or male propensity to
respond to calls. Specifically, costs of calling may increase later in
the day due to heightened predation risk by diurnal predators.
Many predators including brown-headed cowbirds, are more active
towards dawn (Rothstein, Verner, & Stevens, 1984), but corvid nest
predation risk may be elevated later in the day (Eggers et al., 2005;
Lima, 2009), which could motivate decreases in NDC production.
We did not measure temporal patterns of corvid activity at our
study site. However, Eggers et al. (2005) found that corvid preda-
tion of Siberian jay, Perisoreus infaustus, nests increased later in the
day, and that jays decreased nest visit rates accordingly. The ben-
efits of calling could also decrease later in the day if male pro-
pensity to respond to calls declines as the day progresses. However,
we found no association between male nest guarding and time of
day in the present study.

Finally, neither the length of individual incubation off-bouts nor
overall incubation attentiveness significantly differed as a function
of NDC production or with male nest guarding behaviour. We
initially hypothesized that increased male vigilance and decreased
costs of staying off the nest associated with producing an NDC
would result in longer incubation off-bouts following call produc-
tion. Similarly, we reasoned that overall nest attentiveness might be
lower at nests where females called more often. Indeed, Ziolkowski,
Johnson, Hannam, and Searcy (1997) found that following tempo-
rary removal of the male, female house wrens increased incubation
attentiveness by 20%, suggesting that, in at least some species, in-
teractions between the male and female affect costs of staying off
the nest, and hence incubation behaviours. However, our failure to
find a relationship between NDC production, male guarding and
incubation behaviours suggests that the optimal length of incuba-
tion off-bouts is not strongly affected by the heightened probability
of male recruitment accomplished by giving the call. Although male
nest guarding may lower costs of staying off the nest by reducing
the probability of clutch loss through depredation, thermoregula-
tory costs of remaining off the nest also exist (Conway & Martin,
2000; Martin, Auer, Bassar, Niklison, & Lloyd, 2007; Webb, 1987).
Since only females incubate, the presence of the male does not
affect thermoregulatory costs. Thus, despite male nest guarding,
females may still optimize fitness by minimizing off-bout length to
the amount of time needed to accomplish basic self-maintenance
activities (Conway & Martin, 2000).

Overall, female song sparrows appear to adaptively adjust NDC
production in a pattern consistent with balancing costs of attracting
predators against benefits of recruiting males to guard nests.
Plasticity in calling probably exists because context-appropriate
communication elevates fitness, whereas contextual mistakes in
the decision to communicate result in fitness declines (Tuttle &
Ryan, 1981; Zuk & Kolluru, 1998; Zuk et al., 1995). Therefore, our
study aids in elucidating the complexity of communication systems
in biparental species, and potential fitness ramifications of
communicating in inappropriate ways.

More work is needed to fully understand context dependency in
NDCs and the potential costs of calling. Examining population-level
differences in call production, such as those documented in
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M. melodia, may help elucidate the evolution and persistence of
NDCs. In addition, the unique selective pressures of urban envi-
ronments provide an opportunity to explore impacts of signal
interference on call production (Bermudez-Cuamatzin, Rios-
Chelen, Gil, & Garcia, 2009; Brumm, 2004). Furthermore, learning
is central to the production of species-specific song (Beecher &
Brenowitz, 2005; Catchpole & Slater, 2008), but the degree to
which learning shapes NDC development, the propensity to pro-
duce calls in specific contexts and persistence of calling within
populations is unknown. Finally, although the frequency of NDCs
appears largely stereotyped, the amplitude or duration of calls
produced by females may vary either as a function of fixed differ-
ences between females, or as a plastic response to dynamic con-
ditions. Indeed, variation in the duration of NDCs and the number
of distinct notes produced during each vocalization was apparent in
our data set. Such variation may convey information about female
quality or energetic state and may influence male guarding
behaviour.
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