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	 The approaching future of  health care is uniting 
humans and machines to tirelessly attack the most challenging 
diseases. Computers are essential to conquering recalcitrant 
diseases through extreme precision and awareness. 
Diseases such as cancer, that are predominantly controlled 
immunologically,  genetically, and epigenetically necessitate 
individualized prognosis and treatment. During the next 

several years, we will see the coevolution of  medical science 
and machine intelligence to provide such personalized care. 
In the following, we will see that to meet the instrumental 
and computational challenges of  cancer and other diseases 
will require substantial progress beyond what presently occurs 
in oncology labs and clinics. By assessing cancer as if  it were 
essentially physiological information, we see the importance 
of  genetics and epigenetics during diagnosis and treatment. 
Then we look at the role of  biomarkers in improving the state 
of  practice in the lab and clinic, all the while emphasizing the 
imperative to work alongside machine intelligence.

	 Personalized cancer treatment requires large 
amounts of  patient specific data. The central dogma of  
cancer progression is the buildup of  mutations in the genetic 
sequence of  certain genes. These oncogenes are especially 
critical in bestowing our cells with the tools and behaviors 
of  cancer. Genetic analysis informs your doctor about what 
type of  cancer you face, indicating the treatments more likely 

to defeat your tumor, which grows wildly in your organ. In 
some approaching year, the specific cells betraying your body 
will succumb to a treatment tailored uniquely to those cells. 
Few other cells will be harmed, dramatically minimizing side 
effects. Yet this specificity cannot be solely based on genetic 
information, which are the instructions on the construction 
of  protein. Proteins are the nanomachines operating the 
complexities of  both your healthy cells and your cancerous 
cells, and we know these cells are different by looking at their 
genetics. Genetics best informs us about what variants of  
proteins your cancer might express, and about how they differ 
from healthy cells. Genetics does not indicate at what levels 
proteins are expressed, if  at all.

	

Computing the Cure to Cancer
Kirk Mallett

“In epigenetics, there is an important asymmetry, that nearly your entire body 

is made of  cells that are genetically identical, yet irreversibly differentiate into 

specialized roles.”

“The larger a dataset is, and the 

more sophisticated the analysis 

becomes, the much greater the 

time required to process that 

data.”
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Transcriptomes, methylomes, and other epigenetic 
information, not genetics, tells us which proteins are being 
expressed at what levels and how they are being regulated 
(Dancey). Transcriptomes of  RNA are difficult to access from 
cells, but will one day compliment genetics in deciphering 
what to target in your unique cancer. The pattern of  DNA 
methylation and histone modification in tumorigenic cells 
could map out potential regulatory targets. In the future, 
there may be some drugs that stop the expression of  critical 
proteins in your cancer. Epigenetics regards the regulation of  
genetic expression, when and which proteins are produced in 
a cell, and the variation of  such regulation between different 
cell types and cells of  the same type in different environments. 
In epigenetics, there is an important asymmetry, that nearly 
your entire body is made of  cells that are genetically identical, 
yet irreversibly differentiate into specialized roles. Scanning 
through cells of  every tissue we see a symmetry about their 
potential to produce any protein and perform any cellular 
role. This symmetry is broken across the axis of  expression, 
the potential to be anything is suppressed in order to create 
specialized cells. Within tissues and between cells there is 
differential regulation of  protein generation; we are a unified 
body of  cloned cells that distinguish themselves solely through 
their varied expressions.

	

Cancer also differentiates itself, but takes differentiation 
a step beyond expression; cancer is a polyclonal network 
of  highly interdependent cells (Parsons). To conquer your 
body’s particular brand of  cancer, not only must changes 
in genetic sequences and expression levels be monitored 
and understood, this data must be isolated from different 
clonal populations in a highly heterogeneous tumor. To 
acquire this data requires a large assortment of  tools and a 
robust biomedical industry. Sophisticated mathematics and 
continued growth in computational capacity will process this 
data until it presents insight and actionable information. If  
you are fortunate enough to outlive vascular diseases, you will 
someday be asking your physician about a lump or pain on 
your body somewhere. With the onset of  cancer, you will be 
mollified by the quality of  information your doctor has on 
your physical state, and by the variety of  treatments that can 
be tailored to your specific tumor. You may or may not see 

yourself  as a unique individual, but your doctor will know your 
cancer uniquely. However, this will require datasets of  great 
size being analyzed at tremendous speeds. The larger a dataset 
is, and the more sophisticated the analysis becomes, the much 
greater the time required to process that data. Personalized 
treatment is therefore impossible without exploiting inherent 
symmetry through computationally efficient mathematics.

	 Graphs, in the form of  Hidden Markov Models 
(HMMs) underlie the symmetry involved in a lot of  biomedical 
analysis. Interpreting sequences of  DNA (Meng), DNA 
methylation patterns (Lee), or regulatory motifs in DNA (Wu) 
will become dominated by HMM methods. HMMs are graphs 
of  observables, say a position in a DNA sequence that can 
be an A, C, G, or T nucleotide.  A position in a particular 
genetic motif  may have a 10% chance to be an A, a 33% 
chance to be a C, 42% chance to be a G, and a 15% chance to 
be a T. The motif  itself  may have a 30% chance of  occurring 
after another motif  1a, a 24% chance of  occurring after a 
motif  1b, and a 20% known chance of  occurring before a 
motif  3. So we see that a particular position in a particular 
motif  has a probability of  being an A, T, C, or G, and this 
probability is dependent on where the nucleotide might be in 
which possible motif  (Meng). The most probable description 

“Graphs, in the form of  

Hidden Markov Models 

(HMMs) underlie the symmetry 

involved in a lot of  biomedical 

analysis.”

“So data parallelism and ILP 

both derive from the fact that 

complex genetic patterns can be 

based on simple premises.”

“...when available, a doctor 

today can sometimes, and to 

a limited extent, formulate a 

personalized treatment for a 

cancer patient.”
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of  the DNA sequence then becomes whichever arrangement 
of  motifs is most likely to produce the observed sequence. 
This description is of  a lower fidelity than in modern models, 
which should also include analysis between observables larger 
than a single nucleotide (Lee).

	 To train a model to recognize motifs correctly, the 
model must try many possibilities. This is computationally 
taxing, but there are inherent symmetries that speed the 
computations up. Though there are only four kinds of  
nucleotides to consider, they form very long combinations 
that can be as complex as they are long. These sequences 
can be nonrepeating, and potentially highly interdependent, 
in theory. HMMs avoid this problem by modeling each 
position in a sequence so that it has only one dependency, 
the nucleotide in the previous position (Lee). Since every one 
of  the billions of  nucleotide positions are symmetric in their 
limited dependencies, their computation can be distributed 
across many processing units (Meng). For the same reason, the 
storage and movement of  nucleotides, and the instructions for 
analyzing them, can be efficiently managed (Meng). A second 
source of  computational symmetry is called Instruction 
Level Parallelism (ILP), which HMMs elicit through their 
basic operations (Meng). While the properties of  an HMM 
can be very difficult to prove, the model uses fundamentally 

simple operations, such as multiplying a small list of  numbers 
together. Though these operations must occur many billions 
of  times, one operation can be simultaneously performed 
on several positions in a sequence or across several steps in 
a chain for a single nucleotide. So data parallelism and ILP 
both derive from the fact that complex genetic patterns can 
be based on simple premises.

	 There are three stages of  cancer treatment that are 
improved with information on genetic (or other) markers: 

	 Typical Hidden Markoz Model (HMM)

“...despite very large datasets on 

genetics and expression, very 

little insight has emerged from 

analysis of  that data, limiting 

the progress of  oncology.”
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prognostic, predictive, and pharmacodynamic. Prognostic 
markers become relevant when deciding whether a patient 
needs further, more aggressive, therapy after excising the 
primary tumor (Majewski). Predictive markers then determine 
which such therapies are effective for a particular patient 

(Majewski). Pharmacodynamic markers indicate what dosages 
will be sufficient in fighting a specific patient’s tumor, while 
not being too toxic (Majewski). Assembling the data from 
these markers, when available, a doctor today can sometimes, 
and to a limited extent, formulate a personalized treatment 
for a cancer patient. Personalized cancer therapy has had 
some reserved success, such as targeting HER2 in breast 
cancer, BCR–ABL translocations in chronic myelogenous 
leukemia (the less common, less aggressive leukemia), the 
EGF receptor in lung adenocarcinoma, and BRAF mutations 
in melanoma (Tyson). These targets tend to be fusion proteins 
arising from mistakes in the separation of  chromosomes 
(Rodrıguez-Antona). In horrifying irony, by targeting tumor 
cells that carry these mutations, selection for resistant cells 
occurs among close genetic variants of  targeted cells (Tyson). 
These resistant cells perpetuate the tumor despite treatment. 
In other words, by killing only the most tumorigenic cells, 

closely related cells begin to dominate the tumor, and some 
of  those will be or become resistant to the treatment. What 
we need are improved ways to identify and target families of  
tumorigenic cells.

	

Only half  of  recently approved drugs have known biomarkers 
associated with them to indicate whether a patient might 
respond to the drug, what extent that response might be, or 
when dosage becomes toxic (Rodrıguez-Antona). This means 
that despite very large datasets on genetics and expression, very 
little insight has emerged from analysis of  that data, limiting 
the progress of  oncology. Inadequate biochemical tools and 
techniques in the laboratory is a part of  this retardation. 
Insufficient biomarkers, their assays, and the means for their 
bioconjugation limits information on molecular pathways 
(signal cascades) in cancers. Costs and risks have continually 
increased, and drug development slowed, for the discovery 
and refinement of  new drug targets (de Castro). The quest to 
make personalized cancer treatments robust and routine has 
consequently faltered. Moreover, without critical information 
on drug pathways, side effects cannot be predicted. Long 
term concerns of  genetic toxicology, how acute chemo- and 
radio- treatment affects genetic stability, remains unknowable 
in healthy tissue. Nevertheless, hope is high that progress 
will triumph over these challenges. In addressing these 
shortcomings and revolutionizing treatments, very large 
datasets are expected to be assembled and must be processed.

	 One source of  this data will come from mice, which, 
besides being genetically similar to humans, are relatively easy 
to genetically alter. Mice also have a short gestation period, 
and are cheap to house. However, mouse models have lacked 
the clonal and signaling heterogeneity of  human tumors; they 
are simply too simple to model our diseases. To make mouse 
models suitable for personalized medicine, mouse avatars 
are being developed from patient derived tumor xenografts. 
Immunodeficient mice are transplanted with a biopsy sample 
from a patient’s tumor. From this, a mouse line is raised and 
used to test various cancer therapies, looking for ideal agents 
and dosages for an individual patient (Malaney). This data 
can be combined with whole-exome sequencing that can also 
be performed on biopsy samples (Rodrıguez-Antona). This 
combined approach has recently been trialed, successfully 
treating thirteen patients. Six patients saw partial remission 
and the other seven experienced disease stabilization, having 
no progression of  the tumor (Garralda). In eleven cases the 

“The growth of  this data 

implies the need for Natural 

Language Processing (NLP) 

agents that inform doctors 

about potential surgical 

outcomes and responses 

to drug and radiological 

treatments.”

“To make mouse models suitable for personalized medicine, mouse avatars 

are being developed from patient derived tumor xenografts.”



16 • Berkeley Scientific Journal • Symmetry • Fall 2015 • Volume 20 • Issue 1

B
S

J
avatar model mimicked the patient response (Garralda). Over 
ten million codons of  selected genetic regions, from each 
patient’s tumorous and healthy samples, were analyzed to 
find only an average of  45 mutations (Garralda). Apparently, 
observing all the significant mutations of  a cancer requires a 
high degree of  fidelity. Yet even this level of  scrutiny is not 
considered sufficient for general application of  personalized 
cancer treatment (Parsons). We see the need for detailed yet 
efficient analysis of  the millions of  biopsies per year.

	 The most common and most important source of  
information in the clinic and in the medical science laboratory, 
today, is text based documentation and communication 
(Jensen). The growth of  this data implies the need for Natural 
Language Processing (NLP) agents that inform doctors 
about potential surgical outcomes and responses to drug and 
radiological treatments (Jensen). NLP agents interpret and 
make sense of  normal human language, such as English or 
Chinese, usually as blocks of  text rather than spoken phrases. 
IBM is developing such an expert agent, a medical assistant 
based on their Watson project. IBM’s product relies on 
numerous techniques to analyze text for patterns meaningful 
to doctors. In Watson, text is turned into nodes and lines 
on graphs. Phrases that emphasize nouns are designated as 
branch points, and phrases emphasizing verbs become the 
connections between those branch points (Kalyanpur). These 
phrases are created by Watson from simpler linguistic features, 
like parts of  speech, and from dictionaries (Kalyanpur). An 
extension to Watson, called WatsonPaths, breaks a question 
into a set of  smaller questions after Watson provides its top 
rated responses to the original question (Lally). WatsonPaths 
also asks the doctor questions, and utilizes the doctor’s 
response to improve Watson’s answer (Lally).

	 Microenvironment, developmental state, cell type, 
and other factors modify the expression and activity levels of  
hundreds of  relevant molecular components in each tumor 
(Chin). The varieties of  cancer with their diversity of  genetic 
mutations compound the number of  assays and molecular 
tools needed in both the laboratory and clinic (Chin). Great 
concentration of  resources will compel progress in these 
areas, and to interpret and create value from the amassing 
data demands proportionate computational advances. There 
is a glimpse of  the future today in the development of  
IBM’s Watson and its successor. Beyond the symmetries in 
genetics and epigenetics, there is more symmetry to exploit 
in immunology, and endocrinology (Kolch; Brock; Melero). 
These symmetries become apparent in the theory and 
computation of  modeling the complex interactions ubiquitous 
in those domains. By exploiting symmetries of  physical and 
combinatorial structures that are medically relevant, several 
critical problems have become tractable. Simplifying the 
identification of  disease relevant genes in an individual tumor 
is one instance. Symmetry is integral to simplifying and solving 
other principle challenges, like mapping the nearly inscrutably 

attenuated regulatory pathways of  disease progression. 
These eventual triumphs await long tribulations of  discovery, 
invention, and investment that will require greater integration 
of  health industries and consumers (Fagnan).
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