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ABSTRACT OF THE DISSERTATION

Moduli of Continuity, Gauss Curvature Flow and Ricci Solitons

by

Xiaolong Li

Doctor of Philosophy in Mathematics

University of California, San Diego, 2017

Professor Lei Ni, Chair
Professor Bennett Chow, Co-Chair

This thesis is a summary of the work accomplished by the author and his

coauthors in geometric analysis during his Ph.D. studies. It consists of four parts.

The first and the second parts are the estimates of modulus of continuity

for viscosity solutions of nonlinear partial differential equations in domains in Eu-

clidean spaces and on manifolds. The main results generalize B. Andrews and J.

Clutterbuck’s modulus of continuity estimates for smooth solutions to viscosity
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solutions. The main ingredients of the proofs are the parabolic maximum prin-

ciple for semicontinuous functions, its generalized version on manifolds, and the

multi-point estimates method.

The third part studies asymptotic behavior of nonparametric hypersurfaces

of dimension n moving by α powers of its Gaussian Curvature with α > 1/n.

Our work generalizes the results for α = 1 obtained by V. Oliker to all α > 1/n.

Although we are using similar ideas, the proof is quite technical.

In the fourth part, we study classification of shrinking gradient Ricci soli-

tons. Our main result asserts that any four-dimensional complete gradient shrink-

ing Ricci soliton with positive isotropic curvature is either a quotient of S4 or a

quotient of S3×R. This gives a clean classification result removing the earlier ad-

ditional assumptions in by L. Ni and N. Wallach. This also generalizes a result of

Perelman on three-dimensional gradient shrinking Ricci solitons to dimension four.

The result has important consequences in studying Ricci flow on four-dimensional

manifolds.
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Chapter 1

Introduction and Main Results

1.1 Moduli of Continuity for Viscosity Solutions

In Chapter 2, we investigate the moduli of continuity for viscosity solutions

of a wide class of nonsingular quasilinear evolution equations and also for the level

set mean curvature flow, which is an example of singular degenerate equations.

We prove that the modulus of continuity is a viscosity subsolution of some one

dimensional equation. This work extends B. Andrews’ recent result on moduli of

continuity for smooth spatially periodic solutions. Chapter 2 is a reprint of the

author’s paper [44] with slight modifications. The main theorem in [44] states that

Theorem 1.1.1. Let u : Rn×[0, T ]→ R be a continuous periodic viscosity solution

of

ut = aij(Du, t)DiDju+ b(Du, t) (1.1)

1
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where A(p, t) = (aij(p, t)) is positive semi-definite. Assume there exists a continu-

ous function α : R+ × [0, T ]→ R with

0 < α(R, t) ≤ R2 inf
|p|=R,(v·p)6=0

vTA(p, t)v

(v · p)2
. (1.2)

Then the modulus of continuity ω(s, t) = sup
{
u(y,t)−u(x,t)

2

∣∣∣ |y−x|2
= s
}

of u is a vis-

cosity subsolution of the one dimensional equation

ϕt = α(|ϕ′|, t)ϕ′′. (1.3)

These results obtained in [44] can be used to obtain gradient estimates

and eigenvalue estimates. It is also of great significance to control the growth of

unbounded solutions in studying Cauchy problems on the whole space.

1.2 Moduli of Continuity for Viscosity Solutions

on Manifolds

The main results of Chapter 3 are generalizations of the results in Chapter

2 to viscosity solutions on manifolds. This is joint work with Dr. Kui Wang [47].

Theorem 1.2.1. Let u : M × [0, T )→ R be a viscosity solution of

ut =

[
α(|Du|, t)DiuDju

|Du|2
+ β(|Du|, t)

(
δij −

DiuDju

|Du|2

)]
DiDju+b(|Du|, t). (1.4)

on a closed manifold M and denote by D the diameter of M . Assume further that

Ricg ≥ (n − 1)κg. Then the modulus of continuity w : [0, D
2

] × [0, T ) → R of u
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satisfies

wt ≤ α(w′, t)w′′ + (n− 1)
c′κ(s)

cκ(s)
β(w′, t)w′ (1.5)

in the viscosity sense provided ω is increasing in s, and where cκ(s) is defined by

c′′κ + κcκ = 0, cκ(0) = 1, c′κ(0) = 0.

In [47], we also proved the viscosity version generalizations of Theorem 4,

5, and 6 in [3] and Theorem 1.2 in [8].

1.3 Nonparametric Hypersurfaces Moving by Pow-

ers of Gauss Curvature

Chapter 4 presents the joint work with Dr. Kui Wang on the asymptotic

behavior of nonparametric hypersurfaces of dimension n moving by α powers of

Gauss Curvature with α > 1/n. Our main result in [46] generalizes the result for

α = 1 obtained by V. Oliker in [59] to all α > 1/n. Let u be a solution of

ut =
[det(uij)]

α

(1 + |∇u|2)αβ
in Ω× (0,∞),

u(x, t) = 0 in ∂Ω× (0,∞), (1.6)

u(x, t) is strictly convex for each t ≥ 0,

where α ∈ ( 1
n
,∞) and β ≥ 0 are constants and Ω is a strictly convex domain

in Rn. When β =
n+2− 1

α

2
, the normal speed of the point (x, u(x, t)) is equal

to α powers of the Guass curvature of the graph. We prove that, the solution
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u(x, t) asymptotically picks up the symmetry of the domain Ω. More precisely, u

becomes radially symmetric regardless of the initial shape if Ω is a ball. If Ω is

centrally symmetric, then u asymptotically becomes centrally symmetric as well.

The strategy we use is similar to that of V. Oliker[59], but the proof is technically

much more difficult.

Our first result establishes the existence of self-similar solutions to the fol-

lowing equation:

ut = Mα(u) in Ω× (0,∞),

u(x, t) = 0 in ∂Ω× (0,∞), (1.7)

u(x, t) is strictly convex for each t ≥ 0.

Theorem 1.3.1. Let Ω be a bounded strictly convex domain with smooth boundary

∂Ω. Then problem (1.7) admits a self-similar solution in Ω× (0,∞) given by

u(x, t) = (1 + t)
1

1−nαψ(x), (1.8)

where ψ is the unique solution in C∞(Ω) ∩ C0,1(Ω) of the equation

M(ψ) =

(
−ψ

|1− nα|

) 1
α

in Ω, ψ = 0 on ∂Ω, (1.9)

ψ is stictly convex and ψ < 0 in Ω,

and supΩ |ψ(x)| admits an estimate depending only on n, α and the domain Ω.

Furthermore, if ũ(x, t) = ϕ(t)ψ̃(x) is an arbitrary self-similar solution of (4.2),
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then there exists a unique c > 0 such that ψ̃(x) = cψ(x) and

ũ(x, t) = u(x, t)

{
1 + t

[cϕ(0)]1−nα + t

} 1
nα−1

. (1.10)

The main theorem concerning the asymptotic behavior of the solution is

the following:

Theorem 1.3.2. Let u(x, t) ∈ C2(Ω× (0,∞)) be a solution of the problem

ut =
Mα(u)

(1 + |∇u|2)αβ
in Ω× (0,∞),

u(x, t) = 0 in ∂Ω× (0,∞), (1.11)

u(x, t) is strictly convex for each t ≥ 0,

where α > 1/n and β ≥ 0 are constants. If β = 0, then there exists positive

constant C1 depending only on dimension n, α, Ω and u(x, 0), such that for all

t ≥ 0,

sup
Ω

∣∣∣(1 + t)
1

nα−1u(x, t)− ψ(x)
∣∣∣ ≤ C1

1 + t
, (1.12)

If β > 0, then[
C2

1 + t
+G

1
1−nα − 1

]
ψ ≤ (1 + t)

1
nα−1u(x, t)− ψ(x) ≤ −C3ψ

1 + t
, (1.13)

where C2 and C3 are positive constants depending only on dimension n, α, Ω,

u(x, 0) and

G = inf
Ω

(
1 + |∇u(x, 0)|2

)−αβ
.

Moreover,

lim
t→∞

(1 + t)
1

nα−1u(x, t) = ψ(x) uniformly on Ω. (1.14)
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We have gradient estimates for solutions of (4.9).

Corollary 1.3.3. Suppose the same conditions as in Theorem 4.2.2 holds. Then

for all t ≥ 0,

sup
Ω
|∇u(x, t)| ≤ G

1
1−nα sup

∂Ω
ψν(x)(C4 + t)

1
1−nα

where ψν is the derivative in the direction of the outward unit normal to ∂Ω, and

C4 depends only on u(x, 0).

An interesting geometric consequence of Theorem 4.2.2 is the following:

Theorem 1.3.4. If Ω is a ball in Rn and u(x, t) ∈ C2(Ω × (0,∞)) is a solution

of (4.9). Then

(1 + t)
1

nα−1u(x, t)→ ψ(|x|) uniformly on Ω as t→∞.

This theorem implies that, u(x, t) asymptotically becomes radially sym-

metric regardless of the initial shape. More generally, if Ω is centrally symmetric,

then

(1 + t)
1

nα−1u(x, t)→ ψ(x) uniformly on Ω as t→∞,

where ψ(x) = ψ(−x). The proof of Theorem 4.2.4 is the same as in [59, Section 6]

and we omit it here.
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1.4 Four-dimensional Shrinking Solitons with Pos-

itive Isotropic Curvature

Chapter 5 studies classification of shrinking gradient Ricci solitons. We first

review some background information about shrinking gradient Ricci solitons.

The main theorem in [45], joint with Lei Ni and Kui Wang, asserts that

Theorem 1.4.1. Any four-dimensional complete gradient shrinking Ricci soliton

with positive isotropic curvature is either a quotient of S4 or a quotient of S3×R.

This gives a clean classification result removing the earlier additional as-

sumptions in [57] by L. Ni and N. Wallach. An immediate corollary is that any

four-dimensional gradient shrinking soliton with positive curvature operator must

be isometric to S4. This generalizes a result of Perelman on three-dimensional gra-

dient shrinking solitons to dimension four. This result has important consequences

in studying Ricci flow on four-dimensional manifolds.



Chapter 2

Estimates of Modulus of

Continuity for Viscosity Solutions

In this paper, we investigate the moduli of continuity for viscosity solutions

of a wide class of nonsingular quasilinear evolution equations and also for the level

set mean curvature flow, which is an example of singular degenerate equations.

We prove that the modulus of continuity is a viscosity subsolution of some one

dimensional equation. This work extends B. Andrews’ recent result on moduli of

continuity for smooth spatially periodic solutions.

8
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2.1 Introduction

Given a function u : Rn → R, any function f : [0,∞)→ R+ satisfying

|u(y)− u(x)| ≤ 2f

(
|y − x|

2

)
for all x and y is called a modulus of continuity of u. The (optimal) modulus of

continuity ω of u is defined by

ω(s) = sup

{
u(y)− u(x)

2

∣∣∣ |y − x|
2

= s

}
.

The estimate of modulus of continuity has been studied by B. Andrews and J.

Clutterbuck in several papers [4] [5]. B. Andrews and J. Clutterbuck [6], B. An-

drews and L. Ni [8] and L. Ni [55] have also studied the modulus of continuity for

heat equations on manifolds.

More precisely, B. Andrews and J. Clutterbuck considered the following

quasilinear evolution equation

ut = aij(Du, t)DiDju+ b(Du, t) (2.1)

where A(p, t) = (aij(p, t)) is positive semi-definite. Under the assumption that

there exists a continuous function α : R+ × [0, T ]→ R with

0 < α(R, t) ≤ R2 inf
|p|=R,(v·p) 6=0

vTA(p, t)v

(v · p)2
, (2.2)

They showed [5, Theorem 3.1] that the modulus of continuity of a regular periodic

solution to (2.1) is a viscosity subsolution of the one dimensional equation

φt = α(|φ′|, t)φ′′. (2.3)
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Note that their result is applicable to any anisotropic mean curvature flow and can

be used to obtain gradient estimate and thus existence and uniqueness of (2.1).

The first result of this paper is that the same holds for viscosity solutions

of (2.1) when (2.2) holds and aij, b : Rn × [0, T ]→ R are continuous functions.

Theorem 2.1.1. Let u : Rn×[0, T ]→ R be a continuous periodic viscosity solution

of (2.1). Then the modulus of continuity ω(s, t) = sup
{
u(y,t)−u(x,t)

2

∣∣∣ |y−x|2
= s
}

of

u is a viscosity subsolution of the one dimensional equation (2.3).

We also study the modulus of continuity for singular evolution equations.

As summarized in a recent survey [3] by B. Andrews, for the isotropic flows of the

form

ut =

[
a(|Du|)DiuDju

|Du|2
+ b(|Du|)

(
δij −

DiuDju

|Du|2

)]
DiDju, (2.4)

the modulus of continuity of a spatially periodic smooth solution of (2.4) is a

viscosity subsolution of the corresponding one-dimensional heat equation ωt =

a(ω′)ω′′. Note that equation (2.4) covers the classical heat equation, the graphical

mean curvature flow and the p-Laplace heat equation with suitable choices of a

and b. When (2.4) is nonsingular, it is covered by (2.1). When it is singular, it has

to be treated differently since there are various definitions for viscosity solutions

of singular equations. We will focus on the particular case a = 0 and b = 1, which

corresponds to the level set mean curvature flow:

ut =

(
δij −

DiuDju

|Du|2

)
DiDju. (2.5)



11

Equation (2.5) was studied by L. Evans and J. Spruck in [31]. They gave a defini-

tion of viscosity solution and proved that for an initial data g that is continuous

and constant on Rn ∩ {|x| ≥ S}, there exists a unique viscosity solution u that is

continuous and constant on Rn ∩{|x| ≥ R}, with R depending only on S. We will

recall their definition in Section 2.

We prove the following theorem:

Theorem 2.1.2. Let u : Rn × [0,∞) → R be a viscosity solution of (2.5) with

continuous initial data g that is a constant on Rn ∩ {|x| ≥ S}. Then the modulus

of continuity ω(s, t) = sup
{
u(y,t)−u(x,t)

2

∣∣∣ |y−x|2
= s
}

of u is a viscosity subsolution of

ωt = max{0, 1
4

(ω′′ + |ω′′|)} on (0,∞)× (0,∞).

As an immediate consequence, we have that any concave modulus of conti-

nuity for the initial data is preserved by the level set mean curvature flow.

Corollary 2.1.3. Let u : Rn × [0,∞) → R be a viscosity solution of (2.5) with

continuous initial data g that is a constant on Rn ∩ {|x| ≥ S}. Assume φ is

nonnegative, concave and satisfies |g(y)− g(x)| ≤ 2φ
(
|y−x|

2

)
for all x, y, then

|u(y, t)− u(x, t)| ≤ 2φ

(
|y − x|

2

)
for all x, y and t ≥ 0.

Proof of Corollary 2.1.3. Since the function φε = φ+ εet satisfies

∂tφε > 0 = max{0, 1

4
(φ′′ + |φ′′|)},

so it cannot touch ω from above by Theorem 2.1.2. �
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2.2 Definitions of Viscosity Solutions

We give definition of a viscosity solution for the general equation

ut + F (x, t, u,∇u,∇2u) = 0 (2.6)

assuming F : Rn×[0, T ]×R×Rn×Sn×n → R is continuous and degenerate elliptic.

Let O be an open subset of Ω× (0, T ). We write z = (x, t) and z0 = (x0, t0).

The following notations are useful:

USC(O) = {u : O → R| u is upper semicontinuous },

LSC(O) = {u : O → R| u is lower semicontinuous },

Definition 2.2.1. (i) A function u ∈ USC(O) is a viscosity subsolution of (2.6)

in O if for any φ ∈ C∞(O) such that u− φ has a local maximum at z0 ∈ O, then

φt(z0) + F (z0, u(z0),∇φ(z0),∇2φ(z0)) ≤ 0.

(ii) A function u ∈ LSC(O) is a viscosity supersolution of (2.6) in O if for

any φ ∈ C∞(O) such that u− φ has a local minimum at z0 ∈ O, then

φt(z0) + F (z0, u(z0),∇φ(z0),∇2φ(z0)) ≥ 0.

(iii) A viscosity solution of (2.6) in O is defined to be a continuous function

that is both a viscosity subsolution and a viscosity supersolution of (2.6) in O.

We have an equivalent definition in terms of parabolic semijets. Assume

u ∈ USC(O) and z0 ∈ O. The parabolic superjet of u at z0, denoted by P2,+u(z0),
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is defined by

P2,+u(z0) ={(τ, p,X) ∈ R× Rn × Sn×n|u(z) ≤ u(z0) + τ(t− t0) + p · (x− x0)

+
1

2
(x− x0)TX(x− x0) + o(|x− x0|2 + |t− t0|) as z → z0}.

The parabolic subjet of u ∈ LSC(O) at z0, denoted by P2,−u(z0), is defined by

P2,−u(z0) = −P2,+(−u)(z0).

Definition 2.2.2. (i) A function u ∈ USC(O) is a viscosity subsolution of (2.6)

in O if for all (x, t) ∈ O and (τ, p,X) ∈ P2,+u(x, t),

τ + F (z, u(z), p,X) ≤ 0.

(ii) A function u ∈ LSC(O) is a viscosity supersolution of (2.6) in O if for

all (x, t) ∈ O and (τ, p,X) ∈ P2,−u(x, t),

τ + F (z, u(z), p,X) ≥ 0.

Remark 2.2.3. In the above definitions, since F is continuous, we can replace

P2,+u(z0) and P2,−u(z0) by P2,+
u(z0) and P2,−

u(z0) respectively, where the clo-

sures are defined by

P2,+
u(z0) = {(τ, p,X) ∈ R× Rn × Sn×n| there is a sequence (zj, τj, pj, Xj)

such that (τj, pj, Xj) ∈ P2,+u(zj)

and (zj, u(zj), τj, pj, Xj)→ (z0, u(z0), τ, p,X) as j →∞}.

P2,−
u(z0) = −P2,+

(−u)(z0).
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For singular equations, there are different ways to define viscosity solutions.

For the level set mean curvature flow (2.5), we use the definition given by L. Evans

and J. Spruck in [31], where viscosity solutions are called weak solutions.

Definition 2.2.4. A continuous and bounded function u : Rn × [0,∞) → R is a

viscosity subsolution of (2.5) if for any φ ∈ C∞(Rn+1) such that u− φ has a local

maximum at a point (x0, t0) ∈ Rn × (0,∞), then we have
φt ≤

(
δij − DiφDjφ

|Dφ|2

)
DiDjφ at (x0, t0)

if Dφ(x0, t0) 6= 0,

and 
φt ≤ (δij − ηiηj)DiDjφ at (x0, t0)

for some η ∈ Rn with |η| ≤ 1, if Dφ(x0, t0) = 0

Definition 2.2.5. A continuous and bounded function u : Rn × [0,∞) → R is a

viscosity supersolution of (2.5) if for any φ ∈ C∞(Rn+1) such that u − φ has a

local minimum at a point (x0, t0) ∈ Rn × (0,∞), then we have
φt ≥

(
δij − DiφDjφ

|Dφ|2

)
DiDjφ at (x0, t0)

if Dφ(x0, t0) 6= 0,

and 
φt ≥ (δij − ηiηj)DiDjφ at (x0, t0)

for some η ∈ Rn with |η| ≤ 1, if Dφ(x0, t0) = 0
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Definition 2.2.6. A continuous and bounded function u : Rn × [0,∞) → R is a

viscosity solution of (2.5) provided u is both a viscosity subsolution and a viscosity

supersolution.

We also have alternative definitions in terms of parabolic semijets.

Definition 2.2.7. A continuous and bounded function u : Rn × [0,∞) → R is

a viscosity subsolution of (2.5) if for all (x, t) ∈ Rn × (0,∞) and (τ, p,X) ∈

P2,+u(x, t),

τ ≤
(
δij −

pipj
|p|2

)
Xij if p 6= 0

and

τ ≤ (δij − ηiηj)Xij for some |η| ≤ 1, if p = 0.

Definition 2.2.8. A continuous and bounded function u : Rn × [0,∞) → R is

a viscosity supersolution of (2.5) if for all (x, t) ∈ Rn × (0,∞) and (τ, p,X) ∈

P2,−u(x, t),

τ ≥
(
δij −

pipj
|p|2

)
Xij if p 6= 0

and

τ ≥ (δij − ηiηj)Xij for some |η| ≤ 1, if p = 0.

Remark 2.2.9. One can replace P2,+u(z0) and P2,−u(z0) by P2,+
u(z0) and P2,−

u(z0)

respectively in the above definitions for the reason of continuity.
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2.3 Proof of Theorem 2.1.1

Proof of Theorem 2.1.1. We must show that if φ is a smooth function such that

ω − φ has a local maximum at (s0, t0) for s0 > 0 and t0 > 0, then at (s0, t0)

φt ≤ α(|φ′|, t)φ′′.

Since u is continuous and periodic, there exist points x0 and y0 with |y0−x0| = 2s0

attaining the supremum,

ω(s0, t0) =
u(y0, t0)− u(x0, t0)

2
.

Define

Z(x, y, t) := u(y, t)− u(x, t)− 2φ

(
|y − x|

2
, t

)
.

In view of the definition of ω, we obtain that

Z(x, y, t) ≤ Z(x0, y0, t0)

for all |y − x| close to 2s0 and t close to t0. Thus Z has a local maximum at

(x0, y0, t0). Since Z is continuous, by the parabolic version maximum principle for

semicontinuous functions [29, Theorem 8.3], for any λ > 0, there exist X, Y ∈ Sn×n

such that

(b1, 2Dyφ(s0, t0), X) ∈ P2,+
u(y0, t0),

(−b2,−2Dxφ(s0, t0), Y ) ∈ P2,−
u(x0, t0),

b1 + b2 = 2φt(s0, t0),
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−
(
λ−1 + ‖M‖

)
I ≤

X 0

0 −Y

 ≤M + λM2, (2.7)

where

M = 2D2φ = 2

 D2
yφ D2

y,xφ

D2
x,yφ D2

xφ

 =

 B −B

−B B

 ,

with B = 2D2
yφ(s0, t0).

To simplify, we choose an orthonormal basis of Rn with en = y−x
|y−x| , then

2Dyφ(s0, t0) = −2Dxφ(s0, t0) = φ′(s0, t0)en.

B =



φ′

2s0

. . .

φ′

2s0

1
2
φ′′


.

Since u is both a subsolution and a supersolution of (2.1), we have

b1 ≤ tr(A(φ′en)X) + b(φ′en)

−b2 ≥ tr(A(φ′en)Y ) + b(φ′en)
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By choosing a symmetric matrix C such that

A C

C A

 ≥ 0, we obtain using (3.17)

2φt(s0, t0) = b1 + b2 ≤ tr (A(φ′en)(X − Y )) = tr

A C

C A


X 0

0 −Y



≤ tr

A C

C A


 B −B

−B B

+ λtr

 A C

CT A


 B −B

−B B


2

= 2tr ((A− C)B) + 4λtr
(
(A− C)B2

)

Taking C = A − 2α(|φ′|)en ⊗ en, it’s easy to verify

A C

C A

 ≥ 0 due to (2.2).

Thus at (s0, t0)

φt ≤ α(|φ′|)φ′′ + λα(|φ′|)(φ′′)2 (2.8)

Since λ > 0 is arbitrary, we get

φt ≤ α(|φ′|)φ′′

at (s0, t0). �

2.4 Proof of Theorem 2.1.2

Proof of Theorem 2.1.2. Suppose that φ is a smooth function such that ω− φ has

a strict local maximum at (s0, t0) with s0 > 0 and t0 > 0. As in the proof of
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Theorem 2.1.1, we arrive at that the function

Z(x, y, t) := u(y, t)− u(x, t)− 2φ

(
|y − x|

2
, t

)
.

has a local maximum at (x0, y0, t0). Again we use an orthonormal frame with

en = y−x
|y−x| . The maximum principle for semicontinuous functions [29, Theorem

8.3] implies that for any λ > 0, there exist X, Y ∈ Sn×n such that

(b1, φ
′(s0, t0)en, X) ∈ P2,+

u(y0, t0)

(−b2, φ
′(s0, t0)en, Y ) ∈ P2,−

u(x0, t0)

b1 + b2 = 2φt(s0, t0)

−
(
λ−1 + ‖M‖

)
I ≤

X 0

0 −Y

 ≤M + λM2, (2.9)

where

M =

 B −B

−B B

 ,

with

B = 2D2
yφ(s0, t0) =



φ′

2s0

. . .

φ′

2s0

1
2
φ′′


.

For any vector p ∈ Rn, we have

pTXp− pTY p = (p, p)T

X 0

0 −Y

 (p, p) ≤ (p, p)T (M + λM2)(p, p) = 0
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Therefore X ≤ Y . For simiplicity, we denote A(p) = I− p⊗p
|p|2 . If φ′(s0, t0) 6= 0, then

by the definition of viscosity solution of (2.5),

b1 ≤ tr(A(φ′en)X),

−b2 ≥ tr(A(φ′en)Y ).

Using the fact X ≤ Y , we get

φt =
1

2
(b1 + b2) ≤ 1

2
tr (A(φ′en)(X − Y )) ≤ 0.

If φ′(s0, t0) = 0, then it follows from the definition of a viscosity solutions

that for some ξ, η with |ξ|, |η| ≤ 1,

b1 ≤ tr(A(ξ)X),

−b2 ≥ tr(A(η)Y ).

In view of (2.9), we have X ≤ B + 2λB2 and −Y ≤ B + 2λB2. Thus

tr((A(ξ)X)) ≤ tr
(
(A(ξ)(B + 2λB2)

)
=

1

2
(1− ξ2

n)
(
(φ′′ + λ(φ′′)2

)
,

tr((A(η)Y )) ≥ tr
(
(A(η)(−B − 2λB2)

)
= −1

2
(1− η2

n)
(
(φ′′ + λ(φ′′)2

)
.

Therefore,

2φt = b1 + b2 ≤ tr(A(ξ)X)− tr(A(η)Y ) ≤
(

1− ξ2
n + η2

n

2

)(
φ′′ + λ(φ′′)2

)
.

Letting λ→ 0 yields

φt ≤
1

4
(φ′′ + |φ′′|) .

�
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The results of Chapter 2 are my own work, published in Proceedings of the

American Mathematical Society in 2016.



Chapter 3

Estimates of Modulus of

Continuity for Viscosity Solutions

on Manifolds

3.1 Preliminaries

We establish the estimates of modulus of continuity for viscosity solutions of

nonlinear evolution equations on manifolds, extending previous work of B. Andrews

and J. Clutterbuck for regular solutions on manifolds [6] and the first author’s

recent work for viscosity solutions in Euclidean spaces [44].

22
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3.2 Introduction

In this paper, we study the moduli of continuity for viscosity solutions to

nonlinear evolution equations on manifolds. Let (M, g) be a compact Riemannian

manifold. Recall that given a continuous function u : M → R, the optimal modulus

of continuity w of u can be defined by

w(s) = sup

{
u(y)− u(x)

2
: d(x, y) = 2s

}
,

where d is the induced distance function on (M, g).

We will mainly consider the following isotropic flow:

ut =

[
α(|Du|, t)DiuDju

|Du|2
+ β(|Du|, t)

(
δij −

DiuDju

|Du|2

)]
DiDju+b(|Du|, t). (3.1)

We make the assumptions that equation (4.3) is nonsingular, i.e., the right

hand side of (4.3) is a continuous function on R+ ×Rn × Sn×n, where Sn×n is the

set of n× n symmetric matrices, and that α, β are nonnegative functions.

For domains in Euclidean spaces, B. Andrews and J. Clutterbuck [5] proved

that the modulus of continuity for a regular solution of (4.3) is a viscosity subsolu-

tion of the one-dimensional equation φt = α(φ′, t)φ′′. Recently this was shown by

the first author [44] to be true for viscosity solutions as well. On manifolds the es-

timates of modulus of continuity for regular solutions have been investigated by B.

Andrews and J. Clutterbuck [6], B. Andrews and L. Ni[8] and L. Ni[55]. More pre-

cisely, if the Ricci curvature of the manifold has a lower bound: Ricg ≥ (n− 1)κg,
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then the modulus of continuity of a regular solution of (4.3) satisfies

wt ≤ α(w′, t)w′′ + (n− 1)
c′κ(s)

cκ(s)
β(w′, t)w′ (3.2)

in the viscosity sense, where cκ(s) is defined by c′′κ + κcκ = 0, cκ(0) = 1, c′κ(0) = 0.

The main goal of this paper is to show that various modulus of continuity estimates

remain valid for viscosity solutions on manifolds as well. We would like to mention

some important examples of such equations:

(i) If we take α = 1, β = 1 and b = 0, then equation (4.3) reduces to the heat

equation:

ut = ∆u;

(ii) If we take α = 1
1+|Du|2 , β = 1 and b = 0, then equation (4.3) reduces to the

graphical mean curvature flow:

ut =

(
δij −

DiuDju

1 + |Du|2

)
DiDju;

(iii) If we take α = (p − 1)|Du|p−2, β = |Du|p−2 and b = 0, then equation (4.3)

reduces to the p-Laplacian equation with p > 2:

div
(
|Du|p−2Du

)
= 0.

The paper is organized as follows: In Section 2, we recall the definitions

of viscosity solutions on manifolds and state the parabolic maximum principle

for semicontinuous functions on manifolds, which is the main technical tool we
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use in this paper. The main proof is given in Section 3. In Section 4, we prove

height dependent gradient bounds, which is useful to derive gradient estimates for

nonlinear equations. A generalization of Section 3 to Bakry-Emery manifolds is

done in Section 5. In Section 6, we treat Neumann and Dirichlet boundary value

problems and establish the estimates of modulus of continuity.

3.3 Preliminaries

3.3.1 Definition of Viscosity Solutions on manifolds

Let M be a Riemannian manifold. The following notations are useful:

USC(M × (0, T )) = {u : M × (0, T )→ R| u is upper semicontinuous },

LSC(M × (0, T )) = {u : M × (0, T )→ R| u is lower semicontinuous }.

We first introduce the notion of parabolic semijets on manifolds. We write

z = (x, t) and z0 = (x0, t0).

Definition 3.3.1. For a function u ∈ USC(M × (0, T )), we define the parabolic

second order superjet of u at a point z0 ∈M × (0, T ) by

P2,+u(z0) := {(ϕt(z0), Dϕ(z0), D2ϕ(z0)) : ϕ ∈ C2,1(M × (0, T )),

such that u− ϕ attains a local maximum at z0}.
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For u ∈ LSC(M × (0, T )), the parabolic second order subjet of u at z0 ∈M × (0, T )

is defined by

P2,−u(z0) := −P2,+(−u)(z0).

We also define the closures of P2,+u(z0) and P2,−u(z0) by

P2,+
u(z0) = {(τ, p,X) ∈ R× Tx0M × Sym2(T ∗x0M)| there is a sequence

(zj, τj, pj, Xj) such that (τj, pj, Xj) ∈ P2,+u(zj)

and (zj, u(zj), τj, pj, Xj)→ (z0, u(z0), τ, p,X) as j →∞};

P2,−
u(z0) = −P2,+

(−u)(z0).

Now we give the definition of a viscosity solution for the general equation

ut + F (x, t, u,Du,D2u) = 0 (3.3)

on M . Assume F ∈ C(M × [0, T ]× R× Tx0M × Sym2(T ∗x0M)) is proper, i.e.

F (x, t, r, p,X) ≤ F (x, t, s, p, Y ) whenever r ≤ s, Y ≤ X.

Definition 3.3.2. (i) A function u ∈ USC(M × (0, T )) is a viscosity subsolution

of (3.3) if for all z ∈M × (0, T ) and (τ, p,X) ∈ P2,+u(z),

τ + F (z, u(z), p,X) ≤ 0.

(ii) A function u ∈ LSC(M × (0, T )) is a viscosity supersolution of (3.3) if

for all z ∈M × (0, T ) and (τ, p,X) ∈ P2,−u(z),

τ + F (z, u(z), p,X) ≥ 0.
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(iii) A viscosity solution of (3.3) is defined to be a continuous function that

is both a viscosity subsolution and a viscosity supersolution of (3.3).

3.3.2 Parabolic Maximum Principle for Semicontinuous

Functions on Manifolds

The main technical tool we use is the parabolic version maximum principle

for semicontinous functions on manifolds, which is a restatement of [29, Theorem

8.3], for Riemannian manifolds. One can also find it in [40, Section 2.2] or [10,

Theorem 3.8].

Theorem 3.3.3. Let MN1
1 , · · · ,MNk

k be Riemannian manifolds, and Ωi ⊂Mi open

subsets. Let ui ∈ USC((0, T )× Ωi), and ϕ defined on (0, T )× Ω1 × · · · × Ωk such

that ϕ is continuously differentiable in t and twice continuously differentiable in

(x1, · · ·xk) ∈ Ω1 × · · · × Ωk. Suppose that t̂ ∈ (0, T ), x̂i ∈ Ωi for i = 1, · · · , k and

the function

ω(t, x1, · · · , xk) := u1(t, x1) + · · ·+ uk(t, xk)− ϕ(t, x1, · · · , xk)

attains a maximum at (t̂, x̂1, · · · , x̂k) on (0, T ) × Ω1 × · · · × Ωk. Assume further

that there is an r > 0 such that for every η > 0 there is a C > 0 such that for

i = 1, · · · , k

bi ≤ C whenever (bi, qi, Xi) ∈ P
2,+
ui(t, xi),

d(xi, x̂i) + |t− t̂| ≤ r and |ui(t, xi)|+ |qi|+ ‖Xi‖ ≤ η.



28

Then for each λ > 0, there are Xi ∈ Sym2(T ∗x̂iMi) such that

(bi, Dxiϕ(t̂, x̂1, · · · , x̂k), Xi) ∈ P
2,+
ui(t̂, x̂i),

−
(

1

λ
+ ‖M‖

)
I ≤


X1 · · · 0

...
. . .

...

0 · · · Xk

 ≤M + λM2,

b1 + · · ·+ bk = ϕt(t̂, x̂1, · · · , x̂k),

where M = D2ϕ(t̂, x̂1, · · · , x̂k).

3.4 Modulus of continuity estimates on mani-

folds

For any given constant κ, let

cκ(t) =


cos
√
κt, κ > 0,

1, κ = 0,

cosh
√
|κ|t, κ < 0.

Note that cκ(s) satisfies c′′κ + κcκ = 0, cκ(0) = 1, c′κ(0) = 0. The following theorem

is a generalization to viscosity solutions of Theorem 1 in [6].

Theorem 3.4.1. Let u : M × [0, T ) → R be a viscosity solution of (4.3) on a

closed manifold M and denote by D the diameter of M . Assume further that
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Ricg ≥ (n − 1)κg. Then the modulus of continuity w : [0, D
2

] × [0, T ) → R of u

satisfies

wt ≤ α(w′, t)w′′ + (n− 1)
c′κ(s)

cκ(s)
β(w′, t)w′ (3.4)

in the viscosity sense, provided ω is increasing in s.

Proof. From the definition of viscosity solution, it suffices to show the following

For any given (s0, t0), a small neighborhood U of s0, ε0 > 0, and any smooth

function φ lying above w for U× (t0−ε0, t0 +ε0) with equality at (s0, t0), then

φt ≤ α(φ′, t0)φ′′ + (n− 1)
c′κ
cκ
β(φ′, t0)φ′ (3.5)

holds at (s0, t0).

Let φ be a smooth function lying above w for U × (t0 − ε0, t0 + ε0) with

equality at (s0, t0). The assumption that ω is increasing in s implies φ′(s0, t0) ≥ 0.

Since M is compact, there exist x0 and y0 in M with d(x0, y0) = 2s0 such that

u(y0, t0)− u(x0, t0) = 2w(s0, t0) = 2φ(s0, t0).

Then it follows that

u(y, t)− u(x, t)− 2φ(
d(x, y)

2
, t)

attains a local maximum at (x0, y0, t0). Note that the distance function d may not

be smooth at (x0, y0), so one cannot apply the maximum principle for semicontin-

uous functions on manifolds directly. To overcome this, we replace d by a smooth
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function ρ, which is defined as follows. Let Ux0 and Uy0 be small neighborhoods of

x0 and y0 respectively. Let γ0 : [0, 1]→M be a minimizing geodesic joining x0 and

y0 with |γ′0| = 2s0. We choose Fermi coordinates {ei(s)} (i = 1, 2, · · · , n) along γ0

with en(s) = γ′0(s) for s ∈ [0, 1]. For 1 ≤ i ≤ n− 1, we define Vi(s) along γ0(s) by

Vi(s) =
cκ ((2s− 1)s0)

cκ(s0)
ei(s),

and set Vn(s) = en(s). We then define a smooth function ρ(x, y) in Ux0 × Uy0 to

be the length of the curve expγ0(s) (
∑n

i=1 ((1− s)ai(x) + sbi(y))Vi(s)) (s ∈ [0, 1]),

where ai(x) and bi(x) are so defined that

x = expx0

(
n∑
i=1

ai(x)ei(0)

)
, y = expy0

(
n∑
i=1

bi(y)ei(1)

)
.

From the definition of ρ(x, y), we see d(x, y) ≤ ρ(x, y) and with equality at (x0, y0).

We write ψ(x, y, t) = 2φ(ρ(x,y)
2
, t). Then the function

Z(y, x, t) := u(y, t)− u(x, t)− ψ(x, y, t)

has a local maximum at (x0, y0, t0). Now we can apply the parabolic version

maximum principle for semicontinuous functions on manifolds to conclude that for

each λ > 0, there exist symmetric tensors X, Y such that

(b1, Dyψ(x0, y0, t0), X) ∈ P2,+
u(y0, t0),

(−b2,−Dxψ(x0, y0, t0), Y ) ∈ P2,−
u(x0, t0),

b1 + b2 = ψt(x0, y0, t0) = 2φt(s0, t0),
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X 0

0 −Y

 ≤M + λM2, (3.6)

where M = D2ψ(x0, y0, t0).

The first derivative of ψ yields

Dyψ(x0, y0, t0) = φ′(s0, t0)
γ′0(1)

2s0

, (3.7)

and

Dxψ(x0, y0, t0) = −φ′(s0, t0)
γ′0(0)

2s0

. (3.8)

Since u is both a subsolution and a supersolution of (4.3), we have

b1 ≤ tr(AX) + b(|φ′|, t0),

and

−b2 ≥ tr(AY ) + b(|φ′|, t0),

where

A =



β(|φ′|, t0) · · · 0 0

...
...

...
...

0 · · · β(|φ′|, t0) 0

0 · · · 0 α(|φ′|, t0)


.

Set

C =



β(|φ′|, t0) · · · 0 0

...
...

...
...

0 · · · β(|φ′|, t0) 0

0 · · · 0 −α(|φ′|, t0)


,
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and simple calculation shows

 A C

C A

 ≥ 0. Then we obtain that

2φt(s0, t0) = b1 + b2 ≤ tr


 A C

C A


 X 0

0 −Y




≤ tr


 A C

C A

M

+ λ tr


 A C

C A

M2

 .

We easily get

tr


 A C

C A

M

 = α(|φ′|, t0)D2ψ ((en(1),−en(0)), (en(1),−en(0))) (3.9)

+β(|φ′|, t0)
n−1∑
i=1

D2ψ ((ei(1), ei(0)), (ei(1), ei(0)))

It remains to estimate the terms involving second derivatives of ψ. The

estimate is analogous to [6, Theorem 3]. For 1 ≤ i ≤ n−1, we choose the variation

vector fields Vi(s) = cκ((2s−1)s0)
cκ(s0)

ei(s) along γ0(s), then the first variation formulas

gives

d

dv

∣∣∣∣
v=0

|γv| =
1

2s0

g(γ′, Vi)|10 = 0,

and the second variation formula gives

d2

dv2

∣∣∣∣
v=0

|γv| =
1

2s0

g(γ′,∇ViVi) |10+
1

2s0

ˆ 1

0

|(∇γ′Vi)
⊥|2−〈R(γ′, Vi)γ

′, Vi〉 ds. (3.10)
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By the way of variation, we can also require ∇ViVi = 0 for s ∈ [0, 1]. Therefore

direct calculation gives

1

2s0

ˆ 1

0

|(∇γ′Vi)
⊥|2ds = 2s0

ˆ 1

0

(
c′κ ((2s− 1)s0)

cκ(s0)

)2

ds =

ˆ s0

−s0

(
c′κ(x)

cκ(s0)

)2

dx.

Using the integration by parts, the definition of cκ and equation c′′κ + κcκ = 0, we

have ˆ s0

−s0

(
c′κ(x)

cκ(s0)

)2

dx = 2
c′κ(s0)

cκ(s0)
+

ˆ s0

−s0
κ

(
cκ(x)

cκ(s0)

)2

dx.

Combining with (3.10), we see

d2

dv2

∣∣∣∣
v=0

|γv| = 2
c′κ(s0)

cκ(s0)
+

ˆ s0

−s0

(
cκ(x)

cκ(s0)

)2

(κ− 〈R(en, ei)en, ei〉)dx.

Then we conclude that

1

2
D2ψ ((ei(1), ei(0)), (ei(1), ei(0)))

=
d2

dv2

∣∣∣∣
v=0

φ

(
1

2
ρ
(
expx0 vei(0), expy0 vei(1)

)
, t0

)
=

d2

dv2

∣∣∣∣
v=0

φ

(
1

2
L
[(

expγ0(s) ((1− s)v + sv)Vi(s)
)]
, t0

)
=

d2

dv2

∣∣∣∣
v=0

φ

(
1

2
L
[(

expγ0(s) vVi(s)
)]
, t0

)
=

d2

dv2

∣∣∣∣
v=0

φ(
|γv|
2
, t0)

= φ′(s0, t0)

(
c′κ(s0)

cκ(s0)
+

1

2

ˆ s0

−s0

(
cκ(x)

cκ(s0)

)2

(κ− 〈R(en, ei)en, ei〉)dx

)
,(3.11)
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from which, the following holds

n−1∑
i=1

1

2
D2ψ ((ei(1), ei(0)), (ei(1), e0(0)))

= (n− 1)φ′(s0, t0)

(
c′κ(s0)

cκ(s0)
+

1

2

ˆ s0

−s0

(
cκ(x)

cκ(s0)

)2

((n− 1)κ− Ric(en, en)) dx

)

≤ (n− 1)
c′κ(s0)

cκ(s0)
φ′(s0, t0), (3.12)

where we used the curvature assumption.

It follows easily from the variation along en that

1

2
D2ψ ((en(1),−en(0)), (en(1),−en(0))) = φ′′(s0, t0). (3.13)

Thus we conclude from (3.9), (3.12) and (3.13) that

tr


 A C

C A

M

 ≤ 2β(φ′, t0)(n− 1)
c′κ(s0)

cκ(s0)
φ′(s0, t0) + 2α(φ′, t0)φ′′(s0, t0).

(3.14)

Since λ > 0 is arbitrary, (4.11) comes true from (3.9) and (3.14). Hence we

complete the proof. �

As an immediate corollary, we have the following Ricci flow version, which

generalizes Theorem 4 in [3].

Theorem 3.4.2 (Ricci flow version). Let Mn be a closed Riemannian manifold,

and g(t) a family of time-dependent metrics on M satisfying ∂g
∂t
≥ −2Ric, and let

u : M× [0, T )→ R be a viscosity solution of (4.3). Then the modulus of continuity
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w : [0, D
2

]× [0, T )→ R of u satisfies

wt ≤ α(w′, t)w′′

in the viscosity sense, provided ω is increasing in s.

Proof. As before, we consider a smooth function φ which lies above the modulus

of continuity w and is equal at (s0, t0). Then via maximum principle as before, it

holds that

2φt(s0, t0)−
ˆ s0

−s0
Ric(en(s), en(s)) ds ≤ b1 + b2 ≤ tr


 A C

C A

M

 .
On the other hand, choosing the variation fields Vi(s) = ei(s) yields

tr


 A C

C A

M

 ≤ 2α(φ′, t0)φ′′(s0, t0)−
ˆ s0

−s0
Ric(en(s), en(s)) ds,

completing the proof. Here we used inequality in (3.12) with cκ = 1 and (3.13). �

3.5 Height-dependent gradient bounds

In this section, we obtain height-dependent gradient bounds for viscosity

solutions, generalizing Theorem 6 in [3].

Theorem 3.5.1. Let (Mn, g) be a closed Riemannian manifold with diameter D

and Ricci curvature satisfying Ricg ≥ 0, and suppose u : M × [0, T ) → R is a

viscosity solution of an equation of the form

∂u

∂t
=

[
α(|Du|, u, t)DiuDju

|Du|2
+ β(t)

(
δij −

DiuDju

|Du|2

)]
DiDju. (3.15)
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Let ϕ : [0, D]× [0, T )→ R be a solution of

ϕt = α(ϕ′, ϕ, t)ϕ′′,

with Neumann boundary condition, which is increasing in the first variable, such

that the range of u(·, 0) is contained in [ϕ(0, 0), ϕ(D, 0)]. Let Ψ(s, t) be given by

inverting ϕ for each t, and assume that for all x and y in M ,

Ψ(u(y, 0), 0)−Ψ(u(x, 0), 0)− d(x, y) ≤ 0.

Then

Ψ(u(y, t), t)−Ψ(u(x, t), t)− d(x, y) ≤ 0.

for all x, y ∈M and t ∈ [0, T ).

We begin with a lemma about the behavior of parabolic semijets when

composed with an increasing function.

Lemma 3.5.1. Let u be a continuous function. Let ϕ : R× [0, T ) → R be a C2,1

function with ϕ′ ≥ 0. Let Ψ : R× [0, T )→ R be such that

Ψ(ϕ(u(y, t), t), t) = u(y, t)

ϕ(Ψ(u(y, t), t), t) = u(y, t)

(i) Suppose (τ, p,X) ∈ P2,+Ψ(u(y0, t0), t0), then

(ϕt + ϕ′τ, ϕ′p, ϕ′′p⊗ p+ ϕ′X) ∈ P2,+u(y0, t0),
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where all derivatives of ϕ are evaluated at (Ψ(u(y0, t0)), t0).

(ii) Suppose (τ, p,X) ∈ P2,−Ψ(u(y0, t0), t0), then

(ϕt + ϕ′τ, ϕ′p, ϕ′′p⊗ p+ ϕ′X) ∈ P2,−u(y0, t0),

where all derivatives of ϕ are evaluated at (Ψ(u(y0, t0)), t0).

(iii) The same holds if one replaces the parabolic semijets by the their clo-

sures.

Proof. The lemma is an easy consequence of the following characterization of the

semijets.

P2,+u(y0, t0) = {
(
ϕt(y0, t0), Dϕ(y0, t0), D2ϕ(y0, t0)

)
|

ϕ ∈ C2,1 and u− ϕ has a local maximum at (y0, t0)}

P2,−u(y0, t0) = {
(
ϕt(y0, t0), Dϕ(y0, t0), D2ϕ(y0, t0)

)
|

ϕ ∈ C2,1 and u− ϕ has a local mimimum at (y0, t0)}.

For (i), Suppose (τ, p,X) ∈ P2,+Ψ(u(y0, t0), t0). Let h be a C2,1 function such that

Ψ(u(y, t), t) − h(y, t) has a local maximum at (y0, t0) and (ht, Dh,D
2h)(y0, t0) =

(τ, p,X). Since ϕ is increasing, we have u(y, t)−ϕ(h(y, t), t) = ϕ(Ψ(u(y, t), t), t)−

ϕ(h(y, t), t) has a local maximum at (y0, t0). Then it follows that

(ϕt + ϕ′τ, ϕ′p, ϕ′′p⊗ p+ ϕ′X) ∈ P2,+u(y0, t0).

For (ii), Suppose (τ, p,X) ∈ P2,−Ψ(u(y0, t0), t0). Let h be a C2,1 function

such that Ψ(u(y, t), t)−h(y, t) has a local minimum at (y0, t0) and (ht, Dh,D
2h)(y0, t0) =
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(τ, p,X). Since ϕ is increasing, we have u(y, t)−ϕ(h(y, t), t) = ϕ(Ψ(u(y, t), t), t)−

ϕ(h(y, t), t) has a local minimum at (y0, t0). Then it follows that

(ϕt + ϕ′τ, ϕ′p, ϕ′′p⊗ p+ ϕ′X) ∈ P2,−u(y0, t0).

(iii) then follows from approximation. �

Proof of Theorem 3.5.1. The theorem is valid if we show that for any ε > 0,

Zε(x, y, t) := Ψ(u(y, t), t)−Ψ(u(x, t), t)− d(x, y)− ε

T − t
≤ 0. (3.16)

To prove inequality (3.16), it suffices to show Zε can not attain the maximum in

M ×M × (0, T ). Assume by contradiction that there exist t0 ∈ (0, T ), x0 and y0 in

M at which the function Zε attains its maximum. Take ρ defined as before. Then

the function

Ψ(u(y, t), t)−Ψ(u(x, t), t)− ρ(x, y)− ε

T − t

has a local maximum at (x0, y0, t0). If ε > 0, then we necessarily have x0 6= y0. By

the parabolic maximum principle for semicontinuous functions on manifolds, for

any λ > 0, there exist X, Y satisfying

(b1, Dyρ(x0, y0), X) ∈ P2,+
Ψ(u(y0, t0), t0),

(−b2,−Dxρ(x0, y0), Y ) ∈ P2,−
Ψ(u(x0, t0), t0),

b1 + b2 =
ε

(T − t0)2
,
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−
(
λ−1 + ‖M‖

)
I ≤

X 0

0 −Y

 ≤M + λM2, (3.17)

where M = D2ρ(x0, y0).

By Lemma 3.5.1, we have

(b1ϕ
′(zy0 , t0) + ϕt(zy0 , t0), ϕ′(zy0 , t0)Dyρ(s0, t0),

ϕ′(zy0 , t0)X + ϕ′′(zy0 , t0)en(1)⊗ en(1)) ∈ P2,+
u(y0, t0),

and

(−b2ϕ
′(zx0 , t0) + ϕt(zx0 , t0),−ϕ′(zx0 , t0)Dxρ(s0, t0),

ϕ′(zx0 , t0)Y + ϕ′′(zx0 , t0)en(0)⊗ en(0)) ∈ P2,−
u(x0, t0),

where zx0 = Ψ(u(x0, t0), t0), zy0 = Ψ(u(y0, t0), t0) and en(s) is as defined in Section

2.

Since u is both a subsolution and a supersolution of (3.15), we have

b1ϕ
′(zy0 , t0) + ϕt(zy0 , t0) ≤ tr (ϕ′(zy0 , t0)A1X + ϕ′′(zy0 , t0)A1en(1)⊗ en(1)) ,

and

−b2ϕ
′(zx0 , t0) + ϕt(zx0 , t0) ≥ tr(ϕ′(zx0 , t0)A2Y + ϕ′′(zx0 , t0)A2en(0)⊗ en(0)),
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where

A1 =



β(t0) · · · 0 0

...
...

...
...

0 · · · β(t0) 0

0 · · · 0 α(|ϕ′(zy0 , t0)|, ϕ(zy0 , t0), t0)


,

and

A2 =



β(t0) · · · 0 0

...
...

...
...

0 · · · β(t0) 0

0 · · · 0 α(|ϕ′(zx0 , t0)|, ϕ(zx0 , t0), t0)


.

Set

C =



β(t0) · · · 0 0

...
...

...
...

0 · · · β(t0) 0

0 · · · 0 0


,
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and simple calculation shows

 A1 C

C A2

 ≥ 0. Then we obtain that

ε

(T − t0)2
= b1 + b2 ≤

tr(ϕ′(zy0 , t0)A1X)− ϕt(zy0 , t0)

ϕ′(zy0 , t0)

+
tr(A1en(1)⊗ en(1))ϕ′′(zy0 , t0)

ϕ′(zy0 , t0)

+
tr(−ϕ′(zx0 , t0)A2Y ) + ϕt(zx0 , t0)

ϕ′(zx0 , t0)

−tr(A2en(0)⊗ en(0))ϕ′′(zx0 , t0)

ϕ′(zx0 , t0)

+λ tr


 A1 C

C A2

M2



≤ tr


 A1 C

C A2


 X 0

0 −Y


+ λ tr


 A1 C

C A2

M2


+
ϕt(zx0 , t0)− α(ϕ′(zx0 , t0), ϕ(zx0 , t0), t0)ϕ′′(zx0 , t0)

ϕ′(zx0 , t0)

−ϕt(zy0 , t0)− α(ϕ′(zy0 , t0), ϕ(zy0 , t0), t0)ϕ′′(zy0 , t0)

ϕ′(zy0 , t0)

= tr


 A1 C

C A2

M

+ λ tr


 A1 C

C A2

M2

 .
Using (3.12) with κ = 0, we obtain

tr


 A1 C

C A2

M

 ≤ 0.

We have arrived at ε ≤ 0 by letting λ → 0, which is a contradiction.

Therefore (3.16) is true, hence completing the proof. �
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3.6 Estimates on Bakry-Emery Manifolds

We prove a generalization to viscosity solutions of Theorem 1.2 in [8].

Theorem 3.6.1. Let M be a closed Riemannian manifold satisfying

Ricij + fij ≥ agij

for some a ∈ R. Denote D = diam(M). Let u be a viscosity solution of

ut = ∆fu

with the operator ∆f := ∆ − 〈∇(·),∇f〉. Then the modulus of continuity ω :

[0, D
2

]× R+ → R of u is a viscosity subsolution of

ωt = ω′′ − asω′,

provided ω is increasing in s.

Proof. The idea is the same as before. Let φ be a smooth function lying above w

for U × (t0 − ε0, t0 + ε0) with equality at (s0, t0). Then it follows that the function

Z(y, x, t) := u(y, t)− u(x, t)− ψ(x, y, t)

has a local maximum at (x0, y0, t0), where ψ(x, y, t) = φ
(
ρ(x,y)

2
, t
)

as before. Now

we can apply the parabolic version maximum principle for semicontinuous functions

on manifolds to conclude that for each λ > 0, there exist symmetric tensors X, Y

such that

(b1, Dyψ(x0, y0, t0), X) ∈ P2,+
u(y0, t0),
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(−b2,−Dxψ(x0, y0, t0), Y ) ∈ P2,−
u(x0, t0),

b1 + b2 = ψt(x0, y0, t0) = 2φt(s0, t0),X 0

0 −Y

 ≤M + λM2, (3.18)

where M = D2ψ(x0, y0, t0).

The first derivative of ψ yields

Dyψ(x0, y0, t0) = φ′(s0, t0)
γ′0(1)

2s0

= φ′(s0, t0)en(1), (3.19)

and

Dxψ(x0, y0, t0) = −φ′(s0, t0)
γ′0(0)

2s0

= φ′(s0, t0)en(0). (3.20)

Since u is a viscosity solution, we have

b1 ≤ tr(X)− φ′〈∇f(y0), en(1)〉,

−b2 ≥ tr(Y )− φ′〈∇f(x0), en(0)〉.

Therefore

2φt(s0, t0) = b1 + b2 ≤ tr(X)− tr(Y )− φ′〈∇f(y0), en(1)〉+ φ′〈∇f(x0), en(0)〉

≤ tr(M)− φ′〈∇f(y0), en(1)〉+ φ′〈∇f(x0), en(0)〉.
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We estimate that

tr(M) =
n−1∑
i=1

D2φ ((ei(1), ei(0)), (ei(1), ei(0)))

+D2φ ((en(1),−en(0)), (en(1),−en(0)))

≤ φ′′ − φ′
ˆ s0

−s0
Ric(en(s), en(s))ds

≤ φ′′ + φ′
ˆ s0

−s0
∇∇f(en, en)− ag〈en, en〉ds

= φ′′ + 2as0φ
′ + φ′〈∇f(y0), en(1)〉+ φ′〈∇f(x0), en(0)〉,

where we have used (3.11) with κ = 0. Hence at (s0, t0),

φt ≤ φ′′ − as0φ
′

holds, proving the theorem. �

Next we give the evolutionary analogue of the above theorem, which is a

generalization of Theorem 5 in [3].

Theorem 3.6.2. Let Mn be a closed manifold with time-dependent metrics and

smooth function f(·, t). Suppose that

gt ≥ −2 (Ricij + fij) + 2agij.

Let u be a viscosity solution of the drift-Laplacian heat flow

ut = ∆fu.
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Then the modulus of continuity ω : [0, D
2

]×R+ → R of u is a viscosity subsolution

of

ωt = ω′′ − asω′

provided ω is increasing in s.

Proof. The proof is immediate by combining

φt −
ˆ s0

−s0

(
Ric(en, en) +∇2f(en, en)− ag〈en, en〉

)
ds ≤ b1 + b2,

b1 + b2 ≤ tr(M)− φ′〈∇f(y0), en(1)〉+ φ′〈∇f(x0), en(0)〉,

and

tr(M) ≤ φ′′ − φ′
ˆ s0

−s0
Ric(en(s), en(s)) ds.

�

Remark 3.6.3. The same proof works for the more general equation: If u is a

viscosity solutions of

ut =

[
α(|Du|, t)DiuDju

|Du|2
+ β(|Du|, t)

(
δij −

DiuDju

|Du|2

)]
DiDju

+ b(|Du|, t) + 〈∇f,∇u〉.

Then the modulus of continuity ω of u satisfies

ωt ≤ α(ω′)ω′′ − asω′

in the viscosity sense, provided ω is increasing in s.
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3.7 Boundary Value Problems

3.7.1 Definition of Viscosity Solution for Boundary Value

Problems

We recall the definition of viscosity solutions to boundary value problems from

[29, Section 7]. Let Ω be an open subset of Rn and T > 0. For brevity we write

z = (x, t). Consider the boundary problem of the form

ut + F (z, u,Du,D2u) = 0 in Ω× (0, T ), (3.21)

B(z, u,Du,D2u) = 0 on ∂Ω× (0, T ).

Assume F ∈ C(Ω×R×R×Rn×Sn×n) and B ∈ C(∂Ω×R×R×Rn×Sn×n) are

both proper.

Definition 3.7.1. A function u ∈ USC(Ω × (0, T )) is a viscosity subsolution of

(3.21) if

τ + F (z, u(z), p,X) ≤ 0 for z ∈ Ω× (0, T ), (τ, p,X) ∈ P2,+

Ω×(0,T )u(z),

and

min {τ + F (z, u(z), p,X), B(z, u(z), p,X)} ≤ 0

for z ∈ ∂Ω× (0, T ), (τ, p,X) ∈ P2,+

Ω×(0,T )u(z).
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Similarly, u ∈ LSC(Ω× (0, T )) is a viscosity supersolution of (3.21) if

τ + F (z, u(z), p,X) ≥ 0 for z ∈ Ω× (0, T ), (τ, p,X) ∈ P2,−
Ω×(0,T )u(z),

and

max {τ + F (z, u(z), p,X), B(z, u(z), p,X)} ≥ 0

for z ∈ ∂Ω× (0, T ), (τ, p,X) ∈ P2,−
Ω×(0,T )u(z).

Finally, u is a viscosity solution of (3.21) if it is both a viscosity subsolution and

a viscosity supersolution of (3.21).

3.7.2 Neumann problem

We consider the following quasilinear evolution equations:

∂u

∂t
= aij(Du, t)DiDju+ b(Du, t) in Ω× (0, T ),

〈Du(x, t), n(x)〉 = 0 on ∂Ω× (0, T ),

where A(p, t) = (aij(p, t)) is positive semi-definite and n(x) is the exterior unit

normal vector at x. As in [5], we assume that there exists a continuous function

α : R+ × [0, T ]→ R with

0 < α(R, t) ≤ R2 inf
|p|=R,(v·p) 6=0

vTA(p, t)v

(v · p)2
, (3.22)

The following theorem is a generalization of Theorem 4.1 in [5] to viscosity

solutions.



48

Theorem 3.7.2. Let Ω ⊂ Rn be a smooth bounded and convex domain. Let u be

a viscosity solution of the Neumann problem. Then the modulus of continuity ω is

a viscosity subsolution of the one dimensional equation ωt = α(|ω′|, t)ω′′, provided

that ω is increasing in s.

Proof. We must show that if φ is a smooth function such that ω − φ has a local

maximum at (s0, t0) for s0 > 0 and t0 > 0, then at (s0, t0)

φt ≤ α(|φ′|, t)φ′′.

As before, we consider the function

Z(y, x, t) = u(y, t)− u(x, t)− 2φ(
|y − x|

2
, t)

and arrive at that there exists (x0, y0, t0) with |x0 − y0| = 2s0 such that Z attains

a local maximum at (x0, y0, t0). Now replacing φ by

ϕ(s, t) = φ(s, t) + (s− s0)4 + (t− t0)4

if necessary, we may assume Z has a strict local maximum at (x0, y0, t0).

If (x0, y0) ∈ Ω × Ω, then the same argument as in [44] would prove the

theorem. For the case (x0, y0) ∈ ∂(Ω × Ω), the strategy is to produce approx-

imations uε, uε such that uε → u, uε → u uniformly as ε → 0 and uε, uε are a

supersolution and a subsolution of some modified equation, for which we have the

same inequalities no matter the maximum point lies in Ω× Ω or on ∂(Ω× Ω).
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Fix a point z0 ∈ Ω. Let δ = d(z0, ∂Ω) > 0. Define v(x) = 1
2
(x− z0)2. Then

Dv(x) = x− z0 and D2v(x) = I. Moreover for any x ∈ ∂Ω,

〈Dv(x), n(x)〉 = 〈x− z0, n(x)〉 ≥ d(z0, ∂Ω) = δ.

Define uε(x) = u(x)− εv(x) and uε(x) = u(x)+ εv(x). Then we have the following:

uε is a viscosity subsolution of

∂u

∂t
= aij(Du+ εDv, t)DiDju+ b(Du+ εDv, t) + ε tr(aij(Du+ εDv, t)) in Ω,

(3.23)

〈Du(x, t), n(x)〉+ ε〈Dv(x), n(x)〉 = 0 on ∂Ω,

(3.24)

and uε is a viscosity supersolution of

∂u

∂t
= aij(Du− εDv, t)DiDju+ b(Du− εDv, t)− ε tr(aij(Du− εDv, t)) in Ω,

(3.25)

〈Du(x, t), n(x)〉 − ε〈Dv(x), n(x)〉 = 0 on ∂Ω.

(3.26)

We complete the proof by considering the following approximation of the

function Z:

Zε(x, y, t) = uε(y, t)− uε(x, t)− 2φ

(
|y − x|

2
, t

)
.

Then Zε has a local max at (xε, yε, tε) with (xε, yε, tε) → (x0, y0, t0) and sε =

|yε − xε|/2 → s0. As usual, choose en = yε−xε
|yε−xε| and the maximum principle for
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semicontinuous functions [29, Theorem 8.3] gives b1,ε, b2,ε ∈ R and Xε, Yε ∈ Sn×n

for any λ > 0,

(b1,ε, φ
′(sε, tε)en, Xε) ∈ P

2,+

Ω×(0,T )uε(yε, tε),

(−b2,ε, φ
′(sε, tε)en, Yε) ∈ P

2,−
Ω×(0,T )u

ε(xε, tε),

b1,ε + b2,ε = 2φt(sε, tε),

−
(
λ−1 + ‖M‖

)
I ≤

Xε 0

0 −Yε

 ≤M + λM2,

where M = 2D2φ(sε, tε). By the definition of viscosity solution for boundary

problem, we have if yε ∈ Ω, then at (xε, yε, tε),

b1,ε ≤ tr(A(φ′en + εDv)Xε)− b(φ′en + εDv) + ε tr(A(Du+ εDv)), (3.27)

and if yε ∈ ∂Ω, then at (xε, yε, tε)

min {b1,ε − tr(A(φ′en + εDv)Xε)− b(φ′en + εDv)− ε tr(A(Du+ εDv)),

φ′〈en, n(yε)〉+ ε〈Dv(yε), n(yε)〉} ≤ 0,

However, since Ω is convex and φ′ ≥ 0, φ′〈en, n(yε)〉+ ε〈Dv(yε), n(yε)〉 ≥ εδ. Thus

equation (3.27) is valid no matter yε lies in Ω or on ∂Ω. Similarly, if xε ∈ Ω, then

at (xε, yε, tε)

−b2,ε ≥ tr(A(φ′en − εDv)Yε)− b(φ′en − εDv)− ε tr(A(φ′en − εDv)), (3.28)
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and if xε ∈ ∂Ω, then at (xε, yε, tε)

max {−b2,ε − tr(A(φ′en − εDv)Yε)− b(φ′en) + ε tr(A(φ′en − εDv)),

φ′〈en, n(xε)〉 − ε〈Dv(xε), n(xε)〉} ≥ 0.

Observe that φ′〈en, n(xε)〉 − ε〈Dv(xε), n(xε)〉 ≤ −εδ < 0, because Ω is convex and

φ′ ≥ 0. Therefore, equation (3.28) is valid no matter xε lies in Ω or on ∂Ω. By

passing to subsequences if necessary, we have b1,ε → b1, b2,ε → b2, Xε → X and

Yε → Y as ε→ 0. The limits satisfies

b1 + b2 = 2φt(s0, t0),

−
(
λ−1 + ‖M‖

)
I ≤

X 0

0 −Y

 ≤M + λM2,

Letting ε→ 0 in (3.27) and (3.28), we obtain at (y0, t0) (x0, t0)

b1 ≤ tr(A(φ′en)X)− b(φ′en),

−b2 ≥ tr(A(φ′en)Y )− b(φ′en),

The rest of the proof is the same as the proof of Theorem 1.1 in [44]. �

Remark 3.7.3. The same modulus of continuity estimate holds on manifolds for

Neumann boundary problem. The argument is the same as in Section 3.
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3.7.3 Dirichlet Problem

We consider the following quasilinear evolution equations:

∂u

∂t
= aij(Du, t)DiDju in Ω× (0, T ),

u(x, t) = 0 on ∂Ω× (0, T ).

Where A(p, t) = (aij(p, t)) is positive semi-definite and n(x) is the exterior unit

normal vector at x. As in [5], we assume that there exists a continuous function

α : R+ × [0, T ]→ R with

0 < α(R, t) ≤ R2 inf
|p|=R,(v·p) 6=0

vTA(p, t)v

(v · p)2
.

For Dirichlet problem, we cannot formulate the same theorem as for Neumann

problem. B. Andrews’ proof for regular solutions assumes concavity of the modulus

of continuity to rule out the case that maximum can occur on the boundary.

Instead, we prove the following theorem, which is a generalization of Theorem 4.2

in [5] to viscosity solutions.

Theorem 3.7.4. Let Ω ⊂ Rn be a smooth bounded and convex domain. Let u be

a continuous viscosity solution of the Dirichlet problem. Let ϕ0 be a modulus of

continuity of u(·, 0). Suppose ϕ is increasing and concave in the first variable and

satisfies

ϕt ≥ α(|ϕ′|, t)ϕ′′,

and ϕ(z, t) ≥ ϕ0(z) for all z ≥ 0. Then ϕ(s, t) is a modulus of continuity for

u(s, t) for all t > 0.
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Proof. The proof is exactly as the proof of Theorem 4.2 in [5] except one replaces

the usual comparison principle by the comparison principle for viscosity solutions

. �

The results of Chapter 3 are joint work with Dr. Kui Wang, published in

Journal of Geometric Analysis in 2017.



Chapter 4

Nonparametric Hypersurfaces

Moving by Powers of Gauss

Curvature

4.1 Introduction

In this chapter, we study asymptotic behavior of nonparametric hypersur-

faces moving by α powers of Gauss curvature with α > 1/n. Our work generalizes

the results of V. Oliker [59] for α = 1.

Let Ω be a bounded strictly convex domain in Rn, n ≥ 2, with smooth

54
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boundary ∂Ω. We consider a solution of the following initial boundary problem

ut =
[det(uij)]

α

(1 + |∇u|2)αβ
in Ω× (0,∞),

u(x, t) = 0 in ∂Ω× (0,∞), (4.1)

u(x, t) is strictly convex for each t ≥ 0,

where α > 1/n and β ≥ 0 are constants and

ut :=
∂u

∂t
, uij :=

∂2u

∂xi∂xj
, ∇u :=

(
∂u

∂x1

, · · · , ∂u
∂xn

)
.

Equation (4.1) describes the graphs (x, u(x, t)), (x, t) ∈ Ω× [0,∞) evolving

in Rn+1 with relative boundaries (x, u(x, t))|∂Ω remain fixed. When β =
n+2− 1

α

2
,

the normal speed of the point (x, u(x, t)) is equal to α powers of the Guass cur-

vature of the graph. Such parabolic Monge-Ampère equations have been studied

by many authors in recent years. See, for instance, [38][30]. On the other hand,

in the parametric setting, flow by Gauss curvature or its powers have received

considerable interests, see [64][24][25][1] [2] [33] [7] and the references therein.

V. Oliker considered (4.1) with α = 1 in [59]. He analyzed the asymptotic

behavior of smooth convex solutions of (4.1). It turned out that solutions with

different β all have the same asymptotic behavior. Moreover, if Ω is centrally sym-

metric or rotationally symmetric, then the solution u(x, t) asymptotically becomes

centrally symmetric or rotational symmetric, regardless of its initial shape.

The goal of this work is to generalize V. Oliker’s results in [59] to any

power α > 1/n. We investigate the asymptotic behavior of a smooth convex
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solution of (4.1) and show that, by comparing with self-similar solutions of (4.1)

with β = 0, the solution u(x, t) asymptotically converges to the solution of the

following nonlinear elliptic problem:

[det(ψij)]
α =

1

1− nα
ψ in Ω, ψ = 0 on ∂Ω,

ψ is stictly convex and ψ < 0 in Ω.

Furthermore, our estimate implies geometric properties of the flow by α powers

of the Gauss curvature. For instance, the asymptotic behavior of u(x, t) reflects

the symmetries of Ω. More precisely, if Ω is centrally or rotationally symmetric,

then the solution u(x, t) asymptotically becomes centrally or rotational symmetric,

regardless of its initial shape, and we also give sharp estimates on the rate of this

process.

Throughout out the paper, we denote by M the Monge-Ampère operator

M(u) := det(uij) and Mα(u) := [det(uij)]
α.

4.2 Main Results

Consider the following initial boundary problem:

ut = Mα(u) in Ω× (0,∞),

u(x, t) = 0 in ∂Ω× (0,∞), (4.2)

u(x, t) is strictly convex for each t ≥ 0.
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We seek for self-similar solutions of (4.2) of the form

u(x, t) = ϕ(t)ψ(x), (4.3)

where ϕ(t) ∈ C∞([0,∞)) and ψ(x) = C∞(Ω)∩C0,1(Ω). By convexity of u(x, 0) =

ϕ(0)ψ(x), we have either ϕ(0) < 0 and ψ(x) > 0 in Ω and concave or ϕ(0) > 0

and ψ(x) < 0 in Ω and convex. Since both cases are equivalent for our purpose,

we always deal with the latter one. Substituting (4.3) into (4.2) yields

ϕ(t)

ϕnα
=
Mα(ψ)

ψ
= λ = constant.

Noting that ψ(x) < 0 and convex in Ω, we get λ ≤ 0 and

ϕ(t) =
(
ϕ(0)1−nα − (nα− 1)λt

) 1
1−nα , (4.4)

M(ψ) = (λψ)
1
α in Ω and ψ = 0 on ∂Ω. (4.5)

An easy argument shows that λ = 0 implies u(x, t) ≡ 0. Thus we only consider

the case λ < 0. By scaling, it suffices to consider one negative value of λ and thus

we fix λ = 1
1−nα < 0 for convenience. The following result establishes the existence

of self-similar solutions to (4.2).

Theorem 4.2.1. Let Ω be a bounded strictly convex domain with smooth boundary

∂Ω. Then problem (4.2) admits a self-similar solution in Ω× (0,∞) given by

u(x, t) = (1 + t)
1

1−nαψ(x), (4.6)
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where ψ is the unique solution in C∞(Ω) ∩ C0,1(Ω) of the equation

M(ψ) =

(
−ψ

|1− nα|

) 1
α

in Ω, ψ = 0 on ∂Ω, (4.7)

ψ is stictly convex and ψ < 0 in Ω,

and supΩ |ψ(x)| admits an estimate depending only on n, α and the domain Ω.

Furthermore, if ũ(x, t) = ϕ(t)ψ̃(x) is an arbitrary self-similar solution of (4.2),

then there exists a unique c > 0 such that ψ̃(x) = cψ(x) and

ũ(x, t) = u(x, t)

{
1 + t

[cϕ(0)]1−nα + t

} 1
nα−1

. (4.8)

The main theorem concerning the asymptotic behavior of the solution is

the following:

Theorem 4.2.2. Let u(x, t) ∈ C2(Ω× (0,∞)) be a solution of the problem

ut =
Mα(u)

(1 + |∇u|2)αβ
in Ω× (0,∞),

u(x, t) = 0 in ∂Ω× (0,∞), (4.9)

u(x, t) is strictly convex for each t ≥ 0,

where α > 1/n and β ≥ 0 are constants. If β = 0, then there exists positive

constant C1 depending only on dimension n, α, Ω and u(x, 0), such that for all

t ≥ 0,

sup
Ω

∣∣∣(1 + t)
1

nα−1u(x, t)− ψ(x)
∣∣∣ ≤ C1

1 + t
, (4.10)

If β > 0, then[
C2

1 + t
+G

1
1−nα − 1

]
ψ ≤ (1 + t)

1
nα−1u(x, t)− ψ(x) ≤ −C3ψ

1 + t
, (4.11)
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where C2 and C3 are positive constants depending only on dimension n, α, Ω,

u(x, 0) and

G = inf
Ω

(
1 + |∇u(x, 0)|2

)−αβ
.

Moreover,

lim
t→∞

(1 + t)
1

nα−1u(x, t) = ψ(x) uniformly on Ω. (4.12)

We have gradient estimates for solutions of (4.9).

Corollary 4.2.3. Suppose the same conditions as in Theorem 4.2.2 holds. Then

for all t ≥ 0,

sup
Ω
|∇u(x, t)| ≤ G

1
1−nα sup

∂Ω
ψν(x)(C4 + t)

1
1−nα

where ψν is the derivative in the direction of the outward unit normal to ∂Ω, and

C4 depends only on u(x, 0).

An interesting geometric consequence of Theorem 4.2.2 is the following:

Theorem 4.2.4. If Ω is a ball in Rn and u(x, t) ∈ C2(Ω × (0,∞)) is a solution

of (4.9). Then

(1 + t)
1

nα−1u(x, t)→ ψ(|x|) uniformly on Ω as t→∞.

This theorem implies that, u(x, t) asymptotically becomes radially sym-

metric regardless of the initial shape. More generally, if Ω is centrally symmetric,

then

(1 + t)
1

nα−1u(x, t)→ ψ(x) uniformly on Ω as t→∞,
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where ψ(x) = ψ(−x). The proof of Theorem 4.2.4 is the same as in [59, Section 6]

and we omit it here.

4.3 Proof of Theorem 4.2.1

The existence of solution to (4.7) is claimed in [65] without a detailed proof.

Thus we include a detailed proof here for the sake of completeness. V. Oliker [59]

proved that (4.7) has a unique solution in C∞(Ω)∩C0,1(Ω) when α = 1. The proof

we present here is a generalization of his proof for all α > 1/n.

We use the same strategy as in [59] to prove the existence of a solution to

(4.2). The idea is to consider the family of boundary problems

M(ψ) = (λ(ψ − δ))
1
α in Ω, (4.13)

ψ = 0 on ∂Ω,

where δ ∈ (0, δ0) for some fixed δ0 > 0. Then we show that for any δ ∈ (0, δ0)

there exists a smooth solution ψδ of (4.13) and then proceed to give a solution to

(4.7) by letting δ → 0.

A smooth solution ψδ of (4.13) can be obtained by applying Theorem 7.1 in

[14] if we are able to verify the conditions needed. Clearly, the function f(x, ψ) =

(λ(ψ − δ)) 1
α > 0 on Ω × (−∞, 0]. Then it remains to check there exists a convex
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subsolution ψ ∈ C2(Ω) such that

M(ψ) ≥ (λ(ψ − δ))
1
α in Ω (4.14)

ψ = 0 on ∂Ω.

This can be done using the construction of P. L. Lions[48]. Since Ω is strictly

convex, ∂Ω can be written as a level hypersurface ρ = 0 for a strictly convex

smooth function ρ satisfying ρ < 0 in Ω and |∇ρ| 6= 0 on ∂Ω. Take

ψ = ρ+ k(eρ − 1),

where k is a positive constant to be chosen later. Then

ψ
ij

= ρij + keρ(ρij + ρiρj).

Since (ρij) ≥ c I for some constant c > 0, one computes using det(I +aaT ) = 1+aTa

that

M(ψ
ij

) ≥ (keρ)ncn
[
1 +
|∇ρ|2

c

]
.

Therefore, in view of α > 1/n, we may choose k large enough, independent of

δ ∈ (0, δ0) so that

(keρ)ncn
[
1 +
|∇ρ|2

c

]
≥ (λ(ρ+ k(eρ − 1)− δ0))

1
α ≥

(
λ(ψ − δ)

) 1
α .

Now we can apply Theorem 7.1 in [14] and obtain a strictly convex smooth solution

ψδ to (4.13) and ψδ ≥ ψ. Next, we show that the family of functions {ψδ | δ ∈

(0, δ0)} contains a subsequence that converges to a solution of (4.7). To do this,

we establish up to C3 interior estimates independent of δ.
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4.3.1 C0 estimates

We start with the following C0 estimate.

Lemma 4.3.1.

0 < κ ≤ sup
Ω
|ψδ| ≤ sup

Ω
|ψ|. (4.15)

Before heading to the proof, we need to recall some properties of the Monge-

Ampere operator M . The proofs of these properties can be found in [34]. Given a

function u : Ω→ R, the normal mapping of u, is the set function ∂u : Ω→ P(Rn)

defined by

∂u(x0) = {p : u(x) ≥ u(x0) + p · (x− x0), for all x ∈ Ω}.

For any E ⊂ Ω, we define

∂u(E) =
⋃
x∈Ω

∂u(x).

If u ∈ C(Ω), then the class

S = {E ⊂ Ω : ∂u(E) is Lebesgue measurable }

is a Borel σ-algebra and the set function Mu : S → R defined by

Mu(E) = |∂u(E)|

is a measure, finite on compact sets, that is called the Monge-Ampere measure

associated with the function u. If u ∈ C2(Ω) is a convex function, then the

Monge-Ampere measure Mu associated with u satisfies

Mu(E) =

ˆ
E

det(uij) dx
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for all Borel sets E ⊂ Ω.

Given a Borel measure ν on Ω. A convex function u ∈ C(Ω) is called a

generalized solution to the Monge-Ampere equation

detD2u = ν

if the Monge-Ampere measure Mu associated with u equals ν. In particular,

smooth convex solutions are also generalized solutions. Let g be a nonnegative

integrable function defined on Ω. Then

ν(E) =

ˆ
E

g(x)dx

defines a Borel measure on Ω. It is shown in [11, Section 11.5] that if for all x

sufficiently close to ∂Ω,

g(x) ≤a (d(x, ∂Ω))s , a = const ≥ 0, s ≥ 0, (4.16)

µ(Ω) <∞. (4.17)

then there exists a unique convex function u ∈ C(Ω) such that Mu = ν as measures

and u = 0 on ∂Ω. Thus on the set of measures, generated as above, and satisfying

(4.16), (4.17), a solution operator A is well-defined. Moreover, if g1(x) ≤ g2(x) on

Ω, then

Ag1(x) ≥ Ag2(x) for all x ∈ Ω, (4.18)

A(Cg) = C
1
nA(g) for any constant C > 0. (4.19)

Now we are ready to prove Lemma 4.3.1.
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Proof of Lemma 4.3.1. Since ψδ is convex, its maximum is achieved on ∂Ω and we

immediately get a uniform estimate

sup
Ω
|ψδ| ≤ sup

Ω
|ψ|.

The lower bound is not easy and we omit the subscript δ for simplicity. Since ψ is

convex and vanishes on ∂Ω, it achieves its minimum at some interior point x̄ ∈ Ω.

Consider the cone K with vertex (x̄, ψ(x̄)) and base ∂Ω and let θ(x) be the convex

function whose graph is K. Clearly, θ(x) ≥ ψ(x) for all x ∈ Ω. For any x ∈ Ω,

there is a line segment originating from x̄ and going through x until it reaches

boundary at a point l(x). Then by considering similar triangles in the two-plane

through the segment and the point, we have

θ(x) ≤ ψ(x̄)d(x, l(x))

d(x̄, l(x))
≤ ψ(x̄)

d(x, ∂Ω)

diamΩ
.

For sufficient small ε > 0, define E = {x ∈ Ω : d(x, ∂Ω) ≥ ε diamΩ}. It’s easy to

see

ψ(x) ≤ χEψ(x̄)d(x, ∂Ω)

diamΩ
≤ εχEψ(x̄)

for all x ∈ Ω. Let g(x) = (ελχEψ(x̄))
1
α , then g satisfies the conditions (4.16),

(4.17) and therefore there is a convex function u ∈ C(Ω) such that for any Borel

subset F ⊂ Ω,

Mu(F ) = (ελψ(x̄))
1
α

ˆ
F

χEdx.

Since (λ(ψ − δ)) 1
α ≥ (λεχEψ(x̄))

1
α , then by (4.18) and (4.19),

u(x) = (ελψ(x̄))
1
nα (Aχ)(x) ≥ ψ(x) ≥ ψ(x̄).
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It then follows that

|ψ(x̄)| ≥
(
|ελ|

1
nα−1 sup

Ω
|(Aχ)(x)|

nα
nα−1

)
:= κ.

Noting that supΩ |(Aχ)(x)| > 0, we obtain

sup
Ω
|ψ| = |ψ(x̄)| ≥ κ > 0.

�

4.3.2 C1 estimates

The following lemma establishes the C1 estimate.

Lemma 4.3.2.

sup
Ω
|∇ψδ| ≤ sup

∂Ω
|ψ

ν
|. (4.20)

Proof. We omit the subscript δ as in previous lemma. By convexity of ψ, |∇ψ|

attains its maximum on ∂Ω. Since ψ = 0 on ∂Ω, it suffices to estimate the normal

derivative |ψν |, where ν denotes the outward unit normal vector field on ∂Ω. Note

that ψ ≥ ψ and they agree on ∂Ω, it follows that ψν ≤ ψ
ν

on ∂Ω. On the other

hand, since ψ is convex, it’s easy to see that ψν ≥ 0. Thus the desired estimate is

established. �

4.3.3 C2 estimates

Now let’s turn to the C2 interior estimate.
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Lemma 4.3.3. There exists positive constant z̄, independent of δ, such that for

any direction γ we have

0 ≤ ψγγ ≤
z̄ diamΩ

d(x, ∂Ω)κ
. (4.21)

Before giving a proof the above lemma, we present here the calculation for

estimating the second derivatives of a more general Monge-Ampere equation:

M(ψ) = f(x, ψ,∇ψ), (4.22)

assuming that f is positive and later we restrict to equation (4.13). Although

the basic calculation appeared in [58], we give some details here for the sake of

completeness. Again we omit the subscript δ for brevity. Consider the function

z = −ψ exp

(
cψ2

γ

2

)
ψγγ, (4.23)

where ψγ is the derivative in the direction γ, ψγγ is the second derivative in the

same direction and c is a constant to be chosen later. Clearly, the function z

attains its maximum at some interior point q ∈ Ω. Without loss of generality, we

may assume that q is the origin and choose an orthonormal basis that diagonalizes

ψij. Differentiating log z in the i direction yields

zi
z

=
ψi
ψ

+ cψγψγi +
ψγγi
ψγγ

. (4.24)

When γ 6= i, this reduces to

ψ2
i

ψ2
=
ψ2
γγi

ψ2
γγ

. (4.25)
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Differentiating one more time in the i direction gives,

zii
z
− z2

i

z2
=
ψii
ψ
− ψ2

i

ψ2
+ cψ2

γi + cψγψγii +
ψγγii
ψγγ

−
ψ2
γγi

ψ2
γγ

. (4.26)

Taking into account that ψγi = 0 when γ 6= i and zi = 0 at q, we get after

multiplying (4.26) by ψγγ
ψii

and summing over i,

∑
i

ziiψγγ
zψii

=n
ψγγ
ψ
−
ψ2
γ

ψ2
−
∑
i 6=γ

ψ2
i

ψ2

ψγγ
ψii

+ cψ2
γγ + cψγψγγ

∑
i

ψγii
ψii

(4.27)

+
∑
i

ψγγii
ψii
−
∑
i

ψ2
γγi

ψγγψii
.

Substituting (4.25) in (4.27) gives

∑
i

ziiψγγ
zψii

=n
ψγγ
ψ
−
ψ2
γ

ψ2
−
∑
i 6=γ

ψ2
γγi

ψγγψii
+ cψ2

γγ + cψγψγγ
∑
i

ψγii
ψii

(4.28)

+
∑
i

ψγγii
ψii
−
∑
i

ψ2
γγi

ψγγψii
.

By differentiating (4.22) in γ direction once and twice respectively, we ob-

tain ∑
i

ψiiγ
ψii

= (log f)γ (4.29)

∑
i

ψiiγγ
ψii
−
∑
i,j

ψ2
ijγ

ψiiψjj
= (log f)γγ. (4.30)

Subtracting (4.30) from (4.28) yields

n
ψγγ
ψ
−
ψ2
γ

ψ2
−
∑
i 6=γ

ψ2
γγi

ψγγψii
+ cψ2

γγ + cψγψγγ
∑
i

ψγii
ψii
−
∑
i

ψ2
γγi

ψγγψii
(4.31)

+
∑
i,j

ψ2
ijγ

ψiiψjj
=
∑
i

ziiψγγ
zψii

− (log f)γγ.
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Noting that

∑
i,j

ψ2
ijγ

ψiiψjj
−
∑
i

ψ2
γγi

ψγγψii
−
∑
i 6=γ

ψ2
γγi

ψγγψii
≥ 0, (4.32)

we obtain from (4.31) that

cψ2
γγ + n

ψγγ
ψ
−
ψ2
γ

ψ2
+ cψγψγγ(log f)γ + (log f)γγ ≤ 0. (4.33)

where we also used zii ≤ 0 at q.

Proof of Lemma 4.3.3. Now we return to equation (4.13) and plug in f(x, ψ,∇ψ) =

(λ(ψ − δ))
1
α and c = 1 to get

ψ2
γγ +

(
n

ψ
+

ψ2
γ + 1

α(ψ − δ)

)
ψγγ −

(
1

ψ2
+

1

α(ψ − δ)2

)
ψ2
γ ≤ 0. (4.34)

Multiplying (4.34) by ψ2 exp(ψ2
γ) implies,

z2 − exp

(
ψ2
γ

2

)(
n+

ψ(ψ2
γ + 1)

α(ψ − δ)

)
z − exp(ψ2

γ)ψ
2
γ

(
1 +

ψ2

α(ψ − δ)2

)
≤ 0. (4.35)

The fact that the coefficients in (4.35) are uniformly bounded then follows

from 0 ≤ ψ
ψ−δ ≤ 1 and |∇ψ| is uniformly bounded. Hence 0 ≤ z ≤ z̄ for z̄

independent of δ. It then follows that 0 ≤ ψγγ ≤ z̄
|ψ| . Convexity of ψ also implies

|ψ(x)|
d(x, ∂Ω)

≥ max |ψ(x)|
diamΩ

(4.36)

Combining this inequality with (4.20) and (4.35) implies

0 ≤ ψγγ ≤
z̄ diamΩ

d(x, ∂Ω)κ
. (4.37)
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Then by rotating the coordinates axes with origin at q, any mixed second derivative

can be written in terms of second derivatives of ψ in the directions of the principle

axes of the second differential of ψ. Since the direction γ was arbitrary, thus we

have proved the C2 estimate. �

4.3.4 C3 estimates

Now we establish the interior estimates for third derivatives. The idea, due

to E. Calabi [15], is to consider the following function on Ω,

w = ψklψpqψrsψkprψlqs. (4.38)

This expression measures the square of the third derivatives in term of the Rie-

mannian metric g = ψijdx
idxj. The Laplace operator with respect to this metric

g is given by

∆w = ψijwij,

where (ψij) is the inverse of (ψij). The C3 estimate is then obtained by computing

the differential inequality satisfied by w and applying the maximum principle. Note

that we have omitted the subscript δ.

For any x ∈ Ω, we can choose an orthonormal frame that diagonalizes (ψij)

at x. It is shown in [14, Section 3] that if ψ is a solution of M(ψ) = f(x, ψ,∇ψ),
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then at x,

∆w =2
1

ψiiψkkψppψrr

(
ψkpri −

1

ψll
(ψkliψplr + ψpliψklr + ψrliψkpl)

)2

− 1

2

1

ψiiψkkψppψrr

∣∣∣∣ 1

ψll
(ψkliψplr + ψpliψklr + ψrliψkpl)

∣∣∣∣2
+ 2A+ 6B − 3ψkprψlpr

ψkkψppψrrψll

(
ψkabψlab
ψaaψbb

+ (log f)kl

)
+

2ψkpr
ψkkψppψrr

(log f)kpr,

where

A =
ψkprψlqrψkliψpqi

ψkkψppψrrψllψiiψqq
, B =

ψkprψlprψkaiψlai
ψkkψppψrrψllψaaψii

.

The following estimate is also proved in [14]:

− 1

2

1

ψiiψkkψppψrr

∣∣∣∣ 1

ψll
(ψkliψplr + ψpliψklr + ψrliψkpl)

∣∣∣∣2
+ 2A+ 6B − 3ψkprψlprψkabψlab

ψkkψppψrrψllψaaψbb

≥ 1

2
B ≥ w2

4n
.

We substitute into f(x, ψ,∇ψ) = (λ(ψ − δ)) 1
α and obtain that

∆w ≥ w2

4n
− w

α(ψ − δ)
−
√
E
w + 6

√
nw

α(ψ − δ)2
−
√
E3

4
√
w

α(ψ − δ)3
≥ w2

4n
−Q(w), (4.39)

using ψ − δ < 0, where E =
ψ2
k

ψkk
and Q(w) =

√
E w+6

√
nw

α(ψ−δ)2 .

We use an argument similar to Lemma 3.1 in [14] to estimate w at any

interior point O. We take O to be the origin, whose distance to ∂Ω is 2R. We

make use of the function ζ = R2 − |x|2 in BR(0) and ζ = 0 for all |x| ≥ R. Set
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τ = ζ2w, then for all |x| ≤ R ,we have

(ζ−2τ)2

4n
≤ ∆w +Q(w) (4.40)

= ζ−2∆τ + 2〈∇(ζ−2),∇τ〉+ τψij
(
4ζ−3δij + 24ζ−4x̄ix̄j

)
+Q(w).

At a point x̄ ∈ BR(0), where the function τ = ζ2w attains its maximum on BR(0),

∇τ = 0 and ∆τ ≤ 0 and so at x̄,

τ 2

4n
≤ τψij (4ζδij + 24x̄ix̄j) + ζ4Q(w) ≤ Cτ tr(ψij) + ζ4Q(w), (4.41)

where C depends only on the diameter of Ω. Next we estimate ζ4Q(w). Note that

(4.57) and (4.36) imply

1

(ψ − δ)2
≤
(

diamΩ

κ d(x, ∂Ω)

)2

. (4.42)

It follows from (4.20), (4.37) and det(ψij) = (λ(ψ − δ)) 1
α that

tr(ψij) =
∑
i

ψii =
∑
i

Πj 6=iψjj

(λ(ψ − δ)) 1
α

≤ C̃1

(d(x, ∂Ω))n−1+ 1
α

, (4.43)

E =
∑
k

ψ2
k

ψkk
≤ C̃2

(d(x, ∂Ω))n−1+ 1
α

, (4.44)

where C̃i are constants depending only on n, κ, α, diamΩ, supΩ |ψ| and supΩ |∇ψ|.

Therefore, if w ≥ 1,

ζ4Q(w) ≤ C̃3τ

(d(x, ∂Ω))
1
2

(n−1+ 1
α

)+2
, (4.45)

where C̃3 is a constant depending only on n, κ, α, diamΩ, supΩ |ψ| and supΩ |∇ψ|.

Inserting these estimates in (4.41), we get

τ(0) ≤ τ(x̄) ≤ C̃

(
1

d(x, ∂Ω)n−1+ 1
α

+
1

d(x, ∂Ω)
1
2

(n−1+ 1
α

)+2

)
, (4.46)
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where C̃ is a constant depending only on n, κ, λ, α, diamΩ, supΩ |ψ| and supΩ |∇ψ|.

Since d(x̄, ∂Ω) ≥ R,

w(0) ≤ C̃

(
1

Rn−1+ 1
α

+2
+

1

R
1
2

(n−1+ 1
α

)+4

)
. (4.47)

In view of (4.37), we see that

1

ψii
≥ C̃d(0, ∂Ω). (4.48)

This and the preceding inequality imply that the third derivatives |ψijk| are uni-

formly bounded on compact subsets of Ω.

4.3.5 Passing to a subsequence

Finally, we can pass to a subsequence and obtain a solution of (4.13). From

the uniform bounds of the norms ‖ψδ‖C3(Ω) and ‖ψδ‖C1(Ω), it follows that the

sequence ψδ contains a subsequence converging to a strictly convex function ψ ∈

C2,γ(Ω) ∩ Lip(Ω) for any γ ∈ (0, 1). Obviously the function ψ satisfies (4.13)

and ψ = 0 on ∂Ω. Standard theory on nonlinear elliptic PDE’s then implies

ψ ∈ C∞(Ω) ∩ Lip(Ω).

4.3.6 Proof of Theorem 4.2.1

Proof. Direct calculation shows u(x, t) = (1 + t)
1

1−nαψ(x) solves (4.2) with initial

data u0(x) = ψ(x). Next we prove supΩ |ψ(x)| depends only on n, α and Ω. Since

ψ is strictly convex and vanishes on ∂Ω, there exists a point x̄ ∈ Ω such that
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supΩ |ψ| = |ψ(x̄)|. Consider a cone K generated by the linear segments joining the

vertex (x̄, ψ(x̄)) with points on ∂Ω. Denote θ(x), x ∈ Ω, the function whose graph

is K. Obviously, θ ≥ ψ in Ω and θ = ψ = 0 on ∂Ω. Then by [34, Lemma 1.4.1]

Mθ(Ω) ≤Mψ(Ω), where Mu denotes the Monge-Ampere measure associated with

the function u(see [34, Theorem 1.1.13]). Since ψ is C∞ and convex on Ω,

Mψ(Ω) =

ˆ
Ω

M(ψ) =

ˆ
Ω

(λψ)
1
α ≤ |λ|

1
α |ψ(x̄)|

1
α |Ω|. (4.49)

On the other hand, the Aleksandrov-Bakelman-Pucci maximum principle (see, for

instance, [34, Theorem 1.4.5]) says Mθ(Ω) ≥ ωn|ψ(x̄)|n(diamΩ)−n, where ωn is the

volume of the unit ball in Rn. Thus

sup
Ω
|ψ(x)| = |ψ(x̄)| ≤

(
|λ| 1α |Ω|(diamΩ)n

ωn

) α
nα−1

. (4.50)

Finally, the proof of (4.8) parallels that in [59, Section 4.3]. �

4.4 Completion of the proof of Theorem 4.2.1

4.4.1 Uniqueness of ψ

We then prove the uniqueness of ψ. Let ψ1, ψ2 be two convex solutions of

(4.7), i.e.

M(ψi) = (λψi)
1
α in Ω and ψi = 0 on ∂Ω, i = 1, 2. (4.51)

Suppose ψ1 6= ψ2, we may assume there exist x ∈ Ω such that ψ1(x) > ψ2(x).

Let R ∈ (0, 1) be such that Rψ2 ≥ ψ1 for all x ∈ Ω and at some point x0 ∈ Ω,
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Rψ2(x0) = ψ1(x0). Then

M(R
1
nαψ2) = R

1
αM(ψ2) = R

1
α (λψ2)

1
α ≤ (λψ1)

1
α = M(ψ1).

By monotonicity of solution operator, R
1
nαψ2 ≥ ψ1 in Ω. In particular, R

1
nαψ2(x0) ≥

ψ1(x0). On the other hand, in view of R < 1 and ψ2 < 0 in Ω, R
1
nαψ2(x0) ≤

Rψ2(x0). We arrived at a contradiction and hence ψ1 ≡ ψ2.

4.4.2 Estimate for supΩ |ψ(x)|

The following lemma says supΩ |ψ(x)| admits an estimate depending only

on n, α, and Ω.

Lemma 4.4.1.

sup
Ω
|ψ(x)| ≤ C(n,Ω, α). (4.52)

Proof. Since ψ is strictly convex and vanishes on ∂Ω, there exists a point x̄ ∈ Ω such

that supΩ |ψ| = |ψ(x̄)|. Consider a cone K generated by the linear segments joining

the vertex (x̄, ψ(x̄)) with points on ∂Ω. Denote θ(x), x ∈ Ω, the function whose

graph is K. Obviously, θ ≥ ψ in Ω and θ = ψ on ∂Ω. Then Mθ(Ω) ≤ Mψ(Ω),

where Mu denotes the Monge-Ampere measure associated with the function u.

Mψ(Ω) =

ˆ
Ω

M(ψ) =

ˆ
Ω

(λψ)
1
α ≤ |λ|

1
α |ψ(x̄)|

1
α |Ω|. (4.53)

On the other hand, it is shown [34, Theorem 1.4.5] thatMθ(Ω) ≥ ωn|ψ(x̄)|n(diamΩ)−n,
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where ωn is the volume of the unit ball in Rn. Thus

sup
Ω
|ψ(x)| = |ψ(x̄)| ≤

(
|λ| 1α |Ω|(diamΩ)n

ωn

) α
nα−1

. (4.54)

�

4.4.3 Uniqueness of Self-similar Solutions

We prove equation (4.8) here, by modifying the argument used in [59]. Let

ũ(x, t) = ϕ(t)ψ̃(x) be a self-similar solution of (4.7) and ϕ(t) ∈ C∞([0,∞)) and

ψ̃(x) ∈ C∞(Ω) ∩ Lip(Ω) strictly convex. Then ϕ and ψ̃ satisfy

ϕ(t) =
(
ϕ(0)1−nα − (nα− 1)λ̃t

) 1
1−nα

, (4.55)

M(ψ̃) = (λ̃ψ̃)
1
α in Ω and ψ̃ = 0 on ∂Ω. (4.56)

If we choose c̃ so that c̃nα−1λ̃ = 1
1−nα , Then

Mα(c̃ψ̃) = c̃nαMα(ψ̃) = c̃nαλ̃ψ̃ = c̃nα−1λ̃
(
c̃ψ̃
)

=
1

1− nα
ψ̃.

By uniqueness of solution to (4.7), we must have c̃ψ̃ = ψ. Then direct calculation

shows

ũ(x, t) = ϕ(t)ψ̃(x) = c̃−1ϕ(t)ψ(x) = u(x, t)

(
1 + t

(cϕ(0))1−nα + t

) 1
nα−1

,

where

c := c̃−1 =
(
λ̃(1− nα)

) 1
nα−1

.

We end this section by briefly discussing what happens when α ≤ 1/n.
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Remark 4.4.1. When α = 1/n, it was shown by P. L. Lions[48] that

M(ψ) = µ(−ψ)n in Ω, ψ = 0 on ∂Ω (4.57)

admits a unique solution pair (µ, ψ) in the sense that if (ν, φ), where ν is positive

and φ is convex, solves (4.57), then we must have µ = ν and φ is a constant

multiple of ψ. The number µ is called the first (in fact the only) eigenvalue of the

Monge-Ampère operator M , and the corresponding (normalized) eigenfunction is

in C∞(Ω)∩C1,1(Ω). The asymptotic behavior for α = 1/n remains interesting and

open.

Remark 4.4.2. When 0 < α < 1/n, K. Tso[65, Theorem E] showed that (4.7)

admits a convex solution in C∞(Ω) ∩ C0,1(Ω). The uniqueness, however, is not

known. In this case, the reader will see easily from the comparison with self-similar

supersolutions in Section 4 that smooth convex solutions of (4.9) must vanish at

finite time.

4.5 Proof of Theorem 4.2.2

In this section, we determine the asymptotic behavior of u by comparing

with self-similar solutions of (4.2). A direct generalization of the proof given by

V. Oliker in [59] works for α ≥ 2/n. New estimates are introduced in the following

lemma to take care of the case 1/n < α < 2/n.
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Lemma 4.5.1. Let F : (0, S)× [0,∞)→ (0,∞), S <∞ be defined by

F (s, t) =

(
1 + t

s+ t

) 1
nα−1

≡
(

1 +
1− s
s+ t

) 1
nα−1

. (4.58)

Then we have for all t ≥ 0,

F (s, t) ≤ 1 +
1

nα− 1

1− s
s(1 + t)

, if s ≤ 1, α ≥ 2/n; (4.59)

F (s, t) ≤ 1 +
1

nα− 1

(
1

s

) 1
nα−1 1− s

1 + t
, if s ≤ 1, α ≤ 2/n; (4.60)

F (s, t) ≥ 1− s− 1

1 + t
, if s ≥ 1, α ≥ 2/n; (4.61)

F (s, t) ≥ 1− 1

nα− 1

s− 1

1 + t
if s ≥ 1, α ≤ 2/n. (4.62)

Proof. This lemma follows from elementary calculus. When α ≥ 2/n, γ := 1
nα−1

≤

1. Then (4.59) follows from (1 + x)γ ≤ 1 + γx for all x ≥ 0 and (4.61) follows

from xγ ≥ x for all 0 ≤ x ≤ 1. When α ≤ 2/n, γ := 1
nα−1

≥ 1. Now (4.60) is

a consequence of (1 + x)γ ≤ 1 + γ(1 + a)γ−1x for all 0 ≤ x ≤ a and (4.62) is a

consequence of (1 + x)γ ≥ 1 + γx for all −1 < x ≤ 0. �

Proof of Theorem 4.2.2. First of all, a uniform estimate of |∇u(x, t)| is obtained

similarly as in [59]. For any t ≥ 0,

sup
Ω

|∇u(x, t)| ≤ sup
∂Ω
|∇u(x, t)| = sup

∂Ω
|uν(x, t)| ≤ sup

∂Ω
|uν(x, 0)|. (4.63)

Self-similar subsolution and supersolution are then constructed as follows: Let

G = inf
Ω

(
1 + |∇u(x, 0)|2

)−αβ
.
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Clearly we have 0 < G ≤ 1. It follows from (4.63) that

GMα(u) ≤
(
1 + |∇u(x, t)|2

)−αβ
Mα(u) = ut in Ω× (0,∞). (4.64)

Put u(x, t) = G
1

1−nαϕ(t)ψ(x) and u(x, t) = ϕ(t)ψ(x), where ψ is the solution of

(4.7) and

ϕ(t) =
(
ϕ(0)1−nα + t

) 1
1−nα ,

ϕ(t) =
(
ϕ(0)1−nα + t

) 1
1−nα .

Then u and u satisfy ut = GMα(u) and ut = Mα(u) in Ω × (0,∞), respectively.

Finally we define ũ(x, t) = u(x, t)− u(x, t) and it satisfies

ũt = GMα(u)−
(
1 + |∇u(x, t)|2

)−αβ
Mα(u) ≤ GMα(u)−GMα(u) in Ω× (0,∞).

(4.65)

Observe that the operator L(ũ) = Mα(u)−Mα(u) is elliptic since

L(ũ) =
∑
ij

(ˆ 1

0

α det(uτij)
α−1cof(uτij)dτ

)
ũij,

where uτ (x, t) = τu(x, t) + (1− τ)u(x, t) is strictly convex and the cofactor matrix

cof(uτij) is positive definite on any compact subset of Ω × (0, T ] for any T < ∞.

Next we choose ϕ(0) and ϕ̄(0) so that ϕ(0)ψ(x) ≤ u(x, 0) ≤ ϕ̄(0)ψ(x) on Ω. Then

ũ(x, 0) ≤ 0 in Ω and ũ(x, t) = 0 in ∂Ω× [0,∞), (4.66)

and we can then apply the classical maximum principle to conclude that ũ(x, t) =

u(x, t)− u(x, t) ≤ 0 on Ω× [0,∞). Consequently,{
(1 + t)

1
nα−1

(
G(ϕ(0)1−nα + t)

) 1
1−nα − 1

}
ψ(x) ≤ (1 + t)

1
nα−1u(x, t)−ψ(x). (4.67)
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Similarly, one derives that u(x, t) ≤ ū(x, t), namely,

(1 + t)
1

nα−1u(x, t)− ψ(x) ≤
{

(1 + t)
1

nα−1 (ϕ(0)1−nα + t)
1

1−nα − 1
}
ψ(x) (4.68)

Without loss of generality we may assume ϕ(0) ≥ 1 and ϕ̄(0) ≤ 1. Thus by Lemma

4.5.1,

F (ϕ(0)1−nα, t) ≤ 1 + C2/(1 + t)

F (ϕ(0)1−nα, t) ≥ 1− C3/(1 + t),

where C2, C3 depend on n, α and u0(x). Combining now (4.67) and (4.68), we

arrive at that for all t ≥ 0 and x ∈ Ω,

[
C2

1 + t
+G

1
1−nα − 1

]
ψ ≤ (1 + t)

1
nα−1u(x, t)− ψ ≤ −C3ψ

1 + t
, (4.69)

If β = 0, then G = 1 and (4.69) implies (4.10) with C1 = max{C2, C3} supΩ |ψ|.

If β > 0, one needs to estimate |∇u(x, t)| more carefully as V. Oliker did[59,

Pages 255-256]. Take an increasing sequence tm → ∞ and let Gm = infΩ(1 +

|∇u(x, tm)|2)−αβ. The same argument as in deriving (4.69) yields for all t ≥ tm

and x ∈ Ω,

[
cm

1 + t
+G

−1
nα−1
m − 1

]
ψ ≤ (1 + t)

1
nα−1u(x, t)− ψ ≤ −C3ψ

1 + t
. (4.70)

where cm =
(
1− ϕ(tm)1−nα)ϕ(tm)nα/(nα−1) <∞ uniformly in m due to (4.67) .

The same argument as in [59] allows one to let tm →∞ and deduce (4.12), hence

completing the proof of Theorem 4.2.2. �
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Remark 4.5.1. Similarly to [9] one sees the sharpness of the estimate (4.70) by

considering the function u(x, t) = (s+ t)
1

nα−1ψ(x) for any s > 0.

Remark 4.5.2. Corollary 4.2.3 with C4 = ϕ(0)1−nα follows from u(x, t) ≤ u(x, t),

namely,

G
1

1−nα (ϕ(0)1−nα + t)
1

1−nαψ(x) ≤ u(x, t).

Parts of Chapter 4 are joint work with Dr. Kui Wang, which was submitted

to a journal and currently under review.



Chapter 5

Classification of Shrinking

Gradient Ricci Solitons

5.1 Introduction

Over the last three decades, Ricci Flow has emerged as an indispensable

tool for addressing classical problems in differential geometry, topology, and geo-

metric analysis. It has been an extremely active field since the work of R. Hamilton

for Ricci flow[35] in 1982 to prove that every closed 3-manifold with positive Ricci

curvature is diffeomorphic to a 3-spherical form. Many important and difficult

problems were solved using geometric flows, such as the Poincaré conjecture and

geometrization conjecture by G. Perelman [60] [61] [62], the solution to the con-

jecture of H. Rauch and R. Hamilton by C. Böhm and B. Wilking [12] and its

81
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consequences, and the quarter-pinched differentiable sphere theorem by S. Brendle

and R. Schoen[13].

One of the most important aspects of understanding the effects of Ricci flow

in geometry and topology is to understand the formation of singularities in Ricci

flow. Gradient Ricci solitons arise naturally in the study of the singularity analysis

of the Ricci flow [4, 15]. This is our main motivation for studying and classifying

gradient Ricci solitons, although they can also be viewed as generalizations of

Einstein metrics. There are three types of gradient Ricci solitons and we will focus

on shrinking gradient Ricci solitons as they model Type-I singularities.

A gradient Ricci soliton is a triple (M, g, f), a complete Riemannian mani-

fold with a smooth potential function satisfying

Ric +∇∇f =
λ

2
g. (5.1)

By normalizing the metric, one can always assume that λ = 0, 1 or −1. When

λ = 1, the solitons is said to be shrinking. When λ = 0, it is called steady and

when λ = −1, it is called expanding.

The main theme of this chapter is to study classification of shrinking gra-

dient Ricci solitons. In section 2, we give some examples shrinking gradient Ricci

solitons. Section 3 collects basic properties of gradient shrinking Ricci solitons,

including basic equations satisfied by them, the growth estimate of the potential

function, volume growth estimate, integral and pointwise bounds on the curvature,

and the evolution equations of some natural geometric quantities that will play an



83

important role in later sections. Section 4 presents a Liouville type theorem for the

weighted Laplacian operator ∆f on complete (not necessarily compact) manifolds

which generalizes the maximum principle for elliptic equations. Since it will be

frequently used in proving many classification results, we also include a proof of

it here. In section 5, we give classification of gradient shrinking Ricci solitons in

dimension three.In section 6, we present the main result of this chapter, which is

the classification of four-dimensional shrinking gradient Ricci solitons with positive

or nonnegative isotropic curvature. This is joint work with L. Ni and K. Wang

[45]. The proof is divided into three steps to better illustrate the ideas behind

the proof. In section 7, we collect other known classification results on shrink-

ing gradient Ricci solitons up to date. Their proofs can be easily found in the

literature.

At last, we remark that a lot of work has been done on understanding steady

and expanding gradient Ricci solitons as well.

5.2 Examples of Shrinking Gradient Ricci Soli-

tons

In this section, we give some examples of shrinking gradient Ricci solitons.

It is essential to keep the known examples in mind when it comes to classification

results.
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Example 5.2.1. The Gaussian shrinking soliton (Rn, gE, f), where gE is the stan-

dard metric on Rn and f(x) = 1
4
|x|2. Although the geometry of a Gaussian shrink-

ing soliton is trivial, its role in the analysis of both gradient Ricci solitons and

Ricci flow is nontrivial.

Example 5.2.2. Any Einstein Manifold Mn with positive Ricci curvature nor-

malized so that Ric = 1
2
g, is a shrinking gradient Ricci soliton with the potential

function f = 0. Such examples include the round spheres Sn and its quotients.

Example 5.2.3. Product solitons. If (Mn1
1 , g1, f1) and (Mn2

2 , g2, f2) are shrinking

gradient Ricci solitons, then (M1×M2, g1×g2, f1◦p1+f2◦p2), where pi : M1×M2 →

Mi for i = 1, 2 are the projections, is a shrinking gradient Ricci soliton. Some

particular examples of this type are the generalized cylinders Sk × Rn−k.

Example 5.2.4. Quotient solitons. Suppose that (M, g, f) is a shrinking gradient

Ricci soliton and Γ is a discrete group of isometries of g acting freely and properly

discontinuously and such that f ◦ γ for every γ ∈ Γ. Let g0 denote the quotient

Riemannian metric on M/Γ and f0 denote the unique smooth function on M/Γ

satisfying f0◦π = f , where π : M →M/Γ is the quotient map. Then (M/Γ, g0, f0)

is a shrinking gradient Ricci soliton.

The above examples are“standard”. In dimension greater or equal to 4,

there are non-standard examples.

Example 5.2.5. The first example of compact non-Einstein shrinking gradient
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Ricci soliton was found by H.D. Cao [16] and N. Koiso [42] independently. In par-

ticular, in real dimension four, there is a shrinking Kähler-Ricci soliton structure

on CP 2](−CP 2).

Example 5.2.6. M. Feldman, T. Ilmanen and D. Knopf [32] discovered the first

example of noncompact non-Einstein shrinking gradient Ricci soliton. Their ex-

amples are a family of Kähler-Ricci solitons with U(n) symmetry and a cone-like

end at infinity on the twisted line bundle over CP n−1.

We note that there are other examples besides the above mentioned ones.

5.3 Properties of Shrinking Gradient Ricci Soli-

tons

In this section, we collect some results on gradient shrinking Ricci solitons

that will be used in this paper. The results below are valid in all dimensions n ≥ 2.

After normalizing the potential function f via translating, we have the

following identities first discovered by R. Hamilton [36]:

Lemma 5.3.1.

S + ∆f =
n

2
,

S + |∇f |2 = f,

where S denotes the scalar curvature of M .
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Regarding the growth of the potential function f and the volume of geodesic

balls, H.D. Cao and D. Zhou [18] showed that

Lemma 5.3.2. Let (M, g) be a complete gradient shrinking Ricci soliton and p ∈

M . Then there are positive constants c1, c2 and C such that

1

4
(d(x, p)− c1)2

+ ≤ f(x) ≤ 1

4
(d(x, p) + c2)2 ,

Vol(Bp(r)) ≤ Crn.

We have the following bounds for the scalar curvature due to B.L. Chen

[22]. In fact, he proved that any complete ancient solution of the Ricci flow has

nonnegative scalar curvature. In dimension three, he proved that any complete

ancient solutions of the Ricci flow must have nonnegative sectional curvature.

Lemma 5.3.3. Let (M, g) be a complete gradient shrinking Ricci soliton. Then

we have

S ≥ 0,

where S denotes the scalar curvature of M .

A consequence of the strong maximum principle is that if S(p) = 0 for some

p ∈ M , then M is isometric to the Gaussian shrinking gradient Ricci soliton. An

improvement of the scalar curvature lower bound is obtained by B. Chow, P. Lu

and B. Yang [27].
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Lemma 5.3.4. Let (M, g) be a complete non-flat gradient shrinking Ricci soli-

ton. Then for any given point p ∈ M , there exists a constant C > 0 such that

S(x)d(x, p)2 ≥ C−1 wherever d(x, p) ≥ C, where S denotes the scalar curvature of

M .

Obtaining curvature upper bounds turns out to be one of the most challeng-

ing questions in the study of Ricci solitons, although the most optimistic conjecture

is that all shrinking Ricci solitons have bounded Riemann curvature tensor. O.

Munteanu and N. Sesum [50] were able to obtain the following integral bound for

the Ricci curvature. A proof of this lemma is included below since it plays an

important role in the proofs of many classification results.

Lemma 5.3.5. Let (M, g) be a complete gradient shrinking Ricci soliton. Then

for any λ > 0, we have ˆ
M

|Ric |2e−λf <∞.

Proof. For any smooth function φ with compact support, we have

ˆ
M

|Ric |2e−λfφ2

=

ˆ
M

Rij

(
1

2
gij −∇i∇jf

)
e−λfφ2

=
1

2

ˆ
M

Se−λfφ2 +

ˆ
M

∇if∇j(Rije
−λfφ2)

=
1

2

ˆ
M

Se−λfφ2 + (1− λ)

ˆ
M

Rij∇if∇jfe
−λfφ2 +

ˆ
M

Rij∇if∇j(φ
2)e−λf

≤ 1

2

ˆ
M

Se−λfφ2 +
1

4

ˆ
M

|Ric |2e−λfφ2 + |1− λ|
ˆ
M

|∇f |4e−λfφ2

+
1

4

ˆ
M

|Ric |2e−λfφ2 + 4

ˆ
M

|∇f |2e−λf |∇φ|2,
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where we used the Cauchy-Schwarz inequality twice in the last inequality. Now

note that from Lemma 5.3.1 and Lemma 5.3.2, we know that
´
M
Se−λf <∞ and

´
M
|∇f |4e−λf <∞ for any λ > 0. Thus

´
M
|Ric |2e−λf <∞ for any λ > 0. �

When studying classification results, it is natural to look for quantities that

satisfy nice PDEs and try to apply the maximum principle. We have the following

evolution equations. See, for instance, [56] for their proofs.

Proposition 5.3.1. Let (M, g(t)) be a solution to the Ricci flow. Assume that

S > 0. Then

(
∂

∂t
−∆

)(
|Ric |2

S2

)
=

4P0

S3
− 2

S4
|S∇pRij −∇pSRij|2 +

〈
∇|Ric |2

S2
,∇ logS2

〉
,

(5.2)

where

P0 = SRijklRikRjl − |Ric |4. (5.3)

Proposition 5.3.2. Let (M, g(t)) be a solution to the Ricci flow. Assume that

S > 0. Then

(
∂

∂t
−∆

)(
|Rijkl|2

S2

)
=

4P

S3
− 2

S4
|S∇pRijkl −∇pSRijkl|2

+

〈
∇
(
|Rijkl|2

S2

)
,∇ logS2

〉
,

where P is defined by

P = 4S〈R2 +R], R〉 − |Ric |2|Rijkl|2.
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The above evolution equations under Ricci flow can be applied to shrinking

gradient Ricci soitons. In fact, gradient Ricci solitons are self-similar solutions of

Ricci flow and can be interpreted as fixed points of the Ricci flow in the space of

metrics modulo the actions of diffeomorphisms and scalings. A canonical form for

the associated time-dependent version of a gradient Ricci soliton is given in [26,

Theorem 4.1]. In particular, on a gradient Ricci soliton, every scaling invariant

smooth function h satisfies

∂h

∂t
= 〈∇f,∇h〉.

Thus the heat operator ∂
∂t
− ∆ is the same as −∆f . As one can see from the

above equation, the key to obtain the classification results is to show that P0 ≤ 0

or P ≤ 0. Then one can apply a Liouville type theorem in the next section to

conclude that we indeed must have P0 = 0 or P = 0. This will give enough

information to obtain the classification result. When we have no assumptions on

the curvature growth, we need to justify carefully that the Liouville theorem is

applicable when the manifold is noncompact. That is where we need the integral

bound on Ricci curvature in Lemma 5.3.5.

5.4 A Liouville Theorem

In this section, we prove the following Liouville Theorem, which turns out

to be useful in studying Ricci Solitons since the operator ∆h defined by ∆hu :=
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∆u− 〈∇h,∇u〉 arises naturally on Ricci solitons.

Theorem 5.4.1. Let (M, g, h) be a Riemannian manifold with a smooth function

h satisfying
´
M
e−hdµg < ∞. Let u be a locally Lipschitz function in L2(e−hdµg)

which is bounded from below and satisfies

∆hu ≥ 0

in the sense of distribution, where ∆hu := ∆u− 〈∇h,∇u〉. Then u is a constant.

Proof. By adding a constant to u, we may assume u is nonnegative. Let η be a

smooth cut-off function with support in {x ∈ M : d(x, x0) ≤ r} and |∇η| ≤ C/r.

Multiplying the above inequality by uη2e−h and integrating over M yields

0 ≤
ˆ
M

uη2∆u e−h ≤ −
ˆ
M

|∇u|2η2e−h −
ˆ
M

2ηu〈∇u,∇η〉ue−h,

where we used integration by parts. Note that

−
ˆ
M

2uη〈∇u,∇φ〉e−h ≤ 1

2

ˆ
M

|∇u|2η2e−h + 2

ˆ
M

|∇η|2u2e−h

≤ 1

2

ˆ
M

|∇u|2η2e−h +
C

r2

ˆ
M

u2e−h.

Combining the above two inequalities together, we obtain

0 ≤
ˆ
M

uη2∆u e−h ≤ −1

2

ˆ
M

|∇u|2η2e−h +
C

r2

ˆ
M

u2e−h.

Therefore, we know that |∇u| = 0 in the sense of distribution by letting r → ∞.

It follows that u must be a constant since it is locally Lipschitz. �
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Remark 5.4.2. The above Liouville theorem also holds if the inequality ∆fu ≥ 0

is assumed to hold in the sense of viscosity. This is because the inequality then also

holds in the sense of distribution. See [41].

Remark 5.4.3. The above Liouville theorem also holds if the inequality ∆fu ≥ 0

is assumed to hold in the sense of barriers. See P. Petersen and W. Wylie [63,

Theorem 4.2].

5.5 Classification of Shrinking Solitons in Dimen-

sion Three

Theorem 5.5.1. Let (M3, g, f) be a complete gradient shrinking Ricci soliton.

Then M is either isometric to R3 or it is a quotient of S3 or S2 × R.

This classification result is due to Perelman[62] in the compact case. L.

Ni and N. Wallach provided an alternative proof in [56] which also works in the

complete case, but they had to assume that M has nonnegative Ricci curvature

to ensure certain integrals are finite. By appealing to the Ricci integral bound in

Lemma 5.3.5, one can easily remove the nonnegative Ricci curvature assumption.

Alternative proof are also obtained by other groups.

Proof. In dimension 3, Proposition 5.3.1 was due to Hamilton [35] and under an or-

thonormal frame that diagonalizes the Ricci tensor, the quantity P0 can be written
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as

P0 = −1

8

(
(µ+ ν − λ)2(µ− ν)2 + (λ+ ν − µ)2(λ− ν)2 + (λ+ µ− ν)2(λ− µ)2

)
(5.4)

where λ, µ and ν are eigenvalues of Ricci tensor. Thus one clearly has P ≤ 0. In

order to apply Theorem 5.4.1, we need to consider the function u = |Ric |
S

, instead

fo the function |Ric |2
S2 . A direct calculation using Kato’s inequality shows that

∆hu ≥ 0

with h = f− logS2. By Lemma 5.3.5, the function u ∈ L2(e−hdµg) and satisfies all

assumptions in Theorem 5.4.1 and therefore we can conclude that u is a constant.

Thus u2 also being a constant implies that P0 = 0 and |S∇pRij − ∇pSRij|2 = 0.

The theorem then follows easily as in [56]. �

Remark 5.5.2. A similar argument was used by G. Huisken [39] and T.Colding

and W. Minicozzi [28] in the classification of mean convex shrinking solitons of

mean curvature flow in Rn+1.

5.6 Classification of Four-dimensional Shrinking

Solitons with Positive Isotropic Curvature

In four dimensions, it becomes very difficult to obtain a classification result

without any curvature assumptions because of the existence of non-standard ex-
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amples. Also, the present of the Weyl tensor makes the analysis much harder than

in dimensions two and three. Under the assumption of positive isotropic curva-

ture and nonnegative curvature operator together with some reasonable curvature

growth conditions, L. Ni and N. Wallach [57] managed to prove the following result.

Theorem 5.6.1. Let (M, g, f) be a four-dimensional complete gradient shrink-

ing soliton with positive isotropic curvature and nonnegative curvature operator.

Moreover, assume that the components of the curvature operator satisfy

B2
3

(A1 + A2)(C1 + C2)
(x) ≤ exp(a(r(x) + 1)),

and

|Rijkl(x)| ≤ exp(br(x) + 1)),

for some positive constants a and b, where r(x) is the distance to a fixed point.

Then M is either a quotient of S4 or a quotient of S2 × R.

Later, A. Naber [53] was able to classify four-dimensional shrinking gradient

Ricci solitons with bounded and nonnegative curvature operator.

Theorem 5.6.2. Let (M, g, f) be a four-dimensional complete gradient shrinking

soliton with bounded nonnegative curvature operator, then its universal cover must

be one of the following spaces R4, S4, CP 2, S2 × S2, S2 × R2 and S3 × R.

It is then natural to ask that whether the three assumptions except positive

isotropic curvature in the classification theorem of L. Ni and N. Wallach can be
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removed. The positive isotropic curvature condition was first introduced by M.

Micalleff and J. Moore [49] in applying the index computation of harmonic spheres

to the study of the topology of manifolds. The Ricci flow on four-manifolds with

positive isotropic curvature was studied by R. Hamilton [37]. This condition was

proven to be invariant under Ricci flow in dimension four by R. Hamilton and

in high dimensions by S. Brendle and R. Schoen [13] and H. Nguyen [54]. It

is hence then interesting to understand the solitons under the positive isotropic

curvature condition. Since the classification theorem of L. Ni and N. Wallach, there

have been much progresses in understanding the general shrinking solitons [43]

[52] and particularly the four-dimensional ones [51]. In particular, a classification

result was obtained in [52] for solitons with nonnegative curvature operator for all

dimensions. The main result of this chapter is the following classification result on

shrinking solitons with positive isotropic curvature by removing all the additional

assumptions in [57]. The result was obtained in [45] by L. Ni, K. Wang and the

author.

Theorem 5.6.3. Any four-dimensional complete gradient shrinking Ricci soliton

with positive isotropic curvature is either a quotient of S4 or a quotient of S3 ×R.

The strong maximum principle together with the classification of positive

case implies the following corollary for the solitons with nonnegative isotropic

curvature.

Corollary 5.6.4. If (M, g, f) is a complete gradient shrinking soliton with non-
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negative isotropic curvature then its universal cover must be one of the following

spaces R4, S4, CP 2, S2 × S2, S2 × R2 and S3 × R.

This corollary improves the result of A. Naber [53] because nonnegative

curvature operator implies nonnegative isotropic curvature. The proof of our clas-

sification result is not short, and we divide it into three steps to present.

5.6.1 Step 1: BtB = b2 id

It is well known that, in dimension four, the curvature operator R can be

written as

R =

A B

Bt C


according to the natural splitting ∧2(R4) = ∧+ ⊕ ∧−, where ∧+ and ∧− are the

self-dual and anti-self-dual parts respectively. It is easy to see that A and C are

symmetric. Denote A1 ≤ A2 ≤ A3 and C1 ≤ C2 ≤ C3 the eigenvalues of A and C,

respectively. Also let B1 ≤ B2 ≤ B3 be the singular eigenvalues of B. Note that a

direct consequence of the first Bianchi identity is that tr(A) = tr(C) = S
4
, where

S is the scalar curvature. In [57], L. Ni and N. Wallach computed that
◦

Ric can be

expressed in terms of components of B, where
◦

Ric is the traceless part of the Ricci

tensor. In particular, 4‖B‖2 = |
◦

Ric|2 and
∑4

1 λ
3
i = 24 detB, where λi’s are the

eigenvalues of
◦

Ric. The first step is to show that on a four-dimensional shrinking

gradient Ricci soliton, it holds that BtB is a multiple of the identity.
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Proposition 5.6.1. Let M be a four-dimensional shrinking gradient Ricci soliton

with positive isotropic curvature. Then BBt = b2 id.

The idea to prove this identity is to find quantities satisfying nice differential

equations or inequalities and apply Liouville type theorem. Before giving the

proof, we recall certain partial differential inequalities satisfied by components of

the curvature operator under Ricci flow. The inequalities below were observed in

[57, Proposition 3.1] and they play a significant role in the classification results.

Proposition 5.6.2. Let (M, g(t)) be a solution to the Ricci flow, then we have the

following differential inequalities(
∂

∂t
−∆

)
(A1 + A2) ≥ A2

1 + A2
2 + 2(A1 + A2)A3 +B2

1 +B2
2 ,(

∂

∂t
−∆

)
(C1 + C2) ≥ C2

1 + C2
2 + 2(C1 + C2)C3 +B2

1 +B2
2 ,(

∂

∂t
−∆

)
B3 ≤ A3B3 + C3B3 + 2B1B2

in the distributional sense.

For brevity, we introduce the same notations as in [57]: ψ1 = A1 + A2,

ψ2 = C1 + C2, ϕ = B3 and

−E = −4B1(B3 −B2)

B3

− (A1 −B1)2 + (A2 −B2)2 + 2A2(B2 −B1)

A1 + A2

−(C1 −B1)2 + (C2 −B2)2 + 2C2(B2 −B1)

C1 + C2

.

It’s clear that −E ≤ 0 with equality holds only if A1 = C1 = B1 = B2 = A2 =

C2 = B3. In particular, E = 0 implies BBt = b2 id for some b. Also notice that M
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has positive isotropic curvature amounts to ψ1 > 0 and ψ2 > 0. Then we have the

following proposition.

Proposition 5.6.3. The following differential inequality holds in the sense of dis-

tribution: (
∂

∂t
−∆

)
ϕ√
ψ1ψ2

≤ −1

2

ϕ√
ψ1ψ2

E − 1

4

ϕ|ψ1∇ψ2 − ψ2∇ψ1|2

(ψ1ψ2)
5
2

(5.5)

+

〈
∇
(

ϕ√
ψ1ψ2

)
,∇ log(ψ1ψ2)

〉
.

Proof. Straightforward calculations yield(
∂

∂t
−∆

)
ϕ√
ψ1ψ2

=

(
∂
∂t
−∆

)
ϕ

√
ψ1ψ2

− 1

2

ϕψ1

(
∂
∂t
−∆

)
ψ2 + ϕψ2

(
∂
∂t
−∆

)
ψ1

(ψ1ψ2)
3
2

−1

4

ϕ|ψ1∇ψ2 − ψ2∇ψ1|2

(ψ1ψ2)
5
2

+

〈
∇
(

ϕ√
ψ1ψ2

)
,∇ log(ψ1ψ2)

〉
Substituting the differential inequalities in Proposition 5.6.3 into the above

equation gives, after some cancelations, that(
∂

∂t
−∆

)
ϕ√
ψ1ψ2

≤ −1

2

ϕ√
ψ1ψ2

E − 1

4

ϕ|ψ1∇ψ2 − ψ2∇ψ1|2

(ψ1ψ2)
5
2

+

〈
∇
(

ϕ√
ψ1ψ2

)
,∇ log(ψ1ψ2)

〉
.

This finishes the proof. �

Now we are ready to prove Proposition 5.6.1.

Proof of Proposition 5.6.1. Let u = ϕ√
ψ1ψ2

. Note that on the shrinking gradient

Ricci soliton,

∂u

∂t
= 〈∇f,∇u〉 .
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Proposition 5.6.3 then implies that u satisfies

∆hu ≥
1

2
Eu ≥ 0

in the sense of distribution with h = e−f+log(ψ1ψ2).

Since 4ϕ2 = 4B2
3 ≤ 4‖B‖2 = |

◦
Ric|2 = |Ric |2 − S2

4
, we obtain, in view of

Lemma 5.3.1, Lemma 5.3.2 and Lemma 5.3.5,

ˆ
M

u2e−h =

ˆ
M

ϕ2e−f ≤ 1

4

ˆ
M

(
|Ric |2 − S2

4

)
e−f <∞.

This verifies that u ∈ L2(e−hdµg) and we can apply Theorem 5.4.1 to conclude

that u must be constant. Therefore, we must have either ϕ = B3 = 0 or E = 0. It

then follows that BBt = b2 id. �

5.6.2 Step 2: P ≤ 0

Recall from Proposition 5.3.2 that if S 6= 0, then

(
∂

∂t
−∆

)(
|Rijkl|2

S2

)
=

4P

S3
− 2

S4
|S∇pRijkl −∇pSRijkl|2

+

〈
∇
(
|Rijkl|2

S2

)
,∇ logS2

〉
,

where P is defined by

P = 4S〈R2 +R], R〉 − |Ric |2|Rijkl|2.

Proposition 5.6.4. Let M be a four-dimensional gradient shrinking Ricci soliton

with positive isotropic curvature. Then P ≤ 0.
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Proof. In dimension four, P can be expressed in terms of A,B and C. Let
◦
A and

◦
C be the traceless parts of A and C, respectively. By choosing suitable basis of

∧+ and ∧−, we may diagonalize
◦
A and

◦
C such that

A =


S
12

+ a1 0 0

0 S
12

+ a2 0

0 0 S
12

+ a3

 , C =


S
12

+ c1 0 0

0 S
12

+ c2 0

0 0 S
12

+ c3

 .

Then P can be written as (See [57])

P = −S2

(
1

6

4∑
1

λ2
i +

3∑
1

a2
i +

3∑
1

c2
i

)

+4S

(
3∑
1

(a3
i + c3

i ) + 6a1a2a3 + 6c1c2c3 −
1

2

4∑
1

λ3
i

)
+12S

(
a1b

2
1 + a2b

2
2 + a3b

2
3 + c1b̃

2
1 + c2b̃

2
2 + c3b̃

2
3

)
−2

(
4∑
1

λ2
i

)2

− 4

(
4∑
1

λ2
i

)(
3∑
1

(a2
i + c2

i )

)
,

where
∑3

1 ai =
∑3

1 ci =
∑4

1 λi = 0, b2
i =

∑3
j=1B

2
ij and b̃2

i =
∑3

j=1 B
2
ji.

After plugging into BBt = b2 id, P has a much simpler expression:

P = −S2

(
3∑
1

a2
i +

3∑
1

c2
i

)
+ 12S

(
3∑
1

(a3
i + c3

i )

)

−2b2 (S + 12b)2 − 48b2

(
3∑
1

a2
i +

3∑
1

c2
i

)

≤ −S

(
S

3∑
1

a2
i − 12

3∑
1

a3
i

)
− S

(
S

3∑
1

c2
i − 12

3∑
1

c3
i

)
,
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where we have used the following

3b2 =
3∑
1

b2
i =

3∑
1

b̃2
i =

1

4

4∑
1

λ2
i ,

3∑
1

a3
i + 6a1a2a3 = 3

3∑
1

a3
i ,

4∑
1

λ3
i = 24 detB = 24b3.

In order to prove P ≤ 0, it suffices to show that

S
3∑
1

a2
i − 12

3∑
1

a3
i ≥ 0.

With suitable choices of the orthonormal basis for ∧+, we can assume that Ai =

S
12

+ ai.Note that we have the constraints
∑3

1 ai = 0 and Ai +Aj = S
6

+ ai + aj > 0

for i 6= j because M has positive isotropic curvature. By the change of variables

xi = 1− 6
S
ai, the constraints become

∑3
1 xi = 3 and xi > 0 for 1 ≤ i ≤ 3, and the

objective function becomes

F (x1, x2, x3) := S
3∑
1

a2
i − 12

3∑
1

a3
i =

S3

36

(
3∑
1

(1− xi)2 − 2(1− xi)3

)

=
S3

36

(
2

3∑
1

x3
i − 5

3∑
1

x2
i + 9

)
.

Using Lagrange multipliers, we find two critical points Z = (1, 1, 1) and

W =
(

1
3
, 4

3
, 4

3

)
with F (Z) = 0 and F (W ) = S3

162
. On the boundary, we have xi = 0.

Since F is symmetric, we can assume without loss of generality that x1 = 0. Then

we have, using x3 = 3− x2, that

F (x1, x2, x3) =
S3

36

(
2(x3

2 + (3− x2)3)− 5(x2
2 + (3− x2)2) + 9

)
=
S3

18
(2x2−3)2 ≥ 0.
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Therefore, under the constraints
∑3

1 ai = 0 and S
6

+ ai + aj ≥ 0 for i 6= j,

F (x1, x2, x3) = S
3∑
1

a2
i − 12

3∑
1

a3
i ≥ 0.

The terms involving ci’s can be handled similarly. Hence P ≤ 0. �

5.6.3 The Proof of Theorem 5.6.3

Proof. Recall that if S 6= 0, then

(
∂

∂t
−∆

)(
|Rijkl|2

S2

)
=

4P

S3
− 2

S4
|S∇pRijkl −∇pSRijkl|2

+

〈
∇
(
|Rijkl|2

S2

)
,∇ logS2

〉
, (5.6)

Trying to apply Theorem 5.4.1 here would require a stronger integral bound of

the Ricci curvature than the one we actually have in Lemma 5.3.5. To overcome

this difficulty, we adopt a similar idea that was used to prove BBt = b2 id. We

consider, instead, the function u =
|Rijkl|
S

and T =
Rijkl
S

. A direct calculation shows

that

(
∂

∂t
−∆

)
u =

2P

uS3
+ 〈∇u,∇ logS2〉+

|∇u|2 − |∇T |2

u

≤ 2P

uS3
+ 〈∇u,∇ logS2〉,

where we have used Kato’s inequality in the last line. On a shrinking gradient

Ricci soliton, it then holds that

∆hu ≥
−2P

uS3
≥ 0,
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where h = f − logS2. We need to verify that u ∈ L2(e−hdµg). The integral

´
M
u2e−h =

´
M
|Rijkl|2e−f is finite in view of Lemma 5.3.5, since if M has positive

isotropic curvature, then the components of curvature operator A,B and C can be

estimated by

−S
4
≤ A1 ≤ A2 ≤ A3 ≤

S

4
,

−S
4
≤ C1 ≤ C2 ≤ C3 ≤

S

4
,

4‖B‖ ≤ |
◦

Ric|.

Therefore we know that u is a positive constant and P = 0. Then it follows from

(5.6) that |S∇pRijkl −∇pSRijkl|2 = 0. Theorem 5.6.3 then follows from the proof

of the main theorem in [56]. �

5.7 Some Other Classification Results

In this section, we collect other known classification results on shrinking

gradient Ricci solitons, but we will not give their proofs in this thesis. In higher

dimensions, the problem of classifying shrinking gradient Ricci solitons becomes

difficult because of the present of Weyl curvature tensor. Besides assuming the

Weyl curvature tensor vanishes as in the locally conformally flat case, one can also

obtain classification results by imposing vanishing conditions on the derivatives of

Weyl tensor.
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5.7.1 Classification Results in Dimension Four

First of all, there are several classification results in four dimensions.

Theorem 5.7.1. Any four-dimensional complete gradient shrinking Ricci soliton

which is half locally conformally flat, is a finite quotient of S4, CP 2, S3×R or R4.

This is proved by X. Chen and Y. Wang [23].

Theorem 5.7.2. Any four-dimensional complete gradient shrinking Ricci soliton

having half harmonic Weyl tensor is either Einstein or a finite quotient of R4,

S2 × R2 or S3 × R.

This is due to J.Y. Wu, P. Wu and W. Wylie [66].

Recall for any n-dimensional Riemannian manifolds (M, g) with n ≥ 4, the

Bach tensor is defined by

Bij =
1

n− 3
∇i∇kWijkl +

1

n− 2
RikWijkl. (5.7)

For Bach-flat gradient shrinking solitons, H.D. Cao and Q. Chen [17] obtained the

following classification results.

Theorem 5.7.3. Any four-dimensional complete gradient shrinking Ricci soliton

which is Bach flat is either Einstein or locally conformally flat.

5.7.2 Classification Results in Higher Dimensions

Below are some classification results in high dimensions. The first result is

the classification of gradient shrinking solitons which are locally conformally flat.
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Theorem 5.7.4. Let (Mn, g, f), n ≥ 4, be a complete gradient shrinking Ricci

soliton. If (M, g) is locally conformally flat, then M is either isometric to Rn or

it is a quotient of Sn or Sn−1 × R.

This theorem was proved by L. Ni and N. Wallach [56], assuming M has

nonnegative Ricci curvature. Alternative proofs are given by X. Cao, B. Wang and

Z. Zhang [19] requiring only Ricci curvature bounded from below, and by P. Pe-

tersen and W. Wylie [63] requiring only an Ricci curvature integral bound. In [67],

it was shown by Z. H. Zhang that any gradient shrinking soliton vanishing Weyl

tensor must have nonnegative curvature operator, thus having nonnegative Ricci

curvature, which by any of the results mentioned above proves the classification

result. The assumptions on Ricci curvature can also be removed by using Lemma

5.3.5.

Generalizing all previous results concerning locally conformally flat gradient

shrinking solitons, G. Catino [21] showed the same classification result under a

pinching condition on the Weyl tensor.

Theorem 5.7.5. Any n-dimensional complete gradient shrinking Ricci soliton sat-

isfying

|W |S ≤
√

2(n− 1)

n− 2

(
|
◦

Ric| − S√
n(n− 1)

)2

(5.8)

must be a finite quotient of Rn, Sn or Sn−1 × R.

To state the rest results, we introduce the following definition for brevity.
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Definition 5.7.6. A gradient Ricci soliton is said to be rigid if it is isometric

to a quotient of N × Rk, where N is an Einstein manifold and f = λ
2
|x|2 on the

Euclidean factor.

Theorem 5.7.7. Any n-dimensional complete gradient shrinking Ricci soliton hav-

ing harmonic Weyl curvature tensor is rigid.

This is proved by M. Fernandez-Lopez and E. Garcia-Rio with one addi-

tional assumption, which was removed by O. Munteanu and N. Sesum in [50].

Theorem 5.7.8. Any n-dimensional (n ≥ 5) complete gradient shrinking Ricci

soliton which is Bach flat is either Einstein, or a quotient of Rn, or a finite quotient

of Nn−1 × R, where N is an Einstein manifold of positive scalar curvature.

Very recently, G. Catino, P. Mastrolia and D. Monticelli [20] are able to

classify gradient shrinking solitons satisfying a fourth-order vanishing condition,

improving previously known results.

Theorem 5.7.9. Any n-dimensional (n ≥ 4) complete gradient shrinking Ricci

soliton with div4(W ) := ∇j∇k∇l∇iWijkl = 0 is either Einstein, or isometric to a

finite quotient of Nn−k × Rk with k > 0, where N is an Einstein manifold.

Lastly, gradient shrinking Ricci solitons with nonnegative curvature opera-

tor have been classified by O. Munteanu and J.P. Wang [52].

Theorem 5.7.10. Let (M, g, f) be an n-dimensional gradient shrinking Ricci soli-

ton with nonnegative curvature operator. Then (M, g) must be a quotient of the
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sphere Sn, or Rn, or the product Rk × Sn−k with 1 ≤ k ≤ n− 2.

The main result, Theorem 5.6.3 of Chapter 5, is joint work with Professor

Lei Ni and Dr. Kui Wang. The paper is published in International Mathematical

Research Notices in 2016.
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