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ABSTRACT

Adaptive mesh refinement (AMR) is a technique that has been featured only sporadically in atmospheric

science literature. This paper aims to demonstrate the utility of AMR for simulating atmospheric flows.

Several test cases are implemented in a 2D shallow-water model on the sphere using the Chombo-AMR

dynamical core. This high-order finite-volume model implements adaptive refinement in both space and

time on a cubed-sphere grid using a mapped-multiblock mesh technique. The tests consist of the passive

advection of a tracer around moving vortices, a steady-state geostrophic flow, an unsteady solid-body

rotation, a gravity wave impinging on a mountain, and the interaction of binary vortices. Both static and

dynamic refinements are analyzed to determine the strengths and weaknesses of AMR in both complex

flows with small-scale features and large-scale smooth flows. The different test cases required different

AMR criteria, such as vorticity or height-gradient based thresholds, in order to achieve the best accuracy for

cost. The simulations show that the model can accurately resolve key local features without requiring global

high-resolution grids. The adaptive grids are able to track features of interest reliably without inducing

noise or visible distortions at the coarse–fine interfaces. Furthermore, the AMR grids keep any degrada-

tions of the large-scale smooth flows to a minimum.

1. Introduction

Global climate models have become vital tools for

simulating the present and future climate and for pre-

dicting important climate trends. However, current global

models are limited in their ability to represent many

multiscale aspects of atmospheric flows. Their resolutions,

limited by computational costs, are too coarse to accu-

rately represent key processes that span a wide range of

temporal and spatial scales. High-resolution simulations

are essential for capturing these scale interactions and for

accurately representing local and regional phenomena

such as convection, orographically induced precipitation,

mesoscale storm systems, and tropical cyclones. Such

events have large regional impacts as well as broader

feedbacks onto the large-scale climate system. Today,

high-resolution general circulation models (GCMs) used

for global climate simulations can utilize uniform grid

spacings down to 10km as documented by Manganello

et al. (2012) or Kinter et al. (2013). However, they are

computationally very expensive and still unable to rep-

resent key processes such as clouds explicitly. Exceptions

are the cloud-permitting, partly cloud-resolving, global

simulations by Miura et al. (2007), Putman and Suarez

(2011) or Miyamoto et al. (2013) that were run for short,

multiday time periods with grid spacings in the 0.9–3.5-km

range. To employ such high resolutions over longer cli-

mate time periods, modelers typically use limited-area

models (LAMs) that focus the computational resources in

areas of interest. Amajor drawback is that LAMs require

their lateral boundaries to be externally forced. These
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boundary conditions are typically derived from much

coarser GCMs, which use different numerical schemes

and physical parameterizations, thereby introducing

possible biases or numerical discrepancies. In addition,

it is an open question how well LAMs can capture

teleconnections of global large-scale dynamics and lo-

calized features particularly for tropical cyclones and

other phenomena that have feedbacks onto the larger

climate system.

Variable-resolution GCMs can utilize static or dy-

namic grid refinements, which are promising options to

bridge the gap between global and regional climate

modeling. Application examples for static (nonmoving)

mesh adaptations are provided in Zarzycki et al. (2014),

Rauscher and Ringler (2014), Zarzycki and Jablonowski

(2015), and Huang et al. (2016) (see also further refer-

ences therein). Our paper focuses on dynamically

adaptive grids, which track features of interest during

the model simulation by locally adding or removing grid

points as needed. Adaptation criteria based on error

estimates (e.g., Skamarock et al. 1989; Behrens 1998;

Blaise and St-Cyr 2012) or flow characteristics (e.g.,

Hubbard and Nikiforakis 2003; Jablonowski et al. 2006,

2009; St-Cyr et al. 2008) can be used to determine where

the high-resolution mesh should be placed. By in-

creasing resolution only locally, dynamic refinement

significantly decreases the total number of degrees of

freedom for the simulation. However, since dynamic

refinement is used within a global model, it also elimi-

nates the need for forced boundary conditions and sol-

ves the local high-resolution area and global flow using

the same dynamical core and physics package. Global

models allow for a better representation of global and

synoptic-scale phenomena and permit them to interact

better with meso- and small-scale features that can be

resolved in the model. Additionally, a key advantage of

dynamic refinement compared to a static refinement

setup is that the location of the refined area does not

have to be determined a priori.

Adaptive refinement methods are well established in

many areas of computational fluid dynamics like aero-

space engineering or space weather modeling (e.g., Tóth
et al. 2012). In atmospheric science though, the costs and

benefits of AMR methods have mostly been evaluated

in idealized simulations and simplified models so far.

Some of the first adaptive atmospheric models were

developed by Skamarock et al. (1989), Skamarock and

Klemp (1993), and Dietachmayer and Droegemeier

(1992). In general, the grid refinement strategies can be

categorized into three overarching types: r refinement

(or r adaptivity), h refinement, and p refinement.

In r refinement, the number of grid cells remains un-

changed; instead, the cells are dynamically redistributed

to increase resolution in parts of the grid while decreasing

it everywhere else. This dynamic grid adaptation cre-

ates smoother transition regions between resolutions

but requires a complex global remapping of themesh to

move the location of the high resolution. Dietachmayer

and Droegemeier (1992) use this global grid redistribu-

tion technique to increase resolution in areas where the

estimated solution error is high. Giraldo (2000) and Iselin

et al. (2002) have also applied this type of dynamic ad-

aptation for the 2D shallow-water equations and advec-

tion problems, respectively.More recently, Kühnlein et al.
(2012) implemented r adaptivity within a 3D Cartesian

framework, Bauer et al. (2014) used r-refinement grids

guided by error estimates in a shallow-water model, and

Weller et al. (2016) demonstrated r-refinement use on

the sphere.

Adaptive mesh refinement (AMR), another term for

h refinement, increases resolution locally either by

adding cells within the grid structure or by overlaying

additional cells of finer resolution on top of the grid

without changing the base grid structure. Skamarock

et al. (1989) and Skamarock and Klemp (1993) im-

plemented AMR by placing finer-resolution meshes

over the coarse grid in areas which had large truncation

error estimates. The gridcell solutions and boundary

conditions between the higher-resolution meshes and

the base grid are continually updated. In a more recent

example, Chen et al. (2011a) use AMR that overlays

high-resolution meshes in areas of interest in a shallow-

water model on a cubed-sphere grid. Examples of AMR

techniques that locally add and remove cells to the base

grid for the shallow-water equations on the sphere have

been presented by Behrens et al. (2005), Läuter et al.

(2007), St-Cyr et al. (2008), and Marras et al. (2015).

Both Behrens et al. (2005) and Läuter et al. (2007) use
conformal unstructured finite-element meshes. In con-

formal grids, each cell shares an edge with exactly one

other cell, while on a nonconforming grid, cells can

share an edge with more than one neighboring ele-

ment. The two AMR models described in St-Cyr et al.

(2008)—a block-structured finite-volume method on a

latitude–longitude grid and a spectral-element method

on a cubed-sphere grid—use nonconforming meshes

and a quad-tree based AMR method with gradient- or

vorticity-based refinement criteria. Marras et al. (2015)

compared the use of an AMR approach on several struc-

tured and unstructured nonconformal grids. Use of

AMR in a regional model paired with a physical pa-

rameterization package was presented in Bacon et al.

(2000). Furthermore, AMR methods have also been

investigated for 2D flow fields in Cartesian geometry.

Recent examples includeMüller et al. (2013) andKopera

andGiraldo (2014) who analyzed a tree-structuredAMR
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algorithm for nonhydrostatic dynamical cores in the x–z

plane, and Hendricks et al. (2016) who explored static

and dynamic AMR for tropical cyclone–like vortices in

a shallow-water model on an f plane with a constant

Coriolis parameter f.

The third type of dynamic refinement, p refinement,

holds the grid spacing fixed but changes the order of the

polynomial approximation within each grid element to

increase local resolution. Use of p refinement with dis-

continuous Galerkin (DG) methods for the shallow-

water equations were described by Kubatko et al. (2009)

and Tumolo and Bonaventura (2015). A hybrid refine-

ment method that combines the h- and p-refinements

methods was demonstrated by Eskilsson (2011), and

Blaise and St-Cyr (2012) used an hp-adaptiveDGmethod

to model the shallow-water equations on the sphere for

global tsunami simulations. Recently, Aechtner et al.

(2015) implemented a new adaptive wavelet approach

for local dynamic refinement with the 2D shallow-water

equations on the sphere.

The purpose of this study is to demonstrate the pros

and cons of using AMR, h refinement, for simulating

atmospheric flows. It assesses the effectiveness of AMR,

employing a nonconformal grid, in achieving similar

results as uniform-grid simulations while reducing

computational cost. Furthermore, it is revealed that

AMR can be implemented without harming or degrad-

ing the large-scale smooth flows or inducing numerical

noise and wavelike reflections at AMR boundaries. The

2D shallow-water equations serve as a useful test bed

for an AMR model as they exhibit many of the com-

plexities present in a full 3D model. We utilize the

cubed-sphere fourth-order finite-volume AMR model

presented in McCorquodale et al. (2015) for the 2D

shallow-water equations on the sphere. The model

implements a mapped-multiblock AMR technique that

overlays refined patches on the coarser grid. Our work

tests the model’s ability to track and refine over dynamic

small-scale features of interest and to evaluate refinement

criteria. We investigate various refinement criteria, such

as thresholds for the height gradient or relative vorticity,

which guide the locations of refinement patches. In ad-

dition, we shed light on factors that may limit AMR ap-

plications including the size of the refinement ratios

between grid levels and the total number of levels. Last,

we examine the effect of AMRon large relatively smooth

flows where extra refinement is unnecessary. Specifically

we focus on how the coarse–fine interfaces of the AMR

patches influence the overall flow and error.

The paper is organized into three main sections. A

brief description of the model and a discussion of the

multiblock AMR techniques are provided in section 2.

Section 3 discusses the results of the numerical tests.

One advection test and four shallow-water tests are

presented. The tests are the moving vortices advection

test by Nair and Jablonowski (2008), a steady-state

geostrophic flow [test case 2 from Williamson et al.

(1992)], the unsteady solid-body rotation test of Läuter
et al. (2005), a shallow-water test consisting of a gravity

wave impinging on an isolated mountain, and last a test

that assesses the interaction of idealized binary vortices.

Conclusions are provided in section 4.

2. Model description

The Chombo-AMR dynamical core (dycore) is a new

model that is built upon an unstaggered high-order

finite-volume (FV) multiblock approach with a classical

fourth-order Runge-Kutta (RK4) time discretization

scheme. A detailed description of the model setup to

solve the shallow-water equations in conservative flux

form can be found in McCorquodale et al. (2015). In

addition, the Chombo-AMR library is described in

Adams et al. (2015). The finite-volume approach is im-

plemented on an equiangular cubed-sphere grid. This

grid consists of six separate panels that are projected

onto the surface of the sphere. The mesh thereby elim-

inates the singularities due to converging meridians at

the poles found in spherical latitude–longitude grids.

Additionally, the equiangular cubed sphere leads to a

quasi-uniform spherical grid with grid cells of similar size

across the sphere. The discrete resolution of the cubed-

sphere grid is represented as cfNcg, whereNc denotes the

number of grid cells in each direction on the six panels. A

list of properties of the equiangular cubed-sphere grid,

including the approximate grid spacings, is given in

Table 1 for several resolutions. The finite-volumemethod

for the spatial discretization uses a fourth-order accurate

discretization to compute flux averages on the faces. The

central difference operators used to obtain the fluxes are

smoothed by an explicitly added sixth-order diffusive

operator that maintains the fourth-order accuracy of the

scheme [see McCorquodale et al. (2015) for details]. No

additional limiters or filters are implemented. The nu-

merical scheme is mass conserving to machine precision

and energy conserving up to the temporal truncation or-

der, when used without limiters or explicit dissipation.

The total-energy conservation properties for the model

with added dissipation are demonstrated in Fig. 11 of

McCorquodale et al. (2015).

Since high-order FV schemes make use of neighbor-

ing elements, a mapped-multiblock approach is used to

coordinate the remapping of element values that are

needed for the flux calculations across panel boundaries

on the cubed sphere. Though the cells at panel edges are

conformal with neighboring cells across panel boundaries,
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the transition between the panels is not smooth due to the

separatemapping on each panel. To preserve the order of

accuracy of the fluxes, the domain is expanded at the

panel edges with the addition of three layers of ghost cells

to perform the FV calculations on each panel. As a result

of different mappings, ghost cells of one panel will not

have the same shape as cells on the neighboring panel.

Therefore, the values in the ghost cells are set by least

squares interpolation from a stencil of surrounding cells

that are within the domain of the ghost cell’s panel and on

neighboring panels [section 3.4 in McCorquodale et al.

(2015) describes in detail the interpolation process]. Ad-

ditionally, flux values for the cell faces that lie on a panel

edge are calculated separately for each panel, and the

mean of the two fluxes is taken as the value for that face to

ensure conservation. Thus, communication between the

separate domains for each panel is limited to the fluxes at

the domain boundary and the neighboring cell values

needed to interpolate the solution to the ghost cell re-

gions. The block-structured AMR method allows for

further subdivision of the computational domain of each

panel into rectangular regions of grid cells called patches,

which allow the calculation to be distributed efficiently on

parallel computing platforms.

Adaptive mesh refinement

Our 2DAMR shallow-watermodel uses the strategies

within the Chombo library (Adams et al. 2015) that has

been designed for parallel computing architectures.

AMR calculations are performed on a hierarchy of

nested meshes, called levels, which have a defined re-

finement ratio between them. This refinement ratiomust

be a power of 2. The finer levels are overlaid on top of

the coarser levels and are organized in the block struc-

ture described in the previous section. Figure 1a pro-

vides an example of the AMR grid structure with two

refinement levels. Whenever new cells are created, they

are initialized via interpolations from the coarser level

and ghost cells are used to calculated the fluxes at patch

boundaries. At these coarse–fine interfaces, as at panel

boundaries, the space–time accuracy drops from fourth

order to third order due to a lack of error cancellation

that would normally occur with the FV method. In-

termediate levels must have a sufficient number of cells

separating a finer level and a coarser one. This ensures

that the finer level is properly nested so that the in-

terpolation to fill ghost cells on the finer level can be

performed using cells from only one level.

Figure 1b depicts an overview of the time-stepping

and subcycling process. Rather than having a uniform

time step dependent on the smallest gridcell size,

Chombo-AMR subcycles the refined levels in time

maintaining a constant Courant number. As noted by

Ullrich (2014) the single-wave-mode characteristics of a

numerical method often have an unexpected and non-

linear dependence on the Courant number. Therefore, a

constant Courant number helps ensure consistent dis-

persive properties across the refinement levels. The

typical work flow for advancing an AMR grid level l in

time is as follows:

1) Regrid levels finer than l if required:

Evaluate the refinement criterion and mark (tag) all

cells that should be included in finer levels. In these

regions, new blocks of cells at levels l1 1 are overlaid.

The new cell values are interpolated from the coarser

level using a fourth-order least squares algorithm that

maintains conservation as described in section 4.1 of

McCorquodale et al. (2015).

2) Advance level l one time step using the RK4 time-

stepping method.

3) Interpolate values to the ghost cells that surround

level l1 1 using the least squares algorithm also

implemented for ghost cells at panel boundaries. Three

layers of ghost cells are required. The interpolation

does not need to be conservative as the ghost cell

values are only used to reconstruct the flux on the faces

of the level l1 1 cells. Figure 2 depicts the location of

ghost cells for two of the three layers and the stencil of

coarse grid cells used for their interpolation.

TABLE 1. Properties for several cubed-sphere grid resolutions where Nc is the number of cells along an edge of a cubed-sphere panel.

Here the number of cells is the total number of grid cells (N2
c 3 6),Dx is the approximate grid spacing,Aavg is the average area of a grid cell,

Amin/Amax is the ratio between the minimum and maximum cell areas, ‘‘Eq. res.’’ is the grid resolution in degrees given by 908/Nc, and

RLLequiv is the equivalent grid spacing on a regular latitude–longitude grid with the same total number of cells.

Resolution (Nc) No. of cells Dx (km) Aavg(km
2) Amin/Amax Eq. res. RLLequiv

c16 1:543 103 625 3:3213 105 0.7434 5:638 6:508
c32 6:143 103 313 8:3023 104 0.7249 2:818 3:258
c64 2:463 104 156 2:0763 104 0.7159 1:418 1:628
c128 9:833 104 78.2 5:1893 103 0.7115 0:708 0:828
c256 3:933 105 39.1 1:2973 103 0.7093 0:358 0:418
c512 1:573 106 19.5 3:2433 102 0.7082 0:188 0:208
c1024 6:293 106 9.77 8:1073 101 0.7076 0:098 0:108
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4) Perform previous steps for level l1 1. Level l1 1 is

advanced using refined time steps (subcycling) as

depicted in Fig. 1b. A temporal interpolation closely

related to the RK4 method is used to update the

values in the level l1 1 ghost cells from cells on level l

at the intermediate time steps (McCorquodale

et al. 2015).

5) After the subcycling in time is completed, average

the solution from level l1 1 and sum up the fluxes to

update the values on the coarse grid. Corrections are

applied to the fluxes at coarse–fine interfaces to en-

sure conservation (Berger and Colella 1989).

As mentioned in the description of the first step, the

additional levels are placed in locations that have been

tagged by the refinement criterion of themodel. The size

of the refined grid that is added over tagged cells is de-

termined by three aspects: 1) the need to ensure proper

nesting of finer levels, 2) parameters from the Chombo

library designed for efficient parallelization, and 3) a

user-defined buffer parameter. Refinement (tagging)

criteria are based on thresholds for user-selected flow

properties, like relative vorticity, that indicate where

refinement should be placed. The tagging strategies can

be based on a variety of properties including tracer

values, vorticity thresholds, gradients, or a combination

of several criteria. The type of refinement criteria and

the threshold values are set independently for each

simulation. The threshold values can be uniform across

all refinement levels or designed to scale with increas-

ing refinement. For example, the relative vorticity

threshold can be set so that it increases with increasing

resolution. With the idealized test cases presented in

this paper, the selection of refinement criteria and

thresholds was problem dependent, with the simplicity

of the tests offering only a few possible options. A

range of refinement thresholds for the AMR test cases

was explored. Here, we present various thresholds for

the gravity wave and binary vortices tests to demon-

strate how changes in refinement affect the solutions

and grids. For the moving-vortices advection test we

only present a single threshold value that represents a

compromise between reducing the error and increasing

the computational run time.

The Chombo-AMR dycore is designed to have mul-

tiple refinement levels (up to 10), and the maximum

number of levels is set for each simulation. In our sim-

ulations, we explore the effects of adding up to two

FIG. 1. (a) Example of a grid with two levels of AMR using a32 refinement ratio between levels. The additional

levels do not replace the coarse level cells underneath, they are overlaid on top. (b) Diagram depicting the sub-

cycling of AMR levels in time. The coarse level is advanced first from time tn to time tn 1Dt, where Dt is the time

step for the coarsest level. Then the finer levels are advanced with a smaller time step and periodic updates of fluxes

from the coarser grids.

FIG. 2. Example of a one-level AMRapproach with a refinement

ratio of two on the cubed sphere grid. The four dashed cells are

schematic examples of ghost cells for the finer grid, which are in-

terpolated from the values in the coarse cells shaded in gray. Our

actual AMR applications need three ghost cells.
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refinement levels (called two-level AMR). In addition,

we explore the grid-resolution refinement ratios be-

tween successive levels, and present selected results for

three powers of 2: 32, 34, and 38. As an example, a

grid with a base level of c32 (2.88) resolution and two

levels of 34 refinement has a maximum resolution of

c512 (0.188).

3. Results of the numerical experiments

For our assessment of the Chombo-AMR shallow-

water model, we select five test cases: one advection test

and four shallow-water tests. The test cases are divided

into two categories: large-scale smooth flows and simu-

lations with either sharp gradients or strong, nonlinear,

localized flows. The first category comprises the fol-

lowing two shallow-water tests:

d a steady-state geostrophic flow [test case 2 inWilliamson

et al. (1992)], and
d an unsteady solid-body rotation [example 3 fromLäuter
et al. (2005)].

These large-scale flows, which have no realistic use for

AMR, serve as ‘‘do no harm’’ tests. They are used to

check the model’s ability to preserve the characteris-

tics of smooth flows as they cross the AMR patches.

We measure the impact that the refinement ratios, the

number of AMR levels, and the location of the re-

finement patches have on the solution. Convergence

tests are also performed with these test cases that both

have analytical solutions.

The second test category with localized flow features

consists of three tests for which AMR could improve the

solution, and we seek to evaluate how effectively it is

able to do so. These tests are

d the moving vortices advection test by Nair and

Jablonowski (2008) (with analytical solution),
d a gravity wave impinging on an idealized mountain

shallow-water test, and
d a binary vortices test case inwhich two vortices interact.

The bottom two tests do not have analytical solutions

and the evaluations rely on high-resolution reference

solutions. A variety of refinement criteria are used with

these test cases to demonstrate the AMR’s ability to

track, adapt to, and resolve these localized features ac-

curately. The model results are presented using nor-

malized l2 and l‘ error norms as defined in Williamson

et al. (1992). Additionally, the total number of grid cells

quoted for AMR runs include the sum of all valid grid

cells from all refinement levels (not including ghost

cells) since the finer levels overlay the coarser grids

beneath them. The total number of grid cells can serve

as a rough benchmark of computational cost when com-

paring AMR runs to uniform runs.

a. Moving-vortices advection test

Themoving-vortices test is a challenging deformational-

flow advection test proposed by Nair and Jablonowski

(2008). The test represents the roll-up of an initially

smooth tracer into tight spiral bands. The roll-up cre-

ates steep gradients that provide a good test for the

AMR. In this test, a pair of vortices is generated on

diametrically opposite sides of the sphere. The wind

field is the summation of a solid-body rotation and a

deformational flow such that the two vortices move

along a great circle and an exact solution is known at all

times [see Nair and Jablonowski (2008) for details].

A 12-day time period is simulated that advects the

spiraling vortices once around the sphere. The back-

ground flow is prescribed with a rotation angle of a5p/4

so that the two vortices are advected through the corners

of the cubed sphere (located at 6458). Figures 3a–d de-

pict the analytical solution for the roll-up of the tracer at

days 0, 4, 8, and 12.

Numerical tests were carried out with uniform grids

and AMR grids with two different tagging criteria:

a tracer-gradient tagging and a combination tagging. In

tracer-gradient tagging, the model refines in regions

where j=qj. 1:53 1027 m21, where q is the unitless

value of the passive tracer. Combination tagging

combines the tracer-gradient tagging criterion with a

relative-vorticity tagging that refines in areas where

jzj. 1:453 1025 s21, so that the model refines over re-

gions in which either threshold is reached. The gradient

threshold value demonstrates a balance between re-

ducing error and limiting computational costs. A lower

threshold increases run time without significantly re-

ducing error and a higher one results in a large increase

in error. The vorticity threshold is set to maximize initial

refinement around the vorticity patches without being too

low as to refine on the background vorticity. With both

criteria, a 34 refinement ratio between levels was used.

The evolution of the grids can be seen in Fig. 3, which

shows the tracer error for the twoAMRruns. Figures 3e–h

depict the two-level AMR run (c32/c128/c512), which

has a base grid with c32 resolution, a c128 intermediate

AMR level, and a finest c512 AMR level, using the

tracer-gradient tagging. Figures 3i–l depict the same

two-level AMR setup but with the combination tagging.

The adaptive block structure is clearly successful at

tracking the evolving vortices. The block structure of

patches, not the individual grids cells, is outlined by the

black lines in Fig. 3. Each patch contains a user-selected

maximum number of grid cells. However, patches might

also be split into smaller blocks by the Chombo library.
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This optimizes the load balancing of the model on

parallel computing architectures and increases the ef-

ficiency of the code. Therefore, various patch sizes are

present in Fig. 3.

For the tracer-gradient tagging scheme (Figs. 3e–h),

the error is largest near the center of the spiral. The

combination tagging scheme (Figs. 3i–l) significantly

reduces the error near the center, and the largest error is

now toward the outer edges of the spiral just beyond the

coarse–fine grid boundaries.When using only the tracer-

gradient tagging, refinement does not begin until after

day 1, so errors accumulate on the coarse grid until that

time and remain higher even after being overlaid with

finer levels. With the combination tagging, the central

region is already refined (see Fig. 3i), which limits the

error growth. This effect can also be seen in Fig. 4a

where a time series of the normalized l2 tracer errors

with respect to the analytic solution are depicted for

15 different model configurations. In particular, Fig. 4a

compares the l2 tracer errors of the five uniform-

resolution simulations c32, c64, c128, c256, and c512

(see Table 1 for the associated grid spacings) to various

one- and two-level AMR experiments with either the

tracer-gradient or combination tagging. The time evo-

lution of the associated total number of grid cells, in-

cluding the underlying coarse cells, is shown in Fig. 4b.

In general, the error in the combination tagging simu-

lations reaches the lower error values of the uniform

runs (with the same resolution as the finest AMR level)

more quickly than the tracer-gradient tagging ones, de-

spite having a significant difference in gridcell count for

only the first few days (see Fig. 4b). The errors in all

single-level AMR runs in Fig. 4a using both tagging

criteria converge to the error of uniform runs at the

highest resolution (e.g., the c32/c128 AMR run and

the uniform c128 run). This result is achieved using

FIG. 3. (a)–(d) Analytic tracer field at days 0, 4, 8, and 12 for the moving-vortices advection test of section 3a. (e)–(h) Tracer error at the

select days for a two-level AMR run with a c32 base resolution using 34 refinement (c32/c128/c512) and the tracer-gradient refinement

tagging criterion. (i)–(l)As in (e)–(h), but with the combination of relative-vorticitymagnitude and tracer-gradient criterion. The adaptive

block structure is shown by black lines. The thickest lines are the base c32 grid, and thinner lines represent the c128 and c512 levels. Note

that (e)–(h) have different contour scales than (i)–(l).
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significantly fewer grid cells than the uniform runs. AMR

limits the normalized l2 error growth. AMR runs begin

with global errors that are near the level of uniform runs

with a grid resolution of their coarsest grid. However,

their global error increases at a much slower rate than

that of the uniform runs until the AMR error approaches

the error level of the matching high-resolution uniform

run. In the simulations presented here the two-level

AMR runs see a diminishing effectiveness at decreasing

the global error as the errors from the coarse section of

the grid dominate.

The error at day 12 as a function of total number of

grid cells for both uniform and AMR runs is plotted in

Fig. 5. AMR runs that have error values plotted to the

left of the errors of the uniform runs (line of hollow

black squares) achieve a lower l2 error than a uniform

run with a comparable number of grid cells. While the

one-level AMR runs show a decrease in error while

using fewer grid cells, the two-level AMR runs generally

result in a higher error for a comparable number of grid

cells than the uniform runs. Only the two-level AMR

run with a c16 base using the combination tagging has a

slightly improved error compared to the uniform runs

(see the leftmost magenta star). These results demon-

strate the reduced improvement to the global error from

additional levels of AMR with very coarse base meshes.

However, AMR still slows down the error growth over

time in comparison to uniform runs, and even asymp-

totes to the finest uniform mesh errors (e.g., c128/c512).

Extending the run time to 18 days, the l2 error from

the c32 base two-level AMR run with the combination

tagging (orange triangle in Fig. 5) is now slightly lower

than the error from the uniform runs at day 18 (red

downward-pointing triangles). Figure 5 also confirms

that the convergence rate for the uniform run is fourth

order in the normalized l2 error.

Nair and Jablonowski (2008) applied this test using

an a 5 08 setup (not a 5 458 as we present here) in an

FV-AMR model using a coarse 58 base grid and one to

three levels of 32 refinement, which were guided by a

FIG. 4. For themoving-vortices advection test of section 3a, growth over time of (a) normalized l2 tracer error and

(b) total number of grid cells. The plots provide a comparison of uniform runs (solid lines, no markers) and AMR

runs using gradient tagging (broken lines, with and without markers) and a combination of relative-vorticity and

tracer-gradient tagging (solid lines with markers). All AMR runs use the 34 refinement ratio between

resolution levels.

FIG. 5. Normalized l2 gradient error as a function of total number

of grid cells for the moving-vortices advection test case of section

3a at day 12. The grid-resolution labels along the bottom axis note

the number of grid cells in the uniform grids with those resolutions.

The black square markers are for the uniform runs c32 through

c512. The gray circles and green squares represent the one-level34

refinement AMR with base resolutions of c32, c64, and c128 using

gradient tagging and combination tagging, respectively. The blue

crosses and magenta stars represent the two-level 34 refinement

runs with base resolutions of c16, c32, and c64 using gradient tag-

ging and combination tagging, respectively. Finally, the red

downward-pointing triangles represent the uniform c256 and c512

runs at day 18, while the orange triangle is the two-level 34 re-

finement runs with a c32 base resolution, using the combination

tagging at day 18. Solid black lines depict convergence rates.
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tracer-gradient threshold. Their AMR errors were gen-

erally the same or lower than the errors of their compa-

rable uniform runs for coarse grids with one or two levels

of refinement. However, for their three-level AMR run

(finest resolution 0.6258) errors were slightly higher than

their uniform 0.6258 run, agreeing with what we ob-

serve for multiple levels of AMR. Additionally, our error

measures for uniform-resolution runs are comparable to

other higher-order models. Our uniform c64 (;1.48) run
with a5 458 has a normalized l2 error of 8.93 1023 after

12 days, which is comparable to the results from the 1.258
grid using a multimoment method in Chen et al. (2011b)

and slightly higher than the c80 (1.1258) run in Lauritzen

et al. (2010).

We also include the total run time versus number of

grid cells in Table 2, for some of the 12-day runs in Fig. 5.

In this case, the wall-clock time (as a % of the finest

uniform run) is closely related to the total number of

grid points, because most of the time steps and grid

cells are at the finest level. For AMR runs, coarser levels

must be completed before fine levels. There is, there-

fore, a slight performance penalty for the two-level

AMR (c32/c128/c512) run, which actually increases the

total number of finest-level points. This configuration

only has 24 boxes (each 163 16 cells) at the c32 level to

be distributed across 32 processors on the Yellowstone

computing platform [operated by the National Center

for Atmospheric Research (NCAR)]. This means that

some processors run idle when the solution on the

coarsest grid is computed, which slightly lessens the

parallel performance of this AMR run. Overall, a good

heuristic for this test is that the run time is approxi-

mately proportional to the total number of grid cells at

the finest level.

b. Global steady-state geostrophic flow

This zonal steady-state flow is the second test case

from the Williamson et al. (1992) test case suite for the

shallow-water equations on the sphere. The test consists

of a solid-body rotation along an axis that differs from

the polar axis by angle a and a corresponding balanced

height field. We use the more challenging a5p/4 case,

which means that the flow travels over the cubed-sphere

corner points at a 458 angle. Since the flow is initialized

in a gradient-wind balance, any changes from the initial

conditions (which serve as the analytical solution) are

considered errors. No topography is present. The test

was designed to measure how well the model can main-

tain a large-scale smooth balanced flow. Thus, we ex-

pect little benefit fromAMR refinement. We use the test

primarily to assess the sensitivity of the flow to the grid

structure and abrupt changes in the grid resolution along

coarse–fine mesh interfaces.

We implement two static refinement configurations,

which can be seen in the bottom two panels of Fig. 6. The

first configuration (Fig. 6b) consists of a statically refined

patch centered at 08 latitude and longitude (fully con-

tained within an equatorial cubed-sphere panel) over an

area with strong gradients in the height field. In the

second configuration (Fig. 6c), we place static patches

over the locations of high relative vorticity, refining

where jzj. 1:183 1025 s21. This criterion results in two

midlatitudinal patches that transect polar-equatorial

panel boundaries, a challenging location for the cubed-

sphere grid. Using these static refinement configura-

tions, we ran simulations that have one and two levels of

refinement using 32, 34, and 38 refinement ratios. In-

creasing the refinement ratio permits us to test how

abruptly resolution can increase without harming accu-

racy or causing spurious numerical noise at the bound-

ary between the coarse and fine regions. We compare

the height errors, characterized as the difference be-

tween the analytic initial condition and the numerical

solution for the height at day 5, of uniform-resolution

simulations and simulations using the equatorial and

midlatitudinal patch configurations. The addition of re-

fined patches should ideally result in no additional error

if the flow is well resolved, or a small decrease in global

height error if it is not.

Results in Table 3 show the normalized l2 and l‘
height errors for the uniform c32 (2.88) run and c32 base

runs with the two refinement configurations after 5 days.

The errors for the runs with the equatorial patch are

essentially unchanged from that of the uniform c32 run.

Even the extreme cases of a 38 refinement ratio or

multiple levels of refinement increase the l2 height error

by less than 0:25%. The results for midlatitudinal patch

runs show a reduction in global error with even a 38

TABLE 2. Run times (wall-clock time in s and as % of c512 run time) for 12-day moving-vortices advection simulations (section 3a).

These runs had a maximum resolution of c512, performed on two nodes of NCAR’s Yellowstone computing platform with 32 processors

total. Number of cells per refinement level is given at day 12 and as a percent of the c512 uniform run.

Base resolution AMR levels Run time (s) Run time (%) c32 cells c128 cells c512 cells Total cells (%)

c512 — 24 152 100% 0 0 1:63 106 100%

c128 1 10 116 42% 0 9:83 104 4:53 105 34%

c32 2 10 468 43% 6:13 103 4:23 104 4:63 105 32%
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refinement ratio reducing the l2 height error by more

than 10% and the l‘ error by at least 25% compared to

the c32 uniform run. The height error plots at day 5 for

the uniform c32 run and the runs for the two refinement

configuration using two levels of 34 additional re-

finement (Figs. 6a–c) depict a similar result. The equa-

torial patch run (Fig. 6b) has essentially the same height

error profile as the uniform run (Fig. 6a). The height

error for a base c32 run with the midlatitudinal re-

finement patches (Fig. 6c) shows a clear improvement in

error since the coarse base resolution does not fully re-

solve the flow and the refined patches cover areas of high

error. The refined patches do not create any spurious

wave reflections or lead to an increase in error along the

coarse–fine boundary.

Figure 7 depicts a comparison of the day-5 normalized

l2 and l‘ height errors for runs with the midlatitudinal

refinement patches and uniform runs for base resolutions

of c16 (5.68) to c256 (0.358).At coarse resolutions, we see a

slight improvement in the error for runs with refinement

compared to the uniform runs. However, at higher reso-

lutionswhen the flow iswell resolved the change in error is

indistinguishable. The figure also shows that fourth-order

convergence is maintained in the runs with the static re-

finement patches. Results for runs with the equatorial

refinement patch at other higher resolutions followed a

similar pattern as the c32 base runs in Table 3 and also

demonstrated fourth-order convergence (not shown).

The steady-state geostrophic flow test case has been

used in other AMR and static refinement studies. Similar

refined grid locations were used with the finite-volume

AMR models in Chen et al. (2011a) (on the cubed

sphere) and St-Cyr et al. (2008) (on a latitude–longitude

grid). In both models, the introduction of refined patches

led to increases in error when compared with the uniform

runs, with significantly larger increases in the height error

for configurations in which the refinement patch was

placed over strong height gradients. The error increased

by ;35% in Chen et al. (2011a) and a factor of 2.5 in

St-Cyr et al. (2008). However, for the higher-order

spectral-element method (SEM) in St-Cyr et al. (2008),

the error was considerably reduced with the addition of a

refined patch.Weller et al. (2009) tested a number of grid

geometries with variable resolutions using a 32 refine-

ment ratio and found increases in errorwhen a refinement

patchwas added.Harris andLin (2013) used a nested-grid

FVmodel with a33 refinement ratio. After 5 days their l2
height errors roughly doubled in comparison to their

uniform run, though their l‘ errorswere nearly unchanged.

Our results with static refinements are very competitive as

they show almost no increase in error or even in some

cases an improvement in the error. Thus, our model pre-

serves the large-scale flow and limits the errors at the re-

finement patches very effectively.

c. Unsteady solid-body rotation

The time-dependent zonal flow test proposed in Läuter
et al. (2005) (example 3) consists of an unsteady solid-

body rotation (USBR), which is forced by topography. It

possesses an analytical solution. The large-scale flow and

topography are smooth, zonally symmetric, and some-

what artificial. In particular, the topography is zero at the

equator and rises to its maximum (around 11km) at both

poles. As with the previous test case, we expect little

benefit from AMR given the smooth characteristics. The

FIG. 6. Height error (in m) at day 5 for the steady-state geostrophic

flow test case of section 3b. The configurations are as follows: (a) a c32

uniform-resolution run, (b) a c32 grid with a static equatorial patch

using two levels of 34 refinement, and (c) a c32 grid with static

midlatitudinal patches using two levels of 34 refinement tagging on

the relative-vorticity extrema. The solid black contour lines in

(a) represent the height field with a contour spacing of 200m and

a value range between 1200 and 2800m with the minima encircled by

the closed contours. The dotted and dashed contour lines correspond

to the negative and positive values, respectively, of the height error

tick marks in the label bar. The zero line is the dot–dashed line.
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benefit of the USBR test is that it has the added com-

plication of moving features that can be tracked with

AMRwhile still having an analytic solution to determine

the error. One can observe how well the flow is main-

tained andwhether numerical artifacts, if any, are created

by the resolution change at grid boundaries and by the

AMR regridding process. Using the setup described in

Läuter et al. (2005), we have set the parameter a5p/4 to

let the flow field pass over the corners of the cubed sphere

at a 458 angle. To force the initial condition to repeat itself
after exactly 1 day for better comparison of the results,

Earth’s angular velocity is slightly modified to be based

on a solar day instead of sidereal day, so that the angular

velocity is V5 2p/86 400 s21 ’ 7:27223 1025 s21.

We conduct a series of simulations over a range of

base resolutions with either one or two levels of refine-

ment using three refinement configurations:

1) Statically refined patch used in section 3b now cen-

tered at 08, 908E.
2) DynamicAMR refinement with height tag, the thresh-

old for the free surface height is h. 1:383 104 m.

3) Dynamic AMR refinement with relative vorticity

tag, the threshold is jzj. 1:183 1025 s21.

The three grid configurations can be seen in Figs. 8b–d,

which show the patches at the identical initial and final

(day 5) positions. The second and third configurations

(Figs. 8c,d) provide for the AMR tracking of a moving

feature, so the effects of a moving mesh and regridding

can be observed. The vorticity tag provides a more

challenging test since it bisects a cubed-sphere panel

edge. We see little deviation in error among the32,34,

and 38 refinement ratio simulations, so we only discuss

runs with the 34 refinement ratio. Whenever the dy-

namic AMR grids are moved, the underlying topogra-

phy is reinitialized with the analytical formulation given

in Läuter et al. (2005).
Simulations were run for 5 days. The normalized

global l2 and l‘ height errors after 5 days are shown for

simulations with a c32 base grid in Table 4. Errors are

calculated by comparing runs to the analytic solution of

the test case. The uniform grid results are comparedwith

one- and two-level refinement runs using the three grid

configurations. For the static refinement simulations, the

l2 height error increases by approximately 0:75% in

comparison to the uniform c32 run. In the two-level

height-tag AMR run, we observe that the l2 height error

increases by about 12%,while the two-level vorticity-tag

FIG. 7. (a) Normalized l2 and (b) l‘ height errors at day 5 as a function of base grid resolution for the steady-state

geostrophic flow test case of section 3b. Uniform runs and runs using the static midlatitudinal refinement patches are

depicted with 32, 34, or 38 refinement ratios. The fourth-order convergence rate is shown by the black line.

TABLE 3. Global steady-state geostrophic flow test of section 3b: normalized l2 and l‘ height errors at day 5 for a variety of refinement

ratios and numbers of levels with the two refinement locations near the equator and in the midlatitudes. As a comparison, the normalized

height errors of a uniform-resolution c32 run at day 5 are l2 5 5:47523 1026 and l‘ 5 1:45053 1025.

Equatorial refinement Midlatitudinal refinement

AMR levels Refinement ratio l2 error l‘ error l2 error l‘ error

1 32 5:48483 1026 1:45193 1025 4:74723 1026 1:00773 1025

1 34 5:48373 1026 1:45423 1025 4:78353 1026 9:50433 1026

1 38 5:48753 1026 1:45923 1025 4:82333 1026 9:69883 1026

2 32 5:48493 1026 1:45203 1025 4:53413 1026 1:05593 1025

2 34 5:48363 1026 1:45423 1025 4:79833 1026 1:10193 1025
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AMR run decreases the error by roughly 23%. Figure 8

depicts the USBR height errors at day 5 for the c32

uniform run and c32 base grid runs with the three grid

configurations. For the static equatorial patch run

(Fig. 8b), the height errors remain nearly the same as for

the uniform run (Fig. 8a), with only very slight increases

in the large error areas on the polar panels. Along the

coarse–fine boundary, no spurious grid-induced error is

observed. In the height-tagAMR run (Fig. 8c) the errors

along the polar-equatorial panel boundaries increase,

while in the vorticity-tag AMR run (Fig. 8d), we observe

that the large errors on the polar panels are reduced due

to the addition of refinement over that area. With the

height tagging, we do not see a similar improvement

because the refined patches are over the low error areas

on the equatorial panel.

After 5 days, the uniform c32 run (;313-km grid)

had a normalized l2 height error of 2.6 3 1026. For

comparison, the second-order icosahedral model by

Düben et al. (2012) obtained a normalized l2 height er-

ror of 1.05 3 1024 at day 5 using a uniform grid with an

average edge length of 240km. Other investigations

focused on results at 12 h, after which the flow features

have progressed only halfway around the sphere.

Pudykiewicz (2011) showed a normalized l2 height error

of;63 1026 after 12 h using a second-order icosahedral

geodesic model with a 28 (;220 km) grid resolution,

while our uniform c32 (2.88) run produced a normalized

l2 height error of 3.5 3 1027 at 12 h. These results are

comparable with those obtained by the fourth-order

multimoment model on a Yin–Yang grid with an effec-

tive resolution of 1.8758 in Li et al. (2015). They reported
a normalized l2 height error of ;3 3 1027 after 12 h.

Additionally, the third-order multimoment method on a

cubed-sphere grid with a N 5 40 (2.258) grid resolution

in Chen et al. (2014) had a normalized l2 height error

FIG. 8. Height field errors (in m) at day 5 for four simulations of the unsteady solid-body rotation test case of

section 3c: (a) a c32 uniform-resolution run, (b) a c32 base grid with a static equatorial patch using two levels of34

refinement, (c) a c32 base grid with two levels of dynamic34 refinement using the height-tag criterion, and (d) a c32

base grid with two levels of dynamic 34 refinement tagging on the vorticity-tag criterion. The solid black contour

lines in (a) represent the free surface height field of the USBR test (above sea level) with a 150-m contour spacing

and a value range between 1.223 104 and 1.373 104mwith theminima in the polar regions. The dotted and dashed

contour lines correspond to the negative and positive values, respectively, of the height error tick marks in the label

bar. The zero line is the dot–dashed line.

TABLE 4. Day-5 normalized l2 and l‘ height error norms for the

unsteady solid-body rotation test of section 3c. The c32 uniform-

resolution run is compared to the static refinement runs and AMR

runs tagging on relative vorticity and height with one and two re-

finement levels using the 34 refinement ratio.

Grid configuration No. of levels l2 error l‘ error

Uniform — 2:60523 1026 7:82163 1026

Static 1 2:60643 1026 8:19553 1026

Static 2 2:60643 1026 8:19773 1026

AMR, vorticity 1 2:10343 1026 6:15093 1026

AMR, vorticity 2 2:00173 1026 6:80353 1026

AMR, height 1 2:88373 1026 8:76513 1026

AMR, height 2 2:92053 1026 1:02553 1025
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of ;6.5 3 1027 at 12 h. We are unaware of other results

that use the USBR test with AMR applications.

We performed the USBR test in simulations with in-

creasing base resolutions of up to c128 (;78-km spacing)

with the two dynamic grid configurations. The normal-

ized l2 and l‘ height errors after 5 days are plotted in

Figs. 9a and 9b, respectively. At higher base resolutions

the slight improvements in the l2 height error no longer

occur for the vorticity-tag AMR as the large-scale flow

features are well resolved (Fig. 9a). The fourth-order

convergence is maintained for all grid configurations. In

the l‘ height error plot (Fig. 9b), we observe the same

slight decrease in error for the coarse c16 and c32 base

resolutions for the vorticity-tag AMR and the slight in-

crease in the height-tag AMR errors as observed earlier

in Figs. 8c and 8d. However, at higher base resolutions we

find a large increase in the l‘ error for the vorticity-tag

AMR runs. While fourth-order convergence is main-

tained at all resolutions for the uniform, static refinement,

and height-tag AMR configurations across all resolu-

tions, the l‘ convergence rate drops to between 3 and 2.5

for the vorticity-tagAMR runs at higher base resolutions.

The increased error is due to the regridding of the AMR

patches. Themaximumerrors occur in cells bordering the

coarse–fine boundary of the AMR patch and the base

grid when that boundary intersects an edge of the cubed

sphere. This point-source-like artifact of the AMR grid

occurs in both the height-tag and vorticity-tag AMR

simulations. In the height-tag runs, the artifact is trig-

gered only when theAMRgrid passes over the corners of

the cubed sphere, resulting in the slight l‘ error increase

observed in Fig. 8c. In the vorticity-tag AMR runs, the

refined grid bisects the polar-equatorial panel edge dur-

ing the entire run, thus this small error is compounded at

each regridding step. This results in the sharp increase in

the l‘ error seen in Fig. 9b for the vorticity-tag runs with

c64 and c128 base resolutions. Overall, though, the error

is small and very localized at the cells where the AMR

patches intersect the cubed-sphere edge. It is, therefore,

only obvious in the strict l‘ error measure and only at

high horizontal base resolutions. At lower base resolu-

tions the magnitudes of other errors are bigger which

then dominate the global l‘ error measure.

d. Isolated mountain gravity wave

This shallow-water test was developed to assess AMR

when topography is present. In the test a gravity wave,

which is triggered by an unbalanced initial height per-

turbation in a quiescent background environment,

passes over an idealized mountain. The change in to-

pography deforms the structure of the gravity wave. The

bottom topography zs consists of a cosine mountain and

is defined by

z
s
5

z
0

4

h
11 cos

�pr
R

�i2
, (1)

where R5p/9 and r 2 5min[R2, (l2 lc)
2 1 (u2 uc)

2].

Outside the radius R the topography is set to zero. The

peak height of the mountain is z0 5 2000m, and it is cen-

tered at (lc, uc)5 (3p/2, p/6) in the longitudinal and lat-

itudinal direction, respectively. The initial velocity field is

set to zero and the initial free surface height has a constant

background value of h0 5 5960mwith a localGaussian dip

perturbation. Thus, the initial free surface height field

(above the reference sphere at sea level) is given as

h5 h
0
2 h
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exp

"
2

�
t

b
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#
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The maximum depth of the perturbation is set to

hmax 5 100m, b5 a3p/36 is a width parameter, and t is

FIG. 9. (a) Normalized l2 and (b) l‘ height errors at day 5 as a function of base grid resolution for the USBR test

case of section 3c. Uniform runs andAMR runs with one and two refinement levels using the height-tag or vorticity-

tag criteria. All AMR runs use 34 refinement ratio between levels. Solid black lines depict convergence rates.

Errors are determined with respect to the analytic solution.
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the great-circle distance from point (l, u) to the dip’s

center (ld, ud) such that

t5 a arccos[sinu
d
sinu1 cosu

d
cosu cos(l2 l

d
)] , (3)

where a5 6:371 223 106 m is the average radius of

Earth. The Gaussian dip is centered at (ld, ud)5
(3p/22p/5, p/6) in the longitudinal and latitudinal di-

rection, respectively. Figure 10 depicts the initial height

field and its distance from the mountain.

The simulation is run for a period of 12 h so that the

gravity wave has moved halfway around the sphere.

Figures 11 and 12 show the perturbation height (defined

as deviations from h0, top panels) and the height dif-

ference from a uniform c1024 (;10km) reference so-

lution (bottom panels) at hours 6 and 12, respectively,

for a uniform c128 run and a c32 base one-level AMR

run (c32/c128) tagged on a height-gradient threshold of

j=hj. 7:53 1026. After 6 h (Fig. 11), the gravity wave

has just passed over the mountain and the distortion to

the wave from the mountain is clearly visible. The pres-

ence of themountain breaks the symmetry of the circular,

outward-propagating gravity wave. This propagation is

captured by the AMR refinement criterion as indicated

by the overlaid block structure in Figs. 11b and 11d. The

height differences for the c32/c128 AMR run (Figs. 11d

and 12d) are similar in position and magnitude to the

uniform c128 run errors (Fig. 11c) within the refined

AMR domain. The areas of larger error at the borders

of the AMR region seen in Figs. 11d and 12d are lo-

cated over the leading and trailing edges of the gravity

wave, which are not fully covered by the AMR re-

finement criterion. The location and magnitude of

these larger errors correlate with the error at the

leading edge of the gravity wave observed in the uni-

form c32 run. At hour 6, the AMR refined grids are

over themountain and by hour 12, themountain is once

FIG. 10. Initial free surface height field (colored, in m) for the

gravity wave over an idealized mountain test of section 3d. The

free surface height field (above the reference sphere at sea level)

is uniform everywhere except for the 100-m-deep Gaussian de-

pression. The black contour lines represent the location of the

mountain with 200-m contour spacing and a peakmountain height

of 2000 m.

FIG. 11. Mountain gravity wave test of section 3d, at hour 6. (a),(b) The perturbation height of the gravity wave as it passes over themountain

for a uniform c128 run and a c32/c128 AMR run with the height gradient tag j=hj. 7:53 1026. (c),(d) The height error of each run after 6 h

compared to a reference uniform c1024 run. The block structure of the grid and the mountain contours are overlaid with thin black lines.
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again covered by only the coarse grid. The AMR re-

initializes the topography [using Eq. (1)] whenever

adaptations are triggered. No spurious errors appear as

the AMR refines and coarsens over the topography

region (Figs. 11d and 12d).

Results in Fig. 13 show the normalized l2 height error

(Fig. 13a) and the total number of grid cells (Fig. 13b)

as a function of forecast hour for uniform runs from c32

to c512 and one-level AMR runs using height-gradient

tagging with thresholds of j=hj. 1:53 1025, 1:03 1025,

and 7:53 1026, labeled T1, T2, and T3, respectively. The

normalized error metrics are determined with respect to

the uniform c1024 simulation, which serves as the ref-

erence solution. For uniform runs, the solution error

converges to fourth order in both the normalized l2 and

l‘ height error norms. The AMR runs have improved

error but do not reach the error of the uniform run with

the same resolution as the highest refinement level. The

c32 base one-level AMR T3 run (c32/c128) has a maxi-

mum number of grid cells roughly equivalent to the uni-

form c64 run, but its error is nearly an order of magnitude

smaller than the uniform c64 run. Reducing the gradient

FIG. 12. As in Fig. 11, but for hour 12 as the gravity wave has moved halfway around the sphere.

FIG. 13. For the mountain gravity wave test of section 3d, growth over the 12-h period of (a) normalized l2 height

error with respect to the uniform c1024 run and (b) total number of grid cells. Error and number of grid cells for

uniform-resolution runs and one- and two-level AMR runs with height-gradient tagging. The thresholds are

j=hj5 1:53 1025 (T1), 1.0 3 1025 (T2), and 7.5 3 1026 (T3).
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threshold in AMR runs so that more area around the

gravitywave is covered by theAMRpatches improves the

solution and reduces error. A c32/c128 AMR run with a

refinement threshold of j=hj. 4:53 1026, lower than the

T3 criterion, results in the AMR grid covering 31% of the

globe by hour 12 and a normalized l2 height error of

3.9573 1026. In comparison, the uniform c128 run has an

error of 3.051 3 1026 and the T3 run has an error of

5.806 3 1026 with AMR blocks covering only 25:8% of

the area. As more of the leading edge of the gravity wave

is refined with lower tagging thresholds, the error is de-

creased further, though at a diminishing rate.

e. Binary–vortices interaction

The binary–vortices interaction test demonstrates the

AMR benefits and its effectiveness in studying an im-

portant and more realistic problem. The interaction

of two neighboring tropical cyclones (TCs) often alters

the structures of the two, leads to complex tracks for the

storms, and in some instances results in a merger of the

two cyclones. These interactions were first studied by

Fujiwhara (Fujiwhara 1921) and are commonly called

the Fujiwhara effect. Idealized binary–vortex interac-

tions have been extensively investigated using 2D ide-

alized models by Melander et al. (1988), Waugh (1992),

Ritchie and Holland (1993), Prieto et al. (2003), and

Shin et al. (2006). A majority of the research has been

conducted on two-dimensional Cartesian systems using a

constant Coriolis force. These studies have used a variety

of initial vortex profiles featuring discrete (Ritchie and

Holland 1993) or continuous (Bauer et al. 2014) vortices

in both symmetric and asymmetric pairs (Dritschel and

Waugh 1992). They demonstrate that slight changes in

initial conditions will cause widely diverging results.

The vortices will either merge or repel each other de-

pending on the strength, size, and separation distances

of the vortices, and the postinteraction shapes of the

vortices will be vastly different. Bauer et al. (2014) used

an r-adaptive shallow-water model to demonstrate that

the vortices’ tracks are sensitive to initial conditions

and to initial grid resolution. Given the sensitivity to

resolution, binary–vortex interactions are a well-suited

test of AMR. The steep gradients, localized areas of high

vorticity, and complex flow fields around the vortices are

transient and resolution-dependent, mimicking the mul-

tiscale nature of tropical cyclones. With this test, we can

evaluate the AMR’s ability to refine and track these

features of interest and measure the AMR’s accuracy

in resolving the vortex interaction. It can assess how

well the results and errors in AMR runs match the re-

sults of uniform high-resolution runs and can determine

the sensitivity of the vortex tracks to the changing grid

resolutions.

In our binary tropical cyclone–like vortices test, we

use the full shallow-water equations on a spherical

grid with a changing Coriolis parameter, whereas most

other published studies use a nondivergent barotropic

model on an f plane. We also restrict our study to only

the symmetric case so that the two vortices are iden-

tical in size and strength. The two vortices are ini-

tialized near each other and are allowed to interact

over a simulation period of several days. Two varia-

tions of this setup are presented. In the separation

case, the two vortices orbit around each other and

then slowly drift apart. In the merger case, the vortices

merge. Our initializations of the continuous vortex

profiles were inspired by the definition of the initial

state in Holland and Dietachmayer (1993). The initial

wind and height profiles are derived from the shallow-

water equations in cylindrical coordinates using an

f-plane approximation. The vortex structure is de-

picted as a radial perturbation in the geopotential field

and is given by

f 5 f2f0 , (4)

f0 5 f
c

�
12 exp

�
2
�r

m

r

�b
�	

, (5)

where f5 gh is the background geopotential with the

background height h5 4200m and Earth’s gravity

g5 9:806 16ms22, f0 denotes the geopotential pertur-

bation, fc symbolizes the maximum geopotential per-

turbation, rm is the radius of maximum wind, b stands

for a scaling parameter set to 1.5, and r is the great-circle

distance from point (u, l) to the vortex center (uc, lc)

[see also Eq. (3)]. The values of fc, rm, uc, and lc are

provided later.

A balanced tangential wind field is then found

by using the steady-state shallow-water momentum

equations in cylindrical coordinates. In particular, the

tangential wind:
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represents the initial axisymmetric flow in gradient wind

balance. Using ›f/›r derived from Eq. (4), we get the

corresponding tangential velocity for a cyclonic [the plus

sign in Eq. (6)] circulation:
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where f is the constant Coriolis parameter for an f-plane

approximation at the latitude of the vortex center

(specified later). The last initialization step is to project
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the tangential velocity onto the sphere with the zonal u

and meridional y spherical wind components given by

u5 y
T

d
1

d
and y5 y

T

d
2

d
, (8)

where

d
1
5 sinu

c
cosu2 cosu

c
sinu cos(l2 l

c
) , (9)

d
2
5 cosu

c
sin(l2 l

c
) , (10)

d5max(«,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
1 1 d2

2

q
). (11)

The threshold value «5 10225 prevents division by zero.

The topography is set to zero.

This initialization technique represents a perfect bal-

ance for a single vortex in cylindrical coordinates and

leads to a very good balance in spherical coordinates.

Note that the perfect balance is broken on the sphere

since f varies in the spherical domain and is held con-

stant for the purpose of the initialization. In addition, an

analytically derived balance is not fully balanced in a

numerical (discrete) sense and the overlap region of two

vortices is not strictly balanced either. However, the

initial imbalances for our separation and merger test

cases are very minor and the resulting small gravity

waves do not interfere with our AMR analysis. The

same initialization technique was also used for idealized

tropical cyclone simulations in 3D GCMs (Reed and

Jablonowski 2011).

The radial cross sections of the initial relative vortic-

ity, height field, and tangential wind for a single vortex

as a function of the great-circle distance from the center

are depicted in Fig. 14a. Here, all magnitudes are nor-

malized to 1 and are provided below for each test case.

The initial relative vorticity for the merger test case with

two initial vortices is depicted in Fig. 14b. It shows that

the tangential wind profile from Eq. (7) results in a rel-

ative vorticity profile with a core of positive relative

vorticity in the center of each storm surrounded by a

broad ring of negative vorticity with relatively small

magnitudes. The two vortices slightly overlap with very

minor magnitudes of u, y, and f0 [Eq. (5)]. Here, we use

the sum of the u, y, and f0 values of both vortices to

initialize our shallow-water system.

1) SEPARATION CASE

In the separation case, the two vortices are centered at

uc 5p/365 58N, which defines the constant Coriolis

parameter f 5 2V sinuc with Earth’s angular velocity

V5 7:2923 1025 s21. The maximum geopotential per-

turbation is set to fc 5 ghc with the maximum height

perturbation hc 5 800m. The radius of maximumwind is

set to rm 5 250km. This results in a maximum tangential

wind of 64ms21 and a maximum relative vorticity of

9.4 3 1024 s21. The centers of the two vortices are 13.58
apart (;1500km) in the longitudinal direction, 6 times

the radius of maximum wind, so that their negative

vorticity regions still overlap. In particular, the two

vortex centers are located at lc1 5 (3p/22 6:75p/180)

and lc2 5 (3p/21 6:75p/180) with the midway point

between the two cyclones at 908W.

This scenario is sensitive to variations in initial con-

ditions, making it desirable for testing adaptive grids.

Decreasing the separation distance by 20km results in

the merger of the two vortices. During the first 3 days

of the simulation, the two vortices make one complete

orbit around each other as the beta-drift steers them

toward the northwest, after which the two vortices then

FIG. 14. Initial conditions for the binary vortices test case of

section 3e. (a) Radial profiles of relative vorticity (red), tangential

wind (blue), and height field (black) as a function of great-circle dis-

tance from the center for a single vortex. Profiles are scaled to the

maximumof each value (see text). (b) Initial profile of relative vorticity

(s21) of the two vortices on a cubed-sphere grid (merger test case).
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drift apart. In that time, the negative vorticity is stretched as

it is advected around the pair of positive cores before being

spun off behind the pair as an anticyclone. We also ob-

served the growth of a large-scale wave train that forms in

the lee of the orbiting pair. The time evolution of the flow

can be seen in Fig. 15, which shows the vorticity field of the

cyclone pair at days 1, 2, 3, 4, and 6 for several uniform-

resolution runs. These serve as references for the AMR

simulations.We ranuniform runswith resolutions fromc32

to c1024, of which the c128, c256, and c1024 runs are

FIG. 15. Evolution of the relative vorticity of uniform-resolution runs for the binary vortices test (separation case) of section 3e(1).

(a)–(e) Results for the uniform c1024 run for days 1, 2, 3, 4, and 6. (f)–( j) The uniform c256 run and (k)–(o) the uniform c128 run.

4658 MONTHLY WEATHER REV IEW VOLUME 144



depicted in Fig. 15. Results vary significantly with resolu-

tion, though results do converge with increasing resolution.

Runs with coarser resolution than c128 (not shown) have

very weak vortices that merge instead of drifting apart. In

the c128 run (Figs. 15k–o), the vortices start separating

earlier and at the end of the run are in markedly different

positions. The c256 simulation (Figs. 15f–j) more closely

resembles the highest-resolution c1024 run (Figs. 15a–e),

but there are still significant differences.However, the c512

run (not shown as a time series) is nearly indistinguishable

from c1024 with only slight differences in the center of the

vortex cores and in the finescale vorticity filaments. A

comparison of the uniform c512 run and c1024 run at day 6

can be seen in Figs. 16e and 16i.

To assess the AMR performance, we ran the model

using relative vorticity refinement criteria with one and

two levels of AMR and 34 refinement on base grid res-

olutions from c16 to c256. Samples of the resulting relative

vorticity fields at day 6 using two different relative vorticity

thresholds of jzj. 3:53 1025 s21 and jzj. 2:33 1025 s21

FIG. 16. Relative vorticity fields at day 6 for several runs of the vortex separation case of section 3e(1) using AMR: (a) uniform c256

run, (e) uniform c512 run, and (i) uniform c1024 run. (b)–(d) AMR runs whose highest refinement level is c256. (f)–(h) and

(j)–(l) AMR runs with a highest refinement level of c512 and c1024, respectively. (b),(f),(j) AMR runs with one level of refinement

using a tagging criterion based on a relative vorticity threshold of jzj. 2:33 1025 s21. (c),(g),(k) AMR runs using two levels of

refinement using a relative-vorticity threshold of jzj. 3:53 1025 s21. (d),(h),(l) AMR runs using the same refinement criteria as in

(b),(f),(j), but with two levels of refinement. All AMR runs use the 34 refinement ratio. The block structures of refinement levels

1 and 2 are outlined in black.
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are displayed in Fig. 16. They are divided into columns that

share the same highest resolutions; for example, in the

leftmost column, Fig. 16a is the uniform c256 run, while

Figs. 16b–d are for one- or two-levelAMRruns that have a

finest grid resolution of c256. The AMR runs agree well

with the uniform solutions having the same resolution as

the finestAMR level. TheAMRblocks accurately capture

the positions of the two vortices and the shape of their

high-vorticity cores. The AMR runs also effectively re-

produce the overall shapes of the anticyclonic filaments

and patches around the cores, and the wave train devel-

oping to the lee of the vortices with only minor differences

in the anticyclone filament between the two vortices in a

few runs. Given the nonlinear sensitivity to initial condi-

tions and grid resolution, unrefined areas and the coarse–

fine boundaries near the vortices in AMR runs may cause

divergent solutions. In none of our AMR simulations did

this occur. The results of the AMR runs differed only

slightly from the uniform-resolution runs.

2) MERGING VORTICES

In themerging-vortices case, the two vortices have the

samemaximumheight perturbation with hc 5 800m, but

the radius of maximum wind is increased to rm 5 400 km

so that the maximum tangential wind is 61m s21 and the

maximum relative vorticity is around 5.7 3 1024 s21.

The vortices are centered at uc 5p/185 108N where

the constant Coriolis parameter f is evaluated for

this test case. The vortex centers are 15.658 apart

(;1700 km) in the longitudinal direction. In partic-

ular, they are located at lc1 5 (3p/22 7:825p/180) and

lc2 5 (3p/21 7:825p/180) with the same midway point

as before at 908W. This separation distance is about 4.3

times the radius of maximum wind, so that the edges of

the positive vorticity cores slightly overlap.

Figure 17 depicts the evolution of these vortices as

they merge over the course of four simulation days.

As in the previous case, though small changes in initial

condition lead to very different results, we do observe a

slow convergence with increasing resolution.We ran the

test case with several configurations using one and two

levels of AMR with criteria based on a relative vorticity

or a height gradient threshold. The AMR run shown in

Fig. 17 has a c64 base resolution with two levels of 34

refinement so that its finest level has a c1024 resolution.

The AMR is triggered when the absolute value of the

relative vorticity exceeds 2.3 3 1025 s21. With that rel-

atively low refinement threshold, the AMR captures not

only the main vortex cores, but also the small-scale an-

ticyclonic filament that extends far south of the merged

vortex, and the small-magnitude wave train that develops

by day 4. Figure 18 shows a column comparison of the

vorticity field at day 4 for uniform-resolution runs and

AMR runs using three refinement criteria. The first col-

umn contains the uniform c1024 run and 3 two-levelAMR

runs with 34 refinement on c64 base resolution that

have a finest resolution of c1024. The second column has

the c512 uniform run and 3 two-levelAMRrunswith a c32

base. The last column has the uniform c256 run and 3 two-

level AMR runs with a c16 base. The three AMR re-

finement criteria in Fig. 18 are as follows:

1) Large-height-gradient-tag AMR: tag where the ab-

solute value of the height gradient is j=hj. 43 1024

(second row of Fig. 18);

2) Small-height-gradient-tag AMR: tag where

j=hj. 13 1024 (third row);

3) Vorticity-tagAMR: tagwhere the absolute value of the

relative vorticity is jzj. 3:53 1025 s21 (fourth row).

Locally refining the grid resolution with AMR effec-

tively achieves a similar result in the refined areas as

the corresponding high-resolution uniform runs. Even

the large-height-gradient refinement threshold used in

Figs. 18b and 18f, which results in very little refinement,

is still able to produce a very similar vortex structure and

position within the refined area demonstrating little to no

negative effects from the coarse–fine boundaries sur-

rounding the vortex. The lower refinement thresholds are

further able to capture the anticyclonic filament wrapping

around the new vortex and extending down from it as well

as the development of the secondary leeside wave train.

The convergence to the error of the uniform-resolution

runs can be observed in the normalized l2 vorticity error

seen in Fig. 19. The l2 error norm is computed by com-

paring runs to the uniform c1024 run, which serves as a

reference solution. The figure depicts the normalized l2
relative vorticity error (Fig. 19a) and total number of grid

cells (Fig. 19b) as a function of forecast days for uniform-

resolution runs and one- and two-level AMR runs using

the large-height-gradient tag or the vorticity tag with34

refinement ratios. The vorticity-tag AMR simulations

(both one- and two-level AMR) have nearly the same

error as the uniform runs with the highest resolution

while the gradient-tag runs have slightly higher error.

This agrees with the fact that the gradient-tag runs use

fewer grid cells and only cover the merged vortex core

(see Figs. 18b,f,j). Although the large-scale shape and

locations of the two merging vortices and the postmerger

vortex appear visually to converge to a solution with in-

creasing resolution, we do not observe a large reduction

in the global errors with increasing resolution. The source

of this error is the small differences that occur in the core

of the vortices, caused by small-scale nonlinear features

in the high-vorticity filaments, as well as slight variations

in the beta drift created by small changes in the vorticity

magnitude for the different resolution runs. These small
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differences in these features lead to localized large-

magnitude errors in the vorticity. As in the separation

case, the AMR improves the solution using fewer grid

cells. Even when the AMR patch over the vortex is

small and the coarse–fine boundary is near the high

vorticity cores, the solution is not negatively distorted,

showing the robustness of the model given the sensitivity

of the test case to grid resolution and slight changes in

initial conditions.

The computing run times versus number of grid cells

for a 4-day simulation with vorticity tagging is presented

in Table 5. The table thereby represents some of the runs

from Fig. 19b. Eight processors on one node of NCAR’s

Yellowstone computing platform are used. We see the

approximate 83 reduction in cost between the c512 and

c256 uniform runs, as expected for a doubling of the

horizontal resolution and a halving of the time step. For

this test, the wall-clock run time for AMR runs is closer

to’43 for 23 resolution changes, demonstrating some

of the overhead of the AMR algorithm. The total wall-

clock time roughly correlates with the total number of

grid cells, as in the moving-vortices advection test, even

FIG. 17. Evolution of the merging vortices in the test of section 3e(2) in a two-level AMR run (c64/c256/c1024)

using a relative-vorticity threshold refinement criterion. Refinement occurs when the absolute value of the relative

vorticity is greater than 2.3 3 1025 s21. Snapshots of relative vorticity at days (a) 1, (b) 2, (c) 3, and (d) 4 are

depicted. The block structures of the c256 and c1024 refinement levels are indicated by black contours.

DECEMBER 2016 F ERGUSON ET AL . 4661



FIG. 18. Relative vorticity field at day 4 on the cubed-sphere grid for several runs of the merging-vortices test of

section 3e(2) using AMR: (a) uniform c1024 run, (e) uniform c512 run, and (i) uniform c256 run. (b)–(d) AMR

runs whose highest refinement level is c1024. (f)–(h) AMR runs that have a maximum refinement level of c512

and (j)–(l) AMR runs that have a c256 maximum resolution. (b),(f),(j) AMR runs with two level of refinement

using the large-height-gradient tag. (c),(g),(k) Two-level AMR runs using the small-height-gradient tag. (d),(h),(l)

The two-level AMR runs use the relative-vorticity tag. Thus, in the first column, all the AMR runs have a c64

base grid, a c32 base grid in the second column, and a c16 base grid in the third column. All AMR runs use a 34

refinement ratio.
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for the coarsest two-level AMR runs (c32/c128/c512 and

c16/c64/c256).

4. Conclusions

In this paper, we utilized a fourth-order finite-volume

model on a cubed-sphere grid, which is adaptive in both

space and time, to demonstrate the effectiveness of the

AMR in resolving and tracking chosen features of in-

terest while maintaining large-scale smooth flows. Using

selected shallow-water and advection test cases, we

evaluated the AMR’s ability to track and resolve fea-

tures of interest without creating distortions or numerical

noise in the large-scale smooth flows at the interfaces

between meshes. A variety of static and dynamic re-

finement criteria and strategies are implemented to assess

the strengths and weaknesses of the AMRmethod. With

the large-scale smooth ‘‘do no harm’’ tests, one and two

levels of static and adaptive refinement meshes with

several refinement ratios were placed at several loca-

tions on the cubed-sphere grid. The results confirmed

that multiple levels of refinement and abrupt 34 or 38

refinement ratios between levels still allowed flows to

move smoothly through the refined areas. There was

little induced noise and numerical error at the refine-

ment boundaries. For coarse resolutions, the refine-

ment improved global errors slightly, and the errors

remained nearly unchanged when refinement was added

to a higher-resolution base grid for the two shallow-water

tests. Only for high resolutions in the USBR tests when a

moving AMR grid transected the cubed-sphere panel

boundaries did we see a noticeable increase in error. This

error, however, was very localized and only becomes

apparent because the base global error is so low in the

uniform-resolution simulations for this smooth idealized

test. In the coarser runs for the USBR and in the other

more complex shallow-water tests with larger expected

global errors, this was not observed.

With the three AMR test cases, we demonstrated that

AMR is able to track the features of interest and closely

reproduces the results of uniform high-resolution runs

using fewer grid cells. AMRwas implemented using tracer

and height-field gradients as well as relative-vorticity

magnitude as tagging criteria with multiple refinement

levels and a range of thresholds. The AMR grids are

added and removed in time without creating significant

FIG. 19. For the merging-vortices test of section 3e(2), growth over the 4-day period of (a) normalized l2 error for

relative vorticity calculated with respect to the uniform c1024 run and (b) total number of grid cells. Error and

number of grid cells are for uniform runs and one- and two-level AMR runs using the large-height-gradient tag or

the relative vorticity tag with 34 refinement ratios.

TABLE 5. Run times (wall-clock time in s and as% of the c512 time) for 4-daymerging-vortices simulations [section 3e(2)] with uniform

andAMR runs using only eight processors on one node of NCAR’s Yellowstone computing platform. The total number of cells is counted

at day 4.

AMR resolution AMR levels Run time (s) Run time (%) Total cells Total cells (%)

c512 — 24 127 100% 1:63 106 100%

c128/c512 1 1913 7.9% 1:93 105 12%

c32/c128/c512 2 1225 5.0% 1:23 105 7:5%

c256 — 3596 15% 3:93 105 25%

c64/c256 1 394 1.6% 5:53 104 3:4%

c16/c64/c256 2 304 1.3% 3:63 104 2:3%
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distortions or noise at the mesh interfaces. In the tracer

advection test, fourth-order convergence was main-

tained while using AMR, and the error of AMR runs

with one level of refinement was comparable to the

error of uniform runs having the same fine-level reso-

lution. The test showed the importance of refining

early, as errors developed from the coarse grid propa-

gate through the fine grids for the rest of the simulation.

The gravity wave impinging on the mountain test

demonstrated the use of AMR with topography. Re-

finement was added and removed from the areas with

topography without creating additional negative im-

pacts. In the binary vortices test, AMR improved ac-

curacy of the position of the vortices as they interacted

and their structures when compared with uniform-

resolution runs. Even stringent criteria with high

threshold values, which did not create a large buffer of

high resolution around the vortices, still produced ac-

curate results and improved the solution in the refined

patches. Additional refinement, though, significantly

improved the representation of the vorticity filaments

that extended well away from the central vortices and

the developing Rossby wave train.

All three test cases demonstrated that a variety of

AMR criteria and thresholds lead to improvements in

the results, though to maximize that improvement, the

refinement criteria needed careful tailoring. Several

conditions increased the effectiveness of AMR; how-

ever, there was no clear strategy for establishing the best

general refinement criteria. Having initial refinement or

refining early in the run before errors developed on the

coarse grid was one of the key strategies for improving

accuracy. When there is no initial refinement, the ben-

efits of AMR are limited by the coarseness of the base

mesh; AMR with two levels was ineffective due to large

errors introduced by the coarsest base meshes early in

the calculation. This speaks to the need for a sufficiently

refined base mesh to avoid contaminating finer levels.

Using more than one level of refinement and effective

tagging strategies resulted in better-resolved features of

interest, but at a diminishing rate of return of improve-

ment. Our conclusion is that the benefit of AMR does

not come automatically from the computational savings

of a very coarse base mesh. However, there may still be

benefits of two or more levels over uniform-resolution

calculations that otherwise would not be computation-

ally feasible without AMR. In a realistic climate simu-

lation, tropical cyclones could, perhaps, be effectively

captured early by criteria that place high resolution over

the cyclogenesis region and then refine over and track

emerging storms to ensure continued accuracy. For

other, more complex or moist flows, more advanced

criteria than just a simple relative-vorticity threshold

need to be investigated. They could be based, for ex-

ample, on combinations of physics-based properties

(like rainfall), thresholds of vorticity, or gradients. Fu-

ture work will explore such refinement criteria in the 3D

nonhydrostatic version of the Chombo-AMR model

with and without a variety of physical parameterization

schemes. The addition of physical parameterizations

will also allow us to test the scale awareness of the

physics schemes.
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