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Abstract

Lupus nephritis is a potentially fatal autoimmune disease for which the current treatment is 

ineffective and often toxic. To develop mechanistic hypotheses of disease, we analyzed kidney 

samples from patients with lupus nephritis and from healthy control subjects using single-cell 

RNA sequencing. Our analysis revealed 21 subsets of leukocytes active in disease, including 

multiple populations of myeloid cells, T cells, natural killer cells and B cells that demonstrated 

both pro-inflammatory responses and inflammation-resolving responses. We found evidence of 

local activation of B cells correlated with an age-associated B-cell signature and evidence of 

progressive stages of monocyte differentiation within the kidney. A clear interferon response was 
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observed in most cells. Two chemokine receptors, CXCR4 and CX3CR1, were broadly expressed, 

implying a potentially central role in cell trafficking. Gene expression of immune cells in urine 

and kidney was highly correlated, which would suggest that urine might serve as a surrogate for 

kidney biopsies.

Lupus nephritis (LN) is a frequent complication of systemic lupus erythematosus (SLE)1, 2, 

for which current therapies are both toxic and insufficiently effective2, 3. Despite the rapid 

pace of immunologic discovery, most clinical trials of rationally designed therapies have 

failed in both general SLE and LN, with only one new drug approved for the treatment of 

SLE in the last five decades2, 4. Thus, there is a pressing need to decipher the immune 

mechanisms that drive LN.

Current knowledge of the molecular pathways dysregulated in SLE comes mainly from the 

unbiased analysis of blood cells5; however, the extent to which blood reflects the inflamed 

tissue is unclear. Immunohistochemistry and flow cytometry studies of kidney biopsies have 

indicated the presence of infiltrating subpopulations of immune cells6, 7, 8 but cannot reveal 

previously-unidentified cell types or activation states. Mouse models of LN provide detailed 

knowledge of the molecular pathways and cell types active in their kidney9 but vary in key 

aspects such as the degree of immune cell infiltration, the role of interferon and Fc receptors 

and responses to therapeutic interventions.

It is thus clear that the study of LN can greatly benefit from a resource allowing the 

generation and preliminary testing of new hypotheses. Single-cell transcriptomics is a 

powerful tool capable of producing a complete catalogue of cell types and states present in a 

given sample. Here, we employed it in the analysis of kidney, urine and blood samples from 

patients with LN and healthy individuals, while utilizing a standardized protocol to process 

patient samples acquired across a distributed clinical and research network. Our findings 

delineate the complex array of leukocytes active in human LN kidneys. Analysis of blood 

reveals both similarities to and differences from the molecular signatures detected in 

kidneys, highlighting the limitations of blood samples for deciphering renal disease 

processes. We further show that urine cells have the potential to serve as surrogates for 

kidney biopsies in assessing the molecular activation state of subsets of infiltrating 

leukocytes.

RESULTS

Isolation and processing of kidney cells for single-cell transcriptomics

To establish a uniform pipeline to analyze kidney biopsy samples from multiple institutions, 

we evaluated several strategies for their preservation and transport. Cryopreservation of 

intact kidney tissue immediately after acquisition, followed by batched processing at a 

central site, offered robust leukocyte yields, intact staining for lineage markers and high 

quality transcriptomes (Supplementary Fig. 1a-e). We employed this pipeline to analyze 

kidney biopsies from 24 patients with LN and 10 control samples, acquired from living 

donor kidney biopsies (Fig. 1a and Supplementary Table 1). Approximately half of the LN 

samples, independent of histologic classification, provided leukocyte yields well above those 
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obtained from control samples (Supplementary Fig. 2a,b), including B cells, T cells, 

macrophages and other leukocytes based on flow cytometry (Supplementary Fig. 2c,d).

Viable cells were sorted into 384-well plates for single-cell RNA sequencing (scRNA-seq) 

using a modified CEL-Seq2 protocol10. Since our focus was on characterizing the immune 

cells within LN kidneys, 90% of the cells sequenced from each sample were CD45+ cells, 

and the rest were CD45−CD10+ cells. The quality of the collected sequencing data was 

comparable across plates, and higher in leukocytes compared with epithelial cells, reflecting 

the lower viability of the latter in the processed samples (Supplementary Fig. 1f,g). Principal 

component analysis performed on the gene expression data from 2,736 leukocytes and 145 

epithelial cells indicated that the main sources of variability in the data corresponded to cell 

types, rather than batch or technical factors (Supplementary Fig. 2e,f).

Stepwise cell clustering identifies cells of the myeloid, T, natural killer (NK), B and 
epithelial lineages

To identify the lineage and activation state of the cells extracted from kidney samples, we 

clustered them based on their gene expression data, taking a stepwise approach (Fig. 1b). 

Low-resolution clustering of all kidney cells identified 10 clusters (Supplementary Fig. 2g), 

which we labeled as myeloid cells (clusters C4 and C6), T/NK cells (C0, C1, C2 and C5), B 

cells (C3, C8), dividing cells (C9) and kidney epithelial cells (C7), based on the expression 

of canonical lineage markers and other genes specifically upregulated in each cluster. 

Sensitivity analysis demonstrated that this labeling of cells was highly robust 

(Supplementary Table 2).

We next clustered the cells of each lineage separately, and identified 21 immune cell clusters 

and a single epithelial cell cluster (Fig. 2a), each containing cells from multiple patients and 

plates (Supplementary Tables 3 and 4). Saturation analysis indicated that the size of the 

present cohort is adequate to reveal most of the major clusters in LN kidneys 

(Supplementary Fig. 2h). Only three clusters were substantially represented in living donor 

control samples (Supplementary Fig. 2i and Supplementary Table 3), as verified by 

analyzing two additional living donor control samples, using a droplet-based approach to 

maximize the number of processed cells; this increased the number of living donor high-

quality cells from 183 to 305, yielding largely the same results (Supplementary Table 3). For 

clusters that were present in sufficient numbers in both patients with LN and living donor 

controls, we performed a cluster-based differential expression analysis, comparing the two 

patient populations; the results of this analysis (Supplementary Table 5) are reported below.

The renal and systemic interferon responses are highly correlated

Type I interferons are elevated in the peripheral blood of patients with lupus11. To assess the 

extent of this phenomenon in kidney, we calculated for each cell an interferon response 

score, defined as the average expression of several known interferon-stimulated genes (ISGs; 

Supplementary Table 6). We found that in all patients but one there was a significant 

upregulation of this score in kidney cells compared with living donor controls (Fig. 2b). 

Furthermore, this upregulation was observed in all clusters, although it was less pronounced 

in the kidney epithelial cells (Fig. 2c). Two clusters, one containing B cells and the other 
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CD4+ T cells (CB3 and CT6, respectively; see below), demonstrated particularly high values 

of the interferon response score; the majority of these cells were extracted from two patients 

(patient IDs 200–0841 and 200–0874; Supplementary Table 3). These two patients also 

featured B cells and CD4+ T cells with a substantially lower interferon score, suggesting that 

the secretion of this cytokine may be spatially localized, either in the kidney or outside of it. 

When we compared the interferon response score in matched blood and kidney samples 

from 10 patients with LN we found a significant correlation (Spearman’s ρ = 0.733, P = 

0.016; Fig. 2d), indicating that the interferon response is mainly an extrarenal process.

Classification and annotation of myeloid cell clusters reveal resident and infiltrating 
populations

Focused analysis of the 466 cells in myeloid clusters C4 and C6 revealed 5 finer clusters 

(clusters CM0–CM4, Fig. 3a and Supplementary Fig. 3a–c). We determined their putative 

identity by comparing their global gene expression patterns with those of published 

reference monocyte/dendritic cell (DC) clusters identified in blood samples of healthy 

individuals using scRNA-seq12 (Fig. 3b,c), and by the expression of canonical lineage 

markers. Cluster CM3 was closest to CD1C+ DCs (reference clusters DC2 and DC3) or 

CLEC9A+ DCs (reference cluster DC1), in accordance with the expression of the canonical 

DC markers CD1C and FLT3 (Supplementary Fig. 3a), and the lack of expression of 

monocyte markers CD14 and CD16. Cluster CM0 cells were most similar to CD16+ 

patrolling monocytes (reference clusters Mono2 and DC4), with very high expression of 

CD16 (FCGR3A) and CX3CR1 and low expression of CD14 and CCR2. Similar results 

were found for clusters CM1 and CM4, though their correlation scores with the reference 

clusters were notably lower and, in the case of CM4, below a data-derived “assignability 

threshold”. CM1 cells expressed lower levels of CX3CR1 and CD16 than CM0, while CM4 

cells expressed even lower levels of these two genes and higher levels of CD14 and CD64 
(FCGR1A), despite being dissimilar to classical CD14+ monocytes. These three clusters 

likely represent infiltrating kidney monocyte/macrophage subsets as they constitute a 

minority of myeloid cells in normal kidneys (Supplementary Table 3).

We next determined whether the pattern of gene expression in each cluster could indicate 

functional capabilities (Supplementary Fig. 3a). Cluster CM1 expressed upregulated levels 

of phagocytic receptors CD36 (SCARB3), SCARB2, CD68, CD163, NR1H3 (LXR) and 

GPNMB, and cluster CM4 expressed VSIG4, MSR1, CD163, MERTK, STAB1 and CD209. 

Cells in CM1 and especially CM4 had upregulated expression of C1Q, which acts as an 

opsonin for phagocytosis and promotes apoptotic cell clearance by enhancing the expression 

of MERTK and its soluble ligand GAS613, 14. They also demonstrated upregulated levels of 

CD169 (SIGLEC1), an endocytic receptor that is associated with a phagocytic and reparative 

phenotype15. Cluster CM0 had the highest level of expression of inflammatory genes 

including TNF, S100A8, S100A9, NFKB1 and the WNT pathway activator TCF7L2. By 

contrast, CM4 expressed many genes associated with alternatively activated macrophages, 

including CD163 and SLC40A1 (ferroportin), which control iron homeostasis16; IGF1 and 

DAB2, both drivers of the alternatively activated phenotype17, 18; and folate receptor beta 

(FOLR2), a receptor expressed on alternatively activated CD14+ macrophages that are found 

in inflammatory and malignant tissues19.
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Finally, since CM2 was the main cluster found in normal kidneys (Supplementary Table 3), 

it probably corresponds to steady-state kidney macrophages. This cluster demonstrated low 

expression of CD14, CD16, CX3CR1 and CCR2, and no clear similarity to the published 

reference clusters of peripheral myeloid subsets (Fig. 3b,c). In comparison to the other 

macrophage subsets, CM2 upregulated several genes associated with tissue remodeling 

including MMP2, ADAMTS10 and HTRA1. These cells also upregulated BHLHE41, a gene 

expressed in microglia and lung resident macrophage populations20, consistent with CM2 

representing resident cells. Compared with CM2 cells from living donor controls, lupus 

CM2 cells expressed higher levels of ISGs, as well as anti-inflammatory genes (GRN, 
TMSB4X, CREB5) and inhibitors of TLR signaling (GIT2, TNFAIP8L2), and lower levels 

of pro-inflammatory genes (ALOX15B, WNT5A) (Supplementary Table 5)20.

Trajectory analysis identifies a continuum of intermediate states spanning patrolling, 
phagocytic and alternatively activated monocytes

Dimensionality reduction using either diffusion maps21 (Fig. 3d) or t-Distributed Stochastic 

Neighbor Embedding22 (tSNE; Fig. 2a) indicated possible transitions between the three 

clusters of infiltrating monocytes/macrophages, with CM1 linking CM0 and CM4. 

Furthermore, since the cells in cluster CM0 tended to be the most similar to peripheral blood 

CD16+ monocytes, while the cells in cluster CM4 were the least similar (Fig. 3c), the 

suggested progression is from an inflammatory blood monocyte (CM0) to a phagocytic 

(CM1) and then an alternatively activated (CM4) phenotype. Indeed, we found a gradual 

reduction along the trajectory from CM0 to CM4 in the expression of NFKB1, an 

inflammatory gene; a transient increase in CD36, an important phagocytic receptor; and a 

continuous increase in MERTK, a key signaling receptor induced by CD36 (Supplementary 

Fig. 3d-f)23. Overall, a general downregulation of inflammatory genes and a concurrent 

upregulation of genes associated with phagocytosis (Supplementary Table 6) was observed 

along this trajectory (Fig. 3e,f).

To further investigate this hypothesized within-kidney transition, we analyzed blood samples 

from two of the patients who had high numbers of CM1 and CM4 cells in their kidneys 

(patient IDs 200–0873 and 200–0874; Supplementary Table 3). We used droplet-based 

scRNA-seq, yielding 1,411 sorted high-quality myeloid blood cells that included a 

subpopulation of CD16+ monocytes (Supplementary Fig. 3g). We next compared the gene 

expression data of each cell in this subpopulation with that of the myeloid kidney clusters. 

As expected, the vast majority of peripheral blood CD16+ cells were most similar to the 

CM0 cluster, with a few cells mapped to either CM1 or CM3 and no cell mapped to CM4 or 

CM2 (Supplementary Fig. 3h). This held true when considering all sorted blood myeloid 

cells, not just those identified as CD16+ monocytes.

To determine whether the hypothesized differentiation begins before entering the kidney, we 

examined the relative upregulation of phagocytosis-associated genes in cluster CM1 

compared with CM0, in both blood and kidney (Supplementary Fig. 3i-j). We found that 

while there was a significant increase in these genes in kidneys (P < 0.001; Mann-Whitney 

U-test), no such increase could be observed in blood.
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These analyses are consistent with differentiation of CD16+ monocytes into CM1 and CM4 

cells within the kidney, but do not rule out differentiation of a small number of blood cells 

coupled with selective migration into the kidney. Furthermore, other schemes of transitions 

(or their absence) between these clusters are possible, and further investigation is required.

LN kidneys contain two clusters of NK cells and three clusters of CD8+ T cells

Clusters C0, C1, C2 and C5, comprising 1,764 cells, contained T cells and NK cells. A 

focused clustering of these cells separated them into seven finer clusters of NK, CD8+ T and 

CD4+ T cells (clusters CT0–CT6, Fig. 4a and Supplementary Fig. 4a). Cluster CT1 

contained NK cells, which could be identified by the lack of CD3E and CD3D combined 

with expression of CD56 (NCAM1) and DAP12 (TYROBP), as well as high expression of 

cytotoxic genes including PRF1, GZMB, and GNLY. A similar cytotoxic program was 

observed in the CD8+ T cell cluster CT2, pointing to a cytotoxic T lymphocyte (CTL) 

identity. A second population of CD8+ T cells, demonstrating high levels of the granzyme 

GZMK24 rather than GZMB and GNLY, populated cluster CT4. These cells expressed 

relatively low levels of PRF1 compared with cluster CT2 and also showed high expression 

of HLA-DR/DP/DQ molecules and CCR5, consistent with an earlier report25. Cluster CT5 

could be further split into two subclusters (Fig. 4b and Supplementary Fig. 4b): a third CD8+ 

T cell population (cluster CT5a), and a small population of NK cells (CT5b). The cells in 

cluster CT5a had features of resident memory cells, including expression of ZNF683 
(HOBIT), ITGAE, ITGA1 and XCL1, and lack of KLF226, 27, and accordingly were 

relatively abundant in normal kidney biopsies (Supplementary Table 3). Cluster CT5b cells 

expressed TYROBP and CD56, suggesting an NK cell identity, but differed from CT1 NK 

cells by higher expression of KIT, TCF7, IL7R, and RUNX2, and lower expression of PRF1, 

GZMB, FCGR3A, TBX21, and S1PR5, consistent with the identification of these cells as 

tissue-resident CD56brightCD16− NK cells, in contrast to the CD56dimCD16+ NK cell 

features observed in CT128.

It was previously reported that an exhaustion signature in peripheral blood CD8+ T cells of 

patients with SLE associates with lower flare rates29 and that such exhausted T cells are also 

detected in the kidneys of lupus mice30. In our data, however, all three CD8+ T cell clusters 

(CT2, CT4, CT5a) expressed only low levels of canonical exhaustion markers 

(Supplementary Fig. 4c); this was probably not due to technical limitations, as PD-1 
(PDCD1), CTLA4 and BTLA were highly expressed in the T follicular helper (TFH)-like 

cells (cluster CT3b – see the following section). We sorted CD8+ T cells from matched 

blood samples obtained at the time of kidney biopsy along with ten healthy control samples, 

and used data from bulk RNA-seq to measure an “exhaustion score” defined as the average 

expression of a comprehensive, published list of exhaustion markers31 (Supplementary Table 

6). We found that this exhaustion score was significantly higher in blood CD8+ T cells of 

patients with LN compared with those of healthy controls (P < 0.01, Mann-Whitney U-test), 

but not in kidney CD8+ T cells (Supplementary Fig. 4d-f), suggesting that the CD8+ T cell 

exhaustion seen in blood does not occur in the affected organ.
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Analysis of CD4+ T-cell subsets identifies five clusters, including TFH-like cells

Clusters CT0, CT3 and CT6 contained CD4+ T cells. CT3 could be divided into two 

subclusters, with one (CT3a) containing cells expressing genes associated with T regulatory 

(Treg) cells, including FOXP3 and IKZF2 (HELIOS), and the other (CT3b) consisting of 

cells with low FOXP3 and features consistent with TFH cells, including the expression of 

CXCL13, CXCR5, PDCD1, MAF, and CD200 (Fig. 4c and Supplementary Fig. 4g).

Cluster CT0 could be further split into two subclusters, the first containing primarily effector 

memory CD4+ T cells (CT0a), with more frequent expression of PRDM1, CCL5 and 

CXCR6, and the second consisting of mostly CCR7+SELL+TCF7+ central memory T cells 

(CT0b; Fig 4d and Supplementary Fig. 4h). The similar expression of CD69 in both clusters 

suggests that CT0b cells are more likely to be central memory than naive CD4+ T cells. 

Expression of TCF7, KLF2 and LEF1 may indicate an early central memory T-cell (Tcm) 

phenotype of CT0b cells, in contrast to the late effector phenotype of CT0a cells32. Of note, 

CT0a was the only CD4+ T cell cluster found with substantial frequency in living donor 

samples (Supplementary Table 3). Differential expression analysis of this cluster indicated a 

dysregulation of ISGs in the LN samples (Supplementary Table 5).

While some LN kidney T cells have been previously annotated as TH1 and TH17 cells, in 

our data CD4+ T cells did not segregate into distinct clusters with characteristic effector 

lineage features. IFNG and CXCR3 could be identified in few CT0 cells, primarily within 

CT0a (Supplementary Fig. 4h). In contrast, IL17A, IL17F and CCR6 were very rarely 

detected, and no IL4, IL5 or IL13 expression was observed. TBX21 and RORC were found 

in a minority of CT0 cells, with TBX21 much more frequently expressed in CD56dimCD16+ 

NK cells (cluster CT1) and CTLs (CT2; Supplementary Fig. 4a).

Finally, cluster CT6 contained CD4+ T cells demonstrating exceptionally higher levels of 

ISGs, including ISG15, MX1, RSAD2, OAS3, IFIT1 and IFIT2, compared with other T 

cells (Supplementary Fig. 4a).

Analysis of B-cell clusters reveals age-associated B cells (ABCs)

Analysis of the 435 cells mapped to clusters C3 and C8 identified 4 different B-cell clusters 

in LN samples, but almost no B cells in healthy kidneys (clusters CB0–CB3; Fig. 5a, 

Supplementary Figs. 5a and 2d and Supplementary Table 3). Cluster CB1 contained 

plasmablasts/plasma cells, expressing high levels of XBP1 and MZB1, as well as 

immunoglobulin genes. The cells in cluster CB3 demonstrated high levels of several ISGs, 

including IFIT1, IFIT2, IFIT3, ISG15, OAS3 and RSAD2. Expression of these genes was 

also detected in the other B-cell clusters, but at substantially lower levels.

Cluster CB0 cells had upregulated expression of activation markers such as CD27, CD86, 
IGJ and IGHG1, and low levels of IGHD and IGHM, suggesting an activated B-cell identity. 

Furthermore, we could detect in this cluster a gene expression signature consistent with 

ABCs (Fig. 5b) that are implicated in both aging and autoimmunity33. Based on a panel of 

genes reported to be differentially expressed in ABCs34, we computed for each cell in 

cluster CB0 a score representing the extent to which its gene expression pattern matched that 

expected by an ABC (“ABC score”; Supplementary Table 6). A continuous range of values 
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of this score could be observed in cluster CB0, without a clear separation into distinct 

subpopulations (Fig. 5b). The ABC score per patient, calculated as the average of the ABC 

score over the CB0 cells of each patient, did not positively correlate with age (Spearman’s ρ 
= −0.255), suggesting that the presence of these cells indeed reflected disease rather than 

age.

The tSNE plot for the B cells suggested that cluster CB2 may contain multiple subsets 

(Supplementary Fig. 5b). Accordingly, we were able to split the cells in cluster CB2 into two 

subclusters (Fig. 5c and Supplementary Fig. 5c): the first of these (CB2a), expressing the B 

cell markers CD19 and CD20 (MS4A1), demonstrated upregulation of genes typical of naive 

B cells, including high levels of IGHD, IGHM, TCL1A and IL4R, and had nearly 

undetectable expression of CD27; the other cluster (CB2b) expressed genes known to be 

upregulated in plasmacytoid DCs (pDCs) (Fig. 5c and Supplementary Fig. 5c), including 

PTPRS, GZMB, CLEC4C, CD123 (IL3RA) and CD317 (BST2). To further validate this 

hypothesized identification, we calculated the Pearson correlation in gene expression 

between each cell in cluster CB2 and 3 independent sets of reference samples: 

FANTOM535,36, containing bulk RNA-seq data from 360 cell types, 17 of which are 

immune cell subsets; bulk RNA-seq data from 13 immune cell populations sorted from 

healthy individuals (Browne et al., manuscript in preparation); and an scRNA-seq data set, 

which includes data from 10 different clusters of DCs and monocytes from healthy blood12. 

This analysis classified all CB2b cells as pDCs, using any of the three reference data sets 

(Supplementary Fig. 5d-f). Furthermore, as predicted almost all of the CB2a cells were 

classified as naive B cells, when compared with the data from Browne et al. (the only data 

set of the three tested that contained multiple B-cell populations).

Trajectory analysis reveals intermediate states between naive B cells and ABCs

Projecting the gene expression data of the B cells onto two dimensions using diffusion 

maps21, we found that the naive (CB2a) and activated (CB0) B cells formed a continuum of 

states, demonstrating a gradual increase in CD27 expression and a parallel decrease in IGHD 
expression, reflecting activation (Fig. 5d-f). Furthermore, traversing the trajectory from 

CB2a to CB0 coincided with a continuous increase in the ABC score (Fig. 5g), indicating 

that activation and differentiation into ABCs are highly correlated processes in our data. In 

contrast, very few cells occupied intermediate states between plasma and naive or activated 

B cells, consistent with a lack of differentiation into plasma cells in the inflamed kidney. 

However, as it was previously suggested37 that ABCs are preplasma cells, this question 

requires additional investigation, in particular employing B-cell receptor (BCR) repertoire 

analysis.

The dividing cell cluster includes T and NK cells

Cluster C9 contained three subclusters. Two of them (CD1 and CD2) demonstrated 

upregulated levels of mitochondrial genes and genes associated with a stress response 

(Supplementary Fig. 6a,b), indicating lower viability and/or quality, and were excluded from 

subsequent analyses. Cluster CD0 demonstrated elevated levels of genes participating in cell 

division. Classification of its cells by comparison with FANTOM5 indicated CD8+ T cells, 

NK cells and CD4+ Treg cells (Supplementary Fig. 6c).
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Cluster-specific expression of genes associated with disease risk

Genome-wide association studies (GWASs) have identified numerous risk alleles and their 

susceptibility genes in SLE and LN38, 39. We analyzed the expression of these genes across 

the 22 clusters identified in kidneys, and found both expected and surprising cluster-specific 

expression patterns (Fig. 6). For example, TLR7, whose role in nucleic acid sensing, B cell 

activation and differentiation is well established40, 41 is expressed here in pDCs, myeloid 

cells and B cells. We found HIP1, suggested to regulate DC activity42, to be expressed in 

resident memory CD8+ T cells (cluster CT5a), CD56brightCD16− NK cells (CT5b), 

conventional dendritic cells (cDCs) (CM3) and pDCs (CB2b). LBH, implied to modulate 

synovial hyperplasia43, was expressed here in T- and B-cell subsets, raising the possibility 

that the LBH risk locus impacts both fibroblasts and lymphocyte subsets. We also observed 

cluster-specific expression of several poorly annotated SLE susceptibility genes, including 

WDFY4, CXorf21 and TMEM39A. Finally, our analysis identified both innate and adaptive 

immune cell subsets expressing several transcription factors associated with SLE, including 

ARID5B, CIITA, ETS, IKZF1, IKZF2, IRF7, IRF8 and PRDM1.

Expression patterns of chemokines and cytokines

We next analyzed the expression patterns of chemokine and cytokine receptors (Fig. 7a), 

focusing on receptors that were expressed by a relatively large fraction (> 30%) of the cells 

in at least 1 cluster (this threshold was set based on the observed distribution of expression 

frequency, considering all receptors; Supplementary Fig. 7a). We found that a single 

chemokine receptor, CXCR4, was expressed in the majority of infiltrating cells in nearly all 

clusters (Supplementary Fig. 7b). A second chemokine receptor, CX3CR1, was expressed in 

most myeloid cells, as well as CD56dimCD16+ NK cells (cluster CT1) and CTLs (CT2) 

(Supplementary Fig. 7c). Of note, the expression frequency of other chemokine receptors 

previously implicated in LN, such as CCR5, CXCR3 and CCR2, was found to be much 

lower (Supplementary Fig. 7d-f). For cytokine receptors, we observed that IL2RG, encoding 

the common gamma chain and important for signaling of several cytokines, was frequently 

expressed in almost all clusters. TGFBR2, a subunit of the receptor for the cytokine TGFβ, 

was also expressed on the majority of cells. IL10RA, IL27RA, IL17RA and TNFRSF1B 
were expressed by a large fraction of cells in all clusters, with the exception of the B cells.

To identify potential interactions between the cells acting in the inflamed kidney, we 

analyzed the expression patterns of the corresponding ligands. We found that the CXCR4 
ligand, CXCL12, was expressed mainly in the cells in cluster CM4, as well as in the 

epithelial cells (Fig. 7b and Supplementary Fig. 7g). The latter were also the main source of 

the CX3CR1 ligand, CX3CL1 (Fig. 7c and Supplementary Fig. 7h). Of note, CM4 cells 

were in addition the top producers of CCL2 and CCL8 (Supplementary Fig. 7i); these are 

the ligands of CCR2, which is expressed in a large fraction of plasma cells (cluster CB1) and 

pDCs (cluster CB2b). These findings imply that kidney epithelial cells and M2-like 

macrophages may be coordinating traffic of immune cells infiltrating the kidney. It should be 

noted though that this analysis does not cover other cell types, such as endothelial cells, 

which were not profiled here.
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Comparison of urine and kidney leukocytes

Leukocytes isolated from urine samples of patients with LN were processed in the same way 

as kidney cells (Fig. 1a and Supplementary Fig. 1h). Following filtering, 577 high-quality 

cells, collected from 8 patients, were included in subsequent analyses.

We first assigned each urine cell to the kidney cluster most similar in its gene expression 

data. Urine samples had a higher frequency of myeloid cells (in particular cluster CM1) and 

fewer T cells than kidneys (Fig. 8a). We next compared gene expression across 

corresponding urine and kidney clusters, restricting the comparison to clusters with at least 

five urine cells. High correlations were observed, typically ranging from 0.85 to 0.95 (Fig. 

8b and Supplementary Fig. 8), suggesting that urine cells can serve to estimate gene 

expression in their kidney counterparts.

DISCUSSION

Using single-cell transcriptomics to study kidney samples obtained from patients with LN 

and living donor controls, we reveal the complexity of immune populations in LN kidneys, 

identifying multiple disease-specific subsets of myeloid, NK, T and B cells, and giving rise 

to several observations. We found: (1) evidence for within-tissue differentiation of 

inflammatory CD16+ macrophages into M2-like cells, which may orchestrate the renal 

infiltration and retention of other leukocyte subsets; (2) an abundance of dividing CTLs and 

NK cells, indicated to be a major source of IFNγ and cytolytic molecules, and lack of 

expression of exhaustion markers in CD8+ T cells, suggesting a role for cytotoxic activity in 

LN; (3) two additional populations of CD8+ T cells, which could not be easily identified by 

cell surface markers; (4) a range of B-cell activation states from naive cells to ABCs in the 

kidney; (5) an interferon response signature in infiltrating leukocytes, correlated with the 

same signature in blood; (6) frequent expression by kidney immune cells of the chemokine 

receptors CXCR4 and CX3CR1, suggesting they may serve as potential therapeutic targets; 

(7) cell subset-specific expression of genes associated with lupus in GWAS; and (8) a high 

correlation of gene expression in urine immune cells and corresponding kidney leukocytes.

Our transcriptomic analysis offered a detailed view of the T-cell populations in LN kidneys. 

The co-clustering of CD4+ TFH cells and FoxP3+Helios+ regulatory T cells raises the 

possibility that T follicular regulatory cells are also present44, 45. CD4+ T cell clusters were 

not clearly associated with TH1 or TH17 signatures, suggesting that T cell polarization may 

not be a major feature in LN. The identification of three distinct CD8+ T-cell subsets raises 

the question whether the previously reported localization pattern of CD8+ T cells in the 

kidney46 is subset-specific.

B cells are found in more than half of lupus biopsies but not in healthy samples47. Our 

finding of B cells spanning a spectrum of states between naive and activated cells, together 

with the presence of TFH-like cells, is consistent with the view that immune responses to 

tissue damage are being driven in situ48. Of note, activation was correlated with an ABC 

signature previously suggested to be driven by BCR/TLR ligands49. Understanding whether 

these ABCs are clonally expanded or enhance inflammation locally in patients with LN, and 
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determining the clonal relatedness of naive, activated and antibody-secreting B cells will 

require a larger data set, combined with analysis of BCR sequences.

Peripheral monocytes can enter injured tissues and differentiate into inflammatory and 

reparative/resolving macrophages50. If the cells are chronically exposed to damage-

associated molecular pattern molecules (DAMPs) and endosomal TLR ligands, resolution 

may fail, and macrophages with mixed functions may emerge51. Here, the three 

subpopulations of CD16+ macrophages are suggested to transition through an inflammatory 

to a resolution phase; such a functional switch was previously identified in a mouse model of 

acute inflammation52. Of note, we did not identify a cluster of infiltrating cells with high 

similarity to CD14+ monocytes. It is still unclear why some types of tissue injury recruit 

CD14+ macrophages while others recruit CD16+ macrophages; influences may include the 

types of expressed DAMPS and/or other microenvironmental cues such as cytokines and 

chemokines.

Our study demonstrates the feasibility of profiling kidney samples using single-cell 

transcriptomics, employing a freezing strategy to minimize batch effects that could mask 

subtle gene expression signatures. While this strategy may result in the loss of neutrophils 

and can alter the relative frequency of other cell subsets, we did not observe a major effect 

on gene expression due to freezing.

Despite our cohort’s relatively high diversity with respect to histologic appearance and 

intercurrent therapies, we observed a surprising number of commonalities. Furthermore, 

saturation analysis indicated that increasing the cohort size is not expected to drastically 

change the presented cell subset catalogue. Rather, such an increase can enable investigating 

how the presence and transcription profiles of particular cell infiltrates are related to disease 

manifestations and treatment responses. A study currently in progress, performed as part of 

the AMP RA/SLE consortium, will utilize the sample processing strategy developed here to 

analyze a much larger cohort, addressing these questions. Furthermore, profiling stromal 

renal cells together with leukocytes will elucidate their interactions. The results discovered 

in such studies will be further validated using tissue staining, functional studies in cell lines 

or primary human cells, and animal models of disease.

METHODS

Human kidney tissue, urine and blood acquisition

Renal tissue, urine and blood specimens from patients with LN were acquired at ten clinical 

sites in the United States. Institutional review board approval was received at each site. 

Research biopsy cores were collected from consented subjects either as an additional biopsy 

pass obtained specifically for research during a clinically indicated biopsy procedure (nine 

sites), or as a portion of a biopsy specimen acquired for diagnostic pathology during a 

clinically-indicated biopsy procedure (one site). Control kidney samples were obtained at a 

single site by biopsy of a living donor kidney after removal from the donor and before 

implantation in the recipient.
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After acquisition, kidney biopsy samples were placed into HypoThermosol FRS 

preservation solution for 10–30min on ice and then transferred to a cryovial containing 1ml 

CryoStor CS10 cryopreservation medium (BioLife Solutions). The cryovial was incubated 

on ice for 20–30min and was then placed in a Mr. Frosty freezing container (Nalgene, 

catalog no. 5100–0001) and transferred to a −80°C freezer overnight. Cryopreserved 

samples were then stored in liquid nitrogen and shipped on dry ice to the central processing 

site, where they were stored in liquid nitrogen until processing.

Kidney tissue thawing and dissociation into a single-cell suspension

Kidney samples were thawed and processed in batches of four samples, with most batches 

containing both LN and control kidney samples. The cryovial containing the kidney tissue 

was rapidly warmed in a 37°C water bath until almost thawed. The sample was then poured 

into a well of a 24-well dish and rinsed in a second well containing warmed RPMI/10%FBS. 

The tissue was incubated for 10min at room temperature. Specimens were cut into 2–3 

pieces and placed into a 1.5 ml centrifuge tube containing 445ul of Advanced DMEM/F-12 

(ThermoFisher Scientific, catalog no.12634–028) and 5ul of DNase I (Roche, catalog no.

04536282001, 100U/ml final concentration). 50ul of Liberase TL (Roche, catalog no.

05401020001, 250ug/mL final concentration) was added, and the tube was placed on an 

orbital shaker (300–500 r.p.m.) at 37°C for 12min. At 6min into the digestion, the mixture 

was gently pipetted up and down several times using a cut 1 mL pipette tip. After 12min, 

500ul of RPMI/10% FBS was added to stop the digestion. The resulting cell suspension was 

filtered through a 70-µm filter into a new 1.7 ml microfuge tube. The cells were washed with 

RPMI/10%FBS, centrifuged at 300g at 4°C for 10min, and resuspended in cold PBS for 

downstream analyses. Quantification of cell yields was performed by hemocytometer with 

trypan blue exclusion and by flow cytometry with propidium iodide-exclusion. Yields of cell 

subsets (leukocytes, epithelial cells) were quantified by acquiring the entire sample through 

the flow sorter and plotting the number of intact, PI-negative cell events with the appropriate 

surface markers. Cell yields were normalized to input tissue mass.

Urine cell pellet collection and cryopreservation protocol

Midstream urine samples were collected from patients with LN before kidney biopsy. The 

total urine volume (15–90 mL) was split into two 50 mL Falcon tubes. Urine cells were 

pelleted by centrifugation at 200g for 10min, and then resuspended in 1 ml cold X-VIVO10 

medium (Lonza BE04–743Q). Cells were transferred to a microcentrifuge tube, washed 

once in 1ml X-VIVO10 medium, and then resuspended in 0.5 ml cold CryoStor CS10. Cells 

were transferred into a 1.8 mL cryovial, placed in a Mr. Frosty freezing container, stored in 

at −80ºC overnight, and then transferred to liquid nitrogen. For downstream analyses, 

cryopreserved urine cells were rapidly thawed by vigorous shaking in a 37°C water bath, 

transferred into warm RPMI/10%FBS, centrifuged at 300g for 10min, and resuspended in 

cold HBSS/1%BSA.

Flow cytometric cell sorting of kidney and urine samples

An 11-color flow cytometry panel was developed to identify epithelial cells and leukocyte 

populations within dissociated kidney cells. Antibodies include anti-CD45-FITC (HI30), 

anti-CD19-PE (HIB19), anti-CD11c-PerCP/Cy5.5 (Bu15), anti-CD10-BV421 (HI10A), anti-
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CD14-BV510 (M5E2), anti-CD3-BV605 (UCHT1), anti-CD4-BV650 (RPA-T4), anti-CD8-

BV711 (SK1), anti-CD31-AlexaFluor700 (WM59), anti-PD-1-APC (EH12.2H7), and 

propidium iodide (all from BioLegend). Kidney or urine cells were incubated with 

antibodies in HBSS/1%BSA for 30min. Cells were washed once in HBSS/1%BSA, 

centrifuged, and passed through a 70 μm filter. Cells were sorted on a 3-laser BD FACSAria 

Fusion cell sorter. Intact cells were gated according to FSC-A and SSC-A. Doublets were 

excluded by serial FSC-H/FSC-W and SSC-H/SSC-W gates. Non-viable cells were 

excluded based on propidium iodide uptake. Cells were sorted through a 100 micron nozzle 

at 20 psi. For each sample, 10% of the sample was allocated to sort CD10+CD45− epithelial 

cells as single cells, and the remaining 90% of the sample was used to sort CD45+ 

leukocytes as single cells. Single cells were sorted into 384-well plates containing 6µl 1% 

NP-40 with index sorting, and plates were immediately frozen and stored at −80 °C. Flow 

cytometric quantification of cell populations was performed using FlowJo 10.0.7.

Library preparation and RNA sequencing of kidney and urine samples

scRNA-seq was performed using the CEL-Seq2 method10 with the following modifications. 

Single cells were sorted into 384-well plates containing 0.6µl 1% NP-40 buffer in each well. 

Then, 0.6µl dNTPs (10mM each; NEB) and 5nl of barcoded reverse transcription primer 

(1µg/µl) were added to each well along with 20nL of ERCC spike-in (diluted 1:800,000). 

Reactions were incubated at 65°C for 5min, and then moved immediately to ice. Reverse 

transcription reaction and second-strand complementary DNA (cDNA) synthesis were 

carried out as previously described10 and double-stranded c-DNA was purified using 0.8X 

volumes of AMPure XP beads (Beckman Coulter). In vitro transcription reactions were 

performed as described followed by treatment with ExoSAP-IT PCR Product Cleanup 

Reagent (ThermoFisher Scientific, catalog no. 78201.1.ML). Amplified RNA (aRNA) was 

fragmented at 80°C for 3min and purified using RNAClean XP beads (Beckman Coulter). 

The purified aRNA was converted to cDNA using an anchored random primer and Illumina 

adaptor sequences were added by PCR. The final cDNA library was purified using AMPure 

XP beads (Beckman Coulter). Paired-end sequencing of ~1 million paired-end reads per cell 

was performed on the HiSeq 2500 in Rapid Run Mode with a 5% PhiX spike-in using 15 

bases for Read1, 6 bases for the Illumina index and 36 bases for Read2.

Frozen needle core biopsies obtained from two additional healthy donor kidneys before to 

reperfusion were processed as above to produce single cell suspensions. Unsorted cells in 

0.04% BSA (Sigma) were used to generate single cell libraries with the Chromium Single 

Cell Gene Expression system using 3′ Library & Gel Bead Kit v2 (10X Genomics) and 

paired-end sequencing was performed on a HiSeq X.

Processing of blood samples

For profiling blood cells, blood was collected from 10 patients with LN before kidney 

biopsy and peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll-Paque 

PLUS (GE Healthcare) density gradient centrifugation in 15ml SepMate tubes (Stemcell) 

according to manufacturer instructions and cryopreserved in CryoStor CS10 Freezing Media 

(STEMCELL Technologies). Sex-matched PBMCs from healthy donors isolated and 

cryopreserved at the University of North Carolina Kidney Center were used as controls.
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For bulk RNA-seq experiments, thawed cells were stained with antibodies against CD45-PE 

(HI30), CD3-PE/Cy7 (UCHT1), and CD8a-APC (HIT8a). 5,000 viable (DAPI−) PBMC 

(CD45+) or 1,000–5,000 CD8+ T cells (CD45+CD3+CD8+) were sorted into microcentrifuge 

tubes containing 20μl TCL buffer (Qiagen) supplemented with 1% b-mercaptoethanol 

(Sigma) using a Sony SH800S cell sorter, and the lysate was frozen and stored at −80 

degrees. Of ten LN patient, 8 had enough CD8+ T cells to allow sequencing. RNA was 

isolated with Agencourt RNAClean XP beads (Beckman Coulter) and converted to 

sequencing libraries using the Smart-seq2 method53. 38bp paired-end reads were generated 

on a Nextseq500 (Illumina).

For droplet-based scRNA-seq, thawed cells were stained with antibodies from Biolegend: 

CD3-FITC (HIT3a), CD19-FITC (HIB19), CD20-FITC (2H7), CD56-FITC (HCD56), 

HLADR-PE/Dazzle (L243), CD16-PerCP/Cy5.5 (3G8), and from BD Biosciences: CD14-

APC/Cy7 (MφP9). Viable (DAPI−) monocytes (CD3−, CD19−, CD20−, CD56−, HLADR+, 

CD14+ or CD16+) were sorted into RPMI (Life Technologies) + 0.04% BSA (Sigma) and 

single cell libraries were generated using the Chromium Single Cell Gene Expression 

system using 3′ Library & Gel Bead Kit v2 (10X Genomics). Paired-end sequencing was 

performed on a Nextseq500.

RNA-seq data processing

For the cells processed using CEL-Seq2, we used a modified version of the Drop-seq 

pipeline developed by the McCarroll lab54, to perform all steps necessary to produce gene 

by cell expression matrices of reads as well as unique molecular identifiers (UMIs). These 

steps include demultiplexing, quality filtering, polyA and adapter trimming, aligning, and 

collapsing reads with unique combinations of cell+gene+UMI. We used STAR-2.5.1b to 

align reads to the Hg19 human genome reference. Only uniquely mapped reads were 

counted. UMIs with fewer than 10 reads were filtered out before creating the final 

expression matrices, to minimize read cross-contamination across cells. For each cell, the 

computed gene expression counts were then normalized for read depth and log transformed. 

For cells processed using 10x, sequencing output was aligned using the 10x standard 

pipeline.

Cell filtering and quality control

For kidney cells processed using CEL-Seq2, high-quality cells were defined as having at 

least 1,000 detected genes (that is, with positive count values); for urine cells, which tended 

to have fewer detectable genes, this threshold was set to 500 genes; for cells processed using 

10x, the threshold used was 250 genes. We further required the percentage of reads mapped 

to mitochondrial genes per cell to be lower than 25% (8% for blood cells processed using 

10x). To remove wells that were suspected to contain messenger RNA from multiple cells, 

we required the number of genes per cell to be smaller than 5,000 for the kidney cells 

processed using CEL-Seq; 4,000 for urine cells; 1,700 for blood cells processed using 10x; 

3,500 for the kidney cells processed using 10x (all thresholds were set based on empirical 

distributions).
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To minimize the effect of technical factors, we tested different regression models, taking into 

account such variables as the plate identifier, number of UMIs per cell, and the percentage of 

mitochondrial genes per cell. We found that using such models had a negligible effect on the 

gene by cell expression matrix, as well as the overall results of clustering. We therefore 

decided to avoid employing them in cleaning the data for subsequent analyses.

In the analysis of myeloid blood cells, initial comparison to the gene expression data of 

immune cell subsets in FANTOM5 was performed to further validate their myeloid cell 

identify, in addition to filtering based on flow cytometry cell sorting.

Cell clustering

Clustering of kidney cells was done using Seurat (v1.4.0.8)55, in a stepwise manner. We 

initially performed low-resolution clustering, analyzing all cells together, then labeled each 

of the resulting clusters as myeloid cells, T/NK cells, B cells, dividing cells or epithelial 

cells. The cells of each such general class were then analyzed separately, to identify finer 

clusters. In some cases, as described in the main text, the resulting clusters were further split 

into subclusters. In each case, clustering was done following principal component analysis, 

based on context-specific variable genes that were identified independently for each set of 

analyzed cells.

Sensitivity analysis was performed in each clustering step, with a particular focus on the 

low-resolution clustering stage. Briefly, all parameters in the clustering process, including 

the number of variable genes and principal components considered, were varied, and the 

robustness of the results was determined. To assess this robustness, we estimated in each 

case the Rand index: looking at a large number (1,000) of random pairs of cells, we counted 

how many pairs were either included in the same cluster in both of the compared clustering 

runs, or not included in the same cluster, and referred to these as consistent pairs; we then 

calculated the fraction of consistent pairs of all random cell pairs considered. We repeated 

this procedure 100 times, to calculate the mean of the Rand index estimate.

Classification by correlation

In determining their putative identity, we compared the gene expression of individual cells 

with external gene expression data sets of reference samples. In each comparison, we 

computed the Pearson correlation between the log-transformed gene expression data of the 

cell and the reference sample, and chose the reference sample that produced the maximal 

correlation value (using Spearman correlation instead of Pearson correlation did not 

drastically change the classification results). To assess the confidence in this classification, 

we computed in each case an “assignability threshold”: we generated 1,000 “random cells”, 

by averaging for each gene the raw counts across the classified cells using random weights, 

such that the sum of weights for each gene was 1; we then normalized the sum of counts to 

10,000. For each random cell, we identified the most similar reference sample, and recorded 

the corresponding Pearson correlation. The assignability threshold was set to the 95th 

percentile of the distribution of these Pearson correlations. We note that this approach 

preserves the main aspects of the original data; in particular, highly expressed genes (such as 

house-keeping genes) remain high in the generated random cells.
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Myeloid cells were compared with the scRNA-seq data published in Villani et al.12, such 

that each cluster in that study was represented by the average expression over the cells 

included in it, taking into account only genes showing high variability in that data set. 

Similar results were found if all genes, or only cluster markers, were considered. 

Comparison to FANTOM5 and the data from Browne et al. was done based on the median of 

reference sample replicates, considering all genes.

Differential expression analysis

Identification of genes differentially expressed between patients with LN and living donor 

controls was done using the framework proposed by McDavid et al.56, as implemented by 

Seurat. P values were corrected for multiple comparisons using the Benjamini-Hochberg 

method57. For each gene with a corrected P value smaller than 0.05 (“candidate 

differentially expressed genes”), a further correction for the number of patients was 

performed: 1,000 random permutations of patients across the two groups were generated, 

while keeping the number of patients in each group fixed. For each candidate differentially 

expressed gene and each random permutation, the McDavid test statistic was computed as 

above. We then calculated a new P value for each candidate differentially expressed gene, 

defined as the fraction of random permutations in which the value of the test statistic was 

more extreme than its value in the original partition of patients between groups (while 

adding 1 to both numerator and denominator). Finally, the new P values were corrected for 

multiple comparisons using the Benjamini-Hochberg method. This analysis was performed 

separately for each cluster with at least 20 cells in both patient groups.

Trajectory analysis

Trajectory analysis was performed based on dimensionality reduction using diffusion maps, 

as implemented in the Destiny software package (v2.6.2)21. In each case, only the cells 

relevant to the question at hand were analyzed.

Calculation of gene set-based scores

Scores based on specific gene sets (for example, interferon response score, ABC score etc.) 

were calculated for each cell as the average of the scaled (Z-normalized) expression of the 

genes in the list. To control for the variable quality and complexity of the data of different 

cells, the score of each cell was corrected by subtracting the average of a large set of 

similarly-expressed genes, as proposed by Tirosh et al58. When the list contained genes that 

are expected to be upregulated in a particular condition and genes that are expected to be 

downregulated in it (as was the case for the ABC score), the average of scaled expression 

was calculated separately for each set of genes, and the difference between the scores of the 

upregulated genes and the downregulated genes was taken as the overall score. A similar 

approach was used when calculating gene-set based scores in bulk RNA-seq data. The gene 

sets used for particular scores can be found in Supplementary Table 6.

Analysis of interferon response score

To assess the statistical significance of ISGs upregulation per patient, an interferon response 

score was calculated for each cell based on a given list of ISGs, as explained above. For each 
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patient with LN, the distribution of the calculated scores was compared with that of cells 

collected from living donor controls, using the two-tailed Mann-Whitney U-test. The derived 

P values were then corrected for multiple comparisons, using the Benjamini-Hochberg 

method57. A similar approach was used when comparing the distribution of ISG scores per 

cluster in the patient with LN, as compared with the LD cells taken as a whole.

Analysis of GWAS gene expression

We analyzed the expression patterns of 180 genes previously reported in GWASs of either 

SLE or LN. For each such gene, we calculated its average scaled (Z-normalized) expression 

in each cell cluster, taking into account only cells coming from LN samples. For biclustering 

of GWAS genes and cell clusters, we kept only genes that had an average scaled expression 

value of more than 1 or less than −1 in at least one cell cluster, such that biclustering was 

based only on the GWAS genes that were relatively variable in our data. Biclustering was 

then performed, based on the average scaled expression in each cell cluster and using a 

Euclidean distance metric. cDCs, conventional dendritic cells.

Analysis of chemokine/cytokine receptors

Analysis of chemokine/cytokine receptors was based on a receptor-ligand pairs list 

downloaded from the International Union of Basic and Clinical Pharmacology (IUPHAR) 

and British Pharmacological Society (BPS) database59 and extended manually to incorporate 

a number of missing, previously published pairs. For each receptor, we calculated the 

percentage of cells expressing it in each cell cluster, where a receptor was said to be 

expressed by a cell if it had at least one mapped read (the results reported here were found to 

be robust to changes in this threshold). For biclustering of receptors and cell clusters, we 

kept only receptors that appeared in at least 30% of the cells in at least one cluster.

Assignment of urine cells to kidney clusters

For each urine cell, we computed its Pearson correlation with each kidney cluster, taking the 

average over the kidney cells included in the cluster. The urine cell was then assigned to the 

cluster that produced the highest correlation value.
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Figure 1. 
An overview of the approach used for analyzing the cellular contents and molecular states of 

kidney and urine samples. a, Pipeline for collecting and processing kidney and urine 

samples. Both types of samples were frozen on collection, then shipped to a central 

processing site to minimize batch effects. b, Stepwise clustering of kidney cells. Initially, all 

cells were analyzed together (left heatmap), and the identified clusters were labeled as 

containing either myeloid cells (red), B cells (green), T cells or NK cells (blue), dividing 

cells (gray) or epithelial cells. Each lineage, with the exception of epithelial cells, was then 

analyzed separately (middle heatmaps), to identify finer clusters. One B-cell cluster and 

three T-cell clusters were further re-clustered separately, to generate an even finer 

description of cell subsets (right). LD, living donor.
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Figure 2. 
A summary of the stepwise clustering of kidney cells. a, Twenty-two clusters were 

identified; their putative identities are specified on the right. b, The distribution of the 

interferon response score in all patients with LN (blue), compared with the cells of the LD 

controls (red). c, The distribution of the interferon response score in all cells of patients with 

LN, separated into clusters (blue), compared with cells of the LD controls (red). In both (b) 

and (c), *** - FDR-corrected p-value < 0.001; ** - FDR-corrected p-value < 0.01 (two-tailed 

Mann-Whitney U-test). The number of cells (n) used in each comparison is specified above 

the plot. The horizontal line designates the median interferon response score over the cells of 

the LD controls. d, A comparison of the interferon response score in kidney and in blood in 

10 patients with LN for whom corresponding blood and kidney samples were available. The 

kidney score was calculated as the average over all kidney cells per compared patient; the 

blood score was calculated based on bulk RNA-seq data of total PBMCs. IFN, interferon.
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Figure 3. 
Focused analysis of kidney myeloid cells. a, Five clusters of myeloid cells were identified. 

The heatmaps show the expression of either canonical lineage markers (top) or genes 

differentially upregulated in each cluster (bottom). b, The results of classifying the kidney 

myeloid cells by correlating their gene expression to a set of ten reference clusters (Mono1-

Mono4, DC1-DC6), taken from Villani et al.12 For each of the Five clusters identified in our 

data, the bars denote the percentage of cells most similar to each of the reference clusters. 

The percentage of cells mapped to the most frequent reference cluster in each case is 

specified on the corresponding bar. c, The distribution of highest Pearson correlation values 

per kidney myeloid cell, when compared with the reference clusters in Villani et al. The 
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percentage of cells in each cluster for which the correlation score was above the 

assignability threshold is specified above the plot, followed by the number of cells in the 

cluster (n); the assignability threshold itself is denoted by the horizontal dashed line. d, The 

cells of clusters CM0 (red), CM1 (purple) and CM4 (blue), presented in two dimensions 

using diffusion maps. The arrow represents the direction of the putative transition between 

these three clusters, as explained in the text. e, The change in the inflammatory response 

score, calculated as the average scaled expression of several pro-inflammatory genes, along 

the trajectory shown in d; “pseudotime” represents the ordering of the cells along this 

trajectory. The violin plots (shades) show the distribution of expression levels in equally-

spaced intervals along the pseudotime axis (and do not directly correspond to cell clusters). 

f, Same as e, but with regard to a set of genes associated with phagocytosis.
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Figure 4. 
Focused analysis of kidney T cells and NK cells. a, Preliminary analysis identified seven 

clusters. The heatmaps show the expression of either canonical markers defining T-cell and 

NK cell subsets (top) or genes differentially upregulated in each cluster specifically 

(bottom). b, The splitting of cluster CT5 into two subclusters, representing resident memory 

CD8+ T cells (CT5a) and CD56brightCD16− NK cells (CT5b). c, Cluster CT3 can be split 

into two subclusters, putatively corresponding to CD4+ Treg cells (CT3a) and TFH-like cells 

(CT3b). d, Analyzing the cells of cluster CT0 reveals two populations of cells, one 

putatively identified as early effector memory CD4+ T cells (CT0a), the other late central 

memory CD4+ T cells (CT0b).
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Figure 5. 
Focused analysis of kidney B cells. a, Preliminary analysis identified four clusters. The 

heatmaps show the expression of either canonical markers defining B-cell subsets (top) or 

genes differentially upregulated in each cluster specifically (bottom). b, The expression of 

genes previously found to be differentially expressed in ABCs. The top heatmap pertains to 

genes known to be upregulated in ABCs, the bottom heatmap to genes downregulated in this 

subset. Columns are sorted by the ABC score, defined as the difference between the average 

expression of these two sets of genes. The bottom panel shows the ABC score per cell, such 

that each point on the line corresponds to the heatmap column directly above it. c, Cluster 

CB2 split into two subclusters, one corresponding to naive B cells (CB2a), the other to pDCs 

(CB2b). d, Projection of the cells in clusters CB0, CB1 and CB2a onto a two-dimensional 

plane, using diffusion maps. The arrow represents the hypothesized direction of transition 

along the trajectory from naive to activated B cells. e-f, The changes in the expression of 

CD27 and IGHD along the trajectory shown in d. g, The change in the ABC score along this 

trajectory. In (e)-(g), the violin plots (shades) show the distribution of expression levels in 

equally spaced intervals along the pseudotime axis (and do not directly correspond to cell 

clusters).
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Figure 6. 
The expression of GWAS genes in LN kidneys. The heatmap shows, for each gene, the 

scaled average expression over all cells in each cluster. Included are genes previously 

indicated in lupus by GWAS, considering only genes that demonstrated high variability 

across clusters in our data. Both rows and columns are clustered based on Euclidean 

distance.
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Figure 7. 
Chemokine- and cytokine-mediated cellular networks. a, The pattern of chemokine receptor 

expression over the cell clusters. The color codes for fraction of cells expressing each 

receptor. Shown are receptors that are expressed in at least 30% of the cells of at least one 

cluster. Both rows and columns are clustered based on Euclidean distance. b, The producers-

consumers cellular network corresponding to the chemokine CXCL12 and its receptor 

CXCR4. c, The producers-consumers cellular network of the chemokine CX3CL1 and its 

receptor CX3CR1.
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Figure 8. 
Comparison of immune cells extracted from urine samples and from kidney samples. a, The 

relative frequency of each cluster in urine and in kidney. b, Pearson correlation values 

between gene expression data of urine and kidney clusters, computed using the average gene 

expression taken over the cells in each cluster, and considering only clusters that had at least 

five urine cells.
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