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ABSTRACT OF THE DISSERTATION

Statistical Methods for Quantifying Spatial Effects on Disease Incidence
Using Individual-Level Data

By

Lu Bai

Doctor of Philosophy in Statistics

University of California, Irvine, 2016

Professor Daniel L. Gillen, Chair

In epidemiologic studies, researchers are commonly interested in quantifying geospatial ef-

fects on the incidence of disease to illustrate health disparities potentially attributable to

environmental, demographic, and/or socioeconomic factors. The current research we focus

on the development of advanced statistical modeling methods to determine how the pattern

of disease outcome changes over geographical location.

We first extend and illustrate the utility of MapGAM, a user-friendly R package that provides

a unified framework for estimating, predicting and drawing inference on covariate-adjusted

spatial effects using individual-level data. The package also facilitates visualization of spa-

tial effects via automated mapping procedures. MapGAM estimates covariate-adjusted spatial

associations with a univariate outcome using generalized additive models that include a

non-parametric bivariate smooth term of geolocation parameters. Estimation and mapping

methods are implemented for continuous, discrete, and right-censored survival data.

Next, we note that smoothing approaches commonly implemented in generalized additive

models and used in spatial analyses assume the amount of smoothing to be equal across

geographical regions. The result is that some regions tend to be under-smoothed, while others

are over-smoothed. We extend the work of Yue et al. (2010) in the context of brain imaging

xii



analysis and propose a hierarchical Bayesian adaptive thin-plate spline that allows for spatial

smoothing of continuous, binary and count outcomes along with the ability to adjust for

potential confounding factors. The proposed method allows for the amount of smoothing to

flexibly vary depending on the local extent of spatial effect by using nonstationary spatial

Gaussian Markov random fields. Performance of the approach is evaluated via simulation

and the proposed methodology is applied to an epidemiologic study investigating spatial

heterogeneity in the risk of preterm birth among Massachusetts residents.

Finally, we further extend the proposed adaptive smoothing techniques to the case of right-

censored survival outcome data. Simulation is used to compare the performance of the

proposed method to commonly used non-adaptive smoothing method, and the approach is

applied to data from an epidemiology study seeking to quantify spatial variability in the

survival times of advanced-stage ovarian cancer patients in California.
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Chapter 1

Motivation and Introduction

1.1 Spatial Analysis for Epidemiology studies

Spatial epidemiology is the description and analysis of geographically indexed health data

with respect to demographic, environmental, health resource, behavioral, socioeconomic,

genetic, and infectious risk factors(Elliott and Wartenberg, 2004). In spatial epidemiology

studies, mapping spatial distributions of disease incidence and prevalence has long been used

for describing spatial patterns (in both extend and magnitude) of risk, identifying risk factors

of public health concern and predicting disease outcomes in different geographical areas

(Koch, 2005; Stevens and Pfeiffer, 2011). Among the myriad of uses, spatial epidemiologic

studies can provide support and references for public health communities and decision makers

to plan intervention strategies, propose relevant policies, reallocate health resource utilities,

identify geographical clusters with higher or lower disease risk or rate and design future

studies.

For epidemiology studies, cases can not be randomly allocated to different geographical ar-

eas. Thus, although the underlying (or crude) geographic pattern of disease can be observed
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by public health practitioners, these patterns may reflect a spurious association between the

disease outcome and the exposure of interest due to the confounding of other important

spatially-varying predictors such as socioeconomic status, race/ethnicity, or environmental

exposures. Put more clearly, people tend to cluster in space in systematic ways that may be

highly predictive of disease outcome. For example, individuals of high socioeconomic status

tend to live near others with high incomes and in areas with better housing and schooling

than those in lower-income areas. Individuals with higher incomes are more likely to engage

in leisure-time exercise and maintain healthier diets, and less likely to be smokers. As each

of these characteristics tend to be favorable risk factor profiles for most health outcomes,

a consequence is that individuals residing in more affluent areas till tend to have better

health (Smith et al., 1996). Spatial analyses can provide insight in disease risk by simul-

taneously adjusting for potential confounding variables while accounting for heterogenous

spatial distributions. Thus, adjusted disease risk after controlling for potential spatially-

varying confounders is important and essential identifying health disparities and furthering

the pursuit of increased public health.

Traditional reporting of disease occurrence is usually performed at a national or regional

scale. However, advanced data collection systems and analytic methods allow for improved

disease map resolution thereby allowing for the quantification of disease risks and/or rates

on a smaller-area scale. The end result is that investigators are able to have a better un-

derstanding of the relationship between the disease outcome and locally relevant health risk

factors such as exposures to local environmental pollution sources, local socioeconomic and

behavioral factors, and utilization of local health care resources, to name a few. That being

said, higher resolution disease mapping implies that the scale of the study is narrowed to a

smaller area and hence a reduction in the size of the underlying population used for estima-

tion. The end result of utilizing a smaller sample size will thus result in higher local variation

of statistical estimates, and this local variation may lead to increased bias in estimates and

invalid inference if not properly accounted for in the underlying spatial model. As such,
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maintaining geographic resolution and providing reliable statistical estimates are at odds

with one another in the analysis of spatial effects.

In the age of “Big Data” investigators are now more likely than ever to collect individual-

level data from disease registries and other electronic databases. However, due to the lack of

available statistical methods to easily and appropriately balance data sparsity that inherently

comes with the analysis of individual-level spatial data, it is still common for epidemiologists

to produce disease maps at aggregated area levels by county, census contract or other geo-

graphical divisions, In these cases, aggregated event counts within administrative districts

or regions are often coupled with potentially relevant background and covariate information

at summarized at the area level (eg. mean and/or quantile summaries by region). To esti-

mate spatial effect in such settings, mixed effect models are commonly used by introducing a

spatially correlated random effect (Clayton and Kaldor, 1987) to the intercept. With appro-

priate spatial correlation structure, the local estimate is able borrow strength from nearby

or neighboring areas to reduce variation of estimates due to small sample sizes. Bayesian

formulations of the mixed effect model (Besag et al., 1991) as well as how to structure the

covariance among spatial effects (Cressie, 1993; Waller and Gotway, 2004; Diggle et al., 1998;

Banerjee et al., 2004; Lu et al., 2007) have been widely discussed in the statistical literature.

However, such maps still produce poor spatial resolution by aggregating disease cases, and

large between-area differences in precision. Moreover, use of area-level covariates as proxies

for individual-level covariates may not control confounding, causing cross-level or aggrega-

tion bias(Greenland, 1992; Pardo-Crespo et al., 2013). Finally, registries typically record

residence at the time of diagnosis. If the outcome of interest is characterized by long latency

periods, important exposures may have occurred many years prior while the case resided at

a different location. Due to misclassification in exposure status, maps that ignore latency

may tend to be flatter if population movement is random with respect to disease status

the non-differential misclassification error will result in spatial effects that are attenuated

towards a the null (Polissar, 1980).
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In this thesis, we focus on population-based studies with individual-level or point-based

data that can address the above problems previously discussed in area-based studies. As

will be described with the introduction of the examples that motivate our research, the

residential location of each subject is geocoded, and detailed individual-level potential risk

factors are collected. Thus, the disease map generated from point-based data will yield higher

resolution, and adjusting for individual-level predictors will permit much better control of

confounding. In addition, such data can provide detailed information on residential history

so that epidemiologists can account for latency by mapping where people lived for specified

lengths of time prior to the occurrence or diagnosis of the outcome of interest.

However, estimating and mapping spatial effects from individual-level disease data requires

different statistical models from those commonly employed in area-level data analyses. For

point-based data, unless the data are aggregated back into areas, simple stratification and

standardization methods are unappealing due to inaccuracy in estimating effects over mul-

tiple small strata (Webster et al., 2006) In these cases, smoothing provides an efficient

method to reduce variability by borrowing strength from adjacent areas while allowing for

non-parametric flexibility when estimating the spatial distribution. Generalized additive

models (GAMs), originally proposed by Hastie and Tibshirani (1986), are common model-

based approaches for mapping point-based epidemiologic data (Webster et al., 2006; Vieira

et al., 2008; Baker et al., 2011; Akullian et al., 2014; Bristow et al., 2014; Hoffman et al.,

2015). As will be discussed in more detail in Chapter 2, GAMs extend the generalized linear

models (GLMs) paradigm by replacing the usual linear predictor in these models with an

additive predictor. The result is that the effect of a selected covariate (or a set of covariates)

can be nonlinear while the effects of of other covariates can be left additive. In the context

of a spatial analysis, GAMs generally include a smooth term of the spatial parameters and

a linear predictor for adjustment covariates. The smooth term is then used to describe the

(generally) complex relationship between the outcome and the spatial parameters without

imposing any specific parametric forms on the relationship. Separation of the smoothed
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spatial effect and the assumed additive linear effect of other adjusted covariates, results in

a convenient and efficient method confounding adjustment. While GAMs provide a uni-

fied statistical framework that allows for smoothing disease risk over geographic areas using

individual-level data, the motivating examples presented next highlight deficiencies in these

models that lead to the methodologic developments presented in the thesis. Namely, there

does not exist an implementation of GAMs for bivariate smoothing terms in the context of

censored survival data as considered in the California ovarian cancer study discussed below.

Next, our research will demonstrate that the current implementation of GAMs for general-

ized linear models can results biased and/or highly variable estimates of spatial effects due

to the use of a spatially invariant smoother parameter. This is illustrated in the context of

both the Massachusetts preterm birth risk study and the California ovarian cancer study.

These motivating examples reveal the need for further statistical methods to analyze contin-

uous, discrete, and censored outcomes while incorporating adaptive smoothing techniques for

spatial effects and the adjustment of potential confounding factors based on individual-level

data.

1.2 Motivating Examples

We begin by briefly introducing two epidemiologic studies seeking to quantify heterogeneity

in the incidence of co-mobordities and mortality. The primary objective of both studies is to

estimate the effect of location on the risk of clinical outcomes that cannot be explained by

other measurable covariates. If achieved, the findings would be useful in identifying potential

health disparities among differentially susceptible subpopulations. A common characteristic

of both studies is that each involves the collection of population-based data from two dif-

ferent U.S. states resulting in non-uniformly distributed observations over irregular spatial

boundaries. As presented throughout the remainder of the thesis, these common features
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lead to complex statistical issues regarding the optimal way one can flexibly estimate geospa-

tial effects on the risks of disease, hence motivating the statistical methodology developed

and presented here.

1.2.1 Preterm Birth Risk Study

We first consider a population-based study of the risk of preterm birth using data from the

state of Massachusetts. Data were obtained on all live and still births from the Massachusetts

state birth registry with an estimated conception date from 1/1/01 through 12/31/08. The

primary outcome for the study is represented as a binary indicator of whether each observed

birth was considered to be preterm, defined as a gestational age of less than 37 weeks. Family

and maternal characteristics were obtained for each participant and included maternal age,

maternal race (non-hispanic white, non-hispanic black, hispanic, Asian and other), insurance

(managed care, medicare, medicaid, other insurance and not insured), maternal education

(<12th grade, high school graduation and college), smoking during pregnancy (yes/no),

alcohol during pregnancy (yes/no), median income of block group (median household income

of census block groups), father education (<12th grade, high school graduation and college),

and parity. The primary aim of the study is to identify the effect of living geographical

location on preterm birth risk after controlling for the potential confounding factors described

above. To this end, geospatial location was defined and collected as the longitude and latitude

coordinates of the primary residence of the expectant mother during the time of pregnancy.

To best summarize spatial heterogeneity on the risk of preterm birth it is necessary to flexi-

bly estimate the odds preterm birth as a function of geospatial location while adjusting for

those factors a priori considered to be be potential confounding factors in the relationship

of interest. Further, to communicate the complex relationship between location and the

odds of preterm birth to the broader scientific community, spatial disease heat maps will be
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necessary. Chapter 2 presents currently implemented generalized additive models (GAMs)

that are used to produce the above estimates via non-parametric spatial smoothers. How-

ever, as elaborated in Chapter 4, the current methodology assumes a common smoothing

parameter across the entire geographic region which, as will be demonstrated, produces bi-

ased and/or highly variable estimates of the odds of preterm birth as a function of geospatial

location. To overcome this gap in the statistical literature, we propose a novel hierarchical

Bayesian generalized linear model in Chapter 4 that produces reliable statistical estimates

of confounding-adjusted spatial effects via adaptive smoothing. The end result is a general

methodology that can be used to model continuous, binary, or count outcome data in the

presence of confounding factors while utilizing spatially adaptive smoothing parameters to

reduce bias and variability in estimated geospatial effects.

1.2.2 Ovarian Cancer Study

In the United States, there are 22,000 new cases of ovarian cancer diagnosed and over 14,000

disease-related deaths annually. These cases account for more deaths than all other gy-

necologic cancers combined (Siegel et al., 2014). Survival determinants are known to be

multifactorial but are still not fully understood. Known correlates of patient survival in-

clude patient disease history, stage of disease, and the treatment regime used to fight the

disease. Among the less understood potential risk factors is spatial location, which may serve

as a proxy for patient access to care. To quantify this potential association, we designed and

carried out a retrospective population-based study to analyze the effect of geographic vari-

ation on advanced-stage invasive epithelial ovarian cancer mortality (Bristow et al., 2014).

Cases were obtained from the California Cancer Registry, a comprehensive population-based

statewide registry. All participants were reported with International Federation of Gyne-

cology and Obstetrics (FIGO) stage III/IV disease during the time period ranging from

1/1/1996 through 12/31/2006. The primary outcome of interest is represented by patient
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survival time, defined as the time from diagnosis to the time of death. Patients that were not

observed to expire over the course of followup were censored and contribute partial informa-

tion to the outcome, represented as the last known time of survival prior to being censored.

The study recorded mutlitple known survival determinant factors including patients’ demo-

graphic characteristics (age, race, insurance type and socioeconomic status score), tumor

characteristics (FIGO stage, grade, histology and tumor size) and utilized health care deliv-

ery system characteristics (whether the hospital where treatment was received treats more

than 20 cases per year and whether the treatment received was adherent to National Com-

prehensive Cancer Network treatment guidelines for advanced-stage ovarian cancer). The

primary goal of the study is to examine whether geolocation has an independent effect on

patient survival time after adjustment for the above recorded known correlates of mortal-

ity in ovarian cancer patients, and to quantify how the adjusted survival rate changes over

different geolocations across California. Ultimately, the adjusted geospatial effect will then

reflect the effect of underlying spatially-varying factors that are not adjusted in the model,

which may be related to general health disparities including health care resource utilization,

environmental exposures, and lifestyle choices among others. For the purpose of the study,

geospatial location was defined and collected as the longitude and latitude coordinates of

the primary residence of the case at the time of diagnosis.

Typically, the Cox proportional hazards model (Cox, 1972, 1975) is used to examine the

covariate-adjusted effect of a predictor of on the risk of mortality for censored survival

data. However, the spatial effect considered in the California ovarian cancer data is likely

to be complex and the assumption of linearity of the effect or a non-linear effect with a

specific functional form would likely lead to bias in estimated spatial associations. As such

it is necessary to non-parametrically smooth the effect of geospatial location on the risk

of mortality. As noted in Chapter 2 currently implemented GAM models that allow for

smoothed estimation of covariate effects do not incorporate bivariate smoothing of predictors

for the analysis of censored survival data. To address this gap in the statistical literature and
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software, Chapter 3 extends develops a Cox proportional hazards GAM that is capable of

simultaneously adjusting for confounders and estimating the complex associations between

survival and geospatial location. While the Cox proportional hazards GAM model developed

in Chapter 3 provides analysts with easily implementable approach for flexibly estimating

bivariate spatial effects, the use of the GAM with a time-invariant smoothing parameter can

lead to biased and or highly variable estimates of the relative risk of death as a function

of geospatial location, similar to that described in the context of the Massachusetts data

above. To address this further gap in statistical methodology, in Chapter 5 we extend the

adaptively smoothed Bayesian hierarchical model for GLMs that is presented in Chapter 4

to incorporate censoring and hence the analysis of censored survival times as considered the

California ovarian cancer data.

1.3 Overview of the Remainder of the Dissertation

Estimating and mapping the crude and adjusted spatial effects on disease outcomes (such as

disease risks and survival rates) based on individual-level data is the main focus of this dis-

sertation. In this introductory chapter, we have introduced the motivation for the methods

developed in the thesis. Chapter 2 reviews the relevant but less known background material

for the methods developed in the thesis including various types of smoothing procedures

that have been developed in the statistical literature, an introduction to GAMs including

the fitting algorithms implemented by GAMs and inference for nonparametric smoothers

in GAMs, and introduction to the Cox proportional hazards model for analyzing censored

survival data. In Chapter 3, we propose and implement algorithms to fit a Cox proportional

hazard model for censored survival data that allows for the inclusion of a bivariate spatial

smooth term. We also introduce the R package MapGAM that was, in part, created through

the work in this dissertation in order to provide analysts with convenient and comprehensive
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software to analyze and map crude or adjusted spatial effects in epidemiologic studies. In

Chapter 4, we introduce a novel hierarchical Bayesian framework for modeling univariate

continuous and discrete outcome via adaptive smoothing. These adaptive smoothing meth-

ods are shown minimize bias and variance in estimated spatial effects when compared to

currently used GAMs. We further extend the methodology presented in Chapter 4 by devel-

oping a Bayesian framework for censored survival data via adaptive smoothing in Chapter

5. Taken as a whole, the research developed in Chapters 3, 4, and 5 of the thesis provides

a suite of general methodologies for analyzing the most commonly encountered outcomes

in spatial epidemiology studies (continuous, binary, count, and censored outcome data) in

the presence of confounding factors while utilizing spatially adaptive smoothing parameters

to reduce bias and variability in estimated geospatial effects. While the thesis represents

a major advance in the analysis of spatial effects on disease incidence, further challenges

remain. In Chapter 6 we conclude with a discussion of the advances that have been made

here and highlight areas of future work that will continue to propel the field forward.
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Chapter 2

Statistical Background

In this chapter, we provide a review of the relevant background material for the methods

developed in the thesis. We begin with a review of generalized linear models (GLMs) in

Section 2.1, a general class of multiple regression models for continuous and discrete outcomes

arising from controlled and observational studies. Specifically, GLMs lay the methodologic

foundation for models that will be developed and used for disease mapping when the outcome

of interest is a binary response as in the case of the Massachusetts preterm birth data. A

review of the semi-parametric Cox proportional hazards model for the analysis of censored

time-to-event data, as observed in the California ovarian cancer study, is provided in Section

2.2. In Section 2.3 we review three of the most commonly employed methods for statistical

smoothing of a response variable: local-averaging smoother, smoothing splines, and thin-

plate splines. In Section 2.4 we consider the incorporation of a smoothing term into the

GLM framework, providing a review of GAMs along with an overview of the backfitting

algorithm for estimating parameters in GAMs for a univariate outcome. In Section 2.4 we

also present an application of the use of a GAM in the context of spatial mapping when

the the distribution of the response is a member of the exponential family. The section

concludes with a discussion of intrinsic Gaussian Markov random fields (IGMRFs). This
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review completes the foundational groundwork for the Bayesian adaptive smoothing methods

developed in Chapters 4 and 5 that utilize an IGMRF prior distribution on the underlying

spatial effects.

2.1 The Generalized Linear Model

A generalized linear model (Nelder and Wedderburn, 1972; McCullagh and Nelder, 1983)

consists of a random component, a systematic component and a link function to line the

two components together. The random component identifies the probability distribution of

response Y , which is assumed to belong to the exponential family with density function of

the form

pY (y; θ;φ) = exp

{
yθ − b(θ)
a(φ)

+ c(y, φ)

}
. (2.1)

In the above density, θ is termed the canonical or natural parameter, and φ general rep-

resents a nuisance parameter that characterizing the dispersion of response Y . Denote the

expectation and variance of the response Y as µ and V ,which are related to θ by µ = b′(θ),

and V = b′′(θ)a(φ). µ is related to d covariates X1, · · · , Xd by

g(µ) = η = β0 + β1X1 + · · ·+ βdXd,

where η represents the linear predictor or systematic component of the model and g(·) is

termed the link function, linking the mean response to the linear predictor. βi, i = 1, · · · , d

represents the coefficient associated with Xi, reflecting the relationship between the outcome

and the corresponding covariate.

As an example, consider a binary outcome Y distributed Bernoulli with P (Y = 1) = p. It

is easy to see that the distribution of Y is a member of the exponential family by rewriting
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the probability mass function for Y as

pY = exp

{
Y log

(
p

1− p

)
+ log(1− p)

}
, (2.2)

and letting θ = log(p/(1− p)), b(θ) = −log(1− p), a(φ) = 1, and c(y, φ) = 0. For a binary

response, the logit function (as given by the canonical parameter) and probit function (de-

fined as the inverse of the standard Normal cumulative distribution function) are commonly

used for link function g(·). When the logit link function is used, it is easily seen that βi

represents the log-odds ratio comparing subpopulations differing in Xi by 1-unit. Hence, eβi

represents the odds ratio comparing subpopulations differing in Xi by 1-unit.

Estimation of model parameters θ ≡ (β0, · · · , βd, φ) in a GLM is typically carried out via

the method of maximum likelihood. Briefly, assuming N independent observations, the

likelihood function is given by

L(Y,X; θ) =
N∏
i

pY (Yi|Xi, θ),

and the maximum likelihood estimate θ̂ is given by

arg max
θ
L(Y,X; θ)

Due to monotonicity of the log function, one can equivalently maximize the log-likelihood

function given by

l(Y,X; θ =
N∑
i

log (pY (Yi|Xi, θ)).

WithN observed responses yi, i = 1, · · · , N and corresponding covariates xij, i = 1, · · · , N, j =

1, · · · , d, the maximum likelihood estimate (MLE) of θ is given by the solution to the score
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equation defined as:

U(Y,X; θ) = ∂l/∂θ = 0

In general, no closed form solution for θ̂ exists, however the score equation can be solved

numerically using the Newton-Raphson algorithm. A slight modification of the Newton-

Raphson algorithm is obtained by replacing the second-derivative of the log-likelihood func-

tion with it’s expectation, yielding the Fisher scoring algorithm. It can easily be shown

(McCullagh and Nelder, 1983) that the Fisher scoring algorithm as applied to GLMs is

equivalent to an iteratively re-weighted least square regression. Specifically, at iteration j of

the algorithm let µ(j−1), V (j−1) and η(j−1) denote the estimates resulting from iteration j−1.

Based on these estimates, one can construct the working response for the ith observation,

z
(j)
i , by

z
(j)
i = η

(j−1)
i + (yi − µ(j−1)

i )

(
∂ηi
∂µi

)∣∣∣∣
µ
(j−1)
i ,η

(j−1)
i

,

and weights wi by

w
(j)
i =

(
∂ηi
∂µi

)2
∣∣∣∣∣
µ
(j−1)
i ,η

(j−1)
i

V
(j−1)
i .

Then the estimate θ(j) is updated by regressing z
(j)
i on covariates xi1, · · · , xid with weights

w
(j)
i . The procedure stops when ||θ(j)−θ(j−1)|| < ε, where ε is a specified tolerance threshold.
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2.2 Cox Proportional Hazards Regression for Survival

Analysis

Censored survival data are commonly analyzed in epidemiology studies (Assael et al., 2002;

Ho et al., 1993; Ickovics et al., 2001; Bramball et al., 1995; Steliarova-Foucher et al., 2004;

Bristow et al., 2014). In these settings, one wishes to model the time from a specified origin

until the occurrence of a well-defined event, commonly referred to as the survival or failure

time. Examples include the time to death since disease diagnosis, the time the disease

occurrence since exposure to an environmental condition, or the time to disease relapse since

remission. In these cases, it is often the case that some observations are right-censored,

implying that followup of some individuals may prior to the occurrence of the event of

interest. Reasons for ending followup may include a subject removing his- or herself from

the study or that the event of interest has not occurred at the time the study is closed. It

is well known that, in the presence of censoring, standard statistical methods for analyzing

continuous times yield inefficient (at best) and biased (at worst) estimates of covariate effects

on survival. To address these issues, survival analysis methods consist of a class of procedures

for analyzing covariate effects on the time-to-event in the presence of censoring. For the

remainder of this section we briefly introduce the common targets of inference in survival

studies and the most frequently used regression models utilized in survival studies.

2.2.1 Common Estimands of Interest in Survival Analysis: The

Survival and Hazard Functions

Let T ′i denote the true time-to-event for observation i, i = 1, . . . , N , and let Ci denote the

censoring time for observation i (eg. the time from the study origin to when individual i

quit the study or the study is closed). Only one of T ′i or Ci is observed for each observation,
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and hence we define Ti = min(T ′i , Ci) to be the observed time for observation i, i = 1, . . . , N .

Further, define δi to be the event indicator for subject i such that δi = 1 if Ti ≤ Ci and

δi = 0 if Ti > Ci.

Let f(t) and F (t) denote the probability density function (pdf) and cumulative distribution

function (cdf) for T ′, respectively (omitting the observation index i for brevity). Then the

survival function S(t) is defined as the probability that the true time-to-event is longer than

t. That is, the survival function is defined as

S(t) = Pr{T ′ > t} = 1− Pr{T ′ <= t} = 1− F (t) =

∫ ∞
t

f(s)ds.

The hazard function, λ(t), is defined as the instantaneous rate of failure at time t given

survival up to time t. Thus the hazard function is given by

λ(t) = lim∆t→0+
Pr{t ≤ T ′ < t+ ∆t|T ′ ≥ t}

∆t
.

It is easy to see that the hazard function can be written in terms of the pdf and survival

distribution by noting that

λ(t) = lim∆t→0+
Pr{t≤T ′<t+∆t|T ′≥t}

∆t

= lim∆t→0+
Pr{t≤T ′<t+∆t,T ′≥t}/Pr{T ′≥t}

∆t

= lim∆t→0+
Pr{t≤T ′<t+∆t}

∆t

/
Pr{T ′ ≥ t} = f(t)

S(t)
.

Further, noting that f(t) is the negative derivative of S(t), ie.

λ(t) = − d

dt
log(S(t)),
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and we also have that

S(t) = exp

{
−
∫ t

0

λ(s)ds

}
.

The above relationship gives rise to the cumulative hazard function, Λ(t), defined as

Λ(t) =

∫ t

0

λ(s)ds,

and hence the relationship,

S(t) = exp {−Λ(t)} .

Thus, both the hazard function and survival can be used to fully characterize the distribution

of the survival time, T ′.

In many cases it is justifiable to assume that the true failure time T ′i and censoring time

Ci for subject i are independent. In this case, the likelihood function incorporated both

censored and fully observed survival times is obtained as

L =
N∏
i=1

[f(Ti)]
δi [S(Ti)]

1−δi .

Thus the above likelihood function reduces to the usual likelihood function for independent

data when all subjects have fully observed survival times (ie. δi = 1 for i = 1, . . . , N), but

allows for partial contributions up to the censoring times for those individuals that were

censored prior to failure.

Given the above specification of the likelihood function in the presence of censoring, it is

relatively straightforward to obtain maximum likelihood estimates when one is will to assume

a parametric probability model for the the true survival times. For example, the simplest
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survival function is the exponential distribution which is characterized by a constant hazard

function λ(t) = λ for t > 0. Using the relationship between the survival function and the

hazard function, the corresponding survival function for the exponential distribution is then

given by

S(t) = exp{−λt}.

In this case, covariate effects on the survival distribution can easily be incorporated into the

model by writing the hazard function as a linear combination of the covariates and unknown

parameters of the covariate:

log (λ) = β0 + β1X1 + · · ·+ βdXd.

By the above model specification, the parameter βj represents the difference in the log-hazard

comparing subpopulations differing in Xj by 1-unit that are similar with respect all other

adjustment covariates. Alternatively, eβj represents the ratio of hazard functions comparing

subpopulations differing in Xj by 1-unit that are similar with respect all other adjustment

covariates. Because this ratio is constant with respect to time (recall that λ(t) = λ for t > 0),

the above model is said to fall with the family of proportional hazards survival models.

2.2.2 Cox Proportional Hazards model

The assumption of a mis-specified parametric survival distribution can lead to biased and/or

inefficient estimation, as is true with mis-specified parametric models for uncensored data.

This lack of robustness in parametric models motivated the use of semi-parametric regression

model ss in the context of censored survival data. Indeed the most widely used regression

model for relating covariates to censored survival times is the semi-parametric Cox propor-

tional hazards model (Cox, 1972, 1975). Briefly, let X be a d × 1 vector of covariates that
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may be related to the survival times. The Cox proportional hazard assumes

λ(t) = λ0(t) exp{XTβ}, (2.3)

where λ(t) represents the hazard at time t and λ0(t) is a non-specified baseline hazard

(i.e. the hazard for subjects with covariates values of X = 0). β is a d × 1 vector of

regression coefficients associated with covariates X. As noted with the exponential survival

model previously presented, the Cox model specification provided in equation (2.3) is also a

member of the family of proportional hazards survival models. This is easily seen by noting

that the ratio of hazard function comparing subpopulations differing in, say Xj, by 1-unit

but similar with respect to all other covariate values is constant as a function of time, and

is given by eβj , j = 1, . . . , d.

While the exponential model and the Cox model are both members of the family of pro-

portional hazards survival models, there is a key distinction between the two approaches.

This distinction comes in the form of the specification of the baseline hazard function, λ0(t).

While the baseline hazard function is assumed to be constant and hence can be estimated via

a single parameter using maximum likelihood estimation in the exponential survival model,

estimation of β in the Cox model can be carried out without any assumption on the base-

line hazard. Because of this, the Cox proportional hazards is termed a semi-parametric, as

the baseline hazard may be infinitely dimensional yet the the relative covariate effects are

specified by a finite number of parameters (ie. β1, . . . , βd)

The desire to estimate the regression coefficients β in the Cox model without any assumptions

on the baseline hazard function implies that estimation cannot be carried out via usual

maximum likelihood. Instead, Cox Cox (1975) proposed and justified under the assumption

of independence between censoring and failure times that estimation of β be carried out

by maximizing the partial likelihood. Following Cox’s construction of the partial likelihood,
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suppose that one and only one subject (with covariate Xi = xi) fails at time Ti = ti, then

the partial likelihood contribution for subject i is given by the probability that a subject

with covariate value X = xi fails at time T = ti given that some subject failed at time

T = ti. More specifically, letting Ri ≡ {j|tj ≤ ti} denote the risk set or set of all subjects

not censored or observed to to fail by time ti, the contribution of subject i to the partial

likelihood is given by

PLi = Pr{subject with covariate xi fails at ti | some subject failed at ti}

=
Pr{subject with xi fails at t}

Pr{ some subject in Ri failed at t}

= λi(ti)(∆t)∑
j∈Ri

λj(ti)(∆t)

=
λ0(ti) exp{xTi β}∑

j∈Ri
λ0(ti) exp{xTj β}

(from (2.3))

=
exp{xTi β}∑

j∈Ri
exp{xTj β}

Under this specification, only subjects with observed failure times contribute terms to the

partial likelihood. However, the partial likelihood still incorporates information from right-

censored observations by considering the probability that any subject that is still at risk

at time T = ti (whether eventually censored or not) fails at time T = ti. Perhaps more

importantly, it can be seen from the specification of PLi that the partial likelihood does

not depend upon the baseline hazard function, and hence there is no need to assume any

parametric form for the baseline hazard function. Supposing no tied failure times, the partial

likelihood is defined as

PL =
∏
i∈D

PLi, (2.4)

where D denotes the set of indices of the failures. Although the partial likelihood does not

correspond to a fully parametric likelihood, it has been shown that many of the asymptotic

properties of traditional maximum likelihood methods including analogous asymptotic dis-
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tributions of the Wald, score, and likelihood ratio test hold for partial maximum likelihood

estimators (Cox, 1975; Andersen and Gill, 1982).

It should be noted that the above derivation of the partial likelihood assumed that no

two observations were observed to have the same failure time. In the event of tied failure

times there are two ways to calculate the partial likelihood. As an illustration, suppose two

patients, subject 1 and subject 2, both failed at time t. The exact partial likelihood (Peto,

1972; Kalbfleisch and Prentice, 1973) assumes that survival times are truly continuous in

nature, and hence the probability of two subjects having the exact same survival time is zero.

In this case, these two subjects have the same recorded survival time because the system of

measurement used for recording time does not have enough accuracy or information lost (eg.

death times may be measured in days as opposed to seconds). Without any knowledge of the

true ordering of the survival times of the two subjects, it is necessary to take into account

all possible ordering of the ties when calculating the denominator in (2.4). If one assumes

that subject 2 failed before subject 1, then the risk set of subject 2 would include subject

1 while the risk set of subject 1 would not include subject 2. Similarly, if subject 1 failed

before subject 2, then subject 1 would be included in the risk set of subject 2. Notationally,

let D denote the set of indices of the distinct failure times, then the exact partial likelihood

taking into account all possible orderings of tied failure times is given by

PLM =
∏
i∈D

∏
j∈Fi

eX
T
j β
∑
P∈Qi

di∏
r=1

 ∑
l∈R(i,P,r)

eX
T
l β

−1 ,

where Fi denotes the set of failures at time ti, di is the number of elements in Fi, Qi is the

set of di! possible permutations of the corresponding observations in Fi, P = (p1, · · · , pdi) is

an element of Qi, andR(i, P, r) is the risk set Ri excluding the elements p1, · · · , pr−1.

An alternative approach to handling tied failure times in the partial likelihood is to assume

that time is truly discrete (eg. the number of visits prior to testing positive for a particular
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illness) so that there is no true ordering of any tied observations (Cox, 1972). As before

suppose two patients, subject 1 and subject 2, both failed at time t. Under the discrete

method, the partial likelihood contribution for this failure time is constructed as the prob-

ability that the two subjects both failed at time t given that two failures were observed at

time t. Notationally, the partial likelihood assuming discrete ties is given by

PLD =
∏
i∈D

∏
j∈Fi e

XT
j β∑

l∈Rdi

∏
j∈l e

XT
j β
,

where Rdi is the collection of all sets of di labels chosen from the risk set Ri without replace-

ment, and l is an element of Rdi .

Both the exact and discrete methods are computationally complex when maximizing the

likelihood in the presence of many tied failure times. As such, approximations to the partial

likelihood are often used. The first approximation due to Breslow (Breslow, 1974) modifies

the partial likelihood as follows:

PLB =
∏
i∈D

∏
j∈Fi e

XT
j β[∑

l∈Ri e
XT
l β
]di .

In the Breslow approximation, the dominator of the partial likelihood is inflated as it assumes

that all tied observations are in the risk set without taking into account that one may

have occurred before another. Noting that the Breslow approximation can lead to severe

bias in coefficients estimates when survival data contain many tied events, Efron proposed

alternative approximation Efron (1977) as follows:

PLE =
∏
i∈D

∏
j∈Fi e

ηj∏di
j=1

[∑
l∈Ri e

ηl −
∑

l∈Fi e
ηl(j − 1)/di

] .
As can be seen, Efron’s approximation uses an average of the risk of the tied failures when

considering ties in the risk set. While still resulting in some bias when multiple ties are
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present, the Efron approximation tends to performs better than the Breslow approxima-

tion and is generally recommended when the exact or discrete partial likelihood cannot be

computed due to computational constraints.

2.3 Smoothing Methods

To this point, the regression methods presented in the context of GLMs and Cox’s propor-

tional hazards model have assumed a parametric relationship between covariates and the

response as defined in the linear predictor. In order to relax the parametric assumptions

on these associations smoothing may be utilized. However, before introducing smoothing in

the context of a regression model, we first present a basic background on the most common

types of smoothers that are utilized by analysts.

A smoother is a tool for summarizing the trend of a response measurement Y as a function

of one or more predictors X ∈ Rd, where d denotes the number of predictors. The high

flexibility of a smoother produces an estimate of the trend that is less variable than Y itself

and hence must be weighed against potential increases in bias due to model overfitting. In

the context of a linear smoother we consider a continuous response modeled with a smooth

function of covariates so that

Y = f(X1, · · · , Xd) + ε, (2.5)

where ε denotes a random error term such that E[ε] = 0 and var(ε) = σ2 (the assumption

of constant variance can be relaxed when we discuss weighted smoothers). Here f(·) de-

notes the smoothing function, and the goal is to estimate f(·) based upon observed data

[(Y1, X1), . . . , (YN , XN)] where Yi is the univariate response for observation i and Xi is the

d× 1 vector of observed covariates for subject i, i = 1, . . . , N . An important property of the
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smoother is that it does not assume a rigid form for the smooth function.

For the remainder of this section we review three commonly employed choices of smoothing

methods. Local-averaging smoothers and smoothing splines are discussed in Section 2.3.1

and Section 2.3.2, respectively. These two smoothing methods are the mostly commonly

used techniques in the context of regression modeling and are implemented in most standard

statistical software packages. We conclude this section with a review of thin-plate splines as

an alternative to local-average smoothers and smoothing splines. While less commonly used,

thin-plate splines have advantages in that they allow the degree of smoothness to vary over

the support of predictors and hence will be utilized for the Bayesian adaptive smoothing

methods developed in Chapters 4 and 5.

2.3.1 Local-Averaging Smoother

Perhaps the most intuitive of all smoothing techniques, local-averaging smoothers use the

the weighted average of observations across the neighborhood of the prediction point as an

estimate. Local-averaging smoothers date back at least to Ezekiel (1941), who suggested a

smoother similar to the running-mean. As a multi-dimensional generalization of a running

mean, K-nearest-neighbor methods (Aha, 1997) use average value of the neighborhood as an

estimate, given by

f̂(X0) =
1

k

∑
Xi∈Nk(X0)

Yi,

where the neighborhood Nk(X0) is defined by the k closest points to X0 in the data. Thus

k is a smoothing parameter determining the amount of smoothing to be performed. Figure

2.1 shows the estimated smooth functions after applying a K-nearest-neighbor smoother to

a data set with different choice of k. The K-nearest neighbor estimator can be written as a
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Figure 2.1: K-nearest neighbor smoothers applied to response y over covariate x with different
choices of smoothing parameter, k. Dots: observed data; Line: estimated smooth function.

25



weighted summation of the observations:

f̂(X0) =
N∑
i=1

Kk(X0, Xi)Yi,

where the function

Kk(X0, X) =

 1/k ifXi ∈ Nk(X0)

0 otherwise

assigns weights to each Yi. The weight function is dependent on the target location X0 and

choice of smoothing parameter, k. Figure 2.2 illustrates effect of the weighting function when

estimating the smooth at different locations. In later work, extensions of the kernel smoother

were proposed and developed by Nadaraya (1964) and Priestley and Chao (1972). These

authors suggested that the weights assigned to observations be based on a kernel function,

Khλ(X0, X), of the form

Khλ(X0, X) = D

(
||X −X0||
hλ(X0)

)
,

where X,X0 ∈ Rd are two vectors of covariates, and || · || defines the Euclidean distance

between them. Here, hλ(X0) is a smoothing parameter determining the kernel radius of

the smoothing neighborhood and hence partly determining the level of resulting smoothing.

Finally, the kernel function D(·) is a positive valued function, with values decreasing as the

distance between X and X0 increases. Popular choices of kernel functions include:

• The tri-cube kernel : D(x) = (1− |x|3)3

• The Gaussian kernel : D(x) = e

{
−x

2

2

}
.
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Figure 2.2: Kernel representation of a K-nearest neighbor smoother. Black dots: observed
data; Green line: vertical line indicating the target location; Blue dots: k closest points; Gray
box: shape of weight function when estimating the smooth function at the target location.
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After specification of hλ(X0) and D(·), the smooth function at X0 can be estimated using a

kernel-weighted average given by

f̂(X0) =

∑N
i=1Khλ(X0, Xi)Yi∑N
i=1 Khλ(X0, Xi)

.

Figure 2.3 shows an example of the Gaussian kernel smoother with hλ(X0) = λ. λ is the

standard deviation of the weights. Figure 2.3 illustrates the kernel representation of four

choices of λ.

The kernel estimates described above can suffer from bias at the boundary and where ob-

served locations are not evenly spaced. Therefore, instead of taking a weighted average

of observations as kernel smoothers do, locally-weighted scatterplot smoothers (LOESS)

(Cleveland, 1979, 1981; Clark, 1977; Tibshirani and Hastie, 1987; Devlin, 1988; Cleveland

and Devlin, 1988; Cleveland et al., 1988) fit a weighted linear or polynomial regression model

over the observations as an estimate. For any given point X0, the smooth function can be

estimated by a polynomial function of X0, i.e.

f̂(X0) = P p
β(X0)(X0) =

∑
j1+j2+···+jd≤p

βj1j2···jd(X0)Xj1
0j1
· · ·Xjd

0jd
,

where P p
β(X0)(X0) is a p degree polynomial function of X0 ∈ Rd and β(X0) is a set of model

coefficients β(X0) = {βj1j2···jd(X0), j1 + j2 + · · · + jd ≤ p} to be estimated. The coefficients

are obtained by solving a weighted least squares problem of the form

min
β(X0)

N∑
i=1

Khλ(X0, Xi)(Yi − P p
β(X0)(Xi)).

Building on previous work, the weights used in local regression can be assigned using the

kernel function. Most commonly, the tri-cube weighting function is used to provide weights

for LOESS method.
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Figure 2.3: Kernel representation of a Gaussian kernel smoother. Black dots: observed data;
Green line: vertical line indicating the target location; Blue dots: k closest points; Gray box:
shape of weight function when estimating the smooth function at the target location.
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The LOESS requires a choice of span, or window size, w for the weighting function. The

span size w is the proportion of the total number of observations that are contained in each

neighborhood. Suppose the sample size of the study is N , then for each point, LOESS will

choose the [wN ] observed points with smallest Euclidean distance from the target point as

the neighborhood. Then the tri-cube weighting function for one observation X0 will be

w(X0) =

(
1−

(
||X −X0||
hw(X0)

)3
)3

,

where hw(X0) is the longest Euclidean distance among the distances from neighborhood

points to X0, and the choice of neighborhood points are related to the span size w. In the

assignment of weights, observations with covariate value X0 receive the highest weight, 1,

and observation of the longest distance in the neighborhood receive the lowest weight, 0.

Since the estimate, f̂(x), is obtained from a locally weighted regression on the response it is

linear in yi and can be written as

f̂(xi) =
N∑
j=1

lj(xi)yj. (2.6)

Let L be the matrix whose (i, j)th element is lj(xi) and let

L̂ = I − L,

where I is the N ×N identity matrix. For k = 1 and 2, let

δk = tr(L̂T L̂)k.
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Then δ1 can be regarded as the degrees of freedom for the smoother and the standard

deviation of Y can be estimated by

σ̂ =

√
SSE

δ1

.

Based on equation (2.6), the standard deviation of f̂(xi) can be estimated by

s(f̂(xi)) = σ̂

√∑
j=1

Nl2j (xi).

Let

ρ = δ2
1/δ

2.

Then the distribution of

f̂(xi)− f(xi)

s(f̂(xi))

can be approximated by a t-distribution with ρ degrees of freedom, which can be used to

obtain pointwise confidence intervals for the estimated smooth function.

2.3.2 Smoothing Splines

As an alternative to the kernel smoothers discussed above, smoothing splines represent the

smooth function as an element in the space defined by a basis based on a set of knots. If bi(x)

is the ith basis function, then the smooth function f(x) is assumed to have a representation

given by

f(x) =

q∑
i=1

bi(x)βi.
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Then (2.5) is a linear model and can be estimated using least squares.

The choice of basis is based on the penalized least-squares criterion (Reinsch, 1967). Suppose

the smooth function is with respect to a univariate predictor, then the estimated smooth

function is obtained by minimizing

N∑
i=1

[yi − f(xi)]
2 + λ

∫
f ′′(x)2dx, (2.7)

where λ is a tuneable paramter that is used to control the relative weight, chosen to balance

the conflicting goals of fitting the observed data well and producing a smooth estimate. A

cubic spline basis arises naturally from the specification of the smoothing objective in (2.7).

Consider defining a cubic spline function, f(x), with k knots, x1, · · · , xk. Let βj = f(xj)

and δj = f ′′(xj). Then, for xj ≤ x ≤ xj+1 the spline can be written as

f(x) = a−j (x)βj + a+
j (x)βj+1 + c−j (x)δj + c+

j δj+1,

where

a−j (x) =
xj+1−x
xj+1−xj ; c

−
j =

(xj+1−x)3/(xj+1−xj)−(xj+1−xj)(xj+1−x)

6

a+
j (x) =

x−xj
xj+1−xj ; c

−
j =

(x−xj)3/(xj+1−xj)−(xj+1−xj)(x−xj)
6

.

Based on the penalized criterion, the spline must be continuous to second derivative at xj

and have zero second derivative at x1 and xk. Thus we have the constraint that

Bδ− = Dβ,

where δ− = (δ2, · · · , δk−1)T (since δ1 = δk = 0) and β = (β1, · · · , βk)T . The matrix B is

defined as

Bi,i = (xi+2 − xi)/3;Bi,i+1 = Bi+1,i = (xj+2 − xj+1)/6,
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and matrix D is defined as

Di,i = 1/(xj+1 − xj);Di,i+2 = 1/(xj+2 − xj+1);Di,i+1 = −Di,i −Di,i+2.

Defining the matrices F− = B−1D and F = [0, (F−)T , 0]T , we have that δ = Fβ. As such,

the spline can be re-written entirely in terms of β as

f(x) = a−j (x)βj + a+
j (x)βj+1 + c−j (x)Fjβj + c+

j Fjβj+1,

which can in-turn be re-written as an element in the basis-defined space:

f(x) =
k∑
i=1

bi(x)βi,

where b1(x) = 1, b2(x) = x, and bi+2 = R(x, xi) for i = 1, · · · , k − 2 with

R(x, z) =

[(
z − 1

2

)2

− 1

12

][(
x− 1

2

)2

− 1

12

]
/4−

[(
|x− z| − 1

2

)4

− 1

2

(
|x− z| − 1

2

)4

+
7

240

]
/24.

Lancaster and Salkauskas (1986) showed that the penalty term in (2.7) can be written as

J(f) =

∫ xk

x1

f ′′(x)2dx = βTDTB−1Dβ (2.8)

and S ≡ DTB−1D is termed the penalty matrix for the basis.

The cubic smoothing spline was developed for smoothing univariate predictors. However,

spatial analysis requires a bivariate smoother to smooth over two geographical parameters.

For this, tensor product spline bases (De Boor, 1978; Wood, 2006) can be constructed to

smooth several variables. This section will introduce the construction of a smooth function

of two covariates, u and v. The generalization to more predictors is trivial.

Suppose the low rank bases are available, then the smooth functions fu and fv of each of the
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covariates can be written as:

fu(u) =
I∑
i=1

αiai(u); fv(v) =
L∑
l=1

δidl(v),

where ai(u) and dl(v) are the basis functions for the two covariates, and the αi and δ are

corresponding model parameters. To convert the function fu into a smooth function of u

and v, the parameters αi can be represented by a expansion of the basis for f(v) as :

αi(v) =
L∑
l

δildl(v),

which gives the tensor product basis representation:

fuv(u, v) =
I∑
i=1

L∑
l=1

δildl(v)ai(u).

Having constructed the tensor product basis, it is necessary to build the penalty term for

the spline, which can be written as

J(f) = λu

∫
v

Ju(fu|v)dv + λv

∫
u

Jv(fv|u)du,

where Ju(fu|v) =
∫ (

∂2fu|v/∂u
2
)2
du, with fu|v =

∑I
i=1 α(v)ai(u). From (2.8) we have

Ju(fu|v) = βTMT
v SuMvβ,

where matrix Mv is the matrix such that α(v) = Mvβ, and Su is the penalty matrix for the

basis. Thus

∫
v

Ju(fu|v)dv = βT
∫
v

MT
v SuMvdvβ.

This integral is easily computed via numerical methods. A similar form can be obtained for
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∫
u
Jv(fv|u)du. Then the parameters can be estimated by solving the minimization problem

in (2.7) by the Newton-Raphson algorithm (Wood, 2006).

2.3.3 Thin-Plate Splines

There are two drawbacks when using regression splines. First, the number and location of

knots must be selected for each basis, which introduces extra subjectivity into the estimates.

Second, the bases are chosen for smooths of one predictor, and even for tensor product,

the basis is constructed from the two low rank basis functions. Thin-plate splines (Duchon,

1977) discussed in this section allow for estimating a smooth function of multiple covariates,

so they are prominantly used for spatial analysis (Cressie, 1993). Another elegant property

of thin-plate splines is that they do not require the selection of knots positions or basis

functions.

We illustrate thin-plate splines as a smooth function of two predictors in this section. Let u

and v denote the two predictors to be smoothed. The mean of response Y can be modeled

by a smooth function f(u, v) as

Y = f(u, v) + ε; ε ∼iid N(0, σ2). (2.9)

With N observations (Yi, ui, vi), i = 1, . . . , N , the thin-plate spline smoothing method esti-

mates f(·) by finding the function f̂ that minimizes

N∑
i=1

(yi − f(ui, vi))
2 + λJ2(f). (2.10)

J2(f) is a penalty function measuring the smoothness of the function f , and λ is a smoothing

parameter, controlling the tradeoff between the data fitting and smoothness of f , which is
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defined as

J2(f) =

∫ ∫ (
∂2f

∂u2

)2

+

(
∂2f

∂u∂v

)2

+

(
∂2f

∂v2

)2

dudv.

The solution to the minimization problem in (2.10) has the form,

f̂(u, v) =
∑
i=1

Naiϕ(||(u, v)− (ui, vi)||) + b1 + b2u+ b3v. (2.11)

The estimator in (2.11) consists of two parts. The first part is a local non-affine component

and the second part is a global affine component. The global affine component, b1 +b2u+b3v,

is an element in the function space spanned by linearly independent polynomials, for which J2

is zero. The local non-affine component is a representation in terms of radial basis functions,

ϕ()̇, defined by

ϕ(r) = r2log(r).

The coefficients ai, i = 1, · · · , N , b1, b2 and b3 are pararmeters to be estimated. Let a

be the vectors of ai, i = 1, · · · , N , and vector b = [b1, b2, b3]T . Define matrix Φ by Φij =

ϕ(||(ui, vi) − (uj, vj)||) and matrix X by Xi = [1, ui, vi], where Xi is the ith row of X.

Coefficient a is subject to linear constrains that XTa = 0. Then the thin plate splin fitting

problem becomes to minimize:

||Y − Φa−Xb||2 + λaTΦa subject toXTa = 0, (2.12)

A drawback of thin-plate splines is that they are computationally expensive. The number

of parameters estimated is based on the number of observations, though the degrees of

freedom for the model is usually much smaller than the number of observations. A low rank

approximation may be used to reduce the computational cost of the model while maintaining

36



the performance of the smoother. PCA-based dimension reduction (Van Der Linde, 2003) is

one approach commonly employed as the approximation.

To truncate the space of the components with respect to parameter a, we first find the

eigen-decomposition of the matrix Φ so that Φ = UDUT , where the diagonal values in D

(eigenvalues of Φ) are ordered by absolute values in descending order and the columns of U

are the corresponding eigenvectors. The subspace spanned by the eigenvectors related to the

k eigenvalues with largest absolute value provide an approximation of the space spanned by

all the eigenvectors. Let Dk denote the top right k×k submatrix of D and let Uk be the first

k columns of U . Then a can be approximated by Ukak, where ak ∈ Rk, and the resulting

minimization problem in (2.12) is reduced to minizing

||Y − UkDkak −Xb||2 + λaTkDkak subject toXTUkak = 0. (2.13)

Additionally, the linear constraints for ak can be absorbed (Wood, 2006). First, a matrix Zk

with orthogonal columns can be found such that XTUkZk = 0 (for example, based on the

QR decomposition of UT
k X). Then let ak = Zkã, the constrained minimization problem in

(2.13) results in an unconstrained minimization of:

||Y − UkDkZkã−Xb||2 + λãTZT
k DkZkã.

with respect to ã and b. The Lanczos iteration method (Lanczos, 1950) can be employed to

find Uk and Dk at a lower cost of O(n2k) operations.
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2.4 Generalized Additive Models (GAMs) for Disease

Mapping

In this section we review the general form of a GAM as well as the fitting algorithm used to

implement the model. We conclude the section by illustrating the specification of a GAM

for disease mapping in the context of an epidemiologic study.

2.4.1 Model Specification

Generalized additive models provide an extension of the generalized linear models introduced

in Section 2.1 by replacing the parametric linear predictor with an additive predictor that

incorporates non-parametric smoothing terms. To develop the model, suppose that the

probability distribution of response Y belongs to the exponential family (see Section 2.1)

and that there exists d covariates X1, · · · , Xd that are to be used to model the response. In

the absence of interaction effects among the covariates, the GAM assumes that

g(µ) = η = β0 +
d∑
j=0

sj(Xj), (2.14)

where µ = E[Y ], g(·) is the link function, η is the additive predictor, and sj(·) is a smooth

term for covariate Xj, which can be estimated by any of the smoothing methods previously

discussed in Section 2.3. In the trivial case, sj(·) can also be a linear function reducing the

model to the usual GLM. For identifiability, we constrain the model such that
∑N

i=1 sj(Xij) =

0 for each covariate Xj, j = 1, . . . , d, with i representing the ith observation, i = 1, . . . , N .

For ease of exposition, we will focus on the model specification provided in (2.14) to illustrate

the fitting procedure for a GAM in the following sections. While this specification excludes

potential interaction terms among the covariates, it should be noted that an interaction effect
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among two or more covariates can be included in a single smoothing term, thus maintaining

the basic structure of the model. However, in practice, since the smooth term is to be non-

parametrically estimated via a defined smoothing technique one must consider the increased

variance that is likely to result when smoothing over multiple covariate interactions. Of

course the tolerance for variance inflation, and ultimate performance of the model, will

depend upon the size of data used for model fitting, but in general it is commonly suggested

that no more than three covariates should be included in a single smooth term.

2.4.2 Backfitting Algorithm to Estimate the Additive Effects

In this section, we illustrate the backfitting algorithm for fitting a GAM. Starting from

the simplest case and omitting the observation index for clarity, we begin by assuming

that response Y follows the Gaussian distribution (a member of the exponential family of

distributions) and that the model utilizes the identity link function. Under this specification,

the mean model is given by

E[Y ] = µ = β0 +
d∑
j=0

sj(Xj).

For some sj, j = 1, . . . , d, if β0 and sj′ for j′ 6= j are all known, then sj can be estimated

by regressing the univariate partial residual, Rj ≡ Y − β0 −
∑

j′ 6=j sj′(Xj′), on the specified

smoother for Xj. Motivated from this, the backfitting procedure estimates sj, j = 1, · · · , d

with following steps:

1. Initialize β̂0 = E[Y ] = µ and ŝ1 = · · · ,= ŝd = 0;

2. Iterate:

for j = 1, · · · , d:
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• Calculate the partial residual:

Rj = Y − β̂0 −
∑
j′ 6=j

ŝj′(Xj′);

• Update ŝj by regressing partial residual Rj on the smoother for Xj;

• Center the ŝj obtained from last step at zero.

• For each observation, compute fitted value Ŷi = β̂0 +
∑d

j=0 ŝj(Xij), i = 1, . . . , N .

Repeat until: The change in
∑N

i=1(Yi − Ŷi)
2 from the past iteration to the current

iteration is less than a defined convergence criteria.

Breiman and Freidman (1985) has shown that with the above backfitting algorithm, the

prediction for E[Y ] is unique and is therefore the best additive approximation. For each

smooth term, the uniqueness cannot be guaranteed for all classes of smoothers. However it

has been shown that uniqueness is guaranteed for two of the most commonly used smoothers

in the context of GAMs: cubic spline and kernel smoothers as discussed in Section 2.3.

2.4.3 Local Scoring Procedure

By way of introduction, we first illustrated the backfitting algorithm for the case of a Gaus-

sian distributed response with identity link function. We now consider the more general case

of model (2.14) by assuming that the probability distribution of the response belongs to the

exponential family with arbitrary link function. In this case, modeling fitting implements a

local scoring procedure that focuses on the local score function rather than the Fisher score

function that commonly used when estimating standard GLMs, as shown in Section 2.1.

To motivate the local scoring procedure, let l(ηi, Yi) denote the log-likelihood function based

upon the response and covariates for observation i, i = 1, . . . , N . Estimation of ηi via
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Fisher scoring as discussed in Section 2.1 maximizes the overall log-likelihood function l =∑N
i=1 l(ηi, yi). However, in for a general response this procedure does not force the estimate

of ηi to be smooth. For example, in the case of a logistic regression model for a binary

outcome, Fisher scoring yields η̂i = +∞ if Yi = 1 and η̂i = −∞ if Yi = 0. To address this

concern in the context of a GAM where smoothness of η is required, local scoring instead

estimates η by maximizing the expected log-likelihood function based on the observation of

corresponding subject:

E(l(η̂, Y )) = max
η
E(l(η, Y )),

where the expectation is taken over the joint distribution of X and Y . Under standard

regularity conditions (namely the ability to interchange integration and differentiation), we

obtain

E[dl/dη]η̂ = 0. (2.15)

While there is no general closed for solution to (2.15), a first-order Taylor series expansion

leads to an iterative estimating procedure given by

ηnew = ηold − E[dl/dη]ηold/E[d2l/dη2]ηold ,

which is equivalent to

ηnew = E

[
η − dl/dη

E[d2l/dη2]

]
ηold

.

When the distribution of the response belongs to the exponential family, the first and second
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derivatives of the expected log likelihood are given by

dl

dη
= (Y − µ)V −1

(
dµ

dη

)
,

and

d2l

dη2
= (Y − µ)V −1

(
d

dη

)[
V −1

(
dµ

dη

)]
−
(
dµ

dη

)2

V −1. (2.16)

Then taking the expectation (conditional on X) of equation (2.16) we obtain

E

[(
d2l

dη2

)∣∣∣∣X] = −
(
dµ

dη

)2

V −1.

Hence η is updated by

ηnew = E

[
η + (Y − µ)

(
dη

dµ

)∣∣∣∣
ηold,µold

]
. (2.17)

Further, letting Y old
w denote the working response computed in terms of ηold and µold and

given by

Y old
w = η + (Y − µ)

(
dη

dµ

)∣∣∣∣
ηold,µold

, (2.18)

we obtain from equations (2.14), (2.17), and (2.18),

E[Y old
w ] = βnew0 +

d∑
j=1

snewj .

As such, the coefficients βnew0 and sj must be estimated in order to obtain an updated value

of ηnew in Eq. (2.17). This is achieved via the backfitting algorithm shown in Section 2.4.2.
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Specifically, we begin by defining W as

W = (dµ/dη)2V −1|ηold,µold (2.19)

and initializing s = 0. The backfitting procedure is used to iteratively update each smooth

term by regressing the partial residual on the smoother for Xj with weight W defined in

equation(2.19) until it converges.

Putting the above together, the overall algorithm for fitting a generalized additive model is

as follows:

1. Initialize β0 = E[Y ] and sj = 0, j = 1, · · · , d.

2. Loop:

(a) Based on the current estimates of β0 and sj, j = 1, · · · , d, calculate ηold as well

as the working response Y old
w and corresponding weights W using equation(2.14),

(2.18) and (2.19), respectively.

(b) Update β0 and sj, j = 1, · · · , d via the backfitting algorithm.

3. Repeat 1. and 2. until convergence.

While the backfitting algorithm is a relatively efficient method to estimate additive effects,

convergence can be slow if the covariates included in the linear predictor are correlated

(Chambers and Hastie, 1992). To eliminate most of the problems associated with slow fitting

due to multicolinearity when more than one smooth term is included in the linear predictor,

it is beneficial for all of the linear terms in the model to be fitted together, treating them as

a single term in the iterative procedure above. Moreover, it can be additionally beneficial

to decompose each smooth term into a parametric (linear) and non-parametric (smooth)
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component such that

sj(Xj) = βjXj + s′j(Xj), (2.20)

where s′j(Xj) represents the non-parametric component, and the linear coefficient βj is fitted

together with the remaining parametric linear terms in the model.

2.4.4 Standard Errors

If no smooth terms are included in the specification of GAM the model reduces to a standard

GLM where the covariance matrix for the estimated model parameters (MLEs) is given by

the inverse of the Fisher information matrix. However, when smooth terms are present in the

GAM, variance estimation requires computation of the operation matrix Gj for each smooth

term sj, such that sj = Gjz, where z is the working response from the last iteration of the

fitting algorithm described above and is asymptotically distributed as a Gaussian random

variable. From this, the covariance matrix for the estimated sj is given by GjCov(z)GT
j ,

which can be estimated by φ̂GjW
−1GT

j , where W is a diagonal matrix with elements defined

by the weights used in the last iteration of the fitting algorithm.

The operation matrix, Gj, tends to be computationally expensive to obtain for non-parametric

or semi-parametric smoothing procedures, and hence approximations are often used when

estimating GjCov(z)GT
j . One approach is to approximate φ̂GjW

−1GT
j by φ̂GjW

−1, which

is generally conservative for non-projection smoothers (Chambers and Hastie, 1992). In this

case, Gj can be orthogonally decomposed into Gj = Hj +Nj, where Hj can be obtained as

the design matrix corresponding to the parametric portion of equation (2.20), and Nj cor-

responds to the non-parametric portion. Thus, the variance of the estimated smooth term

can be approximated via a decomposition of two variance components: (1) the variance from

the parametric portion of (2.20) which captures the correlation all parametric terms that are
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fitted together, and (2) the variance from the non-parametric portion of (2.20) reflecting the

marginal information obtained in the smoothing terms.

2.4.5 Example: Disease Mapping Using GAMs

To motivate the use of GAMs for spatial disease mapping, we consider modeling observations

that are distributed on a map with location coordinates ui and vi denoting the geographical

parameters for the ith observation, i = 1, . . . , N . Let Yi denote the outcome of interest and

Xi denote a vector of adjustment covariates. Further suppose that the distribution of the

outcome belongs to the exponential family. The GAM for a spatial effect analysis can be

specified as

g(µi) = ηi = β0 +XT
i β + s(ui, vi), i = 1, . . . , N,

where g(·) is the link function that links the mean of the outcome µi = E[Yi] to the linear

predictor, ηi. Further, because the distribution of the outcome belongs to the exponential

family, the variance of the outcome is defined by the assumed probability model and denoted

as Vi ≡ V ar(Yi) = V (µi, φ), a function of the mean and nuisance parameter φ. In the above

specification, β denotes a vector of coefficients associated with adjustment covariate Xi and

s(ui, vi) represents the spatial effects of interest, a nonlinear function of location.

As noted in the previous section, when fitting the model, we separate the spatial effect into

parametric and non-parametric portions: s(ui, vi) = γuui + γvvi + f(ui, vi), and the model

becomes

g(µi) = ηi = β0 +XT
i β + βuui + βvvi + f(ui, vi), i = 1, . . . , N,

In this case, the parametric portion of the spatial effect will be fitted jointly along with
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the other adjustment variables, Xi, using least squares. The non-parametric portion will be

fitted using a single non-parametric smoother. As previously stated, to ensure identifiability

we constrain the model so that
∑N

i f(ui, vi) = 0.

Estimating the non-parametric smooth term f(ui, vi) requires two decisions: (1) the type of

smoother and (2) the size of the neighborhood used by the smoother. As population densi-

ties often vary dramatically over geographic space, a locally weighted scatterplot smoother

(LOESS) (Cleveland, 1979, 1981; Cleveland and Devlin, 1988) is typically used as the bi-

variate smoothing function for the two geolocation parameters u and v. LOESS is a natural

choice as it is able to adapt the size of the smoothing neighborhood to the local density

while maintaining the smoothness features of a kernel. As previously noted, this method

defines the neighborhood based on the k nearest subjects, and weights points within the

neighborhood using a tri-cube distance function centered at a target point and decreasing

to zero at the furthest neighbor (Hastie and Tibshirani, 1986). Other smoothing methods,

as discussed in Section 2.3, could also be utilized.

The amount of smoothing performed by loess depends on the number and distribution of

points in the neighborhood. A small neighborhood reduces bias but increases variance,

while a large neighborhood increases bias and reduces variability. As such, the guiding

principle behind the selection of a neighborhood size (also called span or bandwidth) is

to provide a trade-off between bias and variance and is generally operationalized via mean

squared error or MSE. Multiple criteria have been proposed for choosing an appropriate span

size. Cross-validation for span selection is discussed in (Friedman and Stuetzle, 1984), and

provides a computational approach to estimating out-of-sample MSE by cleverly stratifying

and resampling from a training dataset. Briefly, K-fold cross-validation randomly divides

an existing training dataset into K roughly equal parts, performs model fitting on K − 1

of those parts and assesses out-of-sample MSE on the remaining K-th part. This process

is repeated until all K strata have served as hold-out datasets, at which time out-of-sample
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MSE is averaged over all K hold-outs. Leave-one-out, or N − fold, cross-validation takes

K equal to the sample size of the training data in the K-fold procedure. By focusing on

out-of-sample prediction error, cross-validation seeks to avoid the over-fitting issues (ie. low

bias and high variability that results in lack of generalizability) that are encountered when

model selection utilizes the full dataset in both a training and testing capacity. Extensions

of K-fold cross-validation have also been proposed. Notably, Kelsall and Diggle (1998) used

a weighted least squared cross-validation to choose an optimal degree of smoothing for the

kernel smoother, while a generalized cross-validation criterion was proposed by Wood (2006)

for cubic spline smoothing. For an analytic approximation to out-of-sample prediction error

when taking the loss function to be the log-likelihood function, minimization of Akaike’s

Informaiton Criterion (AIC) was proposed for non-parametric smoother selection in Hurvich

et al. (1998)and Webster et al. (2006).

Along with estimation of spatial effects, inference regarding whether location is associated

with outcomes is often desired in disease mapping studies. To this end, a global test of spatial

effects can be conducted via a likelihood ratio test. This test is formulated by comparing

the deviance between a full model (including the spatial smoother) and a reduced model

(omitting the spatial smoother). For the full model, the degrees of freedom of the non-

parametric portion can be approximated by tr(S)− 1 (Chambers and Hastie, 1992), where

tr is the trace function and S denotes the smoothing matrix. The degrees of freedom of the

parametric portion of the GAM are given by d+ 3, where d denotes the length of covariate

vector X. Thus, the degrees of freedom of the full model is tr(S) + d + 2, and the degrees

of freedom for the likelihood ratio test statistic is tr(S) + 1. Relying on standard likelihood

theory, under the null hypothesis of no spatial effect, the likelihood ratio test statistic is

approximately distributed as a χ2 random variable with the degrees of freedom tr(S) + 1.

Due to the data-driven nature of choosing the smoothing span size and the approximations

involved in calculating the degrees of freedom for the GAM, the likelihood ratio test may
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result in anti-conservative inference implying that nominal type I error rates are higher

than the desired level of the test. In light of this, a permutation test (Kelsall and Diggle,

1998; Webster et al., 2006) has been proposed to test for a global spatial effect and pointwise

significance of particular areas. To conduct the test, the locations of individuals are randomly

permuted while preserving the observed response and adjustment covariate structure. Based

on each permuted dataset, the deviance statistic corresponding to the spatial effect prediction

for each observation is then calculated. The procedure is repeated multiple times resulting

in an empirical distribution of permutation deviance statistics. Dividing the rank of the

observed deviance statistics by the number of permutations provides a p-value to test the

global adjusted spatial effects. Analogously, a p-value for testing the pointwise spatial effect

of a particular location can be obtained by dividing the rank of the observed spatial effect

at that location by number of permutations.

2.5 Intrinsic Gaussian Markov Random Fields

As background for the research developed in Chapters 4 and 5, in this section we briefly

introduce the Intrinsic Gaussian Markov Random Field (IGMRF). The IGMRF is a type of

Gaussian Markov Random Field (GMRF), partly characterized by a precision matrix that

is not of full rank. It is because of this property that IGMRFs are often utilized as prior

distributions in various applications (Rue and Held, 2005), especially for spatial analysis

(Assuncao et al., 2002; Gamerman et al., 2003; Lang et al., 2002; Yue and L., 2010; Yue

et al., 2010).
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2.5.1 Gaussian Markov Random Fields

We start from the Gaussian Markov Random Field (GMRF). Let z = z1, · · · , zn denote a

random variable following a multivariate normal distribution with mean µ and covariance

matrix Σ. Define an undirected graph G = (V,E), where V = 1, · · · , n denotes the index for

z, and E records edges between nodes such that there is no edge between two nodes provided

that the two nodes are independent conditional on all other nodes. Then we say that z is a

GMRF with respect to the graph G.

It has been proven by Rue and Held (2005) that for i 6= j, and letting Q = Σ−1 > 0 denote

the precision matrix for z, we have

zi⊥zj|z−ij ⇐⇒ Qij = 0.

Thus the nonzero elements of Q determine the graph G, and for a given graph G, we know

the nonzero elements in Q. Then the GMRF with respect to a graph G has density

π(z) = (2π)−N/2|Q|1/2exp
(
−1

2
(z − µ)TQ(z − µ)

)
,

and

Qij 6= 0 ⇐⇒ i, j ∈ E for all i 6= j.

A useful property of a GMRF is the local Markov property, implying that conditional inde-

pendence can be extracted from the graph G. For a GMRF with regard to a graph G, the

following Markov properties are equivalent (Speed and Kiiveri, 1986):
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Definition 2.1. The pairwise Markov property:

zi⊥zj|zij, if i, j /∈ E and i 6= j;

Definition 2.2. The local Markov property:

zi⊥z−{i,ne(i)}|zne(ij), ∀i ∈ E,

where ne(i) is the neighbors of zi;

Definition 2.3. The global Markov property:

zA⊥zB|zC ,

where sets A, B and C are disjoint, and every path from A to B passes C, i.e. C separates

A and B.

From the above definitions, it is clear that the pairwise Markov property describes the condi-

tional independence between two nodes, the local Markov property describes the conditional

independence between a node and its neighboring nodes, and the global Markov property is

related to the conditional independence between two disjoint sets.

2.5.2 Intrinsic Gaussian Markov Random Fields

We now turn our attention to IGMRFs. An IGMRF is a type of GMRF conditional on linear

constraints. More specifically, let z be a mean-zero GMRF with dimension n and precision

matrix Q > 0. Now consider a linear constraint on z such that Az = a, where A is a k × n

(k < n) full rank matrix. Then the conditional probability density of z can be derived as

follows.
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We being by writing the precision matrix Q as

Q = UDUT ,

where D = diag{λ1, · · · , λn} and λi, i = 1, · · · , n are the eigenvalues of Q and the columns of

the matrix U are the corresponding eigenvectors. Let Uk denote the first k columns of U so

that UT
k Uk = Ik. Further, define C ≡ AUk. Then C is also full rank, and UT

k z = C−1a ≡ â

is equivalent to the constraint Az = a.

Now, let y = UT z, which also follows a multivariate normal distribution with

E[y] = UTE[z] = 0, and

V ar[y] = UTV ar(z)U = UTQ−1U = UTUD−1UTU = D−1.

Further considering UT
k z = (y1, · · · , yk), with UTx = â, we have E[y|Az = a] = [âT , 0T ]T

and prec[y|Az = a] = D̃, where D̃ = diag{0, · · · , 0, λk+1, λn}. From this we have that

E[z|Az = a] = V [âT , 0T ]T ≡ V ã and Prec[z|Az = a] = UD̃UT ≡ Q̃. Therefore, the

conditional probability density of z is is given by

π(z|Az = a) = (aπ)−(n−k)/2
∏n

i=k+1 λ
1/2 exp

{
−1

2
(z − V ã)T Q̃(z − V ã)

}
= (aπ)−(n−k)/2(|Q̃|∗)1/2 exp

{
−1

2
(z − V ã)T Q̃(z − V ã)

}
,

(2.21)

where | · |∗ denotes the generalized determinant, or product of the non-zero eigenvalues.

An improper GMRF is defined based on the density function in (2.21). Let Q ≥ 0 be an

n× n matrix with rank n− k. Then z = [z1, · · · , zn]T is an improper GMRF of rank n− k

with parameters (µ,Q) relative to a graph G if the density of z can be written as

π(z) = (aπ)−(n−k)/2(|Q|∗)1/2 exp

{
−1

2
(z − µ)TQ(z − µ)

}
,
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where

Qij 6= 0 ⇐⇒ i, j ∈ E ∀i 6= j.

Importantly, z ∈ Rn can be decomposed into two parts:

z = z‖ + z⊥,

where z‖ is the part of z in the subspace spanned by the columns of A, which is the null

space of Q̃, and z⊥ is the part of z orthogonal to z‖. Thus πz = πz⊥, so that π()̇ is invariant

to the addition of any x‖, a critical feature of improper GMRFs.

The above leads to the generation of an intrinsic GMRF (IGMRF). Specifically, an IGMRF of

first order is an improper GMRF of rank n−1 where Q1 = 0, which implies that
∑

j Qij = 0,

for all i, i = 1, . . . , n. To illustrate the features of the IGMRF, we consider AT = 1 and

thereby note that the density for an IGMRF of first order is invariant to the addition of the

overall mean level. For example, taking µ = 0 we have

E[zi|z−i] = − 1

Qii

∑
j:(i,j)∈E

Qijzj,

with −
∑

j:(i,j)∈E Qij/Qii = 1. Therefore, the conditional mean of zi is the weighted mean

of the neighboring nodes, but does not involve the overall mean level. With this feature,

many IGMRFs are constructed such that the deviation from the overall level is a smooth

surface in space, making them an attractive choice as a prior for Bayesian thin-plate splines

as considered in the next section.
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2.5.3 An IGMRF prior for Bayesian Thin-Plate Splines

Recall the model described in (2.9) where the thin-plate spline estimator, f , is the solution

to the minimization problem:

f̂ = arg min
f

{∑
i

(yi − f(ui, vi))
2 + λJ2(f)

}
,

where J2(f) is the smoothing penalty for function f given by

J2(f) =

∫ ∫
R2

(
∂2f(u, v)

∂u2

)2

+

(
∂2f(u, v)

∂u∂v

)2

+

(
∂2f(u, v)

∂v2

)2

dudv.

For the smooth function f , it is reasonable to assume that the integrable derivatives of order

up to 3 vanish at infinity and hence guaranteeing sufficient smoothness. In this case, the

second term in the integral of J2(f) can be written (Yue and L., 2010) as

∫ ∫
R2

(
∂2f(u,v)
∂u∂v

)2

dudv =
∫ ∫

R2

(
∂2f(u,v)
∂u∂v

)(
∂2f(u,v)
∂u∂v

)
dudv

=
∫ (∂2f(u,v)

∂u∂v

)(
∂f(u,v)
∂u

)∣∣∣∞
−∞

du−
∫ ∫

R2

(
∂3f(u,v)
∂u∂v2

)(
∂f(u,v)
∂u

)
dudv

= −
∫ (∂2f(u,v)

∂v2

)(
∂f(u,v)
∂u

)∣∣∣∞
−∞

dv +
∫ ∫

R2

(
∂2f(u,v)
∂u2

)(
∂2f(u,v)
∂v2

)
dudv

=
∫ ∫

R2

(
∂2f(u,v)
∂u2

)(
∂2f(u,v)
∂v2

)
dudv

Thus we can rewrite the penalty term J2(f) as

J2(f) =
∫ ∫

R2

(
∂2f(u,v)
∂u2

)2

+
(
∂2f(u,v)
∂u2

)(
∂2f(u,v)
∂v2

)
+
(
∂2f(u,v)
∂v2

)2

dudv

=
∫ ∫

R2

[(
∂2

∂u2
+ ∂2

∂v2

)
f(u, v)

]2

dudv.

From this, a thin-plate spline estimator can also be derived as the solution to the following
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minimization problem:

arg min
f

[∑
i

(yi − f(ui, vi))
2 + λ

∫ ∫
R2

[(
∂2

∂u2
+

∂2

∂v2

)
f(u, v)

]2

dudv

]
. (2.22)

Now consider a modification of Eq. (2.9). Specifically, suppose response y is taken on a

regular lattice (uj, vk), with

yjkl = f(uj, vk) + ε, ε ∼iid N (0, τ−1), j = 1, · · · , nu; k = 1, · · · , nv; l = 1, · · · , rjk

where uj and vk are equally spaced by distance h in vertical and horizontal directions,

respectively, and nu denotes the number of rows while nv denotes the number of columns

for the lattice. From this specification there are n = nu × nv grid points in total and we let

rjk denote the number of observations at location (uj, vk). Note that rjk can be 0 since it is

not required that there are observations at each grid point. From this, the total number of

observations is given by

N =
nu∑
j=1

nv∑
k=1

rjk.

Now, let z denote the n × 1 vector defined by f(uj, vk), such that zj+nu(k−1) = f(uj, vk),

for j = 1, · · · , nu, and k = 1, · · · , nv. Let y and ε be the vectors of observed responses and

random errors, respectively, and let D be the N × n incidence matrix such that Dij = 1 if

yi is observed at location j, which is location (ujmodnu , vbj/nuc+1), in the vectorized ordering

of the lattice, and Dij = 0, otherwise. Then the vectorized model is written as

y = Dz + ε, ε ∼ N (0, τ−1IN).

Though not explicitly stated, it is worth noting that for non-regular data, the data can be
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binned to a regular lattice (Hardle and Scott, 1992; Scott, 2003).

The GMRF prior is motivated by a difference approximation of the penalty term in equation

(2.22). The second derivative of f at location (uj, vk) can be approximated by second-order

backward difference operators:

∂2

∂u2
f(uj, vk) ≈ h−252

(1,0) f(uj, vk);

∂2

∂v2
f(uj, vk) ≈ h−252

(0,1) f(uj, vk),

where the second-order backward difference operators, 52
(1,0) and 52

(0,1), are defined as

52
(1,0)f(uj, vk) = f(uj+1, vk)− 2f(uj, vk) + f(uj−1, vk);

52
(1,0)f(uj, vk) = f(uj, vk+1)− 2f(uj, vk) + f(uj, vk−1).

Thus the differential operator in J2(f) at location (uj, vk) can be approximated by

h−4
[(
52

(1,0) +52
(0,1)

)
f(uj, vk)

]2

= h−4[zj+1+nu(k−1) + zj+1+nu(k−1) + zj+nu(k) + zj+nu(k−2) − 4zj−1+nu(k−1)]
2.

Now, let d be the (nu − 2)(nv − 2)× 1 vector of differential operators in J2(f), with

d(j−1)+(nu−2)(k−2) = zj+1+nu(k−1) +zj+1+nu(k−1) +zj+nu(k) +zj+nu(k−2)−4zj−1+nu(k−1), (2.23)

for j = 2, · · · , nu − 2 and k = 2, · · · , nv − 2. Then we have d = B0z, where B0 is an

(nu−2)(nv−2)×n matrix with coefficients in equation (2.23). As a result, an approximation

of the thin-plate spline penalty J2(f) is given by

1

h4

nu−1∑
j=2

nv−1∑
k=2

[zj+1+nu(k−1) + zj+1+nu(k−1) + zj+nu(k) + zj+nu(k−2) − 4zj−1+nu(k−1)]
2.
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Defining A0 = BT
0 B0, we have

J(f) ≈ dTd = zTBT
0 B0z = zTA0z.

Further letting λh = λ/h4, the estimate ẑ is the solution to

ẑ = arg min
z

[||y −Dz||2 + λhz
TA0z],

which suggests the prior on z for Bayesian modeling of thin-plate splines should be of the

form

z|δ ∝ δ(n−m)/2(|A0|∗)1/2+ exp(− δ2 zTA0z),

where m = 2(nu + nv − 2) is the dimension of the null space of A0 and δ is a precision

parameter. Note that the random vector z is an improper GMRF because it follows an

improper multivariate Gaussian distribution and satisfies the local Markov properties previ-

ously specified. Specifically, the conditional distribution of each zj+nu(k−1) is Gaussian and

only depends on its neighbor. It is convenient to use graphical notation to present the the

conditional expectation and precisions of an interior zj+nu(k−1) as

E[zj+nu(k−1)|z−[j+nu(k−1)]] = 1
20

8

◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦
◦ • ∗ • ◦
◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦

− 2

◦ ◦ ◦ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ∗ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ◦ ◦ ◦

− 1

◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ∗ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦

 ;

Prec[zj+nu(k−1)|z−[j+nu(k−1)]] = 20δ,

where the conditional expectation at location “∗” is a weighted summation over all values

at locations with “•”, the number in front of each grid denotes the weight given to the

corresponding “•” locations, and the “◦”s fix the spatial configuration.
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As specified, the improper GMRF prior on z with a precision matrix A0 is not attractive

in a Bayesian thin-plate spline setting because the dimension of the null space of A0 is too

large and hence the basis of the null space is non-interpretable (Kneib, 2006). To address

this, boundary terms mjst be added to fix the rank-deficiency. Specifically, with

5(1,0)f(uj, vk) = f(uj, vk)− f(uj−1, vk)

5(0,1)f(uj, vk) = f(uj, vk)− f(uj, vk−1),

the corrections made at the four corners and edges are

51f(u1, v1) ≡ (5(1,0) +5(0,1))f(u2, v2)

52f(unu , v1) ≡ −5(1,0) f(unu , v1) +5(0,1)f(unu , v2)

53f(u1, vnv) ≡ 5(1,0)f(u2, vnv) +5(0,1)f(u1, vnv)

54f(unu , vnv) ≡ −(5(1,0) +5(0,1))f(unu , vnv)

55f(uj, v1) ≡ 52
(1,0)f(uj+1, v1) +5(0,1)f(uj, v2)

56f(uj, vnv) ≡ 52
(1,0)f(uj+1, vnv)−5(0,1)f(uj, vnv)

57f(u1, vk) ≡ 5(1,0)f(u2, vk) +52
(0,1)f(u1, vk+1)

58f(unu , vk) ≡ −5(1,0) f(unu , vk) +52
(0,1)f(unu , vk+1)

(2.24)

Letting d̃ be the n× 1 vector of differential operators (including the correctted operators in

(2.24)) at ordered locations, we have d̃ = Bz. Then an improved approximation of J2(f)

can be expressed as

J2(f) ≈ 1
h4

[∑nu−1
j=2

∑nv−1
k=2

(
(52

(1,0) +52
(0,1))f(uj, vk)

)2

+ (51f(u1, v1))2 + (52f(unu , v1))2

+ (53f(u1, vnv))
2 + (54f(unu , vnv))

2 +
∑nu−1

j=2

(
(55f(uj, v1))2 + (56f(uj, vnv))

2)
+
∑nv−1

k=2

(
(57f(u1, vk))

2 + (58f(unu , vk))
2)] .
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Further letting A = BTB, the roughness penalty term can be written as

J2(f) ≈= d̃T d̃ = zTBTBz = zTAz.

It then follows that a random vector z with prior distribution

z|δ ∝ δ(n−1)/2(|A|∗)1/2+ exp(− δ2 zTAz),

is an IGMRF of first order since the rank of A is n− 1, the local Markov property remains

satisfied, and A1 = 0 after the boundary corrections are implemented. The conditional

expectation of z at a border or corner are shown as follows using graphical notation:

E[z2+nu(k−1)|z−[2+nu(k−1)]] =
1

20

8

◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦
◦ • ∗ • ◦
◦ ◦ ◦ ◦ ◦

+ 7

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ∗ ◦ ◦
◦ ◦ • ◦ ◦

− 2

◦ ◦ ◦ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ∗ ◦ ◦
◦ • ◦ • ◦

− 1

◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ∗ ◦ •
◦ ◦ ◦ ◦ ◦

 ;

E[z2+nu|z−[2+nu]] =
1

20

8

◦ ◦ ◦◦
◦ • ◦◦
◦ ∗ •◦
◦ ◦ ◦◦

+ 7

◦ ◦ ◦◦
◦ ◦ ◦◦
• ∗ ◦◦
◦ • ◦◦

− 2

◦ ◦ ◦◦
• ◦ •◦
◦ ∗ ◦◦
• ◦ •◦

− 1

◦ • ◦◦
◦ ◦ ◦◦
◦ ∗ ◦•
◦ ◦ ◦◦

 ;

E[z1+nu(k−1)|z−[1+nu(k−1)]] =
1

12

(
7
◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦
◦ ◦ ∗ ◦ ◦

+ 6
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ • ∗ • ◦

− 2
◦ ◦ ◦ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ∗ ◦ ◦

− 1
◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ∗ ◦ •

)
;

E[z1+nu|z−[1+nu]] =
1

12

(
7
◦ ◦ ◦◦
◦ • ◦◦
◦ ∗ ◦◦

+ 6
◦ ◦ ◦◦
◦ ◦ ◦◦
◦ ∗ •◦

+ 5
◦ ◦ ◦◦
◦ ◦ ◦◦
• ∗ ◦◦

− 2
◦ ◦ ◦◦
• ◦ •◦
◦ ∗ ◦◦

− 1
◦ • ◦◦
◦ ◦ ◦◦
◦ ∗ ◦•

)
;

E[z1+nu|z−[1+nu]] =
1

6

(
5
◦ ◦ ◦
• ◦ ◦
∗ • ◦

− 2
◦ ◦ ◦
◦ • ◦
∗ ◦ ◦

− 1
• ◦ ◦
◦ ◦ ◦
∗ ◦ •

)
.

It can be further shown that the posterior distribution of z is multivariate normal with mean

SλhD
Ty and covariance τ−1Sλh , where Sλh = (DTD + λhA)−1, and hence DTD + λhA must

be invertible for the posterior to exist. From this, it is evident that the posterior mean of a

smooth function value at a location is the weighted summation over the observations at the
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location and the estimates at neighboring locations. The smoothing parameter λh controls

the trade-off between the observed data at the target location and that at neighboring

locations.
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Chapter 3

Spatial Analysis for Censored Survival

Data and the R: MapGAM Package

3.1 Introduction

In spatial epidemiology studies, mapping crude and adjusted spatial distributions of dis-

ease risk is a useful tool for identifying risk factors of public health concern (Elliott and

Wartenberg, 2004). The underlying (or crude) geographic pattern of disease is often what

is observed by public health practitioners, but these patterns may be due to important

spatially-varying predictors such as socioeconomic status, race/ethnicity, or environmental

exposures. Individual-level spatial analyses can provide insight regarding disease risk by ad-

justing for these variables without aggregation bias (also known as ecological bias). Disease

risks often have complex spatial patterns that are subject to high variability due to sparsity.

Smoothing provides an efficient method to deal with these issues by borrowing strength from

adjacent observations to reduce variability while allowing for non-parametric flexibility when

estimating the spatial distribution of risk. Generalized additive models (GAMs), originally
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proposed by Hastie and Tibshirani (1986), are common model-based approaches for map-

ping point-based epidemiologic data(Webster et al., 2006; Vieira et al., 2008; Baker et al.,

2011; Akullian et al., 2014; Bristow et al., 2014; Hoffman et al., 2015). GAMs provide a

unified statistical framework that allows for the adjustment of individual-level risk factors

when evaluating spatial variability in a flexible way.

There has been a number of R (R Core Team, 2015) packages implementing GAMs and

related models. The gam package (Hastie, 2004) (originally made for S-PLUS) provides an

implementation of the GAM framework of Hastie and Tibshirani (1986) by providing two

types of commonly used smoothing methods: cubic smoothing splines (Wahba, 1990; Green

and Silverman, 1994) for univariate variables and local kernel smoothing (LOESS) (Cleve-

land, 1979, 1981; Cleveland and Devlin, 1988) for multivariate variables. The mgcv(Wood,

2009; Breslow and Clayton, 1993) package implements cubic smoothing splines and tensor

product smooths, an extension of cubic splines to multiple dimensions. mgcv also provides

various criterion to aid in the selection of model complexity via the choice of effective degrees

of freedom and provides functions to fit generalized additive mixed effects models (GAMMs)

for correlated data. Package gamlss (Rigby and Stasinopoulos, 2005; Stasinopoulos and

Rigby, 2007) implements an extension of the GAM that incorporates selected distributions

outside of the exponential family. Neither the gam package nor the gamlss package pro-

vides standard errors for prediction points, which is necessary when providing point-wise

confidence bands for disease maps and identifying significant areas.

With respect to censored survival data, parametric additive models can be fit using either the

gamlss.cens package (Stasinopoulos et al., 2015) or the VGAM package (W., 2007). However,

none of the above packages provide an implementation of the Cox proportional hazard ad-

ditive model for censored survival data that allows for multivariate smoothing of covariates,

despite the fact that spatial effect estimation in the context of survival outcomes is of great

interest in epidemiology studies (Henderson et al., 2002; Bristow et al., 2014). The mgcv
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package implements the Cox model with a tensor product smooth, but knots are difficult to

choose for population-based study where subjects are usually not uniformly geographically

distributed. LOESS smoothing is suggested for the spatial analysis for epidemilogy(Webster

et al., 2006) and to the best of our knowledge there is no existing R package that implements

a Cox model with a bivariate LOESS smoothing term.

Moreover, displaying spatial predictions on a map with irregular geographic boundaries is

a non-trivial effort, often handled by exporting statistical predictions to separate special-

ized geographic information system (GIS) software such as ArcGIS that requires a paid

user license (Webster et al., 2006; Vieira et al., 2008) or by omitting geographic boundaries

altogether(Akullian et al., 2014). At best, these limitations and complexities pose a signif-

icant barrier to researchers not already well versed in both GAMs and GIS methods and

at worst may lead to reporting errors due to the inefficient transfer of estimates between

separate software packages. As such, having a unified system for estimating and visualizing

covariate-adjusted spatial effects on outcomes arising from the most commonly encountered

epidemiologic study designs would greatly improve the ability of data scientists to conduct

efficient and reproducible analyses in these settings.

To address the above deficiencies of current software, MapGAM was built to provide a single

R package that allows for estimating, predicting, and visualizing covariate-adjusted spa-

tial effects using individual-level data. The package estimates covariate-adjusted spatial

associations with a univariate outcome via GAMs that include a non-parametric bivariate

smooth term of geolocation parameters. Estimation and mapping methods are implemented

for continuous, discrete, and right-censored survival data. In addition, support functions

for efficient control sampling in case-control studies and inferential procedures for testing

global and pointwise spatial effects are implemented. We have found that a unified system

for estimating and visualizing covariate-adjusted spatial effects on outcomes arising from

the most commonly encountered epidemiologic study designs greatly facilitates efficient and
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reproducible analyses in these settings.

This section includes an introduction and illustration of the MapGAM package. The remain-

der of the section is organized as follows: Section 3.2 considers estimating spatial effects on

right-censored survival times via a Cox proportional hazards additive model. The estima-

tion procedures implemented in MapGAM are provided and a brief simulation study considers

the performance of the proposed fitting methods in various settings is discussed in Section

3.3. Section 3.4 provides an overview of the methodology implemented in MapGAM for esti-

mating and visualizing spatial effects in the context of generalized additive models. Two

illustrative examples using MapGAM to analyze hypothetical case-control data from the state

of Massachusetts and censored survival data from California State are provided in Section

3.5. Section 3.6 concludes with discussion of the utility of the MapGAM package and considers

possible extensions of the package in future research.

3.2 Cox Proportional Hazards Addtiive Models

In this section we briefly introduce the methodology implemented in MapGAM as an ex-

tension of the GAM methods previously discussed in Section 2.4. We consider modeling

censored survival data that are distributed on a map with u and v denoting the geographical

parameters. Let t denote the survival time and X be a d× 1 vector of d adjustment covari-

ates. The Cox proportional hazards additive model to analyze the spatial effect incorporates

a bivariate smoother into the Cox proportional hazards model (Kelsall and Diggle, 1998) as

λ(t) = λ(0) exp{η} (3.1)
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with

η = XTβ + f(u, v),

where λ(t) represents the hazard at time t and λ0(t) the baseline hazard. β is a d× 1 vector

of regression coefficients associated with covariates X, reflecting the first trend relationship

between the hazard and the corresponding covariates. f(u, v) represents the spatial effect

on the hazard, which is a nonlinear function of location parameters. We separate the spatial

effect f(u, v) into two parts (Details see Section 2.14):

f(u, v) = βuu+ βvv + s(u, v),

where the parametric part βuu+βvv will be fitted jointly with other adjusted variables using

least squares. The nonparametric part s(u, v) will be fitted using a smoother. To ensure

identifiability, we constrain the model so that the the summation of the nonparametric part

over all observations is 0. Let X̃ = [XT , u, v]T , and β̃ = [βT , βu, βv]
T be the corresponding

coefficients, then the model becomes

η = X̃T β̃ + s(u, v). (3.2)

Let ti, δi, ui, vi, Xi denote the observed time, censoring status, geographical parameters,

covariates for subject i. With ηi = X̃T
i β̃ + s(ui, vi), the partial likelihood is

PL =
∏
i∈D

eηi∑
j∈Ri e

ηi
,

where D is the indices of observed events. Ri = {j : tj ≥ ti} denotes the risk set just prior

to time ti. In the event of tied failur times, MapGAM package uses Efron approxiamtion for
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the partial likelihood:

PLE =
∏
i∈D

∏
j∈Fi e

ηj∏di
j=1

[∑
l∈Ri e

ηl −
∑

l∈Fi e
ηl(j − 1)/di

] ,
where Fi is the set of failures at time ti, and di is the number of elements in Fi.

let l denote the log partial likelihood function for the data. To estimate the parameters of

the model we seek to maximize the expected local log likelihood:

η̂i = max
ηi

E(l(η(X̃i, si), ti, δi)),

Under standard regularity conditions (namely the ability to interchange integration and

differentiation), we have

E[dl/dηi]η̂i = 0, (3.3)

While there is no general closed form for solution to (3.3), a first-order Taylor series expansion

leads to an iterative estimating procedure given by

ηnewi = ηoldi − E[dl/dη]ηoldi /E[d2l/dη2]ηoldi ,

which is equivalent to

ηnewi = E

[
η − dl/dη

E[d2l/dη2]

]
ηoldi

. (3.4)

We can compute the first and second derivatives of the log partial likelihood as

dl

dηi
= δi −

∑
j∈Ci

eηi∑
k∈Rj e

ηk
, (3.5)
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and

d2l

dη2
i

= −
∑
j∈Ci

eηi∑
k∈Rj e

ηk
+
∑
j∈Ci

e2ηi(∑
k∈Rj e

ηk

)2 , (3.6)

where Ci = j : i ∈ Rj is the sets of subjects whose risk sets contain i. The Cox model is a

semi-parametric model without any specification for the distribution of the survival times,

so it is not possible to calculate a close form for the expectation of the second derivatives

of the log partial likelihood as required in (3.4). So before updating η, a GAM model can

be fitted using the second derivatives as responses to estimate the expectation of the second

derivatives of log partial likelihood.

To this end, by the equation(3.4), with an estimate ηold, the new estimate for η can be

obtained using the following two steps:

1. Estimate E[d2l/dη2] by fitting a generalized additive model using d2l/dη2 as responses,

including the linear predictor of X and a bivariate smoother of geolocation parameters.

2. Estimate ηnew using the backfitting algorithm described in Section 2.4.2 with−1/Ê[d2l/dη2]

as weights and ηold − [dl/dη]ηold/Ê[d2l/dη2] as responses.

3.3 Simulation Study

In this section we assess the performance of our proposed method for fitting the Cox pro-

portional hazards additive model using two simulation studies. In both simulation settings,

two spatial parameters (u, v) and adjustment covariate x are generated from a uniform dis-

tribution with range from −1 to 1. Survival times were then simulated from an exponential

distribution with a hazard function. The first simulation example assumes a linear effect

of all covariates on the log-hazard and that the effect of adjustment covariate x does not
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interact with the effect of the spatial parameters u and v.

λ = 0.03 exp {log(0.7)x+ log(1.2)u+ log(1.5)v} . (3.7)

In the second simulation example, the spatial parameters have a nonlinear effect on the log-

hazard, while the adjustment covariate x has a linear effect that does not interact with the

spatial coordinates. The hazard function used in the second simulation example is

λ = 0.03 exp
{

log(0.7)x+ log(1.2)u+ log(1.5)v + log(0.8)u2 + log(1.8)uv
}
. (3.8)

The true data-generating heatmaps of the two examples are shown in Figures 3.1a and 3.1c,

respectively. When we set a seed of 269, with N = 5000 sampled data points. The survival

times under the first (second) simulation setting range from 0.0011(0.0011) to 316.5(396.8),

and have a median of 22.66(24.16). In both settings, censoring times were randomly sampled

from a Uniform(0, 70) distribution and observed times were taken to be the minimum of

the true failure time and censoring time for each observation, yielding approximately 41.6%

and 43.9% censoring in scenario 1 and 2, respectively. Code for this simulation is provided

in the Appendix. Cox proportional hazards additive models were fit and the spatial effect of

the points on an equally-spaced grid (201× 201) extended across u ∈ [−1, 1] and v ∈ [−1, 1]

were predicted using the modgam function from the MapGAM package. Smoothing span sizes of

0.4 and 0.2 were utilized for scenario 1 and 2, respectively. In each case, these values roughly

correspond to the automated span size chosen when optimizing AIC.

Figure 3.1b and 3.1d display the estimated spatial effects for example data sets using the first

(linear relationship) and second (nonlinear relationship) simulation settings, respectively.

Comparing the estimated values in Figures 3.1b and 3.1d to the corresponding true data

generating values displayed in Figures 3.1a and 3.1d, we can see that the additive proportional

hazards model implemented in MapGAM accurately recreates the true spatial effects (either
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linear or nonlinear) giving rise to the data. In addition, two scatterplots of the estimated

versus true spatial effect are provided in Figure 3.2a and 3.2b, again illustrating that the

additive proportional hazards method outlined above is able to correctly identify the spatial

effects present in the data with minimal bias.

Scatterplots comparing the empirical standard errors and the estimated standard errors

for the estimated spatial effects using the first (linear relationship) and second (nonlinear

relationship) simulation settings are displayed in Figure 3.3a and 3.3b, respectively. The

estimated standard errors are calculated based on several crude approximations, so compared

to the empirical standard errors, the estimates are not consistent for all grid points. To make

more reliable inference to identify significant clusters, permutation test is suggested to use

although computational time cosuming.

3.4 MapGAM Package

In the MapGAM package, typical spatial applications will start with the predgrid() func-

tion to create a regular grid of points within the study area, potentially restricted to points

within optional map boundaries (e.g., a country, state, or regional map obtained from the

maps package or imported from a shapefile). Crude or covariate-adjusted odds ratios, hazard

ratios, or other effect estimates are then obtained for each grid point using the modgam()

function to smooth by geolocation. modgam() provides compatible and flexible interfaces.

Specifically, the model can be specified via a formula statement, or for users less familiar

with writing model formulas in R, the formula can be omitted in which case the model is

specified implicitly by structuring the data so that the first column of the data represents the

outcome to be modeled (or the first two columns for survival objects), the next two columns

represent the parameters for geolocation, and the remaining columns represent the adjust-

ment covariates to be included in the model. For the univariate outcome, with the model
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(d) Estimates for nonlinear spatial effect

Figure 3.1: Heatmaps of the the log-hazard ratio comparing the hazard of the location to
the median hazard for two simulation examples with 5000 simulated observations. For the
first simulation example with linear spatial effect on log-hazards: (a) estimated log-hazard
ratio; (b) true log-hazard ratio; For the second simulation example with nonlinear spatial
effect on log-hazards: (c) true log-hazard ratio; (d) estimated log-hazard ratio.
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(a) Linear spatial effect (b) Nonlinear spatial effect

Figure 3.2: Comparisons of the true log-hazard ratio and the estimated log-hazard ratio for
two simulation examples with 5000 simulated observations: (a) result for the first simulation
example with linear spatial effect; (b) result for the second simulation example with nonlinear
spatial effect.

(a) Linear spatial effect (b) Nonlinear spatial effect

Figure 3.3: Comparisons of the empirical standard errors based on 10000 simulations and
the esimated standard errors of the spatial effects for two simulation examples with 5000
simulated observations: (a) result for the first simulation example with linear spatial effect;
(b) result for the second simulation example with nonlinear spatial effect.
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specified, modgam() proceeds by calling the gam() function in the gam package to estimate

model parameters, then calls mypredict.gam to generate predictions for the specified grid.

For the censored survival data, the Cox proportional hazards additive model is implemented

by gamcox() function, and predict.gamcox() function can make predictions for newdata

based on the model fitted by gamcox() function. modgam deals with the censored survival

data by calling the gamcox() function to fit the model, then calls the predict.gamcox() func-

tion to generate predictons for the specified grid. A locally weighted scatterplot smoother

(LOESS) (Cleveland, 1979, 1981; Cleveland and Devlin, 1988) is utilized as the bivariate

smoothing function for the two geolocation parameters u and v in the MapGAM package. The

smoothing parameter defining the neighborhood used to select the K nearest observations

points for smoothing may be user specified or automatically chosen by minimizing AIC

(Webster et al., 2006). The optspan() function can be used to find an optimal span size

(proportion of data size included in the neighborhood) for the LOESS smoother. Optionally,

the modgam() function can call optspan() to choose the optimal span for fitting the model

in an automated fashion.

Considering the estimated spatial effect f(ui, vi) for the ith location, researchers are often

interested in the spatial effect difference (or ratio, log-ratio) comparing each location to

a defined reference. To obtain spatial effect estimates, one can specify type="spatial",

then modgam() provides three options for the choice of reference: the median of f(ui, vi),

i = 1, . . . , n, the mean of f(ui, vi), i = 1, . . . , n, or an estimated spatial effect value at a user-

specified geolocation. Alternatively, specifying reference="none" will produce prediction

estimates based upon the linear predictor for each covariate combination in the prediction

dataset (including the model intercept). To produce estimates of effects for all adjustment

covariates, the option type="all" may be specified. The result of modgam() is an object

of class modgam() that can be summarized by class-defined printing and plotting methods.

Specifically, a heatmap of the predicted values from a fitted model can be generated us-

ing either the colormap() or plot() functions. For tailored plots, the trimdata() and
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sampcont() functions can be used to restrict data to those areas within a specified set of

map boundaries and to conduct simple or spatiotemporal stratified sampling from eligible

controls–a useful feature for analysis of data from large cohorts. A function structure plot

of the package is illustrated in Figure 3.4.

Figure 3.4: The function structure of the MapGAM package. the thicker arrows indicate the
procedure flow, and the thinner arrows mean that the funtion the arrow points to calls the
function at the arrow’s origin. trimdata() and sampcont functions can be used to pre-
process the observed data. predgrid() function can be used to generate a regular grid
based on the map. Then the data and grid are the input for modgam() function to estimate
the spatial effect. For GAM model, modgam() calls gam() and mypredict.gam(); For Cox
additive model, gamcox() and predict.gamcox() are called by modgam(). optspan() func-
tion can be optionally called by modgam() to search for an optimal span size for the spatial
smooth term. Finally, the result of modgam() can be summarized by print.gamcox() and
visualized by colormap() and plot.modgam().

Besides fitting the model, MapGAM provides pointwise standard errors as well as confidence

intervals, which are returned by the modgam() function by setting se.fit=TRUE. The esti-

mated pointwise standard errors for spatial effects are derived from the sum of two variance

curves: one from the parametric part, βuui + βvvi, and the other from the non parametric
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part, si (Chambers and Hastie, 1992). The variance curve for the parametric part of the

function reflects the joint covariance behavior, and the variance for the nonparametric part

reflects the marginal information.

modgam() conducts a global test for spatial effects via a likelihood ratio test by comparing

the deviance between a full model (including the spatial smoother) and a reduced model

( omitting the spatial smoother). For the full model, the degrees of freedom of the non-

parametric part is computed as tr(S)−1, where S is the smoothing matrix, and the degrees of

freedom of the parametric part is N−d−3 (or N−d−2 for Cox proportional hazards additive

model). Thus, the degrees of freedom of the full model is N−tr(S)−d−2 (N−tr(S)−d−1),

and the degrees of freedom for the likelihood ratio test statistic is tr(S) + 1. The function

modgam() returns the p-value for the likelihood ratio test automatically. modgam() also

performs permutation test (Kelsall and Diggle, 1998; Webster et al., 2006) to test the global

spatial effect and poitwise significance. The function returns the results of the permutation

test by specifying permute= N.perm, where N.permt is the permutation times.

For visualizing inference for spatial effects, the plot function will plot all point estimates

along with the associated lower and higher band of confidence intervals provided that

se.fit=TRUE is specified in the original modgam() call. By setting contours = "intervals",

areas with confidence intervals excluding 0 (on the log estimated effect scale) will be indicated

on the map by plotting the contours of an indicator vector created to indicate whether 0 is

below, between or above the confidence intervals at the grid points. By setting contours

= "permrank", contours will be added to indicate significant areas that had a pointwise

permutation based p value less than a specified threshold (default of .05).
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3.5 Application Example

3.5.1 Preterm Risk Study

In this section we present an illustrative example using MapGAM to analyze hypothetical case-

control data from Massachusetts. MAdata is a simulated case-control study dataset in the

package. There are 90 cases and 910 controls with random geolocations within Massachusetts,

geocoded on a Lambert projection (in meters). MAmap is a map of Massachusetts using the

same projection. There are also other three covariates in the dataset: smoking, mercury

exposure and selenium exposure. All the covariates values are randomly generated. There

are 1000 simulated observations in total. Summary of the dataset is as following:

R>data(MAdata)

R>data(MAmap)

R>summary(MAdata)

Case Xcoord Ycoord Smoking

Min. :0.00 Min. : 35354 Min. :778430 Min. :0.000

1st Qu.:0.00 1st Qu.:111465 1st Qu.:869089 1st Qu.:0.000

Median :0.00 Median :183100 Median :891067 Median :0.000

Mean :0.09 Mean :175054 Mean :889081 Mean :0.177

3rd Qu.:0.00 3rd Qu.:236826 3rd Qu.:919684 3rd Qu.:0.000

Max. :1.00 Max. :327861 Max. :954253 Max. :1.000

Mercury Selenium

Min. :0.1418 Min. :0.2049

1st Qu.:0.7206 1st Qu.:0.8573

Median :1.0010 Median :1.1836

Mean :1.1471 Mean :1.3590

3rd Qu.:1.4017 3rd Qu.:1.6844

Max. :5.6298 Max. :5.8963

The geolocations of the observations are shown in Figure 3.5, which can be generated using

the following code:

R> # map participants, cases in red and controls in black

R> plot(MAmap)
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Figure 3.5: MAdata geolocations. Control: black; Case: red.

R> points(MAdata.Xcoord,MAdata.Ycoord,col=MAdata.Case+1)

We first start with generating a prediction grid for the map using predgrid by

R>gamgrid <- predgrid(MAdata, map=MAmap) # requires PBSmapping package

After defining a prediction grid, modgam() is used to fit a GAM model based on the MAdata

and generate predictions on the defined grid. A formula expression indicates that the indi-

cator Case is specified as the response, and two spatial parameters Xcoord and Ycoord are

included in lo() to specify a geospatial smoothing term. In addition, potential confounders

Smoking, Mercury and Selenium are also adjusted for in the model as linear terms. Argu-

ment sp is used to specify the span size for the spatial smoothing term. A specification of sp

= null (the default) implies that an optimal span will be selected. Note that if the model

formula is not supplied, the data must be structuring so that the outcome is in the first
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column, the two spatial parameters are in the second and third columns and the adjustment

variables are in other columns. In that case, specifying m="adjusted" will include all other

columns of the data as linear terms in the model and m="crude" will fit only the two spatial

parameters (the m argument is ignored if a model formula is supplied). For this particular

example, the resulting call to modgam() using the formula statement is given as follows:

R> fit1 <- modgam(Case ~ lo(Xcoord, Ycoord) + Smoking + Mercury + Selenium,

+ data=MAdata, rgrid=gamgrid, sp=NULL, verbose = FALSE)

R> # which is equivalent to:

R> # fit1 <- modgam(data=MAdata,rgrid=gamgrid, m="adjusted", sp=NULL,

R> # verbose=FALSE)

R> #

R> fit1

Call:

modgam(formula = Case ~ lo(Xcoord, Ycoord) + Smoking + Mercury +

Selenium, data = MAdata, rgrid = gamgrid, sp = NULL, verbose = FALSE)

Model:

Case ~ lo(Xcoord, Ycoord, span = 0.3, degree = 1) + Smoking +

Mercury + Selenium

Family: binomial Link: logit

Coefficients:

(Intercept)

-6.911648e+00

lo(Xcoord, Ycoord, span = 0.3, degree = 1)Xcoord

2.363118e-06

lo(Xcoord, Ycoord, span = 0.3, degree = 1)Ycoord

4.376156e-06

Smoking

1.533433e+00

Mercury

5.729589e-01

Selenium

-6.431932e-01

Degrees of Residual Freedom: 982.9497

Residual Deviance: 500.0045

AIC: 534.1051

p value for testing the global spatial effect: 9.428405e-05
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Figure 3.6: Heatmap of the odds ratio of spatial effect predictions compared to the median
odds.

Spatial effect predictions:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.87980 -0.26250 0.00000 0.08151 0.29030 1.49900

A heatmap of the estimated spatial effect predictions (representing the odds ratio comparing

the odds at each location to the median odds across all locations) can be generated using

the modgam() plotting routine via a call to the plot() function. This in turn relies upon the

colormap() function defined within MapGAM. The resulting heatmap is displayed in Figure

3.6. The exp argument is used to specify whether the heatmap is drawn on the scale of the

odds ratio (exp=TRUE) or the log odds ratio (exp=FALSE).

plot(fit1,MAmap,contours="response")
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3.5.2 Ovarian Cancer Study

In this section we provide an example of applying the MapGAM package to estimate spatial

effects on censored survival data using hypothetical survival times derived from the state of

California. we use the MapGAM package to estimate and visualize spatial effects for a dataset

simulated from information on censored survival times of California ovarian cancer patients.

These are data contained in the object CAdata within the MapGAM package. The original

source is the California advanced-stage invasive epithelial ovarian cancer patients reported

to the California Cancer Registry from 1996 to 2006 (Bristow et al., 2014). After removing

patients with age < 25 and > 80 for identifiability reasons, and adding random noise to the

geolocation parameters, CAdata is a random draw of size N=5,000 from the original dataset.

Observed times and failure status were simulated based upon the observed distribution

found in the original dataset. Potential covariates available in the dataset include age and

insurance type (6 categories in total: Managed Care, Medicare, Medicaid, Other Insurance,

Not Insured and Unknown) A summary of CAdata is as follows.

R>data(CAdata)

R> summary(CAdata)

time event X Y

Min. : 0.004068 Min. :0.0000 Min. :1811375 Min. :-241999

1st Qu.: 1.931247 1st Qu.:0.0000 1st Qu.:2018363 1st Qu.: -94700

Median : 4.749980 Median :1.0000 Median :2325084 Median : -60387

Mean : 6.496130 Mean :0.6062 Mean :2230219 Mean : 87591

3rd Qu.: 9.609031 3rd Qu.:1.0000 3rd Qu.:2380230 3rd Qu.: 318280

Max. :24.997764 Max. :1.0000 Max. :2705633 Max. : 770658

AGE INS

Min. :25.00 Mcd: 431

1st Qu.:53.00 Mcr:1419

Median :62.00 Mng:2304

Mean :61.28 Oth: 526

3rd Qu.:71.00 Uni: 168

Max. :80.00 Unk: 152
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CAmap is the map file for California State. The geolocations of the observations are plotted

in Figure 3.7.

R> data(CAmap)

R> plot(CAmap)

R> points(CAdata$X,CAdata$Y)
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Figure 3.7: Geolocations of the observations in CAdata.

Below we generate the object CAgrid for the state of California using the predgrid() func-

tion and estimate spatial effects on the relative risk of death from a Cox proportional hazards

additive model using the modgam() function. Finally, a heatmap of the log-hazard ratio com-

paring the log-hazard of each location to the median log-hazard is plotted using the plotting

routines defined for modgam() objects via plot(). The resulting heatmap is displayed in

Figure 3.8.

R> CAgrid = predgrid(CAdata[,c("X","Y")],map=CAmap,nrow=186,ncol=179)
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R> fit2 <- modgam(Surv(time,event)~AGE+factor(INS)+lo(X,Y),data=CAdata,

+ rgrid=CAgrid, sp=0.3, verbose =FALSE)

R> # which is equivalent to

R> # fit2 <- modgam(data=CAdata,rgrid = CAgrid,family="survival",sp = 0.3,

R> # verbose = FALSE)

R> plot(fit2,CAmap,exp=T,border.gray=0.5)

R> fit2

Call:

modgam(formula = Surv(time, event) ~ AGE + factor(INS) + lo(X,

Y), data = CAdata, rgrid = CAgrid, sp = 0.3, verbose = FALSE)

Model:

Surv(time, event) ~ lo(X, Y) + AGE + factor(INS)

span: 0.3

Coefficients:

AGE factor(INS)Mcr factor(INS)Mng factor(INS)Oth factor(INS)Uni

0.02657848 0.03657777 0.05251440 0.16770033 0.26790051

factor(INS)Unk

0.07594159

Degrees of Residual Freedom: 4974.383

Residual Deviance: 46161.06

AIC: 46212.29

p value for testing the global spatial effect: <1e-5

Spatial effect predictions:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.14900 -0.23630 0.00000 0.06566 0.35150 1.27200

Spatial inference can also be visualized. Setting se.fit=TRUE, modgam() returns pointwise

standard errors and confidence intervals. The resulting confidence intervals are then plotted

via the plot function, and are shown in Figure 3.9

R> fit3 <- modgam(Surv(time,event)~AGE+factor(INS)+lo(X,Y),data=CAdata,

+ rgrid=CAgrid, sp=0.3, verbose =FALSE, se.fit=TRUE)

R> plot(fit3,CAmap,exp=T,mapmin=0.2,mapmax=5,border.gray=0.7,

+ contours="interval")

R> fit3

Call:
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|
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Figure 3.8: Heatmap of the log hazard ratio compared to the median log hazard.

modgam(formula = Surv(time, event) ~ AGE + factor(INS) + lo(X,

Y), data = CAdata, rgrid = CAgrid, sp = 0.3, se.fit = TRUE,

verbose = FALSE)

Model:

Surv(time, event) ~ lo(X, Y) + AGE + factor(INS)

span: 0.3

Coefficients:

AGE factor(INS)Mcr factor(INS)Mng factor(INS)Oth factor(INS)Uni

0.02657848 0.03657777 0.05251440 0.16770033 0.26790051

factor(INS)Unk

0.07594159

Degrees of Residual Freedom: 4974.383

Residual Deviance: 46161.06

AIC: 46212.29

p value for testing the global spatial effect: <1e-5

Spatial effect predictions:

Min. 1st Qu. Median Mean 3rd Qu. Max.
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-1.14900 -0.23630 0.00000 0.06566 0.35150 1.27200

Spatial effect 95 % lower interval:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.6100 -0.6257 -0.2189 -0.2173 0.1520 1.0400

Spatial effect 95 % higher interval:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.68810 0.07192 0.29650 0.34860 0.61050 1.73600

−1.61 1.74
log hazard ratio

|
0 |

N
| |
200 km

Lower Interval

−1.61 1.74
log hazard ratio

|
0 |

N
| |
200 km

Spatial Effects

−1.61 1.74
log hazard ratio

|
0 |

N
| |
200 km

Higher Interval

Figure 3.9: Heatmap of the hazard ratio as well as confidence intervals compared to the
median hazard with significant areas circled which were identified by confidence intervals.

3.6 Discussion

Bivariate LOESS smoothing with standard error estimation is computationally intensive,

especially in the context of GAMs and proportional hazards models. For example, with 5000

observations, a span size of 0.2, and a binomial outcome modgam() took about 1 second

to provide estimates without standard errors but about 50 seconds with standard error

estimates (se.fit=TRUE) on recent personal computers. For the same span size and number

of observations but with a proportional hazards model, modgam() took about 40 seconds

without standard errors and about 70 seconds with standard errors. Although slower than
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we might like, the run times for se.fit=TRUE are much faster than the pointwise permutation

test we previously employed which required a 1000-fold increase in run times (Webster et al.,

2006).

Estimating and mapping spatial distributions of disease risk is extremely useful for iden-

tifying health disparities, and mapping risk surfaces that are adjusted for individual-level

confounding variables is of great interest to epidemiologists. By developing and actively

maintaining a convenient R package, MapGAM, we intend to facilitate mapping crude and

covariate-adjusted spatial effects for the most common probability models used to charac-

terize the relationship of disease risk to spatial location and other factors. In the future

we hope to improve the flexibility of the package by expanding the incorporated smoothing

methods, including the addition of basis expansion and tensor product methods, allowing

for smoothing over more than two dimensions, and expanding the sampcont() function to

include additional sampling methods such as matching. Further research on the development

and implementation of adaptive smoothing methods that allow for the amount of smoothing

to vary depending on the local extent of a spatial effect is currently in progress, and may be

added to the package in a future update.
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Chapter 4

Spatial Analysis for Disease Outcomes
via Adaptive smoothing

4.1 Introduction

In spatial epidemiology studies with point-based data, spatial (bivariate) smoothing methods

are often employed. Three commonly used spatial smoothing methods are local-averaging

smoothers, smoothing splines, and thin-plate splines, as discussed in Chapter 2. As previ-

ously described, local-averaging smoothers use the weighted average of responses within the

neighborhood as an estimate, and a variety of weighting schemes have been proposed in the

literature. Kernel smoothers (Nadaraya, 1964; Priestley and Chao, 1972) use kernel functions

to define weights, and the radius of the kernel functions determines the size of smoothing

neighborhood and hence the amount of smoothing. Locally-weighted scatterplot smoothers

(LOESS) (Cleveland, 1979, 1981; Clark, 1977; Tibshirani and Hastie, 1987) calculate the

weights using a weighted (tricube weighting function) local linear or polynomial regression

with data points residing in the neighborhood of the observation to be predicted. Alter-

natively, smoothing splines fit a smooth curve to observed responses using spline functions

that are estimated by minimizing a penalized likelihood function. Tensor-product smoothing

splines (De Boor, 1978; Wood, 2006) construct the spline functions using two sets of knots
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on two spatial parameters, where the spline functions can again be estimated by minimizing

a penalized likelihood. As an alternative to smoothing splines, thin-plate splines (Duchon,

1977) have gained popularity for spatial analysis because there is no need to specify knots

for the form of spline functions (Cressie, 1993; Hutchinson, 1995).

Another prominent approach for geographical smoothing is Kriging (Stein, 1999), which

models the values of a function at different points via a Gaussian process governed by prior

covariances, along with weights calculated based on the covariances. Kriging can also be jus-

tified from a Bayesian perspective (Williams, 1998). This justification starts with a Gaussian

process as the prior distribution over functions and the covariance between any two points is

the covariance function (or kernel) of the Gaussian process evaluated at the spatial location

of the two points. Predicted values are then obtained by combining the Gaussian prior with

a Gaussian likelihood function computed using the observed values.

Despite the fairly common use of kernel-based methods and smoothing splines, each of these

smoothing methods uses a global smoothing parameter, and hence the amount of smoothing

is held constant across all locations. The result is that some regions may under-smoothed,

while others are over-smoothed. To address this deficiency, a series of spatially adaptive pe-

nalized spline models have been proposed by Ruppert and Carroll (2000); Lang et al. (2002);

Baladandayuthapani and Carroll (2005); Crainiceanu and Goodner (2007); Krivobokova and

Kauermann (2008). A common feature of all of these methods is the introduction of spa-

tial adaptivity by imposing a functional structure on the smoothing parameters under the

context of an ordinary penalized spline again requiring knot specification along with the

selection of a penalization parameter.

To improve spatial adaptivity and avoid not specification, Bayesian models have recently

been proposed that rely on a class of adaptive Gaussian Markov Random Fields (GMRFs)

with stochastic interaction weights in a space-varying coefficient model. Specifically, Brezger

and Hennerfeind (2007) extended Intrinsic GMRFs (IGMRFs), introduced in Chapter 2,
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by specifying independent gamma priors on the unknown weights. However, this approach

failed to provide a spatially-varying covariance as needed when estimating functions with

high spatial variability (Lang et al., 2002). ?Brezger and Hennerfeind (2007) later proposed

an IGMRF model for the logarithms of the weights in a second hierarchy. More recently, Yue

and L. (2010) constructed a particular IGMRF prior with a full-rank factorization property

in the first hierarchy then specified another simpler GMRF prior for the adaptive variance

function. Their approach results in a two-dimensional extension of the one-dimensional

adaptive modeling procedure proposed in the work of Lang et al. (2002).

From the perspective of spatial disease mapping, two drawbacks of the above Bayesian mod-

els for adaptive spatial analysis are that (1) they assume a normally distributed outcome,

and (2) they do not consider adjustment for additional covariates beyond location. In epi-

demiologic studies, discrete outcomes such such as disease incidence and count data are

common outcomes of interest. Further, adjustment of potential confounders is nearly always

necessary when estimating adjusted spatial effects in order to isolate the spatial pathway of

interest. In this chapter, we build on the previous work of Yue et al. (2010) and propose

a hierarchical Bayesian adaptive thin-plate spline for generalized additive models (GAMs)

that allows for spatial smoothing of continuous, binary and count outcomes. Moreover, our

proposed method allows for the amount of smoothing to flexibly vary depending on the local

extent of spatial effect by using nonstationary spatial Gaussian Markov random fields while

accommodating adjustment for potential confounders.

The remainder of this chapter is organized as follows: Nonstationary GMRF priors corre-

sponding to adaptive thin-plate splines for continuous and discrete outcomes with additional

covariate adjustment are introduced in Section 4.2. This section also introduces the relevant

MCMC techniques required for fitting the proposed model. Performance of the proposed

method is investigated by simulation in Section 4.3. An application to the previously in-

troduced (see Chapter 1) epidemiologic study investigating spatial heterogeneity in the risk
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of preterm birth among Massachusetts residents is given in Section 4.4. In Section 4.5, we

conclude with a discussion of the proposed method and possibilities for future work.

4.2 Methods

Assume there are N observations, and let (ui, vi) represent the longitude and latitude of the

ith observation’s location in a map, i = 1, . . . , N . Further consider the following spatial

model for a univariate disease outcome assuming that the outcome follows a distribution

that belongs to the exponential family:

g(E[Yi]) = XT
i β + f(ui, vi), (4.1)

where g()̇ is the link function, Xi ∈ Rp is a vector of covariates to be controlled, and f()̇

is an unknown bivariate function representing the spatial effect on the outcome Yi. Let

L(Yi, Xi, ui, vi) represent the ith observation’s contribution to the log-likelihood function.

Then the thin-plate spline estimator of f is the solution to

f̂ = min
f

{
−
∑
i

L(Yi, Xi, ui, vi)) + λJ2(f)

}
, (4.2)

where J2(f) is the roughness penalty for f on R2 and is given by

J2(f) =
∫∫

R2

[(
∂2f(u,v)
∂u2

)2

+
(
∂2f(u,v)
∂u∂v

)2

+
(
∂2f(u,v)
∂v2

)2
]
dudv

=
∫∫

R2

[(
∂2

∂u2
+ ∂2

∂v2

)
f(u, v)

]
dudv.

In the above model, the smoothing parameter λ controls the trade-off between the likelihood

of the data and the smoothness of the function from the penalty term J2(f). As previously

noted, a global specification for λ fails to adapt to variable smoothness across different

locations. To allow for spatial adaptivity, Yue and L. (2010) proposed a Bayesian hierarchical

model by allowing λ to spatially vary according to the local extent of the smooth function.

More precisely, the method allows for adaptive smoothing of the spatial effect using a prior
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based on a discretized thin-plate spline. However, the approach proposed by Yue and L.

(2010) is assumes a continuous normally distributed outcome and a rectangle map without

consideration of adjustment for potential confounding factors. In following sections, we

extend the work of Yue and L. (2010) by proposing a Bayesian adaptive thin-plate smoothing

splines based on the data model given in (4.1) that can be utilized on a map with arbitrary

shape.

4.2.1 Thin-Plate Splines Prior

We begin by generating an evenly-spaced grid containing n grid points across the map with

distance h between any two grid points. Denote the vectorized longitude and latitude grid

points by ũ = [ũ1, · · · , ũn]T and ṽ = [ṽ1, · · · , ṽn]T , respectively. Define z = [z1, · · · , zn]T by

zj = f(ũj, ṽj), j = 1, . . . , n,

and let D = [dij] be the N × n incidence matrix with dij = 1 if the jth grid point is the

nearest grid point to the ith observation’s location, and dij = 0 otherwise. From this, the

data model can be vectorized as

g(E[Y ]) = Xβ +Dz.

If the distance, h, between any two grid points is small enough, the second partial derivative

of f in Eq. (5.3) can be approximated by

∂2

∂u2
f(ũj, ṽj) ≈ h−2∇2

(1,0)f(ũj, ṽj)

∂2

∂u2
f(ũj, ṽj) ≈ h−2∇2

(0,1)f(ũj, ṽj),

where ∇2
(1,0) and ∇2

(0,1) denote the second order backward difference operators. Let zjL

reprensent the function value at the left of the point (ũj,ṽj), and zjR, zjU , zjD represent

function values at three other locations: Right, Upper, Lower, respectively. The the second
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order backward difference operator is defined as

∇2
(1,0)f(ũj, ṽj) = zjR − 2zj + zjL

∇2
(0,1)f(ũj, ṽj) = zjD − 2zj + zjU

.

A resulting approximation of the roughness penalty, J2(f), is then given by

J2(f) ≈ 1

h4

n∑
j

[(zjR + zjL + zjD + zjU − 4zj)]
2. (4.3)

The approximation has a quadratic expression z′A0z with each entry in A0 defined by coef-

ficients in equation (4.3). Specify a prior distribution for z of the form

z|δ ∝ exp

(
−δ

2
z′A0z

)
. (4.4)

Then the random vector z in equation (4.4) is an improper GMRF and satisfies the Markov

conditional independence assumption. Further, the posterior distribution of z is given by

z|Y,X, β, δ ∝ exp

(∑
i

L(Yi, Xi, ui, vi)−
δ

2
z′A0z

)
,

which suggests that an estimate based on the posterior distribution of z can provide the

solution to the optimization problem posed by (4.2). However, because the backward dif-

ference operator cannot be applied to boundary points, the null space of the matrix A0 has

dimension equal to the number of boundary points.

To fix the above rank-deficiency issue with A0, (Yue and L., 2010) proposed adding boundary

terms based on a rectangle map. As our interest lies in spatial mapping over arbitrary

geographic boundaries, we generalize the boundary terms proposed by (Yue and L., 2010)

incorporate maps of any shape. To this end, let IjL denote the indicator that there exists a

grid point at the left of the point (ũj,ṽj), and let IjR, IjU and IjD denote indicators at the

other three positions: right, upper and lower respectively. The penalty term J2(f) can then
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be approximated after correcting for the boundary terms as:

J2(f) ≈ 1

h4

n∑
j

[(zjRIjR + zjLIjL + zjDIjD + zjUIjU)− zj(IjR + IjL + IjD + IjU)]2. (4.5)

Now let Ã denote the n × n structure matrix in the quadratic expression z′Ãz for the

approximation in (4.5). Then Ã is semi-definite with rank n − 1 and can be written as

Ã = B̃′B̃, where B̃ is a n× n matrix such that

[B̃z]j = (zjRIjR + zjLIjL + zjDIjD + zjUIjU)− zj(IjR + IjL + IjD + IjU).

Thus, the vector B̃z is the summation of the second order difference of spatial effect f in

vertical and horizontal directions with rank n− 1. If we define B(n−1)×n by deleting the first

row of B̃, then B is full rank with rank n− 1. Then letting A = B′B, the prior on z is can

be specified as

z|δ ∝ exp

(
−δ

2
z′Az

)
, (4.6)

where the random vector z is an IGMRF of the first order and satisfies the Markov conditional

independence assumption.

4.2.2 Spatially Adaptive Thin-Plate Spline Priors

The prior on z shown in equation (4.6) is equivalent to a multivariate normal prior on Bz,

with Bz ∼ N (0, δ−1I), and utilizes a global δ. As such, smoothness of the model fit is

not adaptive based on location. To introduce adaptivity, following Yue and L. (2010), we

replace the global δ with locally-varying parameters δj, j = 1, . . . , n. Then, a small value of

δj represents less smoothing of the spatial effect z at grid point j, and vice versa.

To re-paramterize δj, set δj = δeγj , where δ is a location invariant scale parameter, and γj
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serves as the adaptive precision for δj. The modified prior of z is of the form

z|δ, γ ∝ exp

(
−δ

2
z′Aγz

)
where γ = [γ1, · · · , γn−1]′, and Aγ = B′diag{eγ1 , eγ2 , · · · , eγn−1}B. This is then equivalent to

a Gaussian prior for Bz with

Bz ∼ N


0, δ



e−γ1 0 · · · 0

0 e−γ2 · · · 0

...
...

. . . · · ·

0 0 · · · e−γn−1




, (4.7)

which shows that the variances of the second order differences of the function at different

locations are different indeed different. A smaller γj means the variance of the second order

difference of the function at location (ũj+1, ṽj+1) is larger, and hence the penalty on the

smoothness is at grid point j is smaller, and vice versa.

An additional prior must be defined for vector γ. As the elements in γ are also spatially

dependent, we specify the prior on γ to be a first order IGMRF on our grid of the form

γ|δ, η ∝ (δη)n−2exp

(
−δη

2
γ′Mγ

)
I1′γ=0,

where M is an (n−1)×(n−1) matrix with rank n−2, and entries are based on the quadratic

expression

γ′Mγ =
∑
j

[γjLIjL + γjUIjU − γj(IjL + IjU)]2.

However, because M is not full rank, we employ the constraint I1′γ=0 in order to guarantee

identifiability.

To this point we have specified an IGMRF prior on the spatial effect z in the first hierarchy

which allows for smoothness to vary adaptively by introducing vector γ, and specifying a first-
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order IGMRF prior on γ in the second hierarchy. Prior specification for β, the coefficients

representing the association between the outcome and potential adjustment covariates is also

required. To this end, we specify a diffuse Gaussian prior on β such that

β ∼ N (µ0,Σ0) , Σ0 = diag{τ1, · · · , τp}.

4.2.3 Hyperpriors

To complete the model, hyperpriors on the precision hyperparamters δ and η are required

for a full Bayesian specification. As we discussed in Section 4.2.2, δ is a scale parameter

which controls the degree of global smoothing taken on the whole field z. A smaller value of

δ yields a less smooth function. The parameter η determines the degree of smoothing put on

γ. A smaller value of η implies a more variable precision for γ and therefore more adaptivity

applied on the smoothing of z. We set a Pareto prior for δ and an inverse gamma prior for

η of the forms:

δ ∝ cd

(c+δ)d+1

η ∝ η−a−1 exp(−b/η)
(4.8)

The probability density functions for the inverse gamma priors and Pareto priors with dif-

ferent sets of parameters are shown in Figure 4.1 and Figure 4.2, respectively. Because the

Pareto distribution can be written as a scale mixture of exponentials by introducing a latent

variable θ, we modify the prior on δ by

δ|θ ∼ Exp(θ)

θ ∼ Gamma(d, c)
(4.9)

Full Bayesian inference can be guaranteed using the hyperpriors following Yue et al (2012).

The ranges of values of a, b, c and d can be targeted to yield sufficient nonliearity patterns

based on the posterior distribution, and the values can be further tuned based on Bayesian

model selection criterions such as BIC.
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(a) a = 80; b = 1. (b) a = 0.5; b = 0.2.

Figure 4.1: Probability density function of the inverse gamma distribution with different sets
of parameters; (a): a = 80 and b = 1; (b): a = 0.5 and b = 0.2.

4.2.4 MCMC Sampling from the Posterior Distribution

As previously noted, we specify a IGMRF prior on z and γ, a diffuse Gaussian distribution

for β, a inverse gamma distribution for η, and a Pareto prior for δ. We have also introduced

a latent variable θ since the Pareto distribution can be seen to be a scale mixture of ex-

ponentials. Based upon this model specification, the conditional posterior distributions are

given by

z|Y,X, u, v, γ, β, δ ∝ exp
{∑

i L(Yi, Xi, ui, vi)− δ
2
zTAγz

}
β|Y,X, u, v, z ∝ exp

{∑
i L(Yi, Xi, ui, vi)− (β − µ0)TΣ−1(β − µ0)/2

}
γ|z, η, δ, θ ∝ exp

{
−δzTAγz/2− δηγTMγ/2

}
I1T γ=0

δ|z, η ∼ Gamma(n− 1/2, zTAγz/2 + ηγTMγ/2 + θ)

η|γ ∝ η(n−2)/2−a−1 exp{−δηγTMγ/2− b/η}

θ|δ ∼ Gamma(d+ 1, δ + c).

(4.10)
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(a) c = 0.05; d = 8. (b) a = 2; b = 8.

Figure 4.2: Probability density function of the Pareto distribution with different sets of
parameters; (a): c = 0.05 and d = 8; (b): c = 2 and d = 8.

From the above, we implement the following posterior MCMC sampling procedure using a

Gibbs sampler. We use block sampling (Cater and Kohn, 1996) to sample z by first dividing

the vector into several small blocks and then updating block-by-block using a Metropolis-

Hastings algorithm. The point locations in each block, and block size, should be chosen so

that, based on the GMRF prior, the points within the block are correlated and the number

of dependent points outside of the block are as small as possible If the number of dependent

points that are outside of the block is too large, convergence will be slowed because of the

high dependency among blocks. For example, Figure 4.3 shows two types of block choice

denoted by ”•”. The points denoted by ”∗” are dependent with the block. In the first

example, points within the block are highly correlated, where the number of dependent

points outside of the block is 20. In the second example, the left two points in the block and

the right four points in the block are not correlated, but the number of dependent points

outside of the block is 24 > 20. Hence, the first example shown in Figure 4.3a would result

in faster convergence than the second example shown in Figure 4.3b.
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◦ ◦ ◦ ◦ ∗ ∗ ∗ ◦ ◦
◦ ◦ ◦ ◦ ∗ ∗ ∗ ◦ ◦
◦ ◦ ∗ ∗ • • • ∗ ∗
◦ ◦ ∗ ∗ • • • ∗ ∗
◦ ◦ ◦ ◦ ∗ ∗ ∗ ◦ ◦
◦ ◦ ◦ ◦ ∗ ∗ ∗ ◦ ◦

(a) Example1.

◦ ◦ ∗ ◦ ◦ ∗ ∗ ◦ ◦
◦ ◦ ∗ ◦ ◦ ∗ ∗ ◦ ◦
∗ ∗ • ∗ ∗ • • ∗ ∗
∗ ∗ • ∗ ∗ • • ∗ ∗
◦ ◦ ∗ ◦ ◦ ∗ ∗ ◦ ◦
◦ ◦ ∗ ◦ ◦ ∗ ∗ ◦ ◦

(b) Example 2.

Figure 4.3: Examples of blocks and dependent points when performing block sampling pro-
cedures for MCMC samples of z. (a): Example 1 ; (b): Example 2.

The proposal for the Metropolis-Hastings algorithm is taken to be the prior on that block

conditioned on points outside of the block. We define z = (zbl, z−bl)
′, where zbl represents

the values at the points in a block, and z−bl are the values at the points outside the block.

Then the posterior distribution of zbl is

π(zbl|Y,X, u, v, z−bl, γ, β, δ) ∝ p(Y |X, u, v, z, β)π∗(zbl|z−bl, γ, δ).

Since

zbl, z−bl|γ, δ ∝ exp

δ

2
[zbl, z−bl]

T

 Aγ[bl, bl] Aγ[bl,−bl]

Aγ[−bl, bl] Aγ[−bl,−bl]

 [zbl, z−bl]

 ,

So the conditional prior for zbl is

zbl|z−bl, γ, δ ∼ N
(
−Aγ[bl, bl]A−1

γ [bl,−bl]z−bl, δA−1
γ [bl, bl]

)
, (4.11)

Although Aγ is not full rank (the rank is n − 1) and the prior on z is an IGMRF of the

first order, the prior distribution of a block conditional on the boundary values is a propoer

multivariate normal distribution indicating that the conditional covariance matrix Aγ[bl, bl]

is of full rank (Cater and Kohn, 1996). As such, we use the conditional prior in equation

(4.11) as the proposal distribution when updating each block. The candidate z∗bl drawn from
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the proposal distribution is then accepted with probability

πacceptz = min
(

1,
π(z∗bl|Y,X,u,v,z−bl,γ,β,δ)π

∗(zbl|z−bl,γ,δ)
π(zbl|Y,X,u,v,z−bl,γ,β,δ)π∗(z∗bl|z−bl,γ,δ)

)
= min

(
1,

p(Y |X,u,v,z∗bl,z−bl,β)π∗(z∗bl|z−bl,γ,δ)π
∗(zbl|z−bl,γ,δ)

p(Y |X,u,v,zbl,z−bl,β)π∗(zbl|z−bl,γ,δ)π∗(z∗bl|z−bl,γ,δ)

)
= min

(
1,

p(Y |X,u,v,z∗bl,z−bl,β)

p(Y |X,u,v,zbl,z−bl,β)

)
.

β can be updated using a Metropolis-Hastings algorithm with proposal distribution

β∗ ∼ N
(

(Σ−1
0 + V −1(β̂))−1(Σ−1

0 µ0 + V −1(β̂)β̂), (Σ−1
0 + V −1(β̂))−1

)
,

where β̂ is the MLE of β conditional on z, and V (β) is the asymptotic variance of β̂ given

by the inverse of the corresponding Fisher information.

Similar to the sampling procedure for z, block sampling can again be used to sample from

the posterior distribution of γ, but more steps are required because there is a constraint for

γ, given by 1Tγ = 0. To sample γ, we start by dividing the vector into several blocks. For

each block, a candidate γ∗bl can be drawn from the prior distribution conditional on γ∗−bl:

γbl|γ−bl, η, δ ∼ N
(
−M [bl, bl]M−1[bl,−bl]γ−bl, ηδM−1[bl, bl]

)
,

then γ∗bl is accepted with probability

πacceptγ = min

(
1,
p(z|γ∗bl, γ−bl, δ)
p(z|γbl, γ−bl, δ)

)
.

Centering γ∗bl to 1Tγbl so that 1Tγ∗bl = 1Tγbl, it is seen that the constraint 1Tγ = 0 is

satisfied. However, this implies that the sum of the γi for each block update will never

changes throughout the MCMC iterations. Therefore, two different sets of blocks can be

used alternately. For example, in the mth iteration, γ may be updated based on the first set

of blocks shown in Figure 4.4a and in the m+ 1th iteration, γ may be updated based on the

second set of blocks shown in Figure 4.4b. It should be noted that any two blocks from the

two sets cannot be the same.
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(a) Block set 1. (b) Block set 2.

Figure 4.4: Examples of two different sets of blocks.

The posterior distributions of δ and θ are both gamma distributions as shown in (5.9),

and are easily sampled from. The posterior conditional distribution of η is log-concave, so

the adaptive rejection Metropolis sampling (ARMS) method (Gilks and Wild, 1992) can

be utilized to sample from the posterior distribution of η. ARMS is implemented in the R

package ars (Rodriguez and Komarek, 2014). The basic idea of ARMS is that for a concave

(or log-concave) distribution, samples can be drawn using the rejection sampling procedure,

and the rejection envelop is a (exponential) piecewise function based on adaptively specified

knots. Figure 4.5 shows an example for the piecewise function corresponding to a concave

probability distribution.

4.3 Simulation Study

We performed a single simulation study using data generated on the map of Massachusetts

State. The geographical distribution of the data are shown in Figure 4.6. Consistent with

the Massachusetts preterm birth data, we considered a binary outcome generated by

y ∼ Bern
(
logit−1(Xβ + f(u, v))

)
where β = [log(0.8), log(1.5)]T and specify a nonlinear spatial effect f such that

−1.5+3 exp
(
−3 (u/100000 + v/100000− 11)2 − 2 (u/100000− v/100000 + 6.7)2) (4.12)
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Figure 4.5: Example to illustrate how the adaptive rejection Metropolis sampling works: For
a concave distribution with solid line, and knots specified at 5, 10 and 15, the rejection sam-
pling procedure can be performed using a piecewise function with dash line as the rejection
envelop.

where u and v are two coordinate parameters (measured in meters), and were generated by

Lambert conformal conic projection for the State of Massachusetts. A thin-plate, equally

spaced by 6.6 km, as well as the contours of spatial effect in (4.12) are shown in Figure 5.2.

We did not include an intercept in the data generating model because the nonlinear spatial

effect inherently accounts for this. The grid size of 495 and a sample size of N = 1000 was

used. We used prior parameter values of a = 100, b = 1, c = 0.001, d = 8 for the hyperpriors

of δ and η. For sampling from the posterior distribution of z, the vector z was divided into 44

blocks, and each block contained 9 14 elements, as shown in Figure 4.8a. To sample γ, two

sets of blocks were needed, and the second set of blocks (42 in total) is shown in Figure 4.8b.

For this simulated example, 15, 000 MCMC samples were drawn, and we chose a burn-in of

10, 000 to ensure convergence. The trace plots of the posterior draws are shown in Figure

4.15
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Figure 4.6: Geographical distribution of the simulated data from Massachusetts State.

We compare the performance of the Bayesian adaptive method with the performance of the

GAM, which is commonly used to estimate the adjusted spatial effects for discrete disease

outcomes. The GAM method is implemented using the GAM package in R with LOESS as

the smoothing method. Two spans are chosen for comparison for the GAM method. First,

a choice of 0.2 (suggested by AIC as the optimal span size) and a choice of 0.1 to illustrate

the effect of potential under-smoothing in the GAM.

The scatterplot of the posterior mean of z versus the true adjusted spatial effects of all

estimates are plotted in Figure 4.9. When the span size for the GAM is large (Figure 4.9a),

the overall variation of the estimates is relatively small, but for the area where the spatial

Figure 4.7: The colormap with contours of the spatial effect function.
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(a) First set of blocks. (b) Second set of blocks.

Figure 4.8: Two sets of blocks used in the simulation study when the block sampling is
performed to sample from the posterior distribution of z and γ. (a) has 44 blocks and was
used when sampling z. (b) has 42 blocks and was used when sampling γ.

effect changes quickly, the bias model fits is pronounced. Conversely, when the span size

for the GAM is small (Figure 4.9b), the resulting bias is relatively small, but near the area

where the spatial effect is flat the variation of the estimates is large. However, with the

proposed adaptive method the results indicate both approximately unbiased estimates and

along with relatively smaller overall variation (Figure 4.9c).

To further assess the performance of the proposed method, we divide the map into six regions

as shown in Figure 4.10, and compare the MSE of the three methods region by region in

Table 4.1. The MSE for the proposed adaptive smoothing method is 0.158, which is smaller

than the GAM methods with either span size (0.173 for the span size of 0.2 and 0.393 for

the span size of 0.1). Not surprisingly, the GAM method with a span size suggested by AIC

(span size of 0.2) attained smaller MSEs than the GAM method using a smaller span size

in all the six regions. However, the adaptive smoothing procedure performs better than the

GAM with a span size of 0.2 in all other regions other than region B, where spatial effects

are consistently homogeneous but near the high spatial effects of Region C.
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(a) GAM (span=0.2). (b) GAM (span=0.1). (c) Adaptive smoothing.

Figure 4.9: Performance comparison (estimated adjusted spatial effect versus the true ad-
justed spatial effect) of the GAM with LOESS as the smoothing method and the proposed
adaptive smoothing method. (a) GAM model using span size of 0.2 (as selected by AIC);
(b) GAM model using span size of 0.1; (c) The proposed adaptive smoothing method.

4.4 Application to Massachusetts Preterm Birth Study

In this section we apply our proposed adaptive smoothing method to a study aimed at evalu-

ating the spatial effect on preterm birth (< 37 weeks) risk (see Chapter 1 for further details).

The data consist of birth outcomes data from the state of Massachusetts and are comprised

of data from N = 61, 942 live births. Geolocations of each mother’s residence are used as

spatial parameters (measured in meters). Potential confounding factors also available for

analysis include maternal race, and indicator of maternal smoking during pregnancy, mater-

nal age, median income within the census block of the residence of the mother, insurance

type, an indicator of maternal alcohol consumption during pregnancy, father’s education and

parity. Given prior evidence on the associations between each of the above covariates and

the risk of preterm birth, all variables are adjusted for as potential confounding factors. The

spatial distribution of all mothers as well as pteterm birth mothers are shown in Figure 4.11.
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Figure 4.10: The map is divided into six regions to compare MSE of the competing methods
region by region (results shown in Table ).

Table 4.1: MSE of the three methods (GAM with span of 0.2, GAM with span of 0.1 and
adaptive smoothing) in the six regions as shown in Figure 4.10. Results are based upon a
single simulated dataset of 1000 observations on MA state.

MSE A B C D E F Overall
GAM (span=0.2) 0.099 0.089 0.108 0.147 0.281 0.606 0.173
GAM (span=0.1) 0.357 0.179 0.202 0.334 0.637 1.147 0.393

Adaptive smoothing 0.095 0.105 0.082 0.104 0.232 0.575 0.158
%change 4% -6% 18.5% 25% 17.8% 5% 11.5%

We used the same grid and set of blocks as in the simulation study presented in Section 4.3

to sample z and γ. The acceptance rates for the actual data were between 0.2 and 0.3. We

used prior parameter values of a = 80, b = 1, c = 0.001, d = 10 for the hyperpriors of δ and η.

Posterior means were calculated as summary measures of the posterior distriutions of model

parameters. The MCMC procedure for the adaptive model was run for 10,000 iterations with

a burn-in of 5,000. Trace plots resulting from the MCMC algorithm are shown in Figure

4.16. Because the sample size of the actual data is approximately 60 times larger than that

used in the simulation study, the MCMC sampling converged faster than the simulation

study. For comparison, we also fit a (nonadaptive) GAM model with span size of 0.3 (chosen

by minimizing AIC). Figure 4.12b shows the estimated odds ratio of adjusted spatial effects
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Figure 4.11: Spatial distribution of the mothers in the Massachusetts data set.

compared to median odds (marginalized over the state) using the adaptive method. Figure

4.12a displays the resulting odds ratio estimates using the GAM method.

(a) GAM method (span of size 0.3 as chosen
by AIC). (b) Adaptive method.

Figure 4.12: Colormap of the estimated odds ratio of adjusted spatial effects compared to
the median odds over the state using (a): GAM method (span size of 0.3 as chosen by AIC)
and (b): proposed adaptive smoothing method.

In Figure 4.13 we circle four areas where the estimates using the two methods differ. These

same areas are consistent with those areas in the simulation study that indicated better per-

formance of the adaptive smoothing procedure relative to the GAM (data in the simulation
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were generated using a similar population density). Areas of significant spatial effects as sug-

gested by 95% probability (point-wise 95%confidence) intervals based on the two methods

are presented in Figure 4.14. Notably, the cluster in the southwest area of the state that is

estimated to be significantly different by the adaptive smoothing approach is not highlighted

by the GAM method.

Figure 4.13: Four areas are circled where the GAM method and adaptive smoothing method
show different patterns.

4.5 Discussion

In this chapter, we introduced a novel adaptive GMRF by using a spatially varying variance

component with its own GMRF prior to estimate the adjusted spatial effects for disease out-

comes while accounting for confounding factors. The result is a Bayesian hierarchical model

corresponding to a discretized adaptive thin-plate spline suitable for non-stationary spatial

data. Bayesian computation is based on an efficient Gibbs sampler, in which two block-

sampling Metropolis-Hastings algorithms are used. The performance of our non-stationary

spatial model has been demonstrated by a simulated example informed by real spatial epi-

demiologic data. Further, the method was applied to preterm birth data from the state of
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(a) GAM (span size of 0.2).

Figure 4.14: Significant areas for the preterm birth risk in Massachusetts state suggested
using (a) the GAM method and (b)the proposed adaptive smoothing method.

Massachusetts to evaluate the role of geospatial location on preterm birth risk. When com-

pared to a more standard GAM, the applied results indicate that the adaptive smoothing

approach was able to identify significantly different geographic clusters indicating differential

risk of preterm birth. Future work may include more efficient approaches to specifying prior

parameter values for the hyperpriors of the model, and extending the work to estimate the

possible spatio-temporal effects in epidemiology studies.
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(a) δ. (b) η.

(c) β1. (d) β2.

(e) z. (f) γ.

Figure 4.15: Traces of the MCMC samples in the simulation study.
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(a) δ. (b) η.

(c) β1. (d) β2.

(e) z. (f) γ.

Figure 4.16: Trace plots of the MCMC samples when estimating the adjusted spatial effect
on preterm birth risk based on the Massachusetts data.
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Chapter 5

Spatial Analysis for Censored Survial
Data via Adaptive smoothing

Spatial effect estimation in the context of survival outcomes is of great interest in epidemi-

ology studies (Henderson et al., 2002; Bristow et al., 2014). In this chapter, we extend

the adaptive smoothing technique proposed in Chapter 4 to the analysis of right-censored

survival outcomes. A Weibull distribution is adopted to model the time-to-event response,

and the Bayesian hierarchical model for adaptive smoothing of adjusted survival rates over

geolocations is introduced in Section 5.1. Performance of the method is evaluated by a sim-

ulation study in Section 5.2, and an application to a population-based epidemiologic study

investigating spatial heterogeneity in survival times among California advanced-stage ovar-

ian cancer patients is presented in Section 5.3. We conclude the chapter with a discussion

of the proposed methods and of future work in Section 5.4.
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5.1 methods

5.1.1 Data Model

We consider a Weibull distribution for the survival time T , so that the survival function is

given by

ST (t) = Pr(t > T ) exp{−λtα}. (5.1)

and the probability distribution for survival time is given by

fT (t) = −αλtα−1 exp{−λtα}. (5.2)

Let (u, v) represent the longitude and latitude of the location of a given observation, and let

X ∈ Rp denote a vector of covariates to be adjusted in the model. Then we assume that

log(λ) = Xβ + f(u, v),

where β reflects the association between the adjustment covariates and the survival hazard,

and f(u, v) represents the spatial effect of location on the survival hazard. As noted in

Chapter 2, for right-censored survival data with an observed time t and the corresponding

censoring status δ, the likelihood L can be written as

L = f(t)δS(t)1−δ

= (αλtα−1)
δ

exp {λtα} .

Assuming there are N independent observations, let (ui, vi) represent the longitude and

latitude of the ith observation’s location on a map, and let ti, δi, and Xi represent the

observed time, censoring status and adjustment covariates values of subject i, respectively.

We consider a thin-plate spline estimator where f is the solution to

f̂ = min
f

{
−
∑
i

log(L(ti, δi, ui, vi, Xi)) + φJ2(f)

}
,
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with J2(f) representing the roughness penalty for f on R2 such that

J2(f) =
∫∫

R2

[(
∂2f(u,v)
∂u2

)2

+
(
∂2f(u,v)
∂u∂v

)2

+
(
∂2f(u,v)
∂v2

)2
]
dudv

=
∫∫

R2

[(
∂2

∂u2
+ ∂2

∂v2

)
f(u, v)

]
dudv,

(5.3)

and φ is a smoothing parameter to control the trade-off between the likelihood of the data

and the smoothness from the penalty term J2(f).

To introduce adaptivity, a spatially varying function φ(u, v) is used instead of a global φ.

Therefore, φJ2(f) in (??) is replaced by J∗2 (f) given by

J∗2 (f) =

∫∫
R2

φ(u, v)

[(
∂2

∂u2
+

∂2

∂v2

)
f(u, v)

]
dudv.

5.1.2 Spatially Varying Thin-Plate Priors

We start by generating an evenly-space grid with n grid points across the map, and vec-

torized longitudes and latitudes of the grid points denoted by ũ = [ũ1, · · · , ũn]T and ṽ =

[ṽ1, · · · , ṽn]T , respectively. Let the vector z denote the spatial effects on the vectorized loca-

tions, and D denote the incidence matrix (see Chapter 2). Then we can vectorize the data

model as

log(λ) = Xβ +Dz.

As in Chapter 4, the penalty term J∗2 (f) can be approximated by

J∗2 (f) ≈ ||(exp{γ/2})TBz||2 = zTAγz,

where exp{γ/2} = [eγ1/2, eγ2/2, · · · , eγn−1/2]T , and Aγ = B′diag{eγ1 , eγ2 , · · · , eγn−1}B. The

matrix B is obtained by deleting the first row of the second order difference structure matrix,
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B̃, defined as

[B̃z]j = (zjRIjR + zjLIjL + zjDIjD + zjUIjU)− zj(IjR + IjL + IjD + IjU), (5.4)

where IjL is an indicator that there exists a grid point at the left of the point (ũj,ṽj), and

IjR, IjU and IjD are indicators at other three positions: right, upper and lower respectively.

Let zjL denote the smooth function of the grid point at the left of the point (ũj,ṽj), and

zjR, zjU and zjD denote corresponding smooth functions at the other three positions: right,

upper and lower, respectively. It is the vector γ that introduces spatially varying weights

based on the local extent of the smooth function when calculating the penalty term J∗2 (f)

and hence allows for spatial smoothing adaptivity.

From the above, the optimization problem becomes

ẑ = min
z

{
−
∑
i

log(L(ti, δi, zi, Xi)) + zTAγz

}
, (5.5)

which suggests an IGMRF of the first order prior for z given by

z ∝ exp

{
−ζ1

2
zTAγz

}
.

We then specify a simpler IGMRF of the first order prior for γ with

γ ∝ exp

{
−ζ1ζ2

2
γTMγ

}
I1T γ=0,

where M = CTC, and C is the first order difference structure matrix such that the jth

element of Cγ yields

[Cγ]j = γjRIjR + γjDIjD − γj(IjR + IjD). (5.6)
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5.1.3 Removing Links Between Points Without Spatial Effect Cor-
relation

In section 5.1.2, IGMRF priors are specified for z and γ. Because of the local Markov

property of IGMRFs, the spatial effect at one grid point is more correlated with the spatial

effects within it’s neighborhood. However, in epidemiology studies, spatial effects on outcome

are not always highly correlated between two geographically close points. As one example,

consider in the California ovarian cancer study presented in Chapter 1, where the spatial

effect is hypothesized to be driven by healthcare resource utilization disparities. However,

linear spatial distance on a map may not be a good indicator for healthcare access. For

example, If there is a mountain or forest between two seemingly neighboring geolocations,

then residents within the two locations may not share any common healthcare resources due

to the travel times required to move from one location to the other. Because of this, the

spatial effects at the two locations would not be correlated one appearing to be geographically

in the neighborhood of the other.

One benefit of using an IGMRF prior in the context of a thin-plate spline is that it is

convenient to remove on grid point from the neighborhood of another point when specifying

IGMRF priors. For example, in the grid shown in Figure 5.1, if it is assumed that the spatial

effects between the two black points are not correlated, then the link between the two points

needs to be removed. When specifying the matrices B̃ (5.4) and C (5.6), the link between the

two points can easily be removed by setting the indicator IjR = 0 for the left grid point and

the indicator IjL = 0 for the right grid point. The end result is that the smoothing process

will deterministically remove the influence of the neighboring points as may be desired in

cases where natural obstructions exist between two neighboring locations.
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Figure 5.1: An example of removing links between two points.

5.1.4 Hyperpriors and MCMC Sampling Scheme

We specify a gamma(a0, b0) distribution as the prior for α in the data model (5.1) and (5.2),

and a diffuse Gaussian prior N (µ0,Σ0) for β. The hyperpriors for ζ1 and ζ2 are taken to be

a Pareto(c, d) prior (5.7) and an inverse-gamma(a, b) prior (5.8), respectively, so that

ζ1 ∝
cd

(c+ ζ1)d+1
; (5.7)

ζ2 ∝ ζ−a−1
2 exp(−b/ζ2). (5.8)

As noted in Chapter 4, the Pareto distribution can be written as a scale mixture of expo-

nentials by introducing a latent variable θ: ζ1|θ ∼ Exp(θ); θ ∼ Gamma(d, c), and we do this

to facilitate sampling from the posterior distribution.

Given the above specifications, the conditional posterior distributions for the model param-

eters are

z|t, δ,X, u, v, γ, β, α, ζ1,∝ exp
{∑

i L(ti, δi, Xi, ui, vi)− ζ1
2
zTAγz

}
β|t, δ,X, u, v, z ∝ exp

{∑
i L(ti, δi, Xi, ui, vi)− (β − µ0)TΣ−1(β − µ0)/2

}
α|t, δ,X, u, v, z, β ∝ αa0−1 exp {

∑
i L(ti, δi, Xi, ui, vi)− b0α}

γ|z, ζ1, ζ2, θ ∝ exp
{
−ζ1z

TAγz/2− ζ1ζ2γ
TMγ/2

}
I1T γ=0

ζ1|z, ζ2, θ ∼ Gamma(n− 1/2, zTAγz/2 + ζ2γ
TMγ/2 + θ)

ζ2|γ ∝ ζ
(n−2)/2−a−1
2 exp{−ζ1ζ2γ

TMγ/2− b/ζ2}

θ|ζ1 ∼ Gamma(d+ 1, ζ1 + c).

(5.9)
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Figure 5.2: Spatial distribution of the patients in the southern California ovarian cancer
dataset.

A block-sampling procedure can be used to sample from the posterior distribution of z by

dividing the vector into several blocks. The block-sampling procedure is also used to sample

γ, but two sets of the blocks must to used alternately to deal with the following identifitability

constraint for: γ of 1Tγ = 0. The adaptive rejection Metropolis sampling method can be

used to sample α and ζ2. Finally, the posterior distribution of ζ1 can be identified as a

Gamma distribution, and hence is trivial to sample from.

5.2 Simulation study

We performed a simulation study using data generated on the map of Southern California.

The geographical distribution of the data is shown in Figure 5.2. For the simulation study

we assumed a sample size is N = 6, 878, as is consistent with the California ovarian cancer

data presented in Chapter 1.
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Figure 5.3: Contours of the adjusted spatial effect on Southern California state as well as
the thin-plate used in the Bayesian methods.

Simulated survival times were generated from a Weibull distribution with α = 0.8 and

log(λ) = Xβ + f(u, v),

where β = 0.3 and the nonlinear spatial effect f were specified as

f(u, v) = −1.5 exp
(
−0.1 ((u− 2355000)/10000)2 − 0.1 ((v + 13000)/10000)2)

−1.5 exp
(
−0.1 ((u− 2440000)/10000)2 − 0.1 ((v + 25000)/10000)2)

+1.5 exp
(
−1/70 ((u− 2390000)/10000)2 − 0.1 ((v + 85000)/10000)2) ,

(5.10)

with u and v denoting coordinate parameters (measured in meters), and generated by

Lambert conformal conic projection for the State of California. The contours of the data-

generating spatial effect function (5.10) and the thin-plate grid used in the simulation are

shown in Figure 5.3. The generated survival times had a median of 12.99 years, and indepen-

dent censoring times were sampled from a uniform(0, 25) distribution. Then the observed

time in the simulation was then calculated as the minimum of the true survival time and the

censoring time. An event status indicator of whether the survival time occurred at or before

the respective time of censoring was then generated for each subject.
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The thin-plate grid used in the simulation study contained 458 grid points. We considered

two types of GMRFs. One is based on the regular grid (denoted GMRF1). For the other

grid (denoted GMRF2), because of the mountains lying to the north of Los Angeles, links

between the grid points seperated by the red line shown in Figure 5.4 were deleted when

calculating the matrix B for prior of z and the matrix M for prior of γ. Given the size of

of the mountain range and the travel time from one side of the mountains to the other, this

removal is scientifically justified if it is believe that healthcare access is the primary driver

of spatial impacts on the survival times of patients.

Figure 5.4: Links where the red line crosses are deleted when calculating the IGMRF struc-
ture matrices on the southern California map.

We used parameter values of a0 = 2, b0 = 2, a = 50, b = 1, c = 0.01, d = 4 for the priors of

α,ζ1 and ζ2. 10, 000 MCMC iterations are preform with a burn-in of 5, 000. Examples of

the MCMC sample trace plots are shown in Figure 5.10. The performance of the Bayesian

adaptive method was compared with the performance of the Cox proportional hazards ad-

ditive model with a LOESS smoothing method (for details see Chapter 3). The span size of

the LOESS smoother in the Cox additive model was chosen to minimize AIC, resulting in a

span size value of 0.3.

A scatterplot of posterior mean of z versus the true adjusted spatial effect function using

GMRF1 and GMRF2 are plotted in Figure 5.5b and Figure 5.5c, respectively. The estimates
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from GMRF1 show some bias. Specifically, the positive areas (increased hazard) tend to be

under-estimated and the negative areas (decreased hazard) tend to be over-estimated. This is

because the two areas are linear close to one another, and hence have influenced the estimate

of each other as expected with the smoothing procedure. The estimates of GMRF2, where

the links between points separated by a mountain range have been removed, are generally

more consistent with the truth function. The variation around zero is large because the

sample size in those areas is small and the geolocation distribution is sparse. Figure 5.5a

shows the scatter plot of the estimates using the Cox additive model with LOESS smoothing

versus the true adjusted spatial effect function. The observed bias of the LOESS fit is

between 1.5 and −1.5 and is more pronounced the two adaptive methods when the spatial

effect function varies more dramatically. This is expected as the adaptive approaches are

designed to identify these local changes in spatial effect.

We divide the map into four regions as shown in Figure 5.6, and summarize the overall MSE

and the MSE in the each of the for regions in Table 5.1. The overall MSE from the adaptive

smoothing model with GMRF2 was calculated to be 0.0347 which is 20% smaller than the

MSE from the LOESS method. In region A and region B, the adaptive smoothing yielded

MSEs that are around 20% smaller than the LOESS method. In region C and region D,

the performances of the two approaches were similar. The GMRF1 model also out performs

the LOESS method, indicating that adaptive smoothing is effective for estimating spatially-

varying survival effects, even when links between natural barriers are not removed in the

estimation procedure.

GMRF1 and GMRF2 also showed similar performances in region C and region D. However,

in region A and region B, the MSE of GMRF2 is around 5% smaller than that of GMRF1.

Thus, even though the two areas are spatially close, if we believe that the outcomes of the

two areas are not correlated based on scientific grounds, deletion of the link between the two

regions in the GMRF can provided improved fitting performance.

117



Table 5.1: MSE of the three methods (LOESS with span of 0.3 and adaptive smoothing with
GMRF1 and adaptive smoothing with GMRF2) in the four regions as shown in Figure 5.6.

MSE A B C D Overall
GAM (span=0.3) 0.0782 0.0769 0.0523 0.0423 0.0445

GMRF1 0.0618 0.0695f 0.0548 0.0427 0.0357
GMRF2 0.0541 0.0634 0.0543 0.0437 0.0347
%change 27% 26% -0.4% -0.4% 22%

5.3 Application to Ovarian Cancer Study

In this section we apply the proposed adaptive approach to the true California ovarian cancer

data (see Chapter 1 for further details of the study). Figure 5.2 shows the geographical dis-

tribution of the data. The data consist of survival times and locations of N = 6, 878 patients

in total. All patients were diagnosed with ovarian cancer at stage III/IV. Observed survival

times and event indicators were obtained from hospital medical records. Age, race, insur-

ance type, socioeconomic status score, FIGO stage of the tumor, tumor grade, tumor size,

tumor histology, whether receiving treatment in a high-volume hospital (treating more than

20 cases pre year in average), and whether the treatment adhered to the NCCN guidelines

were available on all subjects and are adjusted for in all analytic results.

The same grid and sets of blocks that were used in the simulation study in Section 5.2

to sample z and γ were also used for the actual data. We specified prior parameters of

a0 = 2, b0 = 2, a = 55, b = 1, c = 0.01, d = 7 for the hyperpriors of α, ζ1 and ζ2. The MCMC

was run for 10,000 iterations with a burn-in of 5,000 samples. The posterior mean of z was

calculated as the estimate for the adjusted spatial effect. The colormap of the hazards ratio

of the adjusted spatial effects compared to the median hazard marginalized over the full area

is shown in Figure 5.7b. For comparison, we also fit a Cox proportional hazards additive

model with a LOESS smoother. The span size was taken to be 0.25, and was chosen to

minimize AIC. Figure 5.7a shows the colormap and the estimated hazards ratio of adjusted

spatial effects compared to the median hazard over the are. The obvious difference between
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the estimated hazard ratio estimates using the two methods is the circled area in Figure 5.8,

where the adaptive smoothing procedure results in higher estimates when compared to the

LOESS smoother.

The significant areas suggested by the 95% probability intervals of the adaptive smoothing

procedure and by the pointwise 95% confidence intervals of the Cox additive model are

shown in Figure 5.9. The cluster in the middle area of southern California (where the

estimates are also different) was highlighted as significantly different based on the adaptive

smoothing method. This areas was not determined as significantly different when estimation

was performed with the GAM.

5.4 Discussion

In this chapter, we extended the adaptive smoothing methods presented in Chapter 4 to the

setting of right-censored survival outcomes. The approach considered a parametric survival

model, namely the Weibull model, where the scale parameter of the Weibull distribution

is modeled using a linear predictor of adjustment covariates and a nonlinear function of

spatial effect. A Bayesian hierarchical model was constructed corresponding to a thin-plate

spline where the spatial effect is modeled via an IGMRF in the first hierarchy, and the

spatially-varying variance component is modeled using an IGMRF in the second hierarchy.

The same Bayesian computation method as discussed in Chapter refChapter4 proves to be

efficient in the survival setting. The performance of the adaptive spatial smoothing model

was evaluated by a simulated example. We also illustrated a promising property of the

GMRF prior in epidemiologic studies, by noting that it is easy to remove spatially close

points from the neighborhood one another if it is hypothesized that the spatial effect on the

outcome is not correlated between the regions. Finally, we applied the method to data on

ovarian cancer survival times in southern California. Comparisons with the more commonly
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used LOESS smoother indicate that the proposed adaptive approach may be more sensitivity

in identifying high risk geographic areas. Future work may include modeling the survival

data using a mixtures of Weibull distributions for robust to model misspecification, and

developing a tri-variate smoothing procedure to allow for estimation spatial effects that vary

with time.
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(a) GAM (span=0.3 as chosen by AIC). (b) Adaptive smoothing with GMRF1.

(c) Adaptive smoothing with GMRF2.

Figure 5.5: Performance comparison (estimated adjusted spatial effect versus the true ad-
justed spatial effect) of the Cox additive model with LOESS as the smoothing method and
the adaptive method proposed in this paper. (a) LOESS using a span size of 0.3 (chosen
to minimize AIC); (b) Adaptive smoothing with an GMRF1; (c) Adaptive smoothing with
GMRF2 (deleting links).
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Figure 5.6: Depiction of the four regions for which the MSE from the proposed fitting
approaches are compared.

(a) LOESS smoothing. (b) Adaptive smoothing.

Figure 5.7: Estimated hazards ratio of adjusted spatial effects compared to median hazard
using (a) a LOESS smoother and (b): the proposed adaptive smoothing method.
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Figure 5.8: Circled areas indicate where the LOESS smoothing and adaptive smoothing
methods show discrepant estimates.

Figure 5.9: Estimated hazard ratio of adjusted spatial effects compared to the median hazard
(marginalized over the full area) using the proposed adaptive method.
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(a) ζ1. (b) ζ2.

(c) α. (d) β.

(e) z. (f) γ.

Figure 5.10: Example trace plots for the MCMC samples for the simulation study (based
on N = 6, 878 samples) to compare the performance of adaptive smoothing to that of the
LOESS smoother.
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Chapter 6

Summary and Future Work

This dissertation has focused on the development of statistical methodology for quantifying

spatial effects on disease incidence using individual-level data. In Chapter 3 we implemented

a proportional hazards additive model for right-censored survival data by including a bi-

variate LOESS smoother into Cox’s proportional hazards model to estimate adjusted spatial

effects on survival outcomes. An R package was developed to estimate and predict covariate-

adjusted spatial effects using individual-level data. Generalized additive models for analyzing

continuous, binary, count and censored survival outcomes are implemented in the package

along with a full suite of visualization tools for mapping and interpreting spatial effects.

The bivariate LOESS smoother is a computational efficient analytic tool for population-based

epidemiologic spatial analyses in which the population density varies over geolocations. How-

ever, it uses the same amount of smoothing across all geolocations, as is done with other

commonly used smoothing methods. In Chapter 4, we developed an Bayesian thin-plate

spline method to smooth continuous and discrete disease outcomes adaptively as the size

and shape of the spatial effect changes over locations. The approach also accommodates ad-

justment for potential confounding factors. Based on a fine enough thin-plate grid, modeling

the second order differences of spatial effect on each grid point with a Gaussian distribution

results in an IGMRF prior for the spatial effect. We introduced adaptivity by allowing for
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the variance component of the Gaussian distributions of the second order differences to vary

across geolocations. The end result is that the amount of smoothing can be altered adap-

tively based on the shape of the spatial effect. We then specified the IGMRF prior for the

variance component in a second hierarchy. We further extended our work to the analysis of

censored survival outcomes in Chapter 5. One promising property of the IGMRF prior that

was highlighted in Chapter 5 is that it the method makes it easy to systematically define

the neighborhood for each point on a spatial map. For example, most smoothing methods

define the neighborhood based on spatial distances between two points. However, if there

is a natural barrier between two locations so that the disease outcome in one location does

not have close correlation with a seemingly neighboring location (as measured by linear dis-

tance), then the two locations are not in the same “scientific” neighborhood of each other.

It was shown that the IGMRF can easily account for this by deleting the links between areas

that lie along such a natural barrier. In Chapter 5, illustrated the utility of link deletion

using a simulation study inspired by the California ovarian cancer data presented in Chapter

1 of the thesis.

One limitation of our current work is that we build our model on a regular (equally spaced)

thin-plate grid. If a researcher would like to increase the resolution and want more detail in

particular geographic areas, then the current approach would require increasing the resolu-

tion of the whole map. This approach may be computationally infeasible in some settings.

In future work we plan to construct the model on an irregular grid. Doing so would allow

analysts to create different resolutions for different areas without the computational cost

associated with increasing the resolution of the whole map.

Another potential limitation of the methods developed here is the reliance of a parametric

(Weibull) survival distribution in Chapter 5. ,The area of Bayesian non-parametrics has

grown rapidly following the work of Ferguson (1973) on the Dirichlet process (DP), a random

probability measure on spaces of distribution functions. Such methods are well-suited for
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survival spatial data analysis, and would enable flexible modeling for the unknown survival

function, cumulative hazard function or hazard function. The use of a DP prior survival

model would also allow one to incorporation prior information into parameter estimation. In

the future, we plan to extend our approach in Chapter 5 to allow for non-parametric survival

regression, leading to potential greater robustness against mode mis-specification.

Finally, we plan to extend our proposed method to the setting of adaptive spatial-temporal

analyses by creating a grid in three dimensions so that disease incidence can be smoothed

spatially and temporally simultaneously. The end result would allow for assessing potential

time-varying effects of geospatial location on disease incidence.
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