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ABSTRACT OF THE DISSERTATION 

 

Seeing the Unseen: 

Incorporating Dynamics for the Understanding and Prediction of Macromolecular Properties 

 

by 

 

Emília Pécora de Barros 

 

Doctor of Philosophy in Chemistry 

University of California San Diego, 2020 

Professor Rommie E. Amaro, Chair 

Professor Susan S. Taylor, Co-Chair 

 

The passing of time is a constant. In the same way that time shapes our everyday lives, it 

also plays an essential role in the microscopic universe through its translation into macromolecular 

dynamics. Proteins, in particular, visit a variety of short-lived - or metastable - states, and the 

conformations and rate of transitions between these states dictate their function in the cell. 

However, many of these alternative states are not accessible to established biophysical techniques, 
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such that many puzzling results and challenges arise when trying to use these static observations 

to understand and predict their properties. In this dissertation, we emphasize the importance of 

accessing and characterizing the intrinsic dynamics of these macromolecules through the 

application of computational techniques in four distinct projects that allow us to observe molecular 

motion at the atomic level to widen our understanding of their function, and furthermore enable us 

to make predictions on properties that would be inaccessible from static models. In conjunction 

with experimental validation, we study the role of electrostatic interactions in mediating the 

allosteric activation of Protein Kinase A, an ubiquitous enzyme involved in key signal transduction 

pathways, as well as develop a methodology that incorporates dynamic descriptors to improve the 

efficiency of the challenging process of novel protein design. Additionally, through the application 

of the exciting Markov State Model methodology to access longer timescales than typically 

available to computational simulations, we help set the stage for the interpretation of a novice 

experimental technique, diffuse scattering, in terms of atomic motions in crystalline environments, 

and explore the conformational landscape of the essential tumor suppressor p53 and its cancer-

related mutant Y220C, which leads to the identification of a novel cryptic pocket. These test cases 

present significant advances to our understanding of protein dynamics in fields as varied as protein 

design and cancer therapeutics, and taken together, stress the necessity of putting time, and 

dynamics, in the center stage of protein study. 
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Chapter 1 
 

Introduction 

 

If there is one certainty in life, it is that time passes. The ever-alternating seasons, our 

constant aging, and even the hours that just flutter by in a day evidence how time is constantly 

progressing, and things are in non-stop motion. Time plays an import role in the microscopic 

universe as well. Proteins are the main orchestrators of life, and the effect of time, translated into 

their dynamics, is essential for them to carry out their important roles. 

Despite an ever increasing knowledge of these protein’s structures afforded from a range 

of experimental techniques, dynamics is essential to be incorporated in order for a mechanistic 

understanding of their function as well as the ability to make informed predictions of the effects 

that changes such as mutations have in their function or other properties. In support of this, 

knowledge of the specific fold adopted by a given protein does not directly imply a function1. 

Dynamics need to be taken into consideration in most cases in order to fully understand processes 

such as protein activation, macromolecular recognition and binding, the evolution of diseases, and 

how to treat them. In this introductory chapter, the relationship between protein function and 

dynamics and the concept of free energy landscape are discussed in more detail, as well as the 

theory behind the computational techniques used in the dissertation to probe molecular dynamics. 

We finalize with a brief introduction to a novel experimental methodology, diffuse scattering, that 

can be useful in providing information on protein correlated motions in conjunction with 

computational models. 
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1.1 The link between protein function, dynamics, structure and sequence  

Proteins are diverse, intricate and essential macromolecules present in every cell that are 

governed by a complex and still-elusive set of fundamental interactions2. To borrow from Jane 

Austen, “it is a truth universally acknowledged” - at least in the scientific world - that a protein’s 

function is determined by its structure, which in turn, are a consequence of the specific set of 

interactions between its forming sequence of amino acids. In the past several decades, an 

increasing amount of experimental and computational data has expanded that sequence-function 

understanding to incorporate a fourth dimension, time, on the determination of protein function3–

7.  

It is now widely appreciated that function is therefore not only a consequence of protein 

structure, but also intimately linked to its dynamics, in the form of varied motions that span large 

time and spatial scales, from side chain reorientation and loop motions in the ns-µs timescale to 

large domain or subunit motions in the in the ms, seconds or even longer scales. These motions 

include direct as well as allosteric, or “through distance”, effects8. Instead of a single structure at 

equilibrium, the current view is of proteins as flexible and mobile entities9, with the conformational 

transitions between the long-lived, or metastable states, being essential in ligand and 

macromolecular recognition10, catalysis11–13, transcriptional activity14, signal transduction15–18, 

allostery19–21, and a wide variety of protein functions22–26. The dynamical states accessed by the 

protein are thus an intrinsic property of the macromolecule, conferring almost a “personality” to 

it4. 

The sequence and structural encoding of this dynamic information27 is so complex that 

efforts to accurately predict effects of mutations on macromolecular properties or design proteins 

with completely novel functions are still in their infancy. The fact that a single point mutation in 
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many essential enzymes can lead to life-threatening or debilitating diseases28–30 emphasizes the 

extent to which this sequence-function link is fine-tuned and specific. The deleterious effect to 

function can be achieved through a variety of ways, oftentimes interconnected, such as alterations 

to macromolecular stability (found for example in cancer31, Parkinson’s32, Alzheimer’s33, 

muscular34 and retinal35 diseases), conformational dynamics (diabetes36, cancer37,38, leukemia39 

and cystic fibrosis40), hydrogen bonding network (cataract41 and Alzheimer’s disease42) and 

functionally-important residues (cancer43). The current interpretation of protein functional 

dynamics and the timescales involved revolves around the concept of free energy landscape, and 

will be discussed in the next section. 

 

1.2 The free energy landscape and timescales of motions 

The range of conformational states that a protein can access are determined by a 

multidimensional free energy landscape. In the same way that the time it takes for a person to get 

from point A to point B depends on the topology of the terrain (the presence of a mountain between 

them would make the journey considerably longer, for example),  the energy barriers between 

protein states determine rates of transition and their relative populations (Figure 1.1). The 

landscape is an intrinsic property of the macromolecule, a consequence of the specific sets of 

interactions between the atoms making up its sequence and defined by local structure, but also tied 

to a set of conditions such as temperature and solvent, and can be significantly altered by 

mutations, ligand binding or interactions with partners19,20. Each basin represents stable states, and 

the energy barrier between the states determines the rate of transition between them. 
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Figure 1.1. Free energy landscape representation and associated timescales. Image extracted from 
Göbl and Tjandra, Entropy (2012)8. 
 

 

Investigation of the thermodynamics and kinetics associated with a protein’s 

conformational landscape is at the core of biophysical techniques, since the characterization of the 

conformational states are what allow the understanding of protein function, mutational effects on 

this function, drug design efforts, and all other goals involved in biochemistry research. Each 

technique has their strengths and weaknesses, and incredible breakthrough can be achieved when 

they can be used in conjunction to solve piece by piece this complicated puzzle. Experimental 

techniques such as X-ray crystallography provide great understanding on the structural aspects of 

states that can be captured in crystals, although limited information on dynamics, while other 

methods such as NMR spectroscopy can inform on timescales of the transitions but with occasional 

loss of the atomic scale detail.  

With the advancement of technology, computational methods have been added to the 

chemistry toolbox, providing the significant advantage of allowing the observation of all atoms in 

motion and thus unbeatable insights into the intrinsic dynamics of macromolecules. These methods 
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are not, however, without their own limitations. The remainder of this chapter will discuss in more 

detail two computational techniques used extensively in the projects presented in later chapters, as 

well as briefly introduce a relatively novel experimental technique, X-ray diffuse scattering, that 

is of relevance to one of the studies in this thesis and provides a novel opportunity for unifying 

structural and dynamic resolution for the understanding of these macromolecules’ “personalities”. 

 

1.3 MD simulations to “see” protein dynamics at the atomic level 

Molecular dynamics (MD) simulations are an important computational tool that allows 

obtaining information on the dynamical behavior of several macromolecular systems at the atomic 

scale44. After over 40 years since the first protein MD simulations45, an incredible variety of 

systems can today be simulated realistically, from single proteins and lipid membranes46,47 to large 

and increasingly complex multiscale assemblies48. By providing information on dynamics at the 

atomic scale, MD simulations and other computational methods empower researchers to 

comprehend oftentimes puzzling experimental results or motivate further experimental work49. 

Classical MD simulations are based on the representation of atoms as spherical particles 

connected by nodes and subjected to intra- and intermolecular interactions with other atoms in the 

system. Through the calculation of the potential energy defined by these interactions and 

application of Newton’s laws of motions, successive configurations of the system can be obtained. 

The position and velocities of the particles at each instant in time constitute a trajectory, from 

which the temporal evolution of properties of the system can be studied. The system dynamics are 

modeled by empirical force fields50, and allow the investigation of a large range of processes, 

including motions that are difficult to be investigated experimentally51. 

In the force fields, the atomic interactions are treated classically, based on several 

assumptions such as the Born-Oppenheimer approximation52, which states that the motion of 
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nuclei and electrons of an atom can be treated separately, and allow the simplification of the 

calculation from the quantum mechanical level to the representation of atoms as spheres with 

associated mass, charge and volume and connected to other atoms by springs. This reproduces in 

a simplified but efficient manner the interactions in a microscopic level, and allow the calculation 

of motions in larger systems and timescales than would be accessible with quantum mechanical 

calculations. 

The potential energy of the system is a function of the atomic positions at each instant in 

time, based on intra- and interatomic interactions defined by the force field equations. Different 

functional forms of the force fields exist53–58, but they all take the general form presented in Figure 

1.259. Intramolecular (through-bond) interactions, in the form of bond stretching, angular 

deformations and dihedral torsions, are represented with harmonic potentials (for bond and angle 

potentials) and sum of trigonometric functions to represent the periodic potential of dihedral 

torsions. Interactions between atoms located further away are described by the Coulombic (for 

electrostatic interactions) and Lennard-Jones (for van de Waals interactions) potentials60. The 

equation’s specific form, its constants and parameters are slightly different among the distinct 

force fields available, depending upon the experimental measurements and ab initio quantum 

mechanical calculations from which they are derived and validated 61,62. 
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Figure 1.2. Example of force field equation used for calculation of potential energy in MD 
simulations. The bonded (atom, angle and dihedral) as well as non-bonded (van der Waals and 
electrostatic) potentials are highlighted with respective schematic representations. 

 

An area of active research is the constant validation against experiment63,64 and 

improvement of force fields to reach ever more realistic representations of solvent and molecular 

interactions65–69. However, generally a more accurate force field comes at the expense of sampling 

time. In spite of its limitations, MD simulations have carved an important presence in biochemistry 

and drug discovery research, enabling for example the discovery of cryptic pockets not evident in 

experimental crystal structures70,71 which led to the development of drug leads72–74 and approved 

drugs75, an increased understanding of aerosol chemistry76, and many other applications. 

 

1.4 Markov State models to extract kinetic and thermodynamic information from MD 

simulations 

Despite incredible advances in computer software and hardware, several biological 

processes of relevance for proteins and macromolecular systems take place at timescales that are 

difficult or impossible to be accessed by classical MD simulations, given its computational cost. 

! " = $
!"#$%

%&(" − "'())+ $
*#+,'%

%-(* − *'()) + $
$./'$&*,%

!#
2 1 + cos(01 − 2)

+ $
.01

3.1
4.12)

− 5.1
4.13

+ $
.01

6.61
74.1

"
* 1

4.1



 

8 
 

A large number of methods aim to surpass this sampling limitation by promoting enhanced 

sampling of the system dynamics, in which the high energy barriers of the system can be more 

easily overcome through measures such as locally increasing the potential energy (employed in 

Metadynamics77, accelerated MD78 or Gaussian accelerated MD79), or the temperature of the 

system (such as in Replica Exchange MD80). Other computational methods employ biased or 

directed sampling through application of force in a determined degree of freedom, Umbrella 

Sampling81 being one example, or simplify the potential energy and the system representation 

through coarse-graining approaches82. These methods allow for a more thorough exploration of 

the conformational landscape or process under investigation, but in general have the disadvantage 

of losing the ability to inform on thermodynamics of the system since the potential energy is 

disrupted. Reweighting techniques can sometimes be used to overcome this, but in general they 

result in complicated data post-processing. 

An alternative and emerging technique for exploration of processes that take place at long 

timescales are Markov State models, or MSMs (Figure 1.3), which have been used successfully to 

model protein folding83–86, ligand binding87,88, dynamics of cryptic pockets89, and protein 

conformational change16,90,91. In an MSM, multiple classical MD simulations are integrated in a 

single, statistically rigorous mathematical framework of the probability of transitions between 

states that can inform on motions that occur at timescales longer than the individual. 
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Figure 1.3. Typical biochemical motions and associated timescales. MSMs have the ability to 
extend the timescales that are accessible to MD simulations.  

 

The enhanced sampling is performed by iteratively spanning multiple independent 

simulations from conformations located  throughout the MD-accessed free energy landscape, in 

an effort to optimally explore different regions of the landscape92. In this way, the process under 

investigation does not have to be sampled in a single simulation (which can be hard or impossible 

in most cases), but can be broken down into independent trajectories that explore the local area 

(Figure 1.4). Because these are conventional simulations that retain the original form of the 

system’s free energy landscape, the thermodynamics of the system are not affected, and 

equilibrium populations of the metastable states can be recovered. Additionally, as the method 

considers rate of transitions between states, kinetic information in the form of relaxation timescales 

or mean first passage times can also be extracted, creating the opportunity for validation and 

comparison with experimental observables93,94.   
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Figure 1.4. Representation of adaptive sampling performed for MSM construction. Sequential 
rounds of MD simulations are represented in distinct colors (white, followed by orange and then 
red), starting from initial configurations represented as circles. The free energy landscape is 
explored by performing several short simulations instead of a single very long simulation. 

 

MSMs also present the additional advantage that, by coarse-graining the different 

conformations explored by the system not only structurally, but also kinetically, into metastable 

states, a more human-interpretable view of the dynamics under study can be obtained, a significant 

improvement considering the large amounts of data that is collected in long simulations. In this 

way, they emerge as a versatile post-processing tool for the objective extraction of meaningful 

information from multiple MD simulations95,96.  

However, despite its many advantages, construction of MSMs is not a trivial task and 

require a considerable degree of expertise and intuition by the modeler, not to mention significant 

accrued simulation time for proper statistics. Tutorials and MSM Python libraries97–99 are 

decreasing the barrier to access, but difficulties remain in the selection of the large number of 
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parameters that are taken for model construction. In the next subsections the steps involved in 

model construction and some of the challenges are discussed in more detail, as well as the 

mathematical basis behind the methodology and model validation metrics used to assure accurate 

modelling of the process under investigation. This summary is by no means intended to be 

exhaustive or mathematically heavy, for which a number of good reviews can be recommended100–

103. Instead, I aim to provide a ‘big-picture’ overview of the methodology and the procedure 

involved for those not so familiar with it. 

 

Feature selection, dimensionality reduction and space discretization 

The first step in MSM construction is the decision of descriptors, or features, used to 

characterize the conformations the system access during the simulations. The coordinates of all 

atoms cannot be used for this purpose given the high dimensionality of the state space, and thus a 

smart decision on the best collective variables that describe de motions under investigation is 

essential so that the high dimensionality of the system can be accurately mapped to a low-

dimensionality space.  Typically used features include pairwise distances between selected 

residues in regions of relevance in the protein structure88,104, RMSDs to reference states (such as 

inactive and active states87),  dihedral angles or contact maps (used commonly in protein folding 

studies86,105) and inter-molecular distances (such as protein-ligand distances for investigation of 

ligand binding106 ). Methods have been proposed to aid the selection of the features that capture 

the best representation of the slow transitions107,108, but this is a process still greatly led by the 

researcher’s intuition and knowledge of the system. All subsequent steps and ultimately the MSM 

depend on this selection of features, as the quality of an MSM is dependent on the state 
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decomposition, and so it is very important to construct a state space that accurately captures the 

kinetics of the underlying system.104 

Many times, the number of features is still too large to be used as input for discretization 

of the conformational space. To that end, researchers typically do a subsequent step of 

dimensionality reduction, processing the features by Principal Components Analysis (PCA) or 

time-lagged Independent Component Analysis (tICA). While PCA identifies the linear 

combination of input parameters that best explain the variance in the data109, tICA finds the degrees 

of freedom that maximize the covariance in the input108. Ultimately, this results in the 

identification of tICA components (or tICs) that describe the slowest motions of the system104,110. 

This is really useful when trying to study motions at long timescales, which is the case in most 

MSM applications, and the reason why tICA is becoming increasingly more popular and used even 

when the initial set of features is not that elevated. 

Finally, once the features and possibly-transformed components have been selected, the 

many conformations sampled during the simulations are discretized using clustering methods, 

giving rise to the microstates, or clusters. With this, the different frames in the simulations can 

now be assigned labels according to the microstates to which they belong, and the trajectories have 

been converted from a series of structures over time to a series of discrete states over time. These 

steps are represented schematically in Figure 1.5a-c. 
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Figure 1.5. Representation of the steps involved in MSM construction for an example model in 
which there is interest in characterizing the motion of a central flexible loop, highlighted. (a) 
Features selected for model construction, which correspond to four pairwise distances involving 
residues in the loop and nearby secondary motifs. (b) Free energy landscape in terms of the tICA-
transformed features, overlaid with the cluster centers (black circles) obtained from clustering of 
the trajectory data using k-means clustering. (c) Simplified representation of two trajectories in 
terms of the discretized cluster labels. Each frame is represented as a frame in the “movie” with 
colors according to the cluster to which they belong to. For simplification only 5 clusters are 
shown. (d) Count matrix obtained from the representative trajectories in c. Each line correspond 
to a origin states, and column states to the destination state in the transition. (e) Transition 
probability matrix calculated from the example count matrix in d. 
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Calculation of the transition probability matrix and implied timescales 

The core of the MSM theory is the transition probability matrix. Once the simulations have 

been discretized into microstates, or clusters, the transition between these states are counted for 

each independent trajectory. To ensure that the system falls under the Markovian assumption, that 

is, that it has no memory and thus the probability that it transitions to a determined state is 

independent to which state it was in the past, and only on the current state, a lag time 𝜏 needs to 

be used for transition counts. The lag time basically determines the stride, or jump, between frames 

that are used for transition count. A large lag time is desired as it ensures that the system is 

memory-less, but too large a lag time results in loss of data as more and more frames are discarded 

for analysis. This is another critical step in model construction as different jumps result in different 

count matrices. Implied timescale plots are used to aid the selection of the appropriate MSM lag 

time, and also ensure the “Markovianity” of the system, as will be discussed below.  

Transitions between microstates separated by the lag time are counted for each simulation 

and then summed to result in a matrix that contains total transitions between every two pair of 

microstates. Figure 1.5d represents the resultant count matrix for the example trajectories  provided 

with a lag time of 1. Dividing by the total number of transitions originated from the initial 

macrostate, we obtain the transition probability matrix (Figure 1.5e). It is important to highlight 

that it is at this single stage that the data between multiple independent trajectories can be 

integrated, because if the Markovian assumption is satisfied, transition counts can be considered 

statistically independent. 

The eigenvectors and eigenvalues of the discrete transition probability matrix characterize 

the relaxation processes involved in the system’s dynamics101. In this way, the complete dynamics 

is a composition of the dynamical processes represented by the eigenvalue and associated 
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eigenfunctions. The eigenvalues (𝜆!) range from 0 to 1, and indicate the relaxation times of the 

individual transitions. The closer they are to 1, the slower is the decay of the corresponding 

process. The first eigenvector, with an eigenvalue of 1, thus corresponds to the microstates’ 

equilibrium distribution. The physical timescales 𝑡!, or the time it takes for the process to decay 

towards equilibrium, of all other motions can be obtained from the other eigenvalues by 

 

 𝑡! =	−
𝜏

ln 𝜆!
 (1) 

 

In practice, only a reduced number of eigenfunctions contain large eigenvalues (close to 

one), while the remaining represent much faster dynamics, such that we are interested in the first 

few m eigenvalues and eigenfunctions that represent the slowest system dynamics (Figure 1.6). 

Importantly, the second eigenvalue/eigenfunction pair represents the slowest motion of the system.  
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Figure 1.6. Representation of the process involved in identification of metastable states. (a) 
Implied timescales (left) obtained from the transition probability matrix and relative timescales 
between subsequent timescales (right). A gap between subsequent timescales indicates the number 
of metastable states in the system. In this case, a gap between the 4th and 5th timescales suggests 
the existence of five slow interconverting metastable states. (b) Membership of the clusters from 
Figure 1.5b to the metastable states. Projections of the multidimensional free energy landscape in 
terms of the first three components are shown. (c) Coarse-grained, Hidden Markov Model (HMM) 
obtained for the example system. The radius of the circles is proportional to the state’s equilibrium 
population, and thickness of arrows to flux between states. Values above the arrows indicate 
number of transitions per MSM lag time. 
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The standard procedure for identifying the optimal choice of lag time and assuring the 

Markovian assumption is to monitor the relaxation timescales of the system dynamics as a function 

of the lag time (through the commonly named implied timescale plots). Convergence of the 

relaxation timescales indicates sufficiently accrued statistics on the transition regions, and the 

independence of the timescales on the steps between transitions, which is essentially, the loss of 

memory of the system.  

 

Identification of metastable states 

The number of microstates generated above is useful for the calculation of the transition 

probability matrix, but it is generally still too high-dimensional for appropriate interpretation of 

the relevant conformational changes at hand. It is thus very valuable to aggregate kinetically 

similar microstates into macrostates, or metastable states. However, how does one choose the 

number of macrostates accurately, without being biased by an often incorrect human interpretation 

of conformational similarities and the projection in the free energy landscape? The definition of 

the number of states can be aided by the implied timescales (thus, the eigenvalues) extracted from 

the transition probability matrix.  

The eigenfunctions define the structural transitions associated with each corresponding 

relaxation timescale, corresponding to a transition between metastable sets101. The number of slow 

relaxations rates (or eigenvalues above some pre-defined cutoff) solved from the transition 

probability matrix, thus, indicates the number of metastable states accessed by the system. An 

appropriate number of macrostates to build can then be selected based on the location of major 

gaps between the implied timescales98. The number of states will be one more than the number of 

timescales above the selected cutoff (Figure 1.6c). However, these gaps can often be unclear or 
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very small, in which case several selections of macrostates can be done and validated based on 

their performance on the model validation CK test (discussed below), as well as their distribution 

in the free energy map. 

Once the number of macrostates have been defined, kinetically similar microstates can be 

lumped together using Perron Cluster Cluster Analysis (PCCA+)111 or Hidden Markov Models 

(HMMs)112,113, which identify kinetic relationships based on the eigenvalue and eigenvectors of 

the microstate MSM. PCCA+ assumes that there should be a separation of timescales between 

slow transitions across high energy barriers, and quicker transitions between microstates located 

within a basin are therefore coarse-grained into a single metastable state114. In contrast to 

computing memberships of microstates to metastable sets as in PCCA++, in HMMs we directly 

obtain a coarse transition matrix and model with fewer states. 

 

Model validation: Implied timescale plots and CK tests 

The quality of MSMs are generally analyzed using two tests, in addition to comparison of 

the modeled dynamics and metastability to experimental observables whenever possible. The first 

validation method involves the verification that the lag time is sufficiently long to allow a 

Markovian decomposition of the state space, using the already mentioned implied timescale plots 

(ITS plots). ITS plots are usually generated for a large variety of initial conformational space 

feature discretizations, clustering algorithms and number of clusters, since all of these parameters 

affect the recovered MSM. For a Markovian process, the transition matrix T needs to be 

independent of the lag time. In practical terms, this is performed by verifying the smoothness and 

leveling of the implied timescales calculated from the transition probability matrix in the ITS plots, 

and choosing a lag time for model construction at which constant values have been attained114 

(Figure 1.7). 
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The second validation metric is the Chapman-Kolmogorov (CK) test, which verifies that 

the dynamical information obtained from the MSM is internally consistent with that observed in 

the source MD trajectories. In practice, this is done by verifying that the transition matrix estimated 

at a lag time 𝜏 is the same to the transition matrix estimated at a longer lag time 𝑘𝜏: 

 

 𝑇(𝑘𝜏) = 𝑇(𝜏)" (2) 

 

The probabilities of remaining or transitioning between states is verified at increasing 

timesteps, and the test is successfully passed if these fall within a 1-s  standard error of the MD 

data101. 
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Figure 1.7. MSM validation metrics. (a) Implied timescale plot. (b) CK test. The probability values 
estimated from the MSM (black lines) should fall within the area of 95% confidence (in blue) 
extracted from the original simulations. 
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Extracting kinetic information 

A range of kinetic information can be computed from the MSM to be compared to or help 

interpret experimental data. The overall relaxation timescales of the transitions can be obtained 

directly from the eigenvalues, as discussed above. Additionally, high-flux pathways as well as 

bottlenecks can be identified through transition path theory115,116. Mean first passage times, the 

average timescale for an event (in this case a transition between metastable states) to first occur117, 

are easily computed from the coarse-grained representation of the MSM.  

 

1.5 Diffuse scattering for studying correlated protein motions 

Over the last century, the field of X-ray crystallography has had an extraordinary impact 

on how we understand biological function by providing perspective on protein structures and 

illuminating their roles in biological mechanisms118. The data traditionally used for these analyses 

are the intense Bragg peaks that carry information on the electron density and thus are used to 

resolve atomic structure. If crystals were perfect and static, the electron density would be identical 

among all the unit cells, and the Bragg peaks would be the only data obtained in such 

crystallographic experiments. In practice, however, the intense Bragg peaks are accompanied by 

cloudy and diffuse features, of much weaker intensities, which are related to imperfections in the 

crystal and motions that lead to divergence between unit cells119,120. Although being thus a 

phenomenon quantified for over 100 years in such biophysical experiments, the origin of 

macromolecular diffuse scattering has been poorly understood, hindering its applicability to 

structural modeling. 

In the past decades, improvements in data acquisition, leading to better signal to noise ratio 

in the less intense diffuse features, have renewed interest in the interpretation and establishment 
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of diffuse scattering as an additional biophysical experiment to aid macromolecular structure and 

dynamics determination121. Diffuse scattering is related to both inter- and intramolecular 

correlations122 (Figure 1.8): Single chain rotational and translational movements within the unit 

cell seem to be important, as well as correlated motions and fluctuations between unit cells, which 

can include changes in protein conformation123–125. Investigation of the contributions that each of 

these fluctuations play in the measured diffuse intensity is an area of active research. 

 

 

Figure 1.8. Diffuse scattering versus Bragg data. Image extracted from Wall et al, Curr. Op. Str. 
Biol. (2018)120. 

 

In order to investigate the physical origin of diffuse scattering, several models of molecular 

motion have been proposed and studied123–129. Because of its ability to represent protein structures 

and intermolecular interactions in the atomic level, MD simulations have been a natural choice to 
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investigate these processes, although crystalline simulations are much less common than solution 

simulations and concerns about the accuracy of force fields are even more relevant in these 

compact environments120,122,130. However, despite its limitations, MD simulations have 

successfully provided insights of protein fluctuations in crystals and recovered, at least partially, 

the diffuse intensity measured experimentally131–137.  

The diffuse intensity is computed from snapshots of the simulations using established 

methods as the variance of the unit cell structure factor (𝐹#"$)137,138: 

 

 𝐼%!&&'()(ℎ𝑘𝑙) = 	 〈|𝐹(ℎ𝑘𝑙) −	〈𝐹(ℎ𝑘𝑙〉|*〉 (3) 

 

Or, expanding the expression: 

 

 𝐼%!&&'()(ℎ𝑘𝑙) = 	 〈𝐹(ℎ𝑘𝑙)*〉 −	〈𝐹(ℎ𝑘𝑙)〉* (4) 

 

The Bragg intensities are determined by the square of the mean structure factor (the 

second term in Eq. 4), and this equation demonstrates the distinction of the diffuse intensity from 

the Bragg peaks133. The structure factor, an essential metric in crystallography, is determined at 

each Miller index ℎ𝑘𝑙 as the sum over the 𝑥+, 𝑦+ and 𝑧+ positions of each atom 𝑗 in the unit cell: 

 

 

𝐹(ℎ𝑘𝑙) = 	8𝑓+𝑒[-*.!/#0!1"2!1$3!4]
6

+78

 
(5) 
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where 𝑓+ is the scattering factor of atom 𝑗. Diffuse scattering is emerging thus as an additional 

experimental technique that allows the connection to computational methods and probing of 

macromolecular dynamics. 

 

1.6 Summary 

In this dissertation, molecular dynamics simulations, Markov State models and other 

computational techniques are used to incorporate the dimension of time in the study of proteins in 

four distinct case studies. The dynamic information accessed by these computational tools allows 

not only a deeper understanding of these macromolecules’ intrinsic “personalities”, but also the 

rationalization of the connection between their sequence, dynamics and function, or prediction of 

key properties based on their dynamical fingerprints. Specifically, the following chapters will 

detail studies on: 

• Understanding the effect of a positively-charged patch in the allosteric activation of the 

regulatory unit of protein kinase A (PKA), an ubiquitous enzyme involved in regulation of 

key cellular metabolism139,140. Computational mutagenesis evidences the effect of the 

charged residues on the protein’s dynamic profiles and conformational ensembles, 

enabling predictions of their effect on protein function which were confirmed 

experimentally. 

• The development of a methodology for improving the efficiency of de-novo ligand-binding 

protein design for applications in biosensor and enzyme design141,142. The application of 

machine learning approaches on the dynamical fingerprints recovered from MD 

simulations of the protein designs allow the prediction of the binding ability of these non-

natural proteins, thus helping to increase the success rates of this challenging endeavor. 
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• Incorporating an ensemble-level description of the conformational flexibility accessed by 

proteins in a crystal using Markov State models to understand the degree of conformational 

diversity and long-range communication in crystalline environments. This work sets the 

stage for the connection between MD simulations, MSM and X-ray diffuse scattering for 

understanding the origins of correlated motions in protein crystals and the rationalization 

of experimental diffuse scattering in terms of atomic motions for better structure 

refinement. 

• The full characterization of the conformational ensemble of the tumor suppressor p53143–

145 and the important cancer mutant Y220C146,147 using MD and MSMs. The 

thermodynamic and kinetic information accessed by the MSMs suggests the existence of 

allosteric communication within the DNA binding domain that could explain the effect of 

the mutation on the abrogation of p53 function, as well as uncovers novel protein 

conformations and a cryptic pocket of relevance for cancer therapeutics and p53 

reactivation efforts. 

Details of the specific proteins under study will be given in the respective chapters. 
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2.1 Abstract 

Close-range electrostatic interactions that form salt bridges are key components of protein 

stability. Here we investigate the role of these charged interactions in modulating the allosteric 

activation of Protein Kinase A (PKA) via computational and experimental mutational studies of a 

conserved basic patch located in the regulatory subunit’s B/C helix. Molecular dynamics 

simulations evidenced the presence of an extended network of fluctuating salt bridges spanning 

the helix and connecting the two cAMP binding domains in its extremities. Distinct changes in the 

flexibility and conformational free energy landscape induced by the separate mutations of Arg239 

and Arg241 suggested alteration of cAMP-induced allosteric activation and were verified through 

in vitro fluorescent polarization assays. These observations suggest a mechanical aspect to the 

allosteric transition of PKA, with Arg239 and Arg241 acting in competition to promote the 

transition between the two protein functional states. The simulations also provide a molecular 

explanation to the essential role of Arg241 in allowing cooperative activation, by evidencing the 

existence of a stable interdomain salt bridge with Asp267. Our integrated approach points to the 

role of salt bridges not only in protein stability but also in promoting conformational transition and 

function. 

 

2.2 Introduction 

Protein structure is essential for protein function and is a result of interactions between 

neighboring as well as spatially distant residues relative to their primary sequence. Among the 

wide range of possible intra- and intermolecular interactions, salt bridges are defined by non-

covalent charged interactions between acidic and basic residues1 and are critical to the folding, 

stability and function of most proteins 2–5. Salt bridges are also key interactions in areas such as 
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drug design and protein engineering6–8. In addition to playing important roles in structural stability, 

salt bridges can also mediate protein conformational change, allostery, and dynamics9,10. 

The majority of the studies of salt bridges have involved static representations of 

biomolecules using structures resolved by X-ray crystallography. Molecular dynamics (MD) 

simulations, however, provide a means of studying these proteins at a dynamic and molecular 

level. As a model system for the investigation of the role of salt bridges on protein structure and 

function using all-atom MD simulations, we turned to the flexible type Ia regulatory subunit (RIa) 

of cAMP-dependent protein kinase A (PKA). The use of MD simulations coupled with 

experiments has recently successfully allowed the identification of allosteric networks on other 

protein kinases11–13. 

PKA is an ubiquitous protein kinase that is important in many key cellular signaling 

pathways14. In its basal state, PKA exists in an inactive holoenzyme conformation containing a 

regulatory (R) subunit dimer and two catalytic (C) subunits and is activated by the second-

messenger cyclic adenosine monophosphate (cAMP)15. The R subunits bind to cAMP 

cooperatively and allosterically activate the holoenzyme by unleashing the catalytically active C 

subunits16. All four R subunit isoforms (RIa and b, RIIa and b) share a conserved domain 

architecture, containing two tandem cyclic-nucleotide binding domains (CBD-A and CBD-B) 

connected via a long helical segment, known as the B/C helix17.  The B/C helix incorporates 

portions of both CBDs, including the  aB and aC helices from CBD-A and the aN-helix from the 

N3A-motif of CBD-B18. The binding of cAMP and release of C are associated with a dramatic 

conformational change in R, with residues in the CBDs moving up to 30 Å from their position in 

the holoenzyme conformation14. The two conformations are termed the “H-conformation” and “B-

conformation”, with the former being the holoenzyme and the latter bound to cAMP.  
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The B/C helix plays a critical role in the regulation of PKA activity and is proposed to be 

essential for allosteric signal transduction19,20. Several major structural changes occur in this helix 

upon protein activation. In the four R subunits isoforms, a conserved patch of four positively 

charged residues is located in the center of this important structural motif (Figure 2.1)17,21–23, and 

mutational studies of Arg241 showed it to be important for cooperative activation24. While 

differences in some PKA mutant’s dynamics and function have been attributed to disruptions in 

individual salt bridges within R24,25, no systematic study has investigated the role of salt bridge 

networks in the function and stability of the RIa subunit. We therefore sought to evaluate the role 

of the positively charged basic patch within the B/C helix in the allosteric activation of PKA, using 

alanine mutagenesis to analyze the dynamic formation (or disruption) of salt bridge networks 

through MD simulations and validated by experimental in vitro activation assays.  
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Figure 2.1. (a) Sequence alignment of the B/C helix of the 4 isoforms of the regulatory subunit. 
The positive patch in the B/C helix is colored red. (b) Representation of the regulatory subunit and 
B/C helix conformation at the two functional conformations of PKA. The side chains of the basic 
patch residues are colored ochre, the B/C helix is highlighted in red, the N lobe of the C subunit in 
white and the C lobe in tan. 

 

With this aim, we have performed molecular dynamics simulations of wild type and four 

mutants of RIα (R239A, K240A, R241A and K242A) in the absence of the catalytic subunit and 

cAMP. The apo state was simulated to provide a molecular level view of the dynamics of RIa in 
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between its two structurally characterized states. We discuss the general features of the systems 

observed in the trajectories, including the flexibility of the B/C helix, and the differences in R 

conformational ensembles upon introduction of the mutations. In conjunction with in vitro 

fluorescence polarization assays, our results provide insights into the intrinsic flexibility of R and 

indicate that the basic patch in the B/C helix is important for stabilization of the H-conformation 

and in governing conformational dynamics and allosteric regulation. Our analysis also suggests 

the existence of an extended electrostatic network connecting the two cAMP binding domains, 

with the Arg241-Asp267 and Arg239-Glu143 salt bridges in particular playing key roles in the 

activation and stabilization of PKA. Finally, this work constitutes another example of the role of 

close-range electrostatic interactions in the stabilization and function of macromolecules. 

 

2.3 Materials and Methods 

System set up 

The heavy atom coordinates for the five systems (wild type and mutants R239A, K240A, 

R241A and K242A) of PKA RIα were obtained from the crystallographic structure of the 

holoenzyme (PDB code 2QCS14), ranging from residue 113 to 379, which omits the flexible 

dimerization/docking domain (residues 11-61), the inhibitory site (residues 94-98) and linker 

regions15. Residues were protonated at pH 7.0 using Maestro-integrated PROPKA and mutations 

made using Schrödinger’s Maestro (version 10.4, Schrödinger, LLC, New York, NY). The 

proteins were solvated in water boxes with counterions and 150 mM NaCl to simulate 

physiological conditions. The Amber14SB26 force field was used for the protein and NaCl with 

TIP3P waters27.  
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Molecular dynamics simulations  

Simulations were performed using GPU accelerated Amber 1426. The system was 

minimized in four stages: proton only, solvent, solvent and side chains, and the full system totaling 

11,000 cycles using a combination of steepest decent and conjugate gradient methods. 

Equilibration involved a heating step to 100 K at constant volume for 50 ps followed by heating 

to 310 K at constant pressure, 1 bar, for 200 ps. The system was further equilibrated at 310 K and 

1 bar NPT 750 ps.  Molecular dynamics simulations were run as an ensemble with periodic 

boundary conditions at 1bar and 310 K. We used a non-bonded short range interactions cutoff of 

10 Å, and the long-range electrostatic interactions were approximated by particle mesh Ewald28. 

The simulations used a 2 fs time step with the SHAKE algorithm to constrain hydrogen atoms. 

Each protein system was simulated in 5 parallel runs of 1,000 ns each, each run being assigned 

new starting velocities, resulting in 5  µs of total sampling time for each system (Supplementary 

Table 2.S1). 

 

Trajectory analysis 

Trajectories were visualized using VMD29. Structures obtained in the trajectory were 

aligned to the b-barrel of CBD-A (residues 152-225) and frames sampled for analyses every 100 

ps. Secondary structure assignment and pairwise distance calculation for the salt bridge analysis 

were performed using functions from MDTraj30, and all other analysis involved in-house 

programs. For the secondary structure analysis, bootstrapping sampling was done in order to obtain 

estimates of the variances of alpha helical proportions among the systems. A total of 20,000 

bootstrapping samplings were performed, in each of which 1,000 frames of the simulation were 

randomly selected. The secondary structure averages of each bootstrapping sampling were then 
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used to create the histograms. The salt bridge distance cut-off was taken as nitrogen-oxygen 

distance of 4 Å.  

 

Data Sharing 

All MD input files, MD trajectories, and ipython notebooks used for the analyses presented 

in the paper are available for download at http://doi.org/10.6075/J07D2S2X   

 

Purification of Regulatory Subunits and Generation of Mutants 

The basic patch mutants (R239A, K240A, R241A, K242A) were generated using 

QuickChange site-directed mutagenesis. Wild type and mutant RIa proteins were purified as 

previously described16,31. Proteins were expressed in Eschericia coli BL21 (DE3) from Novagen 

for 20-24 h at 15º C in TB medium. In brief, ammonium sulfate precipitation of the soluble lysate 

supernatants was batch bound overnight to a cAMP resin to purify via affinity chromatography. 

Proteins were eluted from the resin, using 40 mM cGMP, and applied to a Superdex 200 gel 

filtration column for final purification in gel filtration buffer [50 mM MES (pH 5.8), 200 mM 

NaCl, 2 mM EGTA, 2 mM EDTA, and 5 mM DTT]. 

 

Fluorescent Polarization Allosteric Activation Assay 

Allosteric activation of Type Ia PKA holoenzyme basic patch mutants was evaluated using 

a fluorescence polarization assay as previously described31. PKA holoenzymes were formed in 

vitro using a 1.2:1 (RIa:C) molar ratio in FP assay buffer [50 mM MOPS (pH 7.0), 35 mM NaCl, 

10 mM MgCl2, 0.005% (v/v) TritonX-100, 1 mM ATP, and 1 mM DTT]. The PKA inhibitory 

peptide conjugated to 5/6-carboxyfluoroscein (5/6-FAM-IP20) fluorophore was added to wells 
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containing the PKA holoenzyme at a final concentration of 2 nM. The C subunit concentration 

was kept constant at 12 nM and titrated with various concentrations of cAMP (0 nM to 8000 nM) 

to induce dissociation and allow binding of 5/6-FAM-IP20 to the C subunit. After 30 minutes of 

incubation to reach equilibrium, fluorescent polarization (excitation at 485 ± 20 nm, emission at 

535 ± 25 nm) was measured using a GENios Pro microplate reader (TECAN) in black, flat bottom 

96-well low-binding polypropylene assay plates (Greiner). Three independent experiments were 

performed, with each measurement being the mean of triplicate samples ± the standard deviation. 

Graphs were generated and analyzed in Graphpad Prism 7.0a (La Jolla, CA), using a sigmoidal 

dose response curve of variable slope. 

 

8-[Fluo]-cAMP Fluorescent Polarization Binding Assay  

The ability of the R subunit basic patch mutants to bind cAMP in the absence of thr C 

subunit was tested using the fluorescent cAMP analogue, 8-[fluo]-cAMP (Biolog), used at a final 

concentration of 10 nM. Wells were titrated with a range of R subunit concentrations (0 nM to 125 

nM), which were diluted with FP assay buffer. Polarization readings were measured and analyzed 

as described above.   

 

2.4 Results 

Wild type conformational dynamics 

The wild type and mutant systems were simulated in 5 parallel runs of 1µs each. Despite 

the time scales being shorter than those of the majority of biologically relevant processes, such as 

protein folding and domain mobility, we nonetheless observed great flexibility of the R subunit. 

To quantify this flexibility, we aligned all of the frames to the relatively rigid ß-barrel of CBD-A 



 

47 
 

in the H conformation and measured the displacement of the center of mass of CBD-B relative to 

the principal moments of inertia of CBD-A’s ß-barrel using spherical coordinates. In this new 

reference system, the distance between the centers of mass of CBD-A and CBD-B is given by d, 

and the displacement in the x-y plane and relative to the z axis is given by the angles f and q, 

respectively (Figure 2.2a).  

The histogram of distances between the CBD’s centers of mass for the wild type system 

provides one measure of the flexibility of the system (Figure 2.2b). Most of the structures sampled 

adopted distances similar to that of the crystallographic H conformation, which was also the initial 

position of our simulations. Interestingly, we found a great proportion of configurations that 

extended beyond the known B and H conformations’ CBDs distances. Larger distances were 

observed, as well as a small fraction of conformations with the centers of mass of the two lobes 

even closer together than in the globular, collapsed B conformation.  



 

48 
 

 
Figure 2.2. Dynamics of the wild type system. Spherical coordinate analysis of the conformational 
flexibility of wild type RIa. (a) Representation of the spherical coordinates of the center of mass 
of CBD-B b barrel relative to the principal moments of inertia of the H conformation CBD-A b 
barrel. (b) Histogram of the center of mass distances. (c) Free energy landscape in terms of 
spherical angles f and q for the complete set of sampled conformations. (d) Free energy landscape 
of the structures showing no overlap with the coordinates of the C subunit in the holoenzyme 
crystallographic structure. The spherical coordinates corresponding to the crystallographic 
structures are also shown. (e) Two views of the most probable conformation in the wildtype 
ensemble (CBD-A colored cyan, B/C helix red, and CBD-B dark green) compared to 
crystallographic H conformation (regulatory subunit in green, catalytic subunit in white). 
Structures were aligned in their CBD-A b barrel. 
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The spherical angles describe the orientation of the B domain and enrich the three-

dimensional quantification of the RIa conformational ensemble. We performed Principal 

Component Analysis (PCA) on the coordinates sampled and found that the first two principal 

components are very similar to the chosen spherical angles (Supplementary Figure 2.S1). We thus 

extended our analysis using these spherical parameters because they provide a more intuitive 

representation of the ensemble, with the metrics directly indicating the relative position of CBD-

A and CBD-B contrary to the more abstract representation given by principal components. With 

the most probable state being taken as a reference, the free energy landscape of the wild type 

ensemble in terms of these two angles is shown in Figure 2.2c, as well as the values corresponding 

to the H and B crystallographic conformations. On the timescale of the simulations, the transition 

between the H and B crystallographic conformations was not sampled, indicating that longer 

sampling would be required to observe the conformational change, as expected. However, this 

analysis shows that the most probable wildtype apo R conformation, located at the well in Figure 

2.2c, does not correspond to the crystallographic H conformation. It differs from the H 

conformation mainly by a rotation of the B/C helix, which results in a roughly 45˚-rotated B 

domain relative to its position in the X-ray crystal structure (Figure 2.2e). The rotation of CBD-B 

in the apo conformation suggests an overlap with the C subunit position (Figure 2.2d); thus, we 

would not expect the CBD-B to adopt this rotational position in the presence of the C subunit. 

 

Mutant conformational ensembles 

The spherical coordinate analysis was extended to the simulations of the four alanine 

mutations of the B/C helix basic patch. R239A, K240A and K242A displayed behavior similar to 

that of the wildtype in terms of the distance between the CBD’s centers of mass, with the exception 
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of a slight increase in the number of observed conformations that have more proximal lobes, or 

smaller values of d (Figure 2.3). R241A, however, showed an opposite trend, with no sampling of 

these more collapsed conformations and instead a significant number of structures in which the 

centers of mass were further apart than in H.  

 
Figure 2.3. Histogram of CBD’s centers of mass for the mutants (colors) versus wildtype (gray). 

 

The free energy landscape in terms of the spherical angles for the mutants is shown in 

Figure 2.4. Comparison with that of wild type (Figure 2.2c) shows that the mutations of K240 and 

K242 did not significantly affect the sampled conformational ensemble of R, while the removal of 

the basic residues R239 and R241 resulted in a markedly different distribution of structures and 

the sampling of novel conformations (See Supplementary Figure 2.S2). These conformations 

displayed dramatic bends and deformations of the B/C helix (Figure 2.5 and Supplementary Figure 

2.S3), and were more regularly sampled than in the wild type, K240A and K242A simulations. 
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These observations and the distribution of CBD distances suggest that, for R239A and R241A 

(especially the latter), there is uncoupling between the two domains upon the removal of the basic 

residue, resulting in much more freedom in conformational exploration. Nonetheless, all of these 

mutants still sample for a significant part of the simulation conformations similar to the wildtype’s 

most probable conformation, as evidenced by the presence of the wells in the same values of  f 

and q. 

 
Figure 2.4. Free energy landscape in terms of spherical angles for the wild type and mutants. The 
coordinates for the crystallographic structures are also shown. 
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Figure 2.5. Novel conformations sampled in (a) R239A and (b) R241A simulations. CBD-A is 
colored cyan, CBD-B dark green and B/C helix highlighted red. 

 

Flexibility of the B/C helix 

Visual inspection suggested a high degree of flexibility in the B/C helix for all systems 

(Figure 2.5). Analysis of the spherical coordinates provided an indirect indication of this 

flexibility, because the displacement of the CBD-B relative to CBD-A’s principal moments of 

inertia was mainly caused by movements in the B/C helix. To directly quantify the plasticity of 

the helix and identify regions with greater propensity for deformation, we calculated the fraction 

of residues in the B/C helix (residues 226-250) that displayed an a-helical secondary structure at 

each analyzed frame (Figure 2.6a). The wildtype, K240A and K242A showed similar helix 
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proportions, in agreement with the similarity in their conformational ensembles. The B/C helix in 

R239A and R241A was less well formed, having a lower helix proportion, as would be expected 

from the greater sampling of bent structures (Figure 2.5).  

We further refined this analysis by calculating, for each residue in the helix, the fraction of 

frames in which it possesses an a-helical structure (Figure 2.6b). Most of the residues had very 

high helical proportion, with the notable exception of the C-terminal residues Ser249 and Lys250 

(not shown in Figure 2.6b, with helical proportions ranging from 12.0 to 22.2 % and 3.8 to 11.0 

%, respectively, see Supplementary Figure 2.S4). These residues, in all of the systems, were 

assigned in the majority of the frames as hydrogen-bonded turns32. In addition, R239A and R241A 

showed smaller helical proportions for other residues in the helix. Residues 226-236, located in 

the N-terminal part of the helix (in the CBD-A), were less ordered in R239A, with Leu233 being 

the most flexible of these.  Oppositely, for R241A, it was the C-terminal part of the helix, 

comprising residues 233-248 in CBD-A and CBD-B, which displayed most pronounced flexibility. 

In this case, Leu238 had the greatest diversion from the wildtype and other mutants’ helical 

proportion. Both Leu233 and Leu238 are found in the interface with the C subunit in the 

holoenzyme structure (Supplementary Figure 2.S5). Mutational studies of Leu233 have suggested 

that this residue is important for allowing the formation of the holoenzyme, with L233A displaying 

a 3-fold decrease in cAMP activation constant and a 3-fold increase in R-C dissociation constant19.
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Figure 2.6. B/C helical proportion analysis of wild type and mutants’ systems. (a) Full helix 
analysis and (b) per residue analysis for residues located in the B/C helix. 

 

Allosteric Activation and cAMP Binding of B/C Helix Mutants 

MD simulations suggested that mutations of the arginine residues of the basic patch induce 

perturbations in the dynamics and conformational ensemble of the R subunit. Given the 

dependence of enzyme function on protein structure and the overall shape of the free energy 
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landscape, the observations described above implicated altered function of R239A and R241A 

compared to wildtype RIa.  

To validate our MD simulations of the basic patch mutants, we used two separate in vitro 

fluorescence polarization assays to address binding of cAMP to R subunits and allosteric activation 

of holoenzyme complexes (Supplementary Figure 2.S6). We initially speculated that because the 

mutations do not directly interact with cAMP in either the H or B conformations, cAMP binding 

would not be significantly impacted. As expected, using a fluorescent cAMP analogue, 8-[fluo]-

cAMP, we found only minor differences in Kd values for R239A and K242A compared to wildtype 

RIa, with no change in cooperativity for any mutant (Table 2.1 and Supplementary Figure 2.S6a). 

We assessed the allosteric activation of PKA using an assay to measure dissociation of the C 

subunit from mutant holoenzyme complexes in response to increasing concentrations of cAMP, 

by measuring polarization of the fluorescent 5/6-FAM-IP20 peptide which binds to free C subunit 

in solution (Table 2.1 and Supplementary Figure 2.S6b). As anticipated, we found that R241A was 

>20-fold less sensitive to cAMP-stimulated activation and less cooperative than the wildtype, but 

R239A was slightly more sensitive to cAMP and exhibited greater cooperativity. Furthermore, 

K240A, but not K242A, showed a modest decrease in sensitivity to cAMP with no change in 

cooperativity.  
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Table 2.1. Nucleotide binding and allosteric activation of RIa B/C Helix basic patch mutants and 
wildtype. 

 
 cAMP binding Activation of PKA 

System Kd (nM) Hill Coefficient EC50 (nM) Hill Coefficient 

Wildtype 7.30 ± 0.11 1.65 ± 0.04 23.36 ± 0.66 2.11 ± 0.11 

R239A 6.72 ± 0.11 1.71 ± 0.04 17.64 ± 0.67 2.54 ± 0.22 

K240A 7.32 ± 0.12 1.83 ± 0.05 29.98 ± 1.23 2.15 ± 0.18 

R241A 7.29 ± 0.10 1.80 ± 0.04 543.07 ± 27.40 1.44 ± 0.09 

K242A 7.71 ± 0.11 1.80 ± 0.04 24.93 ± 0.85 1.86 ± 0.10 

 

 

2.5 Discussion 

The use of all-atom MD simulations evidenced the pronounced flexibility of the apo 

regulatory subunit of PKA. Free wildtype PKA adopts a variety of conformations, with the 

extended, crystallographic H conformation only rarely sampled (Figure 2.2). Instead, a structure 

with a slight torsion on the B/C helix constitutes the most probable conformation, which disrupts 

the C subunit binding interface (Figure 2.2e). This finding suggests that the binding to C and 

inactivation of the enzyme require straining of the B/C helix and the R subunit undergoing the 

transition into a mechanically “frustrated” state. The protein frustratometer Web server 

(frustratometer.tk)33 was used to verify this hypothesis, and the contact interactions in the B/C 

helix are predicted to be frustrated compared to the energetics of other residues in the same location 

(mutational frustration, Supplementary Figure 2.S7a) or the same interactions in other 

configurations (configurational frustration, Supplementary Figure 2.S7b)34. This structural 
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frustration of R in the holoenzyme provides a molecular explanation for the quick activation of 

PKA upon cAMP binding and its ability to act as a dynamic allosteric switch. Despite favorable 

interactions in the R-C interface, the strain in the B/C helix favors the release of C and may be one 

of the factors that results in the shallow free energy landscape observed using long-timescale MD 

simulations and Markov State Models20. 

 Mutation of Arg239 or Arg241 to alanine greatly perturbs the conformational ensemble of 

the regulatory subunit. R241A, in particular, differs from the other systems in that the CBD’s 

dynamics seem to be decoupled, resulting in conformations in which they are separated by large 

distances. Similarly, the greatest variations in helix flexibility, as measured by the helix proportion, 

were seen in the R239A and R241A simulations. Our analysis further allowed the identification of 

the areas in the B/C helix that have a stronger propensity to be deformed and found that Leu233 

in the case of R239A and Leu238 in R241A, both located at the interface with the catalytic subunit, 

are the most affected residues.  

To relate the observed mutationally driven perturbation of the ensembles of R239A and 

R241A to the role of the basic residues and their involvement in electrostatic interactions, we 

calculated the total survival time of all of the salt bridges established within RIa from the 

simulations. This metric corresponds to the total fraction of frames in the simulation in which each 

salt bridge is formed. A qualitative representation of the network of salt bridges in the wildtype is 

given in Figure 2.7a. The great majority of the salt bridges are intra-domain, formed exclusively 

within CBD-A and within CBD-B. Interestingly, the only stable inter-domain salt bridge, formed 

for approximately 80% of the time in the wildtype simulation, is between Arg241 and Asp267. 

The same calculation was performed for the mutants, and the total survival time of salt bridges 
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that showed a change of more than 10% compared to wildtype are shown in Supplementary Figures 

2.S8-11.  

The survival times of the salt bridges in the mutant systems indicates that the disruption of 

a very reduced number of salt bridges by a single mutation affects a variety of others, emphasizing 

the fact that there is communication between the charged residues throughout RIa and that they 

are involved in an extended network. Moreover, the mutations in Arg239 and Arg241 involved 

deletion of stable, long-lived salt bridges, while Lys240A and Lys242A removed only transient, 

short-lived interactions. Using the identified salt bridges in the simulations, an electrostatic 

network can be established from the cAMP binding site in domain A, extending through the B/C 

helix and reaching the CBD-B (Figure 2.7b).  
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Figure 2.7. The network of salt bridges. (a) survival times of salt bridges formed in wildtype 
simulations. The size of the circles is proportional to the total survival time of the salt bridge. (b) 
Scheme of an electrostatic network connecting the two cAMP-binding domains. Basic residues are 
colored blue and acidic residues red, with the exception of residues in the cAMP binding sites, 
Arg209 and Arg233, which are colored green. The thickness of the black lines represents the 
lifetime of the salt bridge as measured in the wild type simulation. 

 

Arg241-Asp267 functions as the main inter-domain salt bridge, allowing communication 
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structural models have suggested that PKA activation involved an interaction between Glu200 and 

Arg241, with Glu200 interacting with the 2’-hydroxyl group in cAMP24. Our simulations of wild 

type and the mutants, however, did not sample the B conformation, with Arg241and Glu200 not 

coming into close contact with each other.  Our analysis therefore show that there is no such salt 

bridge formed between these residues, indicating instead that the decoupling of the two domains 

happens due to the breakage of the Arg241-Asp267 salt bridge. The loss of allosteric activation 

seen experimentally is therefore a result of the removal of the intra-domain interaction, which 

breaks the electrostatic communication between the CBDs and disrupts the propagation of the 

allosteric signal. 

The fluorescent polarization assays, on the other hand, indicate that Arg239 is involved in 

interactions of a different nature, contributing to the stability of the regulatory subunit in the 

extended, H-like conformation. The increased level of R-C dissociation may be caused by the 

destabilization of the binding interface, particularly Leu233, resulting in an effect similar to the 

L233A mutation19. In this way, the salt bridges involving Arg239 may function as “anchors” to 

keep the helix extended and allow the formation of the binding interface.  

The coupling of computational and experimental analysis suggests that Arg239 and Arg241 

play competing roles and that their modulation is an important factor for the regulation of PKA. 

We propose, in this way, that the extended salt bridge network is a key component of the allosteric 

mechanism and that there is a mechanical aspect to the conformational change caused by 

activation, with the salt bridges exerting a torque on the flexible B/C helix. More specifically, 

Arg239 and Arg241 seem to have essential roles in the stabilization of the H conformation and in 

the allosteric transduction upon activation, respectively.  
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In conclusion, the investigation of the dynamics of ion pair interactions in PKA using MD 

simulations and experimental assays allowed the identification of several complex salt bridges and 

how they modulate the dynamics and function of PKA. Because there is compensation between 

the electrostatic interactions and variations in the pairs throughout the simulations due to side chain 

flexibility and greater-scale multi-domain motion, the use of computer simulations to investigate 

these interactions can greatly enrich the structural or ensemble-averaged observations achieved 

with other methods.  
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2.7 Supporting Information 

 

Table 2.S1. Details of the simulated systems. Arginines shown in cyan, lysines in ochre and 
mutated residues in orange 
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Figure 2.S1. Principal components analysis of wildtype trajectory 
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Figure 2.S2. Mutants free energy landscape in terms of spherical angles overlaid on the wildtype 
sampling conformation (gray outline). 
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Figure 2.S3. Structural assignment to the free energy landscapes of (a) R239A and (b) R241A. 
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Figure 2.S4. Per-residue analysis of helical proportion for residues located in the B/C helix. 

 

 

Figure 2.S5. Representation of the two residues in the B/C helix with smallest helical proportion 
as verified from the simulations (Leu233 in R239A and Leu238 in R241A simulations) overlaid 
on the holoenzyme crystal structure. 
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Figure 2.S6. Nucleotide Binding and Allosteric Activation of RIa B/C helix basic patch mutants. 
(a) To assess cyclic nucleotide binding to RIa, the fluorescent cAMP analogue, 8-[fluo]-cAMP, 
was used to measure fluorescent polarization to R subunits titrated at various concentrations (0 nM 
– 125 nM). (b) To evaluate allosteric activation of RIa mutant holoenzymes, polarization of the 
fluorescent PKA inhibitory peptide, 5/6-FAM-IP20, by binding to dissociated C subunit was 
assessed in response to titrating concentrations of cAMP (0 nM – 8000 nM). (a-b) The 
corresponding results summaries are shown in the tables right of the respective graphs, and 
represent the weighted mean of three independent experiments, each containing 3-4 sample 
replicates. Graphs were generated and analyzed using Graphpad Prism 6. 
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Figure 2.S7. Analysis of protein frustration using the protein frustratometer methodology. (a) 
mutational frustration and (b) configurational frustration. Highly frustrated contacts are 
represented as red lines, neutral contacts as grey line and minimally frustrated contacts as green 
lines. The backbone of the residues in the basic patch of the B/C helix are highlited in red. 
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Figure 2.S8. R239A salt bridges’ lifetime (in turquoise) for those that were altered by more than 
10% with the mutation, compared to wildtype (gray). The abolished salt bridges are highlighted. 
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Figure 2.S9. K240A salt bridges’ lifetime (in orange) for those that were altered by more than 10% 
with the mutation, compared to wildtype (gray). The abolished salt bridges are highlighted. 
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Figure 2.S10. R241A salt bridges’ lifetime (in red) for those that were altered by more than 10% 
with the mutation, compared to wildtype (gray). The abolished salt bridge is highlighted. 
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Figure 2.S11. K240A salt bridges’ lifetime (in blue) for those that were altered by more than 10% 
with the mutation, compared to wildtype (gray). The abolished salt bridge is highlighted. 
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Figure 2.S12. Representation of the extended electrostatic network connecting the tandem cAMP 
binding domains. Basic residues are shown in blue and acidic residues, in red, with the exception 
of residues in the cAMP binding sites, Arg209 and Arg233, which are shown in green. The 
thickness of the black lines represent the lifetime of the salt bridge as measured in the wildtype 
simulation. 
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3.1 Abstract 

Custom-designed ligand-binding proteins represent a promising class of macromolecules 

with exciting applications toward the design of new enzymes or the engineering of antibodies and 

small-molecule recruited proteins for therapeutic interventions. However, several challenges 

remain in designing a protein sequence such that the binding site organization results in high 

affinity interaction with a bound ligand. Here, we study the dynamics of explicitly-solvated 

designed proteins through all-atom molecular dynamics (MD) simulations to gain insight into the 

causes that lead to the low affinity or instability of most of these designs, despite the prediction of 

their success by the computational design methodology. Simulations ranging from 500 to 1000 ns 

per replicate were conducted on 37 designed protein variants encompassing two distinct folds and 

a range of ligand affinities, resulting in more than 180 µs of combined sampling. The simulations 

provide retrospective insights into the properties affecting ligand affinity that can prove useful in 

guiding further steps of design optimization. Features indicate that entropic components are 

particularly important for affinity, which are not easily incorporated in the empirical models often 

used in design protocols. Additionally, we demonstrate that the application of machine learning 

approaches built upon the output from the simulations can help discriminate between successful 

and failed binders, such that MD could act as a screening step in protein design, resulting in a more 

efficient process.  

 

3.2 Introduction 

Protein design is a young and ambitious field that aims to expand beyond naturally-

occurring proteins to explore the massive protein sequence and fold spaces in the search for novel 

and customized structures1,2. Successes in the design of novel folds3,4, ligand-binding proteins5–7, 
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enzymes8,9, antibodies10–12 and self-assembling supra-molecular structures13–16 underscore this 

field’s progress and growing potential. However, despite an increasing number of achievements, 

the protein design process remains very challenging and time consuming, with usually low success 

rates in initial design rounds11,17. 

Molecular recognition and protein-ligand binding are universally important processes that 

are however not yet fully understood or emulated. The development of novel molecules to treat 

diseases rely on the understanding of these interactions, and the improvement of protein-ligand 

affinity is far from being a negligible task18. In this context, the design of ligand-binding proteins 

offers the opportunity to better investigate the fundamentals affecting high affinity binding and 

selectivity1,5, as well as laying out the foundations for custom design of de novo enzymes19, 

biosensors20,21 and antibody engineering22,23. Designing ligand-binding proteins poses the extra 

challenge that protein scaffolds not only need to be structurally stable and fold in the intended 

conformation, but also include residues lining up the binding cavity that result in high-affinity 

interactions with the ligand. Thus, the functionalization of the binding site, generally with polar 

residues for the establishment of hydrogen bonds with the ligand, has to be balanced with the 

hydrophobicity of the protein core to maintain an energetically favorable folded state7 and the 

desolvation cost of the polar cavity upon ligand binding24.  

The general ligand-binding design protocol involves initial sampling of disembodied 

amino acids to create a binding site with specific protein-ligand interactions. The binding site is 

then positioned in a protein scaffold, and surrounding residues are further optimized to generate 

the desired interactions or to buttress the interactions in the secondary shell5. While tight ligand 

binders have been successfully generated by computational design, in a recent study 17 pre-

selected designs of the nuclear transport factor 2 (NTF2) scaffold had to be expressed and tested 
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to yield two successful micromolar binders5, while the pool of tested candidates for the more 

hydrophobic fentanyl ligand involved 62 candidates, among which only three were successful first 

generation µM to nM binders21. More recently, the first completely de-novo designed b-barrel 

binding proteins required the generation of thousands of designs and experimental characterization 

of 56 high-scoring sequences to yield two successful binders in the first round of design 

generation7. This constitutes an expensive and lengthy process, as the computational design 

generation needs to be followed by expression of the highest-ranking candidates and experimental 

characterization, which includes assays to test proper protein folding and stability (such as circular 

dichroism and yeast-surface display), and ligand binding (e.g.  fluorescence activation or 

polarization and isothermal titration calorimetry). Several challenges, including the evaluation of 

desolvation energies and sampling of alternate backbone conformations25, affect the design 

accuracy, and thus the majority of proteins in the initial rounds of computational design end up 

failing the experimental validation. The most common sources of failure are due to improper 

protein folding (leading to aggregation and insolubility in many cases), or the absence of high-

affinity interactions with the ligand. The few promising candidates from the first round of design 

can then be optimized by techniques such as site-saturation mutagenesis to yield tighter binding 

proteins, further lengthening the design process. 

Protein function is directly determined by the macromolecule’s structure and dynamics, 

and in this sense molecular dynamics (MD) simulations are uniquely poised to assist in the protein 

design process as the simulations can inform on the designs’ dynamics beyond the static models 

generated by the empirical design protocols26,27. MD simulations have been successfully applied 

at several different steps in the protein design methodology, such as in the refinement of predicted 

protein structures28–30 or in the identification of flexible regions in designed proteins. The 
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enumeration of mutations for the rigidification of these flexible sites31 led to verified increase in 

thermal stability experimentally32–34. Additionally, investigation of designed enzymes using short 

simulations provided indication of key disrupted catalytic interactions in unsuccessful designs, and 

was proposed as a screening method for enzyme design35.  

Here, we investigate the dynamics of 37 ligand-binding designs from two different 

scaffolds and designed to bind to distinct ligands using MD simulations (Figure 3.1a). We survey 

the dynamical properties that reveal rational explanations for the unexpected failure of some of 

these designs and explore the applicability of the simulations as a screening tool for early 

identification of the most promising designs prior to experimental validation (Figure 3.1b). 

Differences in protein structural flexibility, ligand dynamics, pocket pre-organization, and water 

dynamics inside the cavity provide evidence of the predictive power of MD simulations when used 

concomitantly with the protein design process. We find that the application of machine learning 

approaches to the descriptors generated from simulations of the 37 designs in a retrospective 

analysis allows for accurate classification of the models and identification of the tight binder 

designs. This reinforces the potential of using MD simulations in the protein design pipeline to 

achieve higher efficiency and success rates in the design of novel functional proteins. 
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Figure 3.1. (a) Summary of the design data set used in the simulations, constituting two protein 
scaffolds (b-barrels and DIG designs) designed to bind distinct ligands. Representative designs are 
shown on the top with ligands highlighted, and the structure of the ligands are shown on the bottom 
panels. DFHBI stands for fluorogenic 3,5-difluoro-4-hydroxybenzylidene imidazolinone. Key 
atoms mentioned later in the text are indicated by their respective numbering in the ligand 
molecule. (b) Schematics of the prosed use of MD as a screening tool in the protein design process. 

 

3.3 Methods 

System selection and preparation 

The starting structures for the simulations consisted of Rosetta-modeled ligand-binding 

proteins published previously5,7. Thorough descriptions of the design methodologies and 

experimental characterization assays employed, including ligand affinity and selectivity 

measurements, can be found in references 5 and 7. Four designs of the digoxigenin-binders based 

on Nuclear Transport Factor 2 (NTF2) folds were selected (DIG10.2, DIG10.3, DIG12 and DIG16, 

here referred to as DIG designs)5, as well as 33 designs of the fluorogenic 3,5-difluoro-4-

hydroxybenzylidene imidazolinone (DFHBI) binders based on a de novo b-barrel scaffold (Figure 

3.1a)7. This set included examples of tight binders as well as unsuccessful designs, thus classified 
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due to failures to fold properly or to bind to the ligand with high affinity (Table 3.1). Besides the 

modeled structures, we also performed simulations starting from the X-ray crystal structures of 

DIG10.2 (PDB code 4J8T, chains A and B) and DIG10.3 (PDB code 4J9A, chains C and F) to 

investigate possible errors introduced by the use of design models instead of experimentally-

validated structures. Missing terminal residues in the crystal structures of DIG10.2 and DIG10.3 

were modeled with Schrödinger’s Maestro (version 10.4, Schrödinger, LLC, New York, NY) 

based on the known protein sequence, and missing side chains were added with Schrödinger’s 

Prime36,37.  

The digoxigenin and DFHBI ligands were parametrized using Antechamber and the 

generalized Amber force field (GAFF)38,39, with geometry optimization performed with Gaussian 

0940. For DFHBI, the torsional parameters of the C2-C1-C7-C8 dihedral were increased to model 

the molecule’s expected planarity due to its aromaticity in the bound fluorophore state. All starting 

structures were processed with Maestro-integrated PROPKA to assign protonation states at pH 7. 

Dowser41 was used to hydrate the protein cavity following removal of the ligand’s coordinates for 

apo simulations. The proteins were solvated in water boxes with a buffer distance of 13 Å (for the 

b-barrels) or 15 Å (DIG designs) to the box edge with counter ions for charge neutrality, and 150 

mM NaCl to simulate the experimental ionic concentration. The Amber14SB force field42,43 was 

used for the protein and NaCl, with TIP3P for the water molecules44. As a note, we re-checked the 

protein protonation in the 33 b-barrel simulations after 500 ns of sampling and observed that about 

30% of the histidine residues were assigned a different protonation state due to structural 

rearrangements, evidencing the limitations of conventional MD when it comes to fixed protonation 

states45. 
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Table 3.1. Summary of designed protein data set5,7 

Design name KD Classification* 
Number of apo 

and holo 
replicates 

Replicate 
simulation 
length (ns) 

DIG10.2 8.9 nM Binder 5 1,000 
DIG10.2a 8.9 nM Binder 5 500 
DIG10.3 541 pM Binder 5 1,000 
DIG10.3a 541 pM Binder 5 500 

DIG12 - Non-binder 5 1,000 
DIG16 - Non-binder 5 1,000 
HBI_06 - Non-binder 3 500 
HBI_10 - Non-binder 5 1,000 
HBI_11 12.8 µM Binder 5 1,000 
HBI_15 - Non-binder 3 500 
HBI_19 - Non-binder 3 500 
HBI_21 - Non-binder 3 500 
HBI_22 - Non-binder 3 500 
HBI_24 - Non-binder 3 500 
HBI_26 - Non-binder 5 1,000 
HBI_27 - Non-binder 3 500 
HBI_32 49.8 µM Binder 5 1,000 
HBI_33 - Non-binder 3 500 
HBI_34 - Non-binder 3 500 
HBI_36 - Non-binder 3 500 
HBI_38 - Unstable 3 500 
HBI_41 - Unstable 3 500 
HBI_42 - Non-binder 3 500 
HBI_48 - Non-binder 3 500 
HBI_49 - Non-binder 5 1,000 
HBI_50 - Non-binder 3 500 
HBI_52 - Non-binder 3 500 
HBI_54 - Non-binder 3 500 
HBI_55 - Non-binder 3 500 
HBI_56 - Non-binder 3 500 

b11_loop ~0.5 µM** Binder 3 500 
b11L5F.1 ~0.5 µM** Binder 3 500 

b11L5F_nC1 ~0.5 µM** Binder 3 500 
b11L5F_nC2 ~0.5 µM** Binder 3 500 
b11L5F_nC3 ~0.5 µM** Binder 3 500 
b11L5F_nC4 ~0.5 µM** Binder 3 500 

b11L5F.2 ~0.5 µM** Binder 3 500 
mFAP0 ~0.5 µM** Binder 3 500 
mFAP1 0.56 µM Binder 3 500 

* Unsuccessful designs are subdivided into two categories: “Unstable” for designs that showed improper folding or 
aggregation and “Non-binder” for folded designs that did not show ligand affinity within the sensitivity of the binding assays5,7. 

** estimated KD values based on rough titration data from Dou, J. et al7 
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Molecular dynamics simulation protocol 

All systems were simulated in their apo and ligand-bound (holo) states. We used the MD 

Kepler Workflow developed by our lab to enable automated MD minimization and equilibration 

for such a large number of systems46. Minimization consisted of five stages: hydrogen only, 

solvent, solvent and ligand, side chains, and the full system resulting in 13,000 cycles using a 

combination of steepest decent and conjugate gradient methods. Since the majority of the starting 

structures were not experimentally-resolved conformations, we performed a long equilibration 

protocol and verified RMSD evolution to ensure system relaxation and convergence. Equilibration 

involved an initial heating to 100 K at constant volume for 50 ps followed by heating to 298 K at 

constant pressure, 1 bar, for 200 ps. The systems were further equilibrated at 298 K and 1 bar for 

2.25 ns. 

Molecular dynamics simulations were run using GPU accelerated Amber1442,47 as an NPT 

ensemble with periodic boundary conditions at 1 bar and 298 K to simulate experimental 

conditions. We used a non-bonded short-range interaction cutoff of 10 Å, and the long-range 

electrostatic interactions were approximated by particle mesh Ewald48. The simulations used a 2 

fs time step with the SHAKE algorithm to constrain hydrogen atoms. The initial design data set 

was simulated for five replicas of 1,000 ns each in the apo and holo states, while additional 

validation systems were simulated in three 500 ns replicas of each state (Table 3.1), resulting in a 

total sampling of 184 µs. MD input files are available for download at 

https://github.com/emiliapb/Design_screening. 

 

Analysis methods 

Trajectory files were visualized in VMD49 and analysis were conducted using Jupyter 

notebooks50 and in-house scripts, using a variety of MD analysis functions from MDTraj51, 
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CPPTRAJ52, PyEMMA53 and MDAnalysis54,55. The Jupyter notebooks are available for download 

on GitHub (https://github.com/emiliapb/Design_screening). Specifics of the different analysis 

methods conducted are discussed below. 

 

Protein structural flexibility 

Root mean square fluctuation (RMSF) of Ca carbons was calculated using CPPTRAJ, 

following structural alignment of the protein to backbone atoms. To obtain a single value 

informative of structural flexibility for each design, we used PyEMMA’s regular space clustering 

of the Ca coordinates with RMSD metric and a cutoff of 1.5 Å to obtain the number of clusters 

(NOC) sampled. Simulations were analyzed every 100 frames.  

To inform on the solvent accessibility of hydrophobic residues, we calculated solvent 

accessible surface area (SASA) of Ala, Ile, Leu, Phe, Val, Pro, Gly, Met and Trp residues for every 

frame in the simulations, using MDTraj’s SASA function. 

 

Ligand dynamics 

We investigated ligand displacement in the holo simulations through the calculation of 

ligand root mean square deviation (RMSD) from the starting conformation in the designed models. 

Each trajectory was aligned to the protein coordinates of the respective starting structure, and 

RMSD values calculated using CPPTRAJ.   

 

Pocket organization 

Cavity volume was investigated using POVME (Pocket Volume Measurer), version 2.056. 

Volume calculations were performed for every 100 frames of the aligned trajectories. Inclusion 
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spheres were defined to encompass the binding site, and seed spheres were selected to include the 

minimal definition of the pocket, which were placed roughly at the center of the ligand position in 

the binding pocket. To allow for comparison across designs, the same POVME spheres were used 

for each scaffold and POVME’s convex hull option was turned off.  

The side chain chi1 dihedral angles of residues designed to interact with the ligand were 

investigated using MDTraj. For protein-ligand hydrogen bond analysis, MDTraj was used to 

calculate the distance between the hydrogen and acceptor atoms, and the angle formed between 

donor, H and acceptor atoms. H-bonds that fell within the definition of strong and moderately-

strong bonds were counted (Strong = XH --- Y bond length of 1.2-1.5 Å and X-H---Y angle of 

170-180°, moderate = bond length between 1.5-2.2 Å and angle 130-170°)35,57. 

 

Water analysis 

To investigate the presence of water molecules inside the protein cavity, we counted the 

number of water molecules within a sphere delimiting the binding site using MDAnalysis. The 

delimiting region was selected as a sphere of radius 8 Å from the coordinates of the C7 atom in 

the digoxigenin ligand, and a sphere of radius 7 Å centered at DFHBI’s C1 atom (Figure 3.1a). 

The survival probability function in MDAnalysis58 was used to calculate water survival probability 

within the same defined spheres in the last 100 ns of the apo simulations. 

 

Convergence analysis 

To assess the influence of simulation length and number of replicas on the computed 

features, we used the protocol described by Knapp, Ospina and Deane59, computing the average 

difference between the features for 100 rounds of random selection without replacement. 
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Machine learning 

Python’s scikit-learn library was used to perform unsupervised and supervised learning on 

the features extracted from 500 ns of simulations. For the designs that have been simulated for 

1000 ns and 5 replicas, we used the first 500 ns of the simulation and the first three replicas 

(generated using random seeds) for the calculations. Feature scaling was performed among the 

designs of a particular scaffold to prevent dominance of larger-valued features. Logistic regression 

was performed with a tolerance of 10-4 and liblinear solver. K-nearest neighbors used k=2 or 5, 

uniform weights and Euclidian distance metric. 

 

3.4 Results and Discussion 

Binding determinants for DIG designs 

To investigate the dynamics of designed small-molecule binding proteins and understand 

the determinants affecting binding ability and affinity, we first investigated 4 designed proteins of  

the Nuclear Transport Factor 2 scaffold, which have been engineered to bind to the small molecule 

digoxigenin5 (Figure 3.1a).  We conducted extensive simulations in both the apo and holo states 

of two successful, tight binder designs (DIG10.2 and DIG10.3) and two designs that failed to bind 

to the ligand despite positive predictions by the computational methodology (DIG12 and DIG16). 

DIG10.2 and DIG10.3 are third- and fourth-generation designs, respectively, generated following 

design optimization, and exhibit binding constants in the nano-molar to pico-molar range (Table 

3.1). The structures of DIG10.2 and DIG10.3 have been solved by X-ray crystallography and were 

the starting structures of the simulations. DIG12 and DIG16, being considered failed designs, did 

not have their structures solved experimentally and the starting structures for the simulations were 
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modeled by Rosetta based on these designs sequences and the original scaffold from which they 

were engineered5.  

We first focused on the dynamics of the proteins in the simulations. The projection of the 

RMSF values on the protein structures evidences that the highly fluctuating regions are located in 

the structural motifs lining up the cavity entrance, with DIG12 in particular exhibiting a larger 

flexible region than the tight binders and thus suggesting a possible negative effect of the protein 

flexibility in the accessibility of the cavity for ligand binding (Supplementary Figure 3.S1). We 

also looked at solvent accessibility of hydrophobic residues, since this is an important factor 

affecting protein stability. Figure 3.2a shows the average SASA/hydrophobic residue calculated 

for the designs. In line with what would be expected, tight binders show smaller SASA both in the 

apo and holo simulations, although DIG16 values are not as distinct from the tight binders as 

DIG12. This indicates that the successful designs not only tend to have a better organized 

hydrophobic core, but also confirms the importance of solvent shielding of nonpolar residues and 

promotion of hydrophobic interactions for adequate structural stability. 

 

 

 

 

 



 

90 
 

 

Figure 3.2. Evaluation of binding determinants for DIG designs. (a) Solvent accessible surface 
area (SASA) of hydrophobic residues. Tight binders are colored in turquoise and non-binders in 
orange.  Results from apo simulations are shown in lighter colors, and holo simulations in darker 
colors. Error bars represent standard deviation across the five replicates. (b) Average cavity 
volumes for apo and holo simulations. Color scheme is the same as (a). (c) Ligand RMSD 
distribution for all replicates. (d) Box plot of the number of hydrogen bonds established between 
protein and ligand. Black line represents the mean value. The box extends to the lower and upper 
quartile and whiskers show the top 5 percentile and 95 bottom percentile of the data. (e) Average 
water count inside the cavity for apo and holo simulations. Coloring scheme is the same as (a). (f) 
Water survival probability in apo simulations for water molecules located within the cavity. 
Results are shown for one of the monomers only. 

 

A key unanswered question in the design process of proteins functionalized for ligand 

binding is how stable and pre-organized the pocket remains in the absence of the ligand35. We set 

out to explore the survival of the organized pocket through the calculation of cavity volume 

throughout the simulations. All designs, regardless of binding affinity, showed large variations of 
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cavity volume in the apo state, indicating that the pocket deviates from its designed conformation 

but that does not necessarily preclude ligand binding (Supplementary Figure 3.S2a). The non-

binders DIG12 and DIG16 have occasional complete closure of the cavity, but the same also 

happens for the successful binder DIG10.2. The volume density of DIG10.2 at 50% of the frames, 

for example, shows a partially collapsed pocket (Supplementary Figure 3.S2b). Of the designs, 

DIG10.3 is the only one that shows apo pocket volume density that completely encompasses the 

volume occupied by the ligand in the bound state, demonstrating the pocket pre-organization 

achieved in the last round of design optimization. The C-alpha RMSF values (Supplementary 

Figure 3.1) from the MD simulations indicate that the lack of cavity pre-organization among the 

other designs is not only due to sidechain flexibility but also reflects backbone-level dynamics, 

which overcomes a major limitation of protein design protocols of not accounting for backbone 

flexibility. 

On average, we observe much larger cavity volumes for the non-binders DIG12 and DIG16 

than for the tight binders, both in the apo and holo simulations (Figure 3.2b). These designs’ 

scaffolds have a large cavity opening, while the scaffold of DIG10, from which DIG10.2 and 10.3 

were generated, presents a more enclosed cavity, such that the cavity volume results are a reflection 

of this. The simulations of DIG10.2 with ligand bound sampled a high number of cavity 

conformations with volumes smaller than what was originally designed, suggesting side chain 

rearrangements that result in a tighter interface around the ligand (Supplementary Figure 3.S2a). 

The fact that the designs with the sterically most accessible cavities resulted in the lowest affinities 

with the ligand sheds light on an interesting question: cavity accessibility may not be as important 

a factor for ligand affinity given these designs innate flexibility, and a “close-fitting” pocket may 

play a bigger role as it allows for stronger interactions with the ligand when in the bound state. 
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We furthered our study of pocket pre-organization by looking at the dihedral angles 

sampled by the residues side chains specifically designed to hydrogen bond to the ligand. The DIG 

designs present 3 interacting residues at the interior of the cavity in each of the monomer chains 

(Y34, Y101 and Y115 for DIG10.2 and DIG10.3, W57, H60 and H67 for DIG12 and Y39, H41 

and N89 for DIG16), and we found that these remain in their designed conformer for a larger 

fraction of frames in the successful design simulations (Supplementary Figure 3.S3). 

Besides probing protein dynamics, the simulations provide interesting insights into the 

dynamics of the ligand as well. In the holo simulations of the tight binders DIG10.2 and DIG10.3, 

very small ligand fluctuations are seen, with the ligands remaining very tightly bound in their 

original conformation in the cavity (Figure 3.2c). In the simulations of the non-binder examples, 

on the other hand, the ligand showed a large degree of displacement from its starting position, 

probably influenced by the larger size of the cavity, including complete dissociation from one of 

the monomers in 2 out of the 5 holo DIG16 trajectories (Supplementary Figure 3.S4). Somewhat 

surprisingly, the MD simulations were thus able to distinguish between tight binders and non-

binder designs without requiring any ligand steering or information on the design’s binding 

affinity.  

We further investigated ligand-protein interaction by counting the number of hydrogen 

bonds stablished in the holo simulations. While there’s a lot of fluctuation in the number of 

hydrogen bonds due to the dynamics of the ligands and side chains, DIG10.2 and DIG10.3 show 

a larger average number of hydrogen bonds than DIG12 and DIG16 (Figure 3.2d). For these 

successful designs, 3 stable hydrogen bonds are maintained with the designed interacting side 

chains located at the binding site interior, while additional transient hydrogen bonds are 

occasionally established with the ligand moiety located at the more solvent exposed opening of 
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the cavity. Interestingly, DIG12 also establishes a large number of transient hydrogen bonds 

besides those modeled in the design structure due to its larger ligand dynamics. 

Binding is not only highly influenced by the direct interactions between the protein and 

ligand, but also by the dynamics of the water molecules surrounding them60. Consequently, we 

also looked at the water molecules present in the apo and holo cavity interiors to investigate if 

there were any differences in water organization between the designs. The protein preparation 

steps preceding MD production of the apo state involved using Dowser41 to incorporate water 

molecules into the void left by the removal of the ligand from the model structure. We 

accompanied the presence of waters in the binding site by counting the number of molecules within 

a sphere delimiting the protein cavity. The holo simulations showed a smaller degree of water 

insertion in the cavity than the apo simulations due to the presence of the ligand (Figure 3.2e). In 

both states, the non-successful designs allowed for a greater degree of water insertion, promoted 

by the larger pocket volumes sampled during these simulations (Figure 3.2b). 

Finally, as the absolute water count inside the cavity likely does not provide the full picture 

of the energetics of interactions, we calculated the survival probability of the waters inside the 

binding pocket in the apo simulations to get information on the stability of these molecules. As 

seen in Figure 3.2f, survival probability for the tight DIG binders decay more slowly than that for 

the non-binders, indicating presence of longer-lived waters inside these cavities and that successful 

design strategies involve promotion of favorable protein-water interactions. 

 

Dynamics of modeled versus resolved crystal structures 

A question might arise in the application of MD simulations for design screening regarding 

the accuracy and reliability of the results obtained from possibly inaccurately modeled starting 
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structures. This is a particularly valid concern since the prospective application of the simulations 

involves using structures predicted by Rosetta or some other protein design software that are not 

experimentally validated, as it antecedes experimental assays. In the above section, we described 

the dynamics and results obtained from the simulations of the crystal structures of DIG10.2 and 

DIG10.3. To try to address this question, we also performed simulations starting from the 

corresponding Rosetta-modelled structures for these designs, here named DIG10.2a and 

DIG10.3a. Simulations were run for 500 ns both in apo and holo states, and here we compare 

results from equivalent simulation lengths of the crystallographic structures. Overall, the dynamics 

obtained from the modeled structures showed similar distribution profiles to those derived from 

the simulations of the crystal structures (Figure 3.3). Hydrophobic SASA average values of 

modeled and resolved structure simulations are very similar to each other, as well as pocket volume 

distributions (Figures 3.3a and 3.3b). Water count inside the cavity is also comparable between 

modeled and resolved structure simulations (Figure 3.3c). In terms of ligand RMSD, DIG10.3a 

showed a significant tail of higher ligand RMSD values (Figure 3.3d), due to a large transient 

ligand displacement in one of the runs, but nonetheless the distributions sampled are still very 

distinct from that observed for the non-binders DIG12 and DIG16 (Figure 3.2c). Our results 

suggest that simulations starting from modeled structures are therefore accurate enough in 

sampling protein dynamics to be used with confidence in the assessment of these designs. 
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Figure 3.3. Comparison of results from the crystal (DIG10.2 and 10.3) and modeled structure 
(DIG10.2a and 10.3a) simulations (a) Solvent accessible surface area (SASA) of hydrophobic 
residues. Tight binders are colored in turquoise (for simulations starting from the crystal structure) 
or gray (for simulations starting from the modeled structures) and non-binders in orange.  Results 
from apo simulations are shown in lighter colors, and holo simulations in darker. Error bars 
represent standard deviation across the five replicates (b) Pocket volume distributions. DIG10.2 
and DIG10.3 are represented in turquoise, DIG10.2a and DIG10.3a are shown in silver. Holo 
simulation results are shown with filled curves, and apo simulations with just the curve outline. (c) 
Cavity water count. Coloring scheme is the same as in (a) (d) Ligand RMSD distributions. 
Coloring scheme is the same as in (b). 
 

Validation on a distinct scaffold 

The analysis of the DIG designs suggests the existence of energetic factors influencing 

binding ability which manifest themselves in key dynamical properties exhibited by successful 

binders. To validate these findings in a larger dataset and test the universality of the properties, we 

performed simulations of 33 experimentally-validated designs of a b-barrel scaffold7. These de-

novo designed proteins not only represent a completely different protein scaffold than the DIG 

binders, but have also been designed to bind to a distinct small-molecule ligand, DFHBI7. Our data 

set includes 24 first-generation designs, which were all predicted to be tight binders by the 
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computational design methodology even though the majority was experimentally found to not be 

so: two were verified to be structurally unstable and thus not fold in the predicted b-barrel structure 

(HBI_38 and HBI_41), 20 fold properly but fail to bind to the ligand, and only two are successful 

tight binders, with ligand affinity values in the micro-molar range (Table 3.1). In the work of Dou 

et al these successful initial designs were further optimized, resulting in 9 second and third-

generation designs with higher ligand affinity which have also been simulated and included in our 

analysis here (Table 3.1). 

To first verify the necessary sampling time required for appropriate distinction between the 

designs, we performed convergence analysis of the initial DIG design results as well as a small set 

of the b-barrel designs (containing the 2 first-generation tight binders and 3 non-binders) which 

were run for five 1 µs-long replicates in the apo and holo states, the same sampling length used for 

the previous designs. Analysis of the identified dynamical features indicated that the simulations 

do not need to be run so extensively, with results either reaching approximately constant values or 

maintaining constant relation among each other at around 500 ns (Supplementary Figure 3.S5). 

Moreover, estimates of the reliability and reproducibility achieved using different number and 

combination of replicates59 indicates that three or four replicas yield property mean values 

satisfactorily converged and independent, within small variations, of the identity of the replicate 

simulations (Supplementary Figure 3.S6 shows results for HBI_10 and HBI_11).  A key point in 

our exploration is that we do not intend to perform an exhaustive investigation of the design 

dynamics, as this would likely require extremely long simulations and defeat the purpose of using 

molecular dynamics to increase the efficiency of the design process. Instead, we aimed at obtaining 

sufficient sampling for insightful discrimination between the large number of design candidates. 

Therefore, in the interest of time efficiency, we performed subsequent simulations of the remaining 
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b-barrel designs as 500 ns triplicate runs in the apo and holo states, and the following results will 

be discussed for equivalent sampling times for all simulations. 

In the analysis of this larger dataset, it became evident the need for an additional feature 

that would describe the conformational flexibility of the different designs. While RMSF is useful 

to investigate structural fluctuation incurred during the simulations, we turned to RMSD clustering 

of the Ca coordinates to provide a single value to represent each design’s flexibility and thus allow 

for a more direct comparison across the different proteins. As in the work of Demir et al., the 

number of clusters (NOCs) thus obtained was used as a representation of structural flexibility since 

at least in principle more flexible proteins sample a larger conformational ensemble in the 

simulations, resulting in a higher number of clusters to represent the variation of the Ca positions61.  

Figure 3.4 shows the 33 designs in terms of the structural and dynamical properties discussed 

above: structural stability (represented by the number of clusters and SASA of hydrophobic 

residues), cavity pre-organization (probed by number of frames in the apo simulations with 

volumes smaller than a cutoff which would prevent ligand binding, and holo average volume), 

insertion of waters in the cavity in holo simulations, and ligand dynamics (in terms of ligand 

RMSD and average number of protein-ligand hydrogen bonds per frame).  
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Figure 3.4. b-barrel designs distribution in terms of the identified discriminative features for design 
screening. (a) Number of clusters (NOC) analysis, (b) SASA of hydrophobic residues, (c) Number 
of frames with volume below a cutoff of 30 Å3 versus average holo cavity volume, (d) the same 
average holo cavity volume versus number of water molecules inserted in the pocket in the holo 
simulations and (e) average number of protein-ligand hydrogen bonds versus ligand RMSD. Non-
binders are shown in orange, successful designs are shown in turquoise and structurally unstable 
designs in black. 
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The profiles in Figure 3.4 support and accentuate the trends observed from our initial 

reduced data set and evidence that these structural and dynamical descriptors can be useful in the 

classification of candidate designs. Importantly, the analysis of the same features computed from 

the original Rosetta-modelled design structures does not evidence any such distinction between 

the design categories (Supplementary Figure 3.S7), such that the descriptors generated from the 

static structures are not sufficient to distinguish successes from failures. The incorporation of 

dynamics, however, indicates that the non-successful designs in general are much more flexible 

and explore a wider range of conformations (Figure 3.4a, some designs have equal values of apo 

and holo NOC and overlap in the graph), suggesting that for this scaffold, failure to bind to the 

small ligand may arise from the lack of accounting for structure dynamics in the structure 

prediction methods. We observed that several non-binders were structurally destabilized by the 

introduction of the ligand in the holo simulations, leading to some dramatic structural deformations 

in some cases (Supplementary Figure 3.S8b). Tight binders, on the other hand, tended to be 

stabilized by the ligand in the holo simulations as indicated by the dampening of fluctuations in 

the RMSF plots (Supplementary Figure 3.S8).  The number of clusters analysis is particularly 

promising in that it may allow for early identification of non-stable designs, since HBI_41, one of 

the two designs that did not fold in the b-barrel structure in our data set, displayed one of the largest 

number of cluster pair values. The solvent exposure of hydrophobic residues does not allow for 

such a clear distinction between the design classes, but it’s possible to see in Figure 4b the 

suggestion of an empirical threshold at around 0.29 nm2 apo and holo SASA beyond which only 

non-successful designs can be found.  

The apo simulations of some of these designs showed such a large number of frames with 

completely collapsed pockets that it became evident that another useful discriminating metric 
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would be something that could capture this phenomenon. Here, we chose that as the number of 

frames with cavity volumes below a cutoff of 30 Å3, which represents a pocket volume too small 

to allow for ligand binding (the smallest pocket volume observed in the simulations with ligand 

bound was 33 Å3). This descriptor, in conjunction with the average cavity volume in the holo 

simulations, permits successful distinction between most of the designs (Figure 3.4c). Comparison 

of the same average cavity volume with the number of water molecules that insert into the pocket 

in the holo simulations evidences that while there’s a lot of variability for the non-binders, the 

successful designs cluster around smaller cavities and a reduced number of inserted water 

molecules (Figure 3.4d). 

Finally, as for the DIG designs, probing ligand dynamics also provides valuable 

information for design identification (Figure 3.4e). While several outliers can be seen, all 

successful designs show a higher number of ligand-protein hydrogen bonds and reduced ligand 

dynamics as indicated by the low ligand RMSD values. The incorporation of protein and ligand 

dynamics into these designed scaffolds provide important additional information that can thus aid 

design selection, since all generated designs had been originally intended to form at least four 

hydrogen-bonding interactions with the ligand7. 

 

Discriminative models for design screening 

For some of the features in Figure 3.4 it is possible to imagine cutoffs of acceptable or 

promising values exhibited by proteins with favorable ligand interaction that could be used for 

prospective design predictions. However, as would be imagined from the complexity of the process 

investigated, each of these descriptors is not perfect in its discernment of binding ability, and we 

can see the likelihood of both false positive and false negative assignments. We hypothesized that 
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taking the features jointly into account would result in a more accurate design classification, given 

the multi-dimensionality of the problem. We performed Principal Component Analysis (PCA) on 

the scaled features and projected the b-barrel dataset into three principal components (PC) which 

describe 80% of the data variance (Figure 3.5a). Confirming our hypothesis, the successful binders 

cluster together in regions of smaller PC1 and PC2, while the non-binders are more spread along 

the principal components. This is in line with the general notion that protein-ligand binding can be 

negatively impacted by several causes, and that only a specific (almost serendipitous) combination 

of the properties result in a tight interaction.  

The contributions of each of the features to the principal components can be analyzed to 

try to rationalize the energetic causes most highly affecting ligand-binding (Figure 3.5b). Entropy 

seems to play the most pronounced role in determining binding, as properties such as water 

dynamics in the cavity, protein conformational flexibility, cavity volume and ligand dynamics 

show the highest contributions in the first principal component. Ligand-protein induced fit comes 

in as a second determining factor, with the number of frames with too-small cavity volumes to 

allow for ligand insertion showing negative correlation with design binding ability. Finally, 

enthalpic components appear in the third PC, encoded by the SASA and number of hydrogen bonds 

established with the ligand. 

Even though the successful and non-binder designs concentrated in different areas of the 

PC map, the separation is not absolute and there are overlaps or outliers among the two classes. 

Interestingly, the two first generation successful binders are the ones located closer to the area 

occupied by the non-binders, while the second and third generation higher affinity binders cluster 

more closely together, evidencing the successful enhancement of the energetic properties by the 

experimental optimization. While by visual inspection it can be hard to define a separating line 
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between the classes, we turned to unsupervised learning and clustering to see if such regions could 

be determined in an unbiased manner. Using the k-means algorithm, the designs were not 

accurately clustered when only two clusters were used, but assigning the data to three distinct 

clusters yielded interesting results with good clustering quality (average silhouette value of 0.45): 

One of the clusters was enriched in designs from the tight binding class, while the others contained 

only examples from the non-binding designs (Figure 3.5c).  

 

 

Figure 3.5. Unsupervised learning model for design classification. (a) Three-dimensional plot of 
b-barrel simulations distribution in terms of the principal components of the discriminative 
features. Non-binders are shown in orange, structurally unstable designs in black, first-generation 
tight binders shown as turquoise circles and optimized tight binders as turquoise diamonds. (b) 
Color representation of feature contribution to the principal components. (c) Representation of 
cluster assignment on the 2-dimensional plot in terms of principal components 1 and 2. Clusters 
are named Successful (S), Uncertain (U) and Failed (F) clusters. 
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One of the clusters, located in the area of higher PC1 values, included designs that showed 

clearly unstable dynamics from the simulations (such as the designs shown in Supplementary 

Figure 3.S8a), and can be interpreted as the Failed (F) cluster. The second cluster of only non-

binders contained members in the boundary region with the tight binders and exhibited dynamics 

that would be hard to be accurately classified by visual inspection of the simulations. For this 

reason, we termed this the Uncertain (U) cluster. Their main distinction from the successful binders 

is captured by the collapse of the cavity in apo simulations incorporated into Principal Component 

2, as all of these designs show small pocket volumes or completely closed cavities for significant 

portions of the simulations. Finally, the cluster to which all of the tight binders were assigned, here 

termed Successful (S) cluster, contains only 4 incorrectly classified designs. One of the false 

positives in this classification is HBI_38, the non-stable design that did not display as different 

feature profiles as HBI_41 in Figure 3.4. HBI_38 and the tight binder HBI_11 differ by only two 

mutations in the N terminal that lead to the formation of a stabilizing intramolecular disulfide 

bridge in HBI_11, and thus the misclassification of HBI_38 is not surprising given the likely much 

longer timescale that would be required to properly sample the difference between these designs 

structural stability.  

 Remarkably for such a complex problem, the unsupervised learning approach here 

employed on the features measured from the simulations was thus able to identify the high affinity 

binders with only 4 inaccurate classifications and no false negative assignments. We estimate that 

the early identification of the 12 unsuccessful designs from the F cluster and the 6 designs from 

the U cluster could have saved about 6 weeks of work, including protein expression, purification, 

folding and binding assays. However, this is likely to be a lower estimate as the Baker lab is very 

well equipped for protein characterization and the entire process could probably take 2 to 3 times 
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longer in a different lab. On the other hand, the MD system preparation, simulation and analysis 

workflow greatly automates the required steps such that the whole set of proteins can be simulated 

and analyzed in less than 2 weeks, using parallel GPUs and requiring minimal human intervention. 

This unsupervised approach is useful to identify inherent differences between designs of 

the same structural scaffold, but lacks transferability with the DIG design results (Supplementary 

Figure 3.S9). However, taking advantage of the availability of experimentally-validated labels, we 

explored the use of supervised learning for the classification of the joint design scaffold62,63. K-

nearest neighbors and logistic regression classifiers were trained using 5-fold cross validation on 

the 10 dynamical fingerprints identified in the joint, 37 b-barrel and DIG design simulations, and 

showed good classification performance (Table 3.2). The precision values, the rate of true positive 

classifications over all positive assignments (including false positives), indicate the presence of 

misclassified non-binders. However, the recall metric at 1.0 for both algorithms, given as the ratio 

of true positive assignments over all assignments of the real positive class (including false 

negatives), indicates a complete absence of tight binders being classified as unsuccessful designs. 

In the same way, the high accuracy of the classifications and the Matthew correlation coefficient 

(MCC) and F1 scores, all used as measures of a classifier performance and with a maximum value 

of 1.0 for a perfect classification, evidence the generality of the proposed approach. Moreover, the 

feature weights of the logistic regression model indicate that pocket dynamics plays the most 

determinant role for identifying non-binders, quantified by the insertion of water molecules in the 

cavity when in the ligand-bound state and the collapse of the cavity when in the absence of the 

ligand (Supplementary Figure 3.S10).  Logistic regression, in particular, resulted in good 

classifiers even when trained on small sets (50% or even 33% of the dataset, Supplementary Table 
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3.S1), suggesting that not many designs need to be experimentally validated in order to yield 

accurate predictions in a prospective study. 

 

Table 3.2. Evaluation of the supervised learning classifiers using 5-fold cross validationa. 

Validation 

metric 

Classification algorithm 

k-nn (k = 5) Logistic regression 

Accuracy 0.84 ± 0.16 0.93 ± 0.10 

Precision 0.79 ± 0.21 0.87 ± 0.17 

Recall 1.0 ± 0.0 1.0 ± 0.0 

MCC 0.74 ± 0.25 0.87 ± 0.16 

F1S 0.87 ± 0.13 0.92 ± 0.10 
a Values correspond to average and standard deviation of the 5 cross validations. 

 

Finally, to further test the universality of this approach, we constructed models solely on 

the b-barrel designs and checked the predictions on the DIG dataset. With a large set of b-barrel 

designs available, we further split the data into training and validation sets to verify absence of 

overfitting. Using logistic regression, training the model on 70% of the b-barrel designs yields 

perfect classification of the designs of the distinct DIG scaffold (Table 3.3). Conversely, models 

trained solely on the 4 DIG designs display lower accuracy and precision due to the much smaller 

training set in this case, but the recall still indicates a perfect absence of false negative classification 

(Table 3.4). Interestingly, the 12 non-binders correctly identified correspond exactly to the designs 

classified in the F cluster using unsupervised learning. Regardless of the classification approach 

employed, the computation of dynamical fingerprints64 from molecular dynamics simulations of 

designed proteins, thus, emerges as a potential general and scaffold-independent screening 

methodology to aid the challenging protein design process (Figure 3.1b). 
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Table 3.3. Evaluation of the generality of the classifiers, with models trained exclusively on the 
b-barrel designsa. 

 

Validation 

metric 

Training + validation set: 33 b-barrel designs (70:30 split) 

Test set: 4 NTF2 designs 

k-nn ( k = 5) Logistic regression 

Validation set Test set Validation set Test set 

Accuracy 0.83 ± 0.09 1.0 ± 0.0 0.91 ± 0.08 1.0 ± 0.0 

Precision 0.70 ± 0.15 1.0 ± 0.0 0.80 ± 0.19 1.0 ± 0.0 

Recall 0.98 ± 0.05 0.95 ± 0.15 1.0 ± 0.0 1.0 ± 0.0 

MCC 0.71 ± 0.13 0.96 ± 0.13 0.83 ± 0.16 1.0 ± 0.0 

F1S 0.81 ± 0.09 1.0 ± 0.0 0.87 ± 0.13 1.0 ± 0.0 
 

a Values correspond to average and standard deviation of 10 rounds of random splits of the data 
set according to the 70%:30% training:validation ratio. 

 

Table 3.4. Evaluation of the generality of the classifiers, with models trained exclusively on the 
DIG designs. 

 

Validation 

metric 

Training set: 4 DIG designs 

Validation set: 33 b-barrel designs 

k-nn (k = 2) Logistic regression 

Accuracy 0.70 0.70 

Precision 0.52 0.52 

Recall 1.0 1.0 

MCC 0.53 0.53 

F1S 0.69 0.69 
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3.5 Conclusions 

In this work, we used MD simulations to investigate the dynamics of designed ligand-

binding proteins as a source of insight into the failure of some of these designs to bind to the ligand 

with high affinity. It became evident that the design model generated by the protein design protocol 

may differ from the ensemble of structures accessed by the simulations, such that the modeled 

structural descriptions can be further enriched by the incorporation of dynamic fingerprints. 

The results obtained here suggest that successful and non-successful designs differ in their 

dynamical properties. Entropic components play a significant role in determining ligand affinity, 

which are complex and often very challenging to incorporate in the empirical models of protein 

design. Easily measured MD-realized descriptors (including number of clusters, cavity volume, 

hydrophobic solvent-accessible surface area, water count in cavity and number of protein-ligand 

hydrogen bonds) allow for the investigation of multiple design candidates, and analysis of these 

enthalpic and entropic feature profiles in a data set of 33 b-barrel designs resulted in a 88% 

accuracy of binding ability classification using unsupervised learning. This data set included 24 

first-generation designs, among which only two were found to bind with high affinity, and 9 

optimized second and third-generation designs7. The application of the unsupervised learning 

method in the screening of the first generation designs would result in the identification of the two 

successful binders and 4 false positive non-binders, which constitutes a 4-fold enrichment 

((2/6)/(2/24)) over the initial candidate design data set and a minimum net time and effort 

“savings” of one month of work. Moreover, the application of supervised learning in the form of 

k-nearest neighbors or logistic regression classifiers on the full dataset consisting of two different 

protein scaffolds resulted in accurate classification with no false negatives, suggesting the 

generality of this approach. The results here described emphasize how MD can act as a promising 
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screening step in the protein design process, avoiding the experimental testing of non-stable and 

low affinity designs and increasing the efficiency of the pipeline. 
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3.7 Supplementary Information 

 

 

Figure 3.S1. RMSF values for the DIG designs (left panels). Apo results are shown in black, holo 
results are shown in color according to design classification: non-binders are colored orange, high-
affinity binders are colored turquoise. Shaded areas represent standard deviation among the five 
replicates. Representation of high fluctuation areas on the protein structure, with residues colored 
according to RMSF values of the apo simulations (right panels). Only one of the dimers are shown 
for simplicity, and ligand’s position in the designed model is shown as density in the binding 
pocket for reference. 
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Figure 3.S2. POVME results for DIG designs (a) Distribution of pocket volume. Apo results are 
shown in gray and holo results are shown in color. The volume from the initial modeled structure 
is represented by the dashed line. (b) Cavity volume density at 50% of the simulation time 
represented as a black mesh. Starting protein structure is shown in white and initial ligand 
orientation shown in gold for reference. 
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Figure 3.S3. Dihedral angle analysis of ligand-interacting side chains. (a) Representation of the 
designed hydrogen-bonding interacting residues located in the interior of the protein cavity, shown 
for the resolved crystal structure of DIG10.3 chain A. The interacting residues in the other designs 
occupy similar positions in the protein structure. (b) Sampling of side-chain orientation in the 
rotameric state as the designed structure in terms of chi1. High affinity designs are colored in 
turquoise and non-binders in orange.  Results from apo simulations are shown in lighter colors, 
and holo simulations in darker. 

 

 
Figure 3.S4. Protein-ligand distance for select replicates. DIG16 shows ligand dissociation. 
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Figure 3.S5. Convergence analysis for the DIG and b-barrel simulations. Values computed from 
the 5 replicas are shown. (a) Number of clusters (NOC), (b) average pocket volume and (c) average 
ligand RMSD. 
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Figure 3.S6. Replicate convergence analysis for the HBI_10 and HBI_11 b-barrel simulations. (a) 
Number of clusters (NOC), (b) average pocket volume and (c) average ligand RMSD. 
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Figure 3.S7. Properties of the static, Rosetta-designed protein structures used as starting 
conformations for the simulations. (a) Hydrophobic SASA, (b) cavity volume, (c) count of protein-
ligand hydrogen bonds and (d) cavity water count after solvation of apo structures. Design name 
key is provided on the right. (e) Data distribution in terms of the first three principal components 
and (f) projected on the first two principal components. Non-binders are shown in orange, 
successful designs are shown in turquoise and structurally unstable designs in black. 
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Figure 3.S8. (a) RMSF values for select non-binders and (b) tight binders of the b-barrel design 
dataset. Apo results are shown in black, while holo results are shown in color according to design 
classification: non-binders are colored orange, high-affinity binders are colored turquoise. Shaded 
areas represent standard deviation among the replicates. (c) Example of b-sheet unzipping 
deformation seen in the HBI_10 simulations. The ligand’s initial coordinates are shown in light 
orange while its final coordinates after the deformation are shown in darker orange. The panel on 
the right shows the distance between the sheets throughout the five replicates. 
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Figure 3.S9. Joint unsupervised classification model for DIG and b-barrel designs. (a) Three-
dimensional plot of DIG (shown as stars) and b-barrel simulations (shown as circles) distribution 
in terms of the principal components of the discriminative features. Non-binders are shown in 
orange, tight binders in turquoise. (b) Color representation of feature contribution to the principal 
components. (c) Representation of cluster assignment on the 2-dimensional plot in terms of 
principal components 1 and 2. 

 

 

 

Figure 3.S10. Logistic regression feature weights from a model trained on 80% of the DIG and b-
barrel design data. 



 

117 
 

Table 3.S1. Evaluation of the supervised learning classifiers, using 33% or 50% of the data in the 
training seta. 

 

Validation metric 

Logistic regression k-nearest neighbors (k=5) 

training =  
33% 

training =  
50% 

training =  
33% 

training =  
50% 

Accuracy 0.84 ± 0.09 0.85 ± 0.08 0.73 ± 0.11 0.81 ± 0.11 

Precision 0.72 ± 0.13 0.73 ± 0.15 0.58 ± 0.24 0.68 ± 0.17 

Recall 0.94 ± 0.14 0.97 ± 0.09 0.79 ± 0.33 0.96 ± 0.11 

MCC 0.70 ± 0.17 0.74 ± 0.12 0.52 ± 0.22 0.68 ± 0.15 

F1S 0.80 ± 0.11 0.82 ± 0.09 0.63 ± 0.24 0.78 ± 0.13 

 

a Values correspond to average and standard deviation of 100 rounds of random splits of 
the data set according to the training/test set membership ratio (33% or 50% of the data in the 
training set). 
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4.1 Abstract 

 Even in the crystal lattice, proteins retain a significant degree of flexibility and can adopt 

multiple conformations. Diffuse scattering is an experimental technique that accounts for half of 

the signal captured in X-ray crystallography experiments and that carry information on the 

correlated motions in crystals. However, they are typically ignored in the elucidation of 

macromolecular structures, due to challenges in the acquisition of high quality signal compared to 

the stronger Bragg peaks and interpretation of the results in terms of intra- and intermolecular 

motions in the crystal. As improvements to the data acquisition promise to make diffuse scattering 

more accessible in biophysical experiments, attention has been turned to the validation of models 

for interpretation of protein dynamics in crystals. Here, we characterize the extent of 

conformational variability in experimentally-validated molecular dynamics simulations of a 

supercell of staphylococcal nuclease using the Markov state model (MSM) methodology. Our 

results evidence not only the degree of protein flexibility and absence of symmetry across the unit 

cells but also the existence of significant chain cross-correlation effects and long-range 

communication in these crowded environments. This work sets the stage for applications of MSMs 

in the interpretation of correlated motions in protein crystals probed by diffuse scattering 

experiments and suggests the use of this often overlooked experimental technique in the validation 

of MSM parameters.   

 

4.2 Introduction 

Diffuse scattering, the streaked and cloudy features present in diffraction patterns, are a 

result of imperfections in crystal structures and correlated motions between atoms1. These patterns 

constitute half of the data collected in X-ray experiments but are traditionally ignored in favor of 
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the stronger Bragg peaks, which report on the mean electron density and result in an averaged 

structure model2. In the past few decades, however, increased efforts in the acquisition of high-

resolution diffuse scattering signal and interpretation of the results in terms of protein dynamics 

models placed diffuse scattering as a unique and newly accessible biophysical probe for reporting 

on atomic spatial correlation on structure and dynamics of macromolecules3.  

While the relationship between diffuse scattering and correlated motions is well 

established, the interpretation of the scatter results in terms of the actual dynamics in the crystal 

remains challenging. Several models have been proposed4–10, and more recently molecular 

dynamics simulations of crystalline proteins have been used to enrich the interpretation of the 

results, by allowing the calculation of diffuse scattering profiles from the protein models and 

comparison with the experimental results2,11–16. In addition to providing information on the protein 

dynamics and correlations at the atomic level, these two methodologies can also complement each 

other in another way: validation of MD simulations by experimentally-characterized diffuse 

scattering maps have been suggested as a way to improve the development of force fields and 

models of protein dynamics1,17 (Figure 4.1). Some key limitations in the use of MD simulations 

for this purpose include adequate sampling of these large systems18 and especially accurate 

modeling of the anisotropic component of the diffuse scatter, related to correlated motions in the 

protein components of the crystal2. 
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Figure 4.1. Representation of the reciprocal relationship between diffuse scattering and MD 
simulations in modeling protein motions. 

 

In an effort to aid the interpretability of the diffuse scattering signal, we have developed 

Markov state models (MSMs) of a long-timescale staphylococcal nuclease 2x2x2 supercell 

simulation conducted by Wall et al2, represented in Figure 4.2. This configures the first application 

of MSMs to diffuse scattering experiments and crystalline systems, and is motivated by the 

mathematically-rigorous discretization of protein conformational dynamics, coupled with 

thermodynamic and kinetics information, that is provided by the analysis of MD simulations in 

the MSM framework19–24. Moreover, since the crystalline simulations include multiple copies of 

the protein, the use of MSMs to unify the conformational ensemble explored by all copies is a 

natural follow up step in the interpretation of the protein conformational dynamics observed in the 

crystalline model. Additionally, taking advantage of the reciprocal relationship between MD 

simulations and diffuse scatter, we also propose here the application of diffuse scattering as an 

experimental observable to optimize Markov state models, by providing external validation for the 

many parameters and features that need to be decided upon for model construction. 
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Figure 4.2. Representation of the staphylococcal nuclease supercell model used in this study. 

 

Despite constructing models based on individual proteins internal motions, the observed 

metastable states indicate the extent of intermolecular interactions enabled by each chain’s 

intrinsic dynamics. Inter-chain correlations are observed at large distances beyond the confines of 

the unit cell, and add to the evidence on the importance of long range motions in diffuse scattering. 

The application to crystalline systems is a substantial innovation in MSM MD simulations, and 

suggests the use of diffuse scattering as observables for the experimental validation of MSMs. 

 

 

4.3 Methods 

Simulations and Markov State Models 

Simulations were taken from an experimentally-validated crystalline 2x2x2 supercell of 

staphylococcal nuclease, containing a total of 32 protein chains and explicit water molecules2. The 

protein structure was taken from PDB 1SNC, and missing N and C termini residues modelled using 

UCSF Chimera. Details of the system preparation and simulation can be found in M. E. Wall, 

IUCrJ (2018). The supercell was simulated for a total of 5 µs of production. 

A B
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For MSM construction, the coordinates of each chain were extracted from the supercell 

simulation and saved as individual protein trajectories. The ensemble of 32 individual 5 µs 

trajectories was processed and models built using PyEMMA25, version 3.5.6. The flexible regions 

model (details on the selection of features provided in the Results section) was built using time-

independent component analysis (tICA)26 with a lag time of 1 ns and MSM lag time of 20 ns. 

Discretization was performed with k-means clustering, k = 333. Model accuracy was verified by 

implied timescale (ITS) plots and Chapman-Kolmogorov tests (Supplementary Figures 4.S1 and 

4.S2). 

Additional models were constructed using different feature selections. The active site 

MSM, using all combinations of pairwise distances between the active site residues (Arg35, Glu43, 

Tyr85, Arg87, Tyr113 and Tyr115), was constructed with k= 376 and tICA and MSM lag times of  

5 ns and 30 ns, respectively. An unit cell MSM used internal features from the initial model in 

addition to all pairwise distances between Ile92 in each chain in the unit cell, k= 400 and tICA and 

MSM lag times of 5 ns. The MSM lag time was chosen based on the respective model ITS plot. 

 

State cross-correlation 

 Chain cross-correlations in terms of the state distribution as defined by the MSM 

metastable states during the simulation was calculated using Pearson correlation between each pair 

of chains. Correlation dependence on inter-chain distances was verified through the calculation of 

the symmetry-corrected distances between each pair of chains in the supercell. 

 

Calculation of diffuse scattering 

For calculation of the diffuse scattering produced from the metastable state conformations 

identified in the MSMs, snapshots of the supercell were reconstructed by randomly placing protein 
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conformations extracted from the metastable states, with the overall state distribution in a single 

snapshot following the MSM state’s equilibrium population. A total of 10,000 frames were 

constructed for diffuse scattering calculations. Simulated diffuse scattering was calculated 

following the procedure outlined in M. E. Wall, IUCrJ (2018) using the “Lunus” diffuse scattering 

data processing software suite (https://github.com/mewall/lunus). 

 

4.4 Results and Discussion 

Metastable description of protein conformational flexibility 

 The staphylococcal nuclease was chosen as our model system as it constitutes one of the 

few crystalline protein systems for which high-resolution diffuse scattering has been obtained and 

that has been extensively studied in the context of MD crystalline simulations2,13,27. The supercell 

simulation used as starting point for the analysis was experimentally validated against X-ray B 

factors and diffuse scattering2, suggesting a sufficient degree of accuracy in the modeling of the 

protein ensemble by the simulation.  

RMSF analysis of the protein chains during the simulation evidences that even in these 

crystalline environments, the protein shows some degree of flexibility, particularly in the termini 

and in its central loop located close to the active site, residues 42 to 54 (Supplementary Figure 

4.S3).  To characterize the global conformational flexibility of the protein chains, we selected a 

number of pairs distributed along the protein structure and computed their pairwise distances 

during the simulations (Supplementary Table 4.S1). The pairs’ influence on the description of slow 

transitions was analyzed using time-lagged Independent Components Analysis (tICA)26, which 

identifies the linear combination of features that describes the slowest degrees of freedom of the 

system. After an iterative process of eliminating features with low tICA coordinate correlations 
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we arrived at a final set of 10 feature pairs, among which one pair is located in the N terminal, two 

in the C terminal and the remaining 7 involve one residue in the above identified central flexible 

loop and another in nearby secondary structure motifs (Figure 4.3a, pairs highlighted in 

Supplementary Table 4.S1). Their identification in this tICA-directed procedure suggests that these 

motifs are involved in the slowest motions in the protein system. The feature contributions are 

distributed among the tICA components, such that this novel coordinate space is a combination of 

each of these regions’ influence on the dynamics (Figure 4.3b and Supplementary Figure 4.S4). 

  For a more human-interpretable description of the conformational space sampled by the 

chains during the simulation, we constructed Markov state models on the coordinate space defined 

by these 10 pairs. Six interconnected metastable states are identified (Figure 4.3c). Structures 

randomly-selected  from these states are shown in Figure 4d and evidence the degree of flexibility 

of the N and C termini, as well as the flexible loop. The other loops and all secondary structure 

elements are more dynamically restricted, in accordance with NMR studies of other protein 

crystals28.  
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Figure 4.3. Flexible regions MSM. (a) Pairs used as features for MSM construction (in the form 
of pairwise Ca distances). Each pair’s location on the protein secondary structure are indicated by 
a different color. (b) Free energy landscape in terms of the tICA-transformed feature space. (c) 
Metastable states identified by Hidden Markov models. (d) Representation of 10 randomly-
selected conformations from each metastable state shown in (c). 

 

Figure 5 shows these flexible motifs conformations in more detail. The N terminal, being 

a flexible tail, shows dramatically different conformations among the metastable states, suggesting 

the existence of not only intra-chain interactions with helix 3 (in states 3 and 5) but also possible 

inter-chain interactions when in the downwards-extended conformations observed in states 1 and 

A B

C D
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4 with chains that were not originally among their interacting partners in the initial supercell 

structure. State 4 is predicted to be the most populated state in equilibrium, accounting for 28% of 

the equilibrium population, suggesting the weight that these unexpected inter-chain interactions 

may have in the crowded environments of the protein crystal.  

The C terminal contains a small helix that partially unwinds in all but state 1. States 0 and 

3, particularly, have dramatically-extended C termini and are also found to be interacting with 

novel nearby protein chains (Supplementary Figure 4.S5). State 3 is the second most populated 

state at equilibrium, at 22%. Importantly, both the N and C termini have been modeled 

computationally as the crystal structure was missing atom coordinates, such that the motions here 

observed could be artifacts from the modeled starting conformation. However, the high correlation 

obtained for the simulated diffuse scattering compared to experimental validates at least in part the 

accuracy of the protein motions observed in the simulations. 
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Figure 4.4. Details of the different flexible regions identified in the metastable states. States’ colors 
are the same as in Figure 4.3. 

 

The central loop also explores a significant range of conformations, moving both closer to 

the protein core from the starting conformations (in states 0, 3 and 4) as well as further away (most 

strikingly in state 2), in a hinging movement spanning 15.5 Å. Interestingly, the two most 

populated states at equilibrium, 3 and 4, exhibit the folded, closer-to-protein-core conformations, 

suggesting this as the most relevant loop conformation in the crystalline environment. In these 

states the loop is sufficiently close to the unfolded C terminal that a salt bridge between these two 

motifs can be observed. 
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State distributions and cross-correlations in the crystal 

The description of the protein ensemble in terms of these metastable states has the 

advantage of allowing the interrogation of whether there are  preferred conformations accessed by 

each protein chain in the supercell and in providing information on the presence (or lack thereof) 

of crystal symmetry at the dynamic level. In order to investigate that, we computed each chain’s 

metastable state distribution, that is, the relative frequency with which each state is visited by each 

chain in the supercell simulation (Figure 4.5a). About a third of the protein copies, such as chains 

4, 6, 7 and 8, have clear metastable state memberships. The majority of the chains, however, can 

be split between two or more preferred states.  

Even though every 4th chain is in symmetry-equivalent positions in each unit cell making 

up the supercell, the metastable distribution does not follow this four-fold symmetry, suggesting 

that symmetry is not conserved in terms of these proteins’ conformational ensemble. This becomes 

clearer as we look at each unit cell state distribution individually (Figure 4.5b) or reconstruct the 

supercell in terms of each chain’s most probable state (Figure 4.5c). Interestingly, there appears to 

be a dominance of states 0 and 5 at each respective sides of the supercell. It is thus evident that 

even in these constrained environments there is still considerable protein motion that moves the 

crystalline system away from a symmetric distribution and highlights the importance of 

considering deviations from the perfect crystal in structure prediction based on X-ray 

experiments29. 
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Figure 4.5. Chain state distributions in the supercell. (a) Per-chain metastable state sampling across 
the simulation. (b) Unit cell preferred state distribution for the eight asymmetric units in the 
supercell. (c) Views of the supercell according to each chain preferred state. 

 

Analysis of the time evolution of the state distributions in the simulation indicate a 

significant degree of state cross-correlation among the chains in the supercell, as shown in Figure 

4.6a. Interestingly, such correlation found between states is not random, as reconstructed crystal 

trajectories in which each chain’s conformational states were drawn at random, or weighted by the 

equilibrium population obtained in the MSM, do not show any significant chain cross-correlations 

A B

C
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(Figure 4.6b). This indicates that the chains’ state dependencies found here are due to causal 

relationships that have to be brought about by inter-chain interactions.  

Almost half of the 32 chains in the supercell show high cross-correlations with at least one 

other chain (according to a cutoff of absolute Pearson correlation of above 0.5). These are 

distributed across the supercell, as shown in Figure 4.6c, and the correlations surpass the unit cell 

boundaries and involve proteins located at large distances even when chain distances are corrected 

for crystal symmetry (Figure 4.6d), indicating the existence of long-range communication between 

the chains. These findings agree with the emerging understanding that long-range correlations play 

an important role in the origin of diffuse scattering10,17. 
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Figure 4.6. Chain cross-correlations. (a) Pearson correlations between states during the simulation 
for every pair of chains in the supercell. (b) Pearson correlations computed from reconstructed 
crystal trajectories in states drawn at random (top) or weighted by the equilibrium population 
obtained in the MSM (bottom). (c) Representation of the highly correlated chains in the supercell, 
shown in cyan. (d) Symmetry-corrected distance dependence of the inter-chain correlations for 
two representative chains in the supercell. 

 

 

Prediction of diffuse scattering from reconstructed crystals based on MSM states 

A current limitation of MSMs is that the conformations explored by the MD simulations 

are clustered into discrete states based on a researcher-selected state definition (e.g., RMSD of the 

backbone carbons, torsion angles, or residue contact maps). This first step in model construction 

A B
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essentially defines the protein conformations that are taken into the following steps of data 

discretization (clustering), transition probability calculation and coarse graining for human-

interpretation. In this way, the feature choice affects all MSM outcome and an appropriate selection 

for the problem being investigated is a determinant step for accurate model construction. Other 

important parameters that may affect the accuracy of MSMs are the lag time, the number of clusters 

used in the discretization step and the number of metastable states used for coarse graining and 

construction of hidden MSMs. There are some established methods and tests used to verify the 

accuracy of the constructed model, such as the implied timescale plots and Chapman-Kolmogorov 

tests. However, despite improvements in the methodology and code, MSM construction remains 

very much an art greatly led by intuition. However, diffuse scattering could be used to overcome 

this limitation, by monitoring different selection criteria for increased agreement with the 

experimental data.  

We decided to test that by reconstructing trajectories of the supercell based on the state 

equilibrium populations predicted by the MSM (Figure 4.3d). A varying number of crystal frames 

were reconstructed using the CrystalBuilder program being developed by our collaborators. 

However, the correlations with the experimental diffuse scattering obtained thus far remain very 

low, maxing at 0.45 in the total intensity and < 0.2 in the anisotropic scattering (Figure 4.7), which 

constitute poorer results than those computed directly from the original MD simulations2. 
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Figure 4.7. Correlation of experimental and MSM-computed diffuse scattering. 
 

This poor initial result is not completely surprising considering that this naïve 

reconstruction of the crystal based on the single chain MSM state populations did not incorporate 

information on the correlated motions between the chains observed above, and did not account for 

likely atomic clashes between neighboring chains. To try to address this weakness, a new version 

of CrystalBuilder is currently being developed to incorporate the information on chains cross 

correlations and conditional probabilities (that is, the probability that a chain in a particular 

location in the crystal will be in a determined state given the state of another)  in the reconstruction 

of the crystals, and we expect to be able to capture some improvement in the modeling of the 

experimental diffuse scattering. 

 

Exploring the influence of different feature definitions 

 The comparison of MSM-predicted and experimental diffuse scattering can help us 

explore the influence of different feature sets on the obtained models of dynamics and the predicted 
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diffuse scatterings. Thus, in addition to the above constructed MSM, we decided to verify if 

additional models based on different features could be constructed from the supercell simulations.  

Previously, interesting dynamics were observed in the active site residues of crystalline 

staphylococcal nuclease simulations13. Calculating all pairwise distances between the same set of 

residues yielded another successful MSM, this one containing 3 states based on the timescale 

separation in the implied timescale plots (Figure 4.8). 

 

 

Figure 4.8. Active site MSM. (a) Active site residues. Features consisted of all combination of 
pairwise distances between them. (b) Free energy landscape with metastable states distribution 
overlaid. (c) Metastable states identified by Hidden Markov models. 

 

An alternative avenue that could potentially better account for the chain’s intermolecular 

interactions could be the use of features that integrate descriptions of the unit cell, besides just the 

intramolecular distances so far being considered. A model defined in terms of a few inter-chain 

distances (to account for global protein motions in the unit cell) in addition to the internal features 

from the initial model could be successfully constructed (Figure 4.9), although model statistics is 

worsened by the significantly smaller sampling of the full unit cell conformations from the 

supercell simulation (8 unit cells x 5 µs = 40 µs). In this model the unit cell dynamics can be 

coarse-grained into four metastable states. Importantly, both of these models showed satisfactory 
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profiles in the MSM validation tests (Supplementary Figures 4.S6 and 4.S7) despite describing 

completely different protein motions. This underscores the challenges involved in selecting the 

features for MSM construction. Additionally, validation of the predicted diffuse scattering profiles 

based the respective models’ state populations and correlations has the potential of providing a 

means for directed investigation of the roles of different scales and ranges of motion in the diffuse 

scattering measured experimentally. 

 

 

Figure 4.9. Unit cell MSM. (a) Representation of inter-chain distances used as features. (b) Free 
energy landscape with metastable states distribution overlaid. (c) Metastable states identified by 
Hidden Markov models. 

 

 

4.5 Conclusions 

Based on an MSM-directed metastable state investigation of the conformational ensemble 

of chains of a supercell of staphylococcal nuclease, it becomes clear how the proteins in these 

crystalline environments retain a significant degree of flexibility, which affect the diversity of 

interactions formed with neighboring chains. Our models indicate that these interactions are not 

constrained to local pockets but surpass the unit cell to attain much larger distances involving 

several protein chains. This highlights the importance of considering many unit cells in the 

simulations of protein crystals17.  
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Additionally, our work evidences how, given enough sampling, accurate MSM models can 

be constructed from a variety of feature selections. We have remained within the realm of pairwise 

distances, but even more models could theoretically be made based on RMSD to reference 

structures or torsion angles, to name a few possibilities. How does one choose the best set of 

features to build a model, and the other several parameters that are necessary during MSM 

construction? Here, we propose the use of diffuse scattering as an experimental observable against 

which to tune the MSM parameters. Additionally, the comparison of predicted diffuse scattering 

by the different MSM models against the experimental measurements provides a mechanism for 

investigating the weights that distinct areas or scale of protein correlated motions play in the origin 

of diffuse scattering. 
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4.7 Supplementary Information 

 

 
Figure 4.S1.  Implied timescale plot for the flexible regions MSM. 
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Figure 4.S2. Chapman-Komolgorov test for the flexible regions MSM. 
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Figure 4.S3. Protein RMSF. Average of all chains is shown in black, and standard deviation as 
gray area. 

 

 

Figure 4.S4. Correlation of flexible regions features identified by the tICA-directed procedure with 
tICA coordinates. 
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Figure 4.S5. Inter-chain interactions observed for a protein chain that exhibits the extended C-
terminal conformation seen in metastable state 0 (yellow, center). The conformation of the C 
terminal in the starting structure is represented in brown. Nearby chains are colored according to 
their metastable membership at that exact frame. Residues involved in inter-chain hydrogen 
bonding interactions are represented in licorice. 
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Figure 4.S6. Validation metrics of the active site MSM (a) Implied timescale plot, (b) CK test. 
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Figure 4.S7. Validation metrics of the unit cell MSM (a) Implied timescale plot, (b) CK test. 
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Table 4.S1. Pairs selected as initial features in the tICA analysis. 

Location in protein Residue 1 Residue 2 

N terminal 
Thr2* Lys9* 

Lys5 Leu7 

b-barrel 

Glu10 Val74 

Ala12 Leu89 

Leu14 Leu25 

Ile18 Ile92 

Val23 Phe34 

Ile72 Tyr93 

Lys16 Glu73 

Gln30 Lys16 

b -barrel - loop 
Met32 Gly86 

Asp21 Tyr113 

b -sheets 
Val39 Lys110 

Leu37 Asp40 

Loops 

Glu75 Gln80 
Leu38 Lys78 
Lye84 Tyr115 
Lys116 Thr120 

Intra - helices 

Asn100 Arg105 
Glu57 Phe61 
Lys63 Gly67 

Arg126 Lys133 
Gln123 Arg126 

Inter - helices 

Met65 Val99 
Ala58 Gln106 
Pro56 Ala132 

Ala102 Ser128 

Helix - sheets 
Lys24 Ala58 
Val111 Arg126 

C-terminal 
Ila139* Asp146* 
Ser141* Ala145* 

Internal flexible loop 
Lys45* Lys53* 
Pro47 Gly50 

Flexible loop - helix 
Thr44* Ser59* 
Lys49* Arg126* 
Gly50* Ala132* 
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Table 4.S1. Pairs selected as initial features in the tICA analysis (continued). 

Location in protein Residue 1 Residue 2 

Flexible loop - sheet 
Lys45* Val23* 
Pro47* Phe34* 
Lys48* Lys84* 

 
* Indicates features carried over for MSM construction because of high correlation with tICA 
components  
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5.1 Abstract 

The transcription factor p53 functions as a tumor suppressor and is the most frequently 

mutated gene in human cancer. Its inactivation by single point mutation is associated with 

progression of about 50% of cancers, and therefore reactivation of mutated p53 is emerging as an 

exciting possibility for cancer therapy. More than 90% of the cancer mutations are found in the 

DNA-binding domain of p53, but the mechanism through which a single mutation leads to change 

in function remains elusive and hinders the rational development of mutant-specific drug leads. 

Analysis of long-timescale molecular dynamics simulations of monomeric wildtype and the 

Y220C cancer mutant through the Markov state model framework has uncovered the involvement 

of loop 6 (L6), where the mutation is located, in the slowest dynamics in the protein. Due to its 

location far from the DNA binding surface, the conformational dynamics of this loop has so far 

remained largely unexplored. However, our simulations indicate the existence of allosteric 

communication between L6 and the functionally-important loop L1 as the mutation affects not 

only the conformational ensemble of the former but also of the latter. We observe the stabilization 

of alternate L6 conformations, distinct from all available X-ray crystal and NMR structures, in 

which the loop is extended and located further away from L1. As L6 can form hydrogen-bonding 

interactions with L1 when in the recessed conformation, our simulations suggest an allosteric 

mechanism for the inactivation effect of the Y220C mutation and evidence the existence of several 

novel protein conformations that can be targeted for p53 rescue efforts. Our approach exemplifies 

the power of the differential dynamics MSM methodology for uncovering intrinsic dynamical and 

kinetic differences among distinct protein ensembles. 
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5.2 Introduction 

The transcription factor p53, known as the “guardian of the genome”, is the most important 

tumor suppressor in humans due to its regulation of a wide range of cellular activities such as cell 

cycle arrest, apoptosis, senescence and promotion of anti-tumor microenvironments1,2. Because of 

its role preventing tumor initiation and maintenance, p53 is found to be the most frequently 

mutated gene in human cancers3,4. Loss of its function through missense mutations is associated 

with progression of about half of human cancers5,6, and therefore reactivation of mutated p53 is 

emerging as an exciting possibility in cancer treatment as it has been found to lead to tumor 

regression7–11.  

More than 90% of the cancer mutations are found in the DNA-binding domain (DBD) of 

p5312 (Figure 5.1a), but the mechanism through which a single mutation affects function is far 

from resolved. Moreover, the current paradigm is that p53 mutants are not equivalent proteins, but 

rather have distinct individual profiles in terms of loss of wildtype activity and acquisition of 

unique tumor-promoting gain of functions13,14. Generally, the oncogenic variations can be 

classified as contact mutations, which lead to loss of function due to disruption of the interaction 

network with DNA15, or structural mutations,  which cause perturbations to the DBD and lead to 

inactivation due to destabilization of the protein structure, unfolding and aggregation16–19. 

A strategy currently pursued for reactivation of structural mutants is the development of 

small molecules that bind to the folded but not the unfolded state of the protein and restore wildtype 

p53 conformation and function, with promising results achieved by several groups20–34. Even in 

proof-of-concept studies, the success of small molecules in reactivating one or a few specific 

mutants but not others points to the unique behavior of each p53 cancer mutant. In this way, 
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exploring and characterizing the dynamic behavior of different p53 cancer mutants as individual 

entities promises to open up novel therapeutic opportunities for mutant-specific p53 reactivation. 

One such mutant being targeted for reactivation through small molecules is Y220C, a 

structural mutant responsible for about 100,000 new cancer cases every year16 and the most 

frequent p53 cancer mutation observed outside the DNA-binding interface of the protein. The 

mutation of the bulky tyrosine to the smaller cysteine induces the formation of a crevice in the 

protein surface that is amenable to small molecule binding35–37, but so far current efforts have 

failed to yield very high affinity binders38–40. 

While use of molecular dynamics (MD) simulations has allowed the successful 

identification of druggable pockets on the protein surface of the p53 core domain22,39,41, our 

understanding of the protein conformational ensemble and dynamics is restricted by sampling 

limitations. This leaves large regions of the energy landscape unexplored which may include many 

of the functionally important slower motions. Already, relatively short-scale MD simulations of 

Y220C have evidenced the flexibility of the protein and the Y220C pocket39. However, a 

comprehensive model of p53’s conformational ensemble and the underlying free energy landscape 

is desirable as it will allow the understanding of the dynamics of key loops and druggable pockets 

and their role in the overall function and motions of the protein. To help in overcoming this 

sampling limitation, we employ here the Markov state model (MSM) methodology in conjunction 

with extensive MD simulations for the investigation of the conformational dynamics of wildtype 

and the Y220C mutant. 

MSMs allow the integration of multiple MD simulations into a single model of the protein 

conformational ensemble that contains key thermodynamic and kinetic properties in addition to 

retaining atomic level details of the system42–47. Because the MSM is built on the transitions 
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between states, the information from multiple MD simulations of the same system can be 

combined into a single model and no single simulation has to explore all the states. Importantly, 

as the equilibrium distribution of states can be derived for the final model, the thermodynamics of 

the states can be determined, in addition to kinetics, principle motions, and transition pathways of 

the protein conformational ensemble. 

In this study, the combination of MD simulations with MSMs allows for the first time a 

thorough exploration of the conformational ensemble of p53 DBD and uncovers the involvement 

of a loop located away from the DNA binding site, L6, in the slowest dynamics of the wildtype 

protein. This is the site of the Y220C mutation but interestingly our models indicate that the 

mutation affects the conformational landscape of not only L6 but also of the essential L1 loop, 

which is involved in key interactions with DNA. The existence of allosteric communication 

between the two loops is suggested and provides a mechanistic rationalization to the effect of the 

mutation in the activity of p53. Moreover, analysis of the conformational diversity of loop L6 

evidences the existence of very distinct loop conformations than previously observed 

experimentally, and the identification of a novel pocket nestled in the extended conformation of 

L6 that could be exploited for mutant-specific drug design efforts. 

 

5.3 Methods 

System set up 

The DNA binding domain initial coordinates were taken from chain B of PDB 1TSR, 

which include p53 amino acids 96 – 289. For the mutant simulations, the tyrosine in position 220 

(125 in the clipped domain) was mutated to a cysteine using tleap module in Amber1448. The 

crystallographic water molecules were retained and each system was solvated in an 8Å TIP3P 
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water box49. The zinc ion and its coordinating residues were modeled using the cationic dummy 

atom model50. Each system was brought to 0.12 M salt concentration by adding K+ and Cl- atoms. 

The structure file of each system consisted about 27,220 atoms, which were prepared using Amber 

FF14SB force field48,51.   

 

Molecular dynamics simulations 

The solvated proteins were minimized and equilibrated using common protocol52. To 

increase the conformational sampling, a round of accelerated MD simulations (aMD)53 was 

performed from the equilibrated structure using Amber14 program. Each system was simulated 

for 100 ns and 10 structures were selected for each system by clustering the conformations based 

on RMSD of the center of mass of each residue using a k-means algorithm in MSMBuilder254 and 

using the cluster centroids. These 10 structures were used as seeds for short unbiased MD 

simulations, each performed in triplicate with new starting velocities.  After each round of 

simulation, the joint trajectories were processed for MSM model construction, and new starting 

coordinates were selected, prioritizing the exploration of new areas in the conformational space, 

until converged models were obtained based on MSM validation metrics (see below). Individual 

simulation lengths ranged from 10 to 300 ns. In total, the wildtype system was simulated for 89 

µs, while Y220C required 63 µs for appropriate model construction. 

 

Markov state model construction 

Simulation data was processed and models were built using PyEMMA55, version 3.5.6. 

Features consisted of pairwise distances, with pairs being selected after a tICA-based iterative 

process that eliminated pairs located consistently close (< 3Å) or far (>10Å) in all frames of the 
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simulations, as well as pairs involving residues located close to the clipped termini, with low 

variance (<0.05 Å) and those that accounted for low correlation with the first tICs (Supplementary 

Table 5.S1). This is explained in more detail in the Results section. The final feature set consisted 

of 24 pairs (Supplementary Table 5.S2). Time-independent component analysis (tICA)56 with a 

lag time of 10 ns was used to process the joint wildtype and Y220C featurized data. Distinct loop-

centered Markov state models were constructed using the 17 features that are centered in loop L6 

and the 7 for L1. Discretization was performed with k-means clustering, k = 200, for each system 

(wildtype and Y220C) separately, and accuracy of the models verified by implied timescale (ITS) 

plots and Chapman-Kolmogorov tests (Supplementary Figures 5.S1 and 5.S2). The L6 and L1-

focused models were constructed with tICA and MSM lag times of 10 ns each. 

 

Pocket characterization 

Pocket volume measurements were performed with POVME, version 2.057, and 

druggability assessments were based on computational solvent mapping of randomly selected 

conformations from the MSM metastable states using FTMap58. Existence of hydrogen bonds 

across the simulations was probed using MDTraj59 (hydrogen bond defined if donor-acceptor 

distance < 2.5 Å and angle > 120°). 

 

5.4 Results and Discussion 

L6 is the slowest loop in p53 DBD dynamics 

Markov state models provide a framework for exploring protein dynamics with atomic 

resolution beyond the timescales typically accessed by molecular dynamics simulations. A crucial 

step when integrating molecular dynamics trajectories for model building is the selection of 
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features used to discretize the protein conformations sampled, which decreases the dimensionality 

of the conformational space while still allowing for discrimination between distinct states and 

appropriate representation of the relevant motions. Depending on the process under investigation, 

devising the best features for model building can be relatively trivial (such as for ligand binding 

or protein unfolding), but when aiming for a general understanding of the protein conformational 

ensemble, the task can become challenging due to the conflict between the large degrees of 

freedom required to describe the protein ensemble and the need to limit the number of features to 

a small, tractable number for model building.  

To investigate the basal dynamics of wildtype p53, we employed an unbiased method that 

started from computing all possible pairwise distances (18,336 features), and iteratively performed 

time lagged Independent Components Analysis (tICA)56 to identify the linear combination of 

features that describe the slowest motions of the system, followed by elimination of the features 

with low tICA correlation. Using this methodology we arrived at a final number of 24 pairs 

(Iterative process described in Supplementary Table 5.S1). tICA is useful in the data processing 

for MSM construction as it maximizes the feature combination to yield kinetically relevant 

independent components (tICs), which represent the slowest degrees of freedom in the system. 

Despite starting from all possible pairwise distances and including no directed selection of features 

besides the elimination of pairs that involve the terminal residues or that are consistently too close 

(< 3Å) or too far (>10 Å) throughout the whole simulations, the final set consisted of interacting 

pairs centered around loops L1 and L6. Interestingly, all pairs involved at least one residue located 

in either loop L1 (Ser116) or loop L6 (Pro223, Glu224, Gly226), hereafter referred to as L1 and 

L6 anchor residues, respectively (Figures 5.1b and c). 
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Figure 5.1. (a) Monomeric p53 DNA-binding domain in complex with DNA (from PDB 1TSR) 
with important functional regions highlighted. (b) and (c) Residues used for MSM construction 
based on pairwise distances, with L1 (b) and L6 (c) anchor residues highlighted in VDW 
representation. The Ca carbons of the residues that were selected as the second member of the pair 
with the respective anchor are represented as spheres.  

 

The presence of the repeated anchor residues in the final feature pairs suggests that loops 

L1 and L6 are involved in the slowest and most significant motions of the protein. Loop L1 is 

known as a dynamic and biologically important motif for p53 function, having been observed 

experimentally and computationally in two very distinct conformations60–62, extended (in which it 

is highly solvent-exposed as represented in Figure 5.1a) and recessed (folded closer to the protein 

core, with a smaller solvent-accessible surface), both of which are sampled in the simulations. The 

identification of the relevance of loop L6, however, constitutes novel information in terms of this 

protein’s conformational dynamics. Not much attention has been given to this structural motif, 

probably because of its distance from the DNA binding surface. However, elevated B factors in 

p53 crystal structures points to its intrinsic dynamics, and flexibility in this loop was observed in 

an early short simulation of wildtype p53 starting from the same crystal structure as in here, but 

not much was explored in terms of its implication for functionality as it was deemed to stem from 

a lack of crystal packing63. 
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For a comparison of the conformational landscapes of wildtype and Y220C, the 

conformations explored by each of the simulations and represented by the 24 features were jointly 

used as input for tICA, and are plotted separately in Figure 5.2a. The tIC independent component 

space is therefore the same for wildtype and mutant free energy landscapes and allows for a direct 

comparison of the conformational ensemble explored by each system. The wildtype simulation 

presents two preferred states corresponding to the minima in the free energy landscape. The main 

distinction between them are the conformations of L1 and indicate the same recessed and extended 

L1 conformations that have been previously observed (Figure 5.2b). Interestingly, the pairwise 

features used for construction of the map align very well with the tICA components in this novel 

feature space, permitting a direct interpretation in terms of protein conformation: tIC1 is closely 

correlated with features that include loop L6 anchors, and tIC2 is more closely correlated with 

features involving the L1 anchor, Ser116 (Figure 5.2c). Visual inspection of the conformations 

distributed on the free energy landscape evidence that smaller values of each of the tICs describe 

conformations with extended loops (L6 and L1, respectively), while larger values describe the 

recessed loop conformations. In this way, the transition from low to large tICA values is related to 

transitions from extended to recessed conformations. 

Since the tICs are ordered in terms of slowest to fastest motions, the correspondence of L6 

anchor features with the first of the components indicates that, surprisingly, transitions involving 

loop L6 are slower than those for loop L1. This suggests that important protein dynamics and 

potentially druggable conformations have so far remained unexplored. While the extended L6 

conformations are not that dominant in the wildtype system, the free energy landscape of the 

Y220C mutant (in which the mutation is located in L6) indicates a significant effect of the single-

point mutation on this loop’s dynamics, with a much greater proportion of conformations exploring 
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the extended loop conformation (lower tIC0 values, Figure 5.2a lower panel). Additionally, in the 

Y220C mutant the recessed L1 conformations lose importance compared to the wildtype, indicated 

by the loss of the low energy well at high values of tIC1 and tIC2.  

 

 

Figure 5.2. (a) Free energy landscape of wildtype (top) and Y220C (bottom) in terms of tICA 
components (tICs). (b) Representative conformations from the wildtype preferred states. Loops L1 
and L6 are highlighted in green and magenta, respectively. (c) Feature correlation with the first 
five tICA components. Pairwise distances involving L1 or L6 loop anchor residues are indicated. 

 

To further check the importance of these loops in the relevant motions of the protein, we 

performed additional tICA analysis incorporating other motifs known to play significant roles in 

p53 function: helices H1 and H2 and loops L2 and L3, which together with L1 make up the DNA 

interaction surface, and loop S6/7, recently identified as a flexible region in p53 mutants64 (Figure 

5.1a). Even though several of these loops show pronounced flexibility in the simulations as 
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indicated by Calpha RMSF (Supplementary Figure 5.S3), loops L1 and particularly L6 still 

dominate the slowest transitions (Supplementary Figure 5.S4). This suggests that, while other 

regions such as loops L2 and S6/7 may be highly flexible as evidenced by their high RMSF values, 

they display fast dynamics and act as further evidence to the important role of loop L6 on the slow 

dynamics of p53. 

 

Allosteric communication between L1 and L6 

In Figure 5.2a it can be seen that the Y220C mutation affects not only the conformational 

landscape of loop L6, where it is located, but also of loop L1. This loop L1 is essential for p53 

activity as it is involved in key interactions with DNA through hydrogen bonds formed by Lys120 

and Ser12162. Wildtype p53 shows important intrinsic L1 flexibility, but the effect of the mutation 

on this loop’s dynamics indicates the existence of possible long-range communication between L1 

and L6.  

To look into this in more detail, we constructed MSMs for the wildtype and mutant system 

using only the above identified features that include the L1 anchor, Ser116. The free energy 

landscape in terms of these 7 features, following tICA transformation, is shown in Figure 5.3a. 

Coarse-graining of the structures using Hidden Markov state models identifies the presence of 5 

metastable states in each case. Two metastable states, states A and B, are retained in the mutant 

system. State A is the most populated state in both systems, and shows loop L1 in the most 

extended-like conformations (average loop L1 alpha carbon RMSD to the extended L1 in chain B 

of 1TSR is 2.19 Å for wildtype and 3.10 Å for Y220C). In wildtype state B, we see a previously-

identified 3-10 helix in the L1 loop, absent in the corresponding Y220C state.  
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The second, shallower wildtype minima, centered at TIC1 = -1, is absent in the Y220C 

sampled conformations. Indeed, we find that two wildtype metastable states are abrogated by the 

mutation (states C and D), being substituted by a single state in the Y220C system (state F). These 

wildtype states show L1 in recessed conformations, and jointly account for 19% of the equilibrium 

population. Interestingly, in both cases we find that loop L6 is also organized in a recessed 

conformation, such that both loops are located in close proximity to each other. Investigation of 

the loop residues suggests the existence of inter-loop hydrogen bonds formed between the side-

chain oxygen of Ser116 in L1 and backbone nitrogen of Asp228 (in state C) or side-chain oxygen 

of Thr231 (state D) in L6 (Figure 5.3b and Supplementary Figure 5.S5).  

Loop L1 in the corresponding Y220C state F, on the other hand, is found to be more 

collapsed into the protein surface, in a conformation that does not allow for interaction with loop 

L6. Rather, a salt bridge between loop L1’s Lys120 and Glu198 in loop S5/S6  seems to promote 

the stabilization of this alternate conformation, which accounts for 31% of the Y220C equilibrium 

population. The sequestering of the DNA-interacting Lys120 in this significant metastable state 

could provide a mechanistic explanation to the p53 inactivation effect of the mutation. Even more 

interestingly, the conformation-dependent interaction between loop L1 and L6 identified here 

suggests the existence of allosteric communication between the loops in functional p53, which is 

disrupted by the mutation. 
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Figure 5.3. L1-centered MSM. (a) Free energy landscape of wildtype (left) and Y220C (right) in 
terms of the features that describe L1 relative dynamics. Location of metastable states are indicated 
with letters from A to H. Experimentally resolved DBD structures (X-ray crystallography and 
NMR) are indicated as white (extended L1 conformation) and red (recessed L1) circles. (b) 
Conformations from each of the wildtype metastable states. Equilibrium populations are indicated. 
(c) Y220C metastable states. 

  

Finally, we observe a slight destabilization of states located at low values of TICs 1 and 2 

in the Y220C system, which display loop L1 in extremely-recessed conformations (equilibrium 

population of 13% for wildtype state E and 10% for Y220C states G and H). There are no persistent 
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L1-L6 interactions in these states.  A helical content in loop L6 of  Y220C state G seems to be 

promoted by an inter-L6 hydrogen bond between Ser227 and Thr231. 

 

Dynamics and druggability of loop L6 

The significance of loop L6 dynamics suggested by the tICA analysis and its effect on the 

conformational ensemble of wildtype and Y220C prompted us to consider its conformational 

plasticity in more detail. Figure 5.4 shows the free energy landscape of the wildtype and Y220C 

systems now in terms of the tICA components calculated from the 17 previously identified features 

that include the L6 anchors. For comparison, we also overlay the corresponding coordinates of all 

experimentally-resolved structures (by X-ray crystallography and NMR) of wildtype and Y220C 

p53. It is striking how all the previously identified structures are confined to a small area of the 

graph, and the simulations suggest the existence of novel protein conformations that remain 

unexplored to date and could be potentially targeted for drug discovery.  

All crystal structures align with the wildtype low energy well. The mutation, however, 

alters the dynamics of this loop and leads to the stabilization of multiple alternative loop L6 

conformations, including two mutant-exclusive wells at high values of tIC1. Using Hidden Markov 

Models to kinetically-coarse grain the microstates results in five metastable states each for the 

wildtype and Y220C systems (Supplementary Figure 5.S6). The two most populated wildtype 

metastable states at equilibrium remain significant states in the Y220C ensemble, albeit with 

changes to their relative equilibrium population and rate of transitions. Three low-populated 

wildtype states are abrogated by the mutation, while we observe the formation of two Y220C-

exclusive metastable states. The conformational differences between the highly populated states, 
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their implications for rationalizing the mutation effect on p53 function and potential for drug 

discovery are explored in more detail below. 

 

Figure 5.4.  Free energy landscape of wildtype and Y220C systems in terms of L6 features. 
Experimentally resolved DBD structures (X-ray crystallography and NMR) are indicated as white 
circles. 

 

The mutation induces stabilization of extended L6 conformation 

The most populated metastable state in the wildtype ensemble, accounting for over 50% of 

the population at equilibrium, corresponds to loop L6 in a recessed conformation similar to that 

observed by NMR and X-ray crystallography (Figure 5.4a). This organization of the loop allows 

Wildtype

Y220C
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for the formation of a crevice in between loops L6 and S3/S4 upon the substitution of the bulky 

tyrosine for the much smaller cysteine residue, which results in the crevice currently being targeted 

for p53 rescue35–40. 

 

 

Figure 5.5. L6-centered MSM. (a) Common wildtype and mutant L6 metastable states, which 
exhibit recessed (pink) and extended (green) loop conformations. Their location on the wildtype 
free energy landscape is shown. (b) Representation of the cryptic channel spanning loop L6 in the 
recessed metastable state. FTMap probes indicating hotspots for drug binding are shown in 
licorice. (c) Representation of the novel L6-extended pocket and solvent mapping results 
performed by FTMap. 

 

In several of the mutant frames belonging to this metastable state we observed the opening 

of a transient channel through loop L6, connecting the crevice to another area of the protein 

surface. This cryptic pocket has been identified previously by Fersht and co-workers using 

molecular dynamics simulations39, and in agreement with their studies, we find it to exhibit 

promising druggable characteristics (as suggested by FTMap solvent mapping analysis, Figure 

5.5b). Exploitation of this channel by small molecules could improve the potency of rescue drugs 

and increase specificity towards mutant p53, as the channel is unavailable in the wildtype 

simulations due to the larger volume occupied by the tyrosine residue. 

WildtypeA B C
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Besides this well-characterized state, the simulations and MSMs evidence the existence of 

an additional significantly populated state in the wildtype ensemble at equilibrium. This metastable 

state, corresponding to 19% of the wildtype population and 24% of the Y220C ensemble, exhibits 

loop L6 in a previously unknown extended conformation (green state in Figure 5.6). In this 

conformation, the crevice underneath L6 typically targeted for Y220C rescue is closed. However, 

visual inspection identified the formation of another cryptic pocket nestled within this loop, 

promoted by the extended conformation of loop L6. Similar to the mutant-induced crevice, this 

pocket is only evident in the Y220C simulations due to the presence of the less bulky cysteine in 

its center. The entrance of the cavity in this case faces “up” relative to the loop, in the direction of 

the DNA binding surface, and corresponds to a relatively deep hydrophobic pocket with 

opportunities for hydrogen bonding interaction, as well as other hydrophilic interactions in the 

more solvent-exposed region above loop L6 (Figure 5.5c).  

Several hydrogen bonds between L6 and S3/S4, the loop directly “below” it, are found to 

be established for longer fractions of the simulation in the mutant state (with increases of up to 

100x in persistence time) and suggest possible interactions promoting the extended conformation 

(Supplementary Table 5.S3). Further indication of the stabilization of the extended conformation 

promoted by the mutation is given by the calculation of mean first passage times (MFPT) between 

these metastable states: The mutation decreases the mean first passage time from the recessed to 

the extended L6 conformation by a factor of more than 2, resulting in a faster transition, while the 

mean first passage time out of the extended conformation and into the recessed increases by 1.5 

(Figure 5.6). 
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Figure 5.6. Equilibrium population and mean first passage times (MFPT) for the two major 
wildtype and Y220C metastable states. The images at the center of the circles represent the 
respective state L6 conformations, with the mutated residues highlighted. Thickness of the circle 
edge is proportion to the equilibrium population in the respective system (wildtype on the left, 
Y220C on the right). MFPTs of the transitions are indicated above (for wildtype) and below (for 
Y220C) the respective arrows. 

 

Characterization of mutant-exclusive metastable states 

Finally, our long-timescale exploration of the Y220C mutant dynamics evidenced the 

sampling of two mutant-exclusive states (Figure 5.7). Jointly, these metastable states account for 

33% of the relative Y220C ensemble population, a significant portion of the conformational 

ensemble that opens up promising avenues for specific therapeutic opportunities. In these states 

the loop L6 shows a similar extended conformation to the novel metastable state described above, 

but with a “sideways” bend likely promoted by a Thr54-Pro127 interaction (Supplementary Figure 

5.S7). This bend disrupts slightly the cryptic pocket identified in the fully extended L6 

conformation, resulting in a smaller and shallower cavity, but also leads to the formation of a 

channel across loop L6 and underneath the mutation site which reaches across to the protein 

surface at a different side (Figure 5.S7b). Transitions into or out of these states constitute the 

slowest process in the Y220C MSM, with a timescale of approximately 1.2 µs. While the identified 

WT = 234.6 ns

Y220C = 102.7 ns

WT = 45.0 ns

Y220C = 68.5 ns

WT Y220C WT Y220C
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pocket conformations show small pocket volumes and haven’t been shown to be druggable by 

computational solvent mapping, this lays the foundation for further exploration of these mutant-

exclusive states.  

 

Figure 5.7. (a) Indication of mutant-exclusive states in the free energy landscape. (b) 
Representation of L6 “bent” conformation seen in the mutant exclusive state. 

 

Remarkably, our models suggest a molecular explanation to the rescuing effect observed 

by the initial Y220C hit compounds: since in the mutant the recessed L6 conformation is slightly 

destabilized (33% of the Y220C population versus 50% for wildtype) with a preference for the 

extended conformations (Figure 5.6 green state and Figure 5.7), binding of a small molecule into 

the crevice underneath L6 should prevent the transition towards the extended conformations and 

could lead to a shift in the equilibrium towards a wildtype-like, recessed loop conformational 

ensemble. Additionally, since the investigation of the full p53 conformational flexibility suggest a 

high degree of correlation between L1 and L6 dynamics (Figures 5.2 and 5.3), this could further 

indicate a functional link between L6 conformation and p53 function. 
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5.5 Conclusions 

Our combined tICA and MSM approach proved the existence of a novel dynamic loop, 

namely loop L6, that exhibits motions at longer timescales than other characterized structural 

motifs and presents potential for the rationalization of mutational effects on p53 function and for 

mutant-rescue therapeutic opportunities. The conformational landscape suggests some degree of 

allostery between L6 and the functionally-important loop L1, likely promoted by hydrogen bonds 

formed when both loops are in the recessed conformation and thus in close proximity to each other.  

The Y220C mutation, which characterizes one of the most common cancer mutants, is 

located at the N terminus of L6, and we find that the mutation promotes the stabilization of novel 

protein conformations, which exhibit loop L6 in a novel extended state instead of the only other 

characterized and targeted recessed L6 conformation. The stabilization of the extended 

conformation induces the formation of a deep hydrophobic pocket within L6 due to the removal 

of the bulky tyrosine, as well as the population of two mutant-exclusive states that could be 

promising avenues for mutant-exclusive therapies. 

In summary, the comparison of the dynamics of wildtype and mutant p53 DBD’s using 

MD simulations and Markov state models evidenced for the first time the existence of significant 

motions involving loop L6 and presents applications for mutant-specific drug discovery efforts. 

We anticipate that this approach will be useful in the study of the conformational ensembles of 

other p53 cancer mutants or protein targets, as a way to provide atomic-level information on these 

proteins’ motions combined with thermodynamic and kinetic details in tandem with experimental 

observations. 
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5.7 Supplementary Information 

Table 5.S1. Stepwise tICA-based selection of features for model building. 

Iteration Number of 
features 

Number of 
tICs 

Correlation 
cutoff Constraints for next round 

0 18,336   Remove pairs located < 3Å or 
> 10 Å apart in all frames 

1 7,183   Remove pairs with distance 
variance < 0.05 

2 2,225   Remove pairs involving 
terminal residues 

3 729 315 0.4  
4 499 122 0.5  
5 354 91 0.6  
6 194 57 0.6  

7 90 29 - Remove features that involve 
residues close to termini 

8 82 26 - Remove similar pairs 
9 35 16 0.75 Remove similar pairs 

Final 24 13   
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Table 5.S2. Pairs used for featurization of the simulations for model construction 

Member 1 
(Anchor residue) Member 2 

Ser116 Leu145 

Ser116 Val147 

Ser116 Thr150 

Ser116 Tyr220 

Ser116 Cys229 

Ser116 Gly279 

Ser116 Arg280 

Pro223 Gly112 

Pro223 Leu114 

Pro223 Val143 

Pro223 Leu145 

Pro223 Thr230 

Glu224 Pro153 

Glu224 Gly154 

Glu224 Cys229 

Glu224 Ser260 

Glu224 Ser261 

Gly226 Thr155 

Gly226 Arg156 

Gly226 Pro219 

Gly226 Tyr220 

Gly226 Glu221 

Gly226 Glu258 

Gly226 Ser260 
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Table 5.S3. Persistence of L6-S3/S4 hydrogen bonds (in % of frames in the simulation) 

Donor atom Acceptor atom Wildtype Y220C 
Thr149 - N Gly225 - O 0 0.7 
Thr149 - N Asp227 – OD1 1.4 2.4 

Thr149 - N Asp227 – OD2 1.3 3.19 
Cys219 – N Thr154 - O 97.0 85.1 
Ser226 – N Thr149 – OG1 7.3 4.9 

Asp227 - N Thr149 – OG1 0.2 1.9 

Thr149 – OG1* Pro222 – O* 0.09 9.0 
Thr149 – OG1 Val224 – O 0.02 1.0 
Thr149 – OG1 Gly225 – O 0.04 1 

Thr149 – OG1 Ser226 – OG 0.06 0.8 
Thr149 – OG1 Ser226 – O 1.5 0.9 
Thr149 – OG1 Asp227 – OD1 3.7 6.6 

Thr149 – OG1 Asp227 – OD2 3.8 7.3 
Thr149 – OG1 Asp227 – O 0.07 0.9 
Thr154 – OG1 Cys219 - O 0.2 5.8 

Ser226 - OG Asp147 - O 0.01 1.1 
Ser226 - OG Thr54149 – OG1 0.3 1.0 

 

* Interaction formed in the mutant-exclusive “sideways-bent” extended state 
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Figure 5.S1. L1 model validation analysis: (a) Implied timescale plots and (b) Chapman-
Kolmogorov tests. 
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Figure 5.S2. L6 model validation analysis: (a) Implied timescale plots and (b) Chapman-
Kolmogorov tests. 
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Figure 5.S3. Alpha carbon RMSF 
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Figure 5.S4. tICA correlation for features incorporating functionally-important motifs in the 
protein (H1, H2, L2, L3, S6/7) in addition to L1 and L6. 
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Figure 5.S5. Example of frame exhibiting most stable intra-loop hydrogen bonds, involving Ser116 
in L1 and Asp228 or Thr231 in L6. 
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Figure 5.S6. Metastable states identified via Hidden Markov models overlaid over wildtype and 
Y220C L6-features free energy landscape. 

 

 

 
Figure 5.S7. Representation of the Thr149-Pro222 interaction thought to stabilize the bent L6 
conformation observed in the mutant-exclusive states. 
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