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Abstract

Chinese hamster ovary (CHO) cell lines are widely used in industry for biological drug pro-
duction. During cell culture development, considerable effort is invested to understand the
factors that greatly impact cell growth, specific productivity and product qualities of the
biotherapeutics. While high-throughput omics approaches have been increasingly utilized to
reveal cellular mechanisms associated with cell line phenotypes and guide process optimi-
zation, comprehensive omics data analysis and management have been a challenge. Here
we developed CHOmics, a web-based tool for integrative analysis of CHO cell line omics
data that provides an interactive visualization of omics analysis outputs and efficient data
management. CHOmics has a built-in comprehensive pipeline for RNA sequencing data
processing and multi-layer statistical modules to explore relevant genes or pathways. More-
over, advanced functionalities were provided to enable users to customize their analysis
and visualize the output systematically and interactively. The tool was also designed with
the flexibility to accommodate other types of omics data and thereby enabling multi-omics
comparison and visualization at both gene and pathway levels. Collectively, CHOmics is an
integrative platform for data analysis, visualization and management with expectations to
promote the broader use of omics in CHO cell research.

Author summary

Recombinant proteins have dominated recent blockbuster therapeutic drugs, accounting
for 11 of the top 15 drugs by sales. Chinese hamster ovary (CHO) cells are the most widely
used expression system for biomanufacturing of many of these biotherapies. Thus, there is
increasing interest in leveraging omics technologies for CHO cell line development, bio-
process optimization, and biotherapeutic product quality assessment. However, CHO
cells have been largely ignored in the development of publicly available tools to facilitate
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comprehensive omics data analysis and management, despite being a ubiquitous research
tool and biotherapeutic production host. To address the gap, we have recently developed a
web-based tool, named “CHOmics”, for the integrative and interactive data analysis and
visualization specifically designed for CHO. This novel tool provides all-in-one solutions
from raw data processing to pathway and gene analysis and offers considerable flexibility
to customize analysis and visualization. It further allows for other omics data inputs and
thereby enables multi-omics comparison. The open-source tool is freely available at
http://www.chomics.org.

This is a PLOS Computational Biology Software paper.

Introduction

With the increased usage of CHO cells in the large-scale production of pharmaceutical pro-
teins, knowledge about the process optimization and biotherapeutic product quality becomes
essential. Conventionally, cell line and cell culture process development are mostly based on
empirical knowledge and statistical designs, and investigation of product quality deviation to
identify the root cause often requires tremendous resources and time. More recently, omics
and systems biology approaches have shown the potential to facilitate identification of pre-
dictive markers and the molecular mechanisms associated with various bioprocess pheno-
types [1-3]. There are different omics technologies, each focused on a different biological
question. While individual omics technologies have great utility for improving bioproduc-
tion in CHO, they are closely interconnected, and each can influence data interpretation
from others. Therefore, analyzing data derived from multi omics technologies together will
enable scientists to accurately predict and optimize cell culture aspects and further geneti-
cally modify cell lines.

Opver the last decade, numerous studies have adopted high throughput omics-based
approaches to elucidate CHO cell characteristics and the underlying cellular machineries. For
example, several transcriptomic and proteomic studies have explored the relationship between
gene expression and high production yield under varying culture conditions [4,5]. Despite this
progress and relevant investigation, surprisingly few tools are available for data analysis and
visualization of omics data in CHO cells. Although one recently developed open-source tool,
PaintOmics [6], provides the ability to load transcriptomics and metabolomics measurements
and visualize them over pathway maps, it requires input data to be pre-processed and normal-
ized. There're also a few commercial packages available, however, they are typically costly, less
flexible to customization, and requires proprietary databases. Moreover, many of the tools
heavily rely on murine and human models, which makes it difficult to use them for CHO
omics analysis. Because of these challenges, omics data processing and analysis often requires
dedicated talent with tremendous time input.

With the improved Chinese hamster genome as reference (NCBI Refseq Annotation
Release 103) [7], we established an integrated CHO-specific multi-omics platform, “CHO-
mics”, that serves as a one stop-shop for omics data analysis from raw data to comparative
pathway analysis across multiple omics data sets. As shown in Fig 1, the tool mainly consists of
three modules including data input, analysis (preprocessing pipeline and statistical analysis)
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Fig 1. The schematic view of CHOmics platform. Different modules in the platform are shown encapsulating different functionalities like
data input, data analysis using RNA-Seq pipeline, statistical analysis, and visualization.

https://doi.org/10.1371/journal.pcbi.1008498.9001

and visualization. It is an open-source, user-friendly integrative analytical platform designed
for biologists to analyze complex omics data with the capability of visualizing the analysis out-
puts interactively.

Materials and methods
Data input

CHOmics provides a flexible approach to allow multiple types of inputs including RNA
sequencing (RNA-Seq) data and metadata from URLs, local folders, or remote servers. The
data is organized in top-down structure with four levels including project, experiment, com-
parison, and sample.

Transcriptomics data. CHOmics has built in a comprehensive pipeline for RNA sequenc-
ing. Raw sequencing data (e.g., fastq or fastq.gz files) can be uploaded along with sample anno-
tation as an experiment to be preprocessed by the pipeline. The analysis output can be
imported to specific project for visualization and comparison.

Gene-level data. Gene level expression data (e.g., a count table or normalized expression
data) preprocessed by external pipelines is accepted and subjected to further analysis in CHO-
mics. Various types of omics data can be presented at the gene level, such as transcriptomics
from sequencing or microarray, proteomics, Ribo-Seq [8] or any other data type wherein a
measurement that has a gene-level identifier can be mapped to a gene name. CHOmics accepts
Entrez Gene IDs as gene identifiers which are further used to match gene ID from KEGG [9],
Gene Ontology, Reactome [10] or WikiPathways [11] databases for pathway enrichment
analysis.
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Comparison data. Comparison data are statistical outputs by comparing omics data
between two conditions. It could be generated by internal pipeline or uploaded directly from
external analysis. A statistical output table can include logFC, p-value, adjusted p-values, and
other additional measures. By specifying an annotation file, users can easily link the summa-
rized statistical outputs to the annotated samples, experiment, and project.

Meta data. Besides the data imported for analysis, several meta data files describing the
nature of an experiment (e.g., project name, platform, and disease, etc.) are necessary for sam-
ple annotation and management.

Data analysis

CHOnmics provides four analysis modules including: a built-in RNA-Seq data processing pipe-
line, differential expression (DE) analysis, functional pathway enrichment analysis, and meta-
analysis, as shown in Fig 1. In each module, interactive plots are provided to enable compre-
hensive visualization of data and analysis results.

RNA-Seq pipeline. Once raw RNA-Seq fastq files are uploaded, a preprocessing pipeline
can be launched with the following steps: quality control, alignment and gene count
generation.

Quality control. Fastq files are first evaluated for read quality by fastqc [12]. A summary
table of fastqc output is generated for users to quickly check multiple properties of reads in
each sample including per base sequence quality, content, per sequence quality scores,
sequence length distribution, and overrepresented sequences.

Alignment. Reads after quality control are aligned to specified reference genome (e.g., Chi-
nese hamster PICR genome, GCA_003668045.1 with NCBI Refseq Annotation Release 103:
https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Cricetulus_griseus/103/) by using the
subread alignment tool [13]. Phred offset score and other mapping parameters (e.g., min
votes, allowed mismatches, and max indels) are set for alignment. Junctions are also estimated
during the alignment and summarized in the table along with read mapping metrics (e.g.,
mapping ratio and the number of detected gene, etc).

Gene Count and normalization. By comparing the aligned Bam files against the gene anno-
tation file, CHOmics generates a gene count table by applying the ‘featureCount’ function in
subread with specified strandedness. In addition, Trimmed Mean of M-values (TMM) nor-
malization is applied to the raw counts to remove differences in the composition of the RNA
population between samples. The normalized gene counts are then transformed to log2 scale
using the voom method from the limma package for analysis and visualization [14].

As shown in Fig 2A, multiple plots are generated in the process for QC purpose. For exam-
ple, the summary plot for mapping and gene assignment quality can help to identify samples
with quality issues such as low total number of reads or genes, or low genome mapping rate. In
addition, CHOmics enables the visualization of sample global expression profiling by using
multidimensional hierarchical clustering plots and heatmap (Fig 2B), giving clear indication of
sample similarity based on gene expression. Additionally, principle component analysis (PCA)
empowers users to explore expression similarity among samples based on top variable genes
or candidate gene set and provides a guidance for detecting potential outliers (Fig 2C). Users
can interactively select Principal Components (PCs) to visualize the samples at different coor-
dinates, and label them by different color, shape and size according to sample attributes.

Differential expression analysis. The platform enables a statistical analysis of differential
expression (DE) between conditions using gene count tables generated by aforementioned
processing pipeline. A filtering step is allowed for removing low expressed genes by setting the
cut-off for the count per million (CPM) and thereby reduces the burden of multiple hypothesis
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Fig 2. Visualization of raw data processing output. Gene mapping and expression distribution plots are shown (A) to check the
sequencing reads processing quality and distribution. The samples can be (B) clustered based on their expression profiling or (C) subjected
to principle component analysis to visualize expressional similarity among samples.

https://doi.org/10.1371/journal.pchi.1008498.g002

testing. The retained genes are normalized and log2-transformed followed by application of
the linear model to the comparison between conditions using limma/voom package.

For each comparison, the statistics are reported including log fold change (logFC), p-value,
and false discovery rate (FDR) corrected for multiple hypothesis testing with the Benjamini-
Hochberg procedure. To highlight the differentially expressed genes (DEGs), CHOmics
enables filtering of genes by FC and FDR values. In addition, CHOmics can either select those
DEGs from a single comparison or select the common or pooled DEGs from multiple compar-
isons. This flexibility in gene selection enables users to focus on the characterization of candi-
date gene list across comparisons or projects. Based on the selected DEG list, the users can
explore the heatmap of sample-gene expression and the volcano plot with both up- and down-
regulated DEGs labelled, as shown in Fig 3A.
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https://doi.org/10.1371/journal.pchi.1008498.9g003

Pathway enrichment analysis. Functional pathway analysis can be performed by both
Gene set enrichment analysis (GSEA) and gene ontology (GO) enrichment methods in CHO-
mics. GSEA analysis tends to identify functional categories from CHO pathway database
which are significantly overrepresented at the top or bottom of a ranked list of genes. The GO
enrichment method uses an accumulative hypergeometric distribution model to test the over-
representation of DEGs on pathways against all genes. The GO enrichment method is built on
the Homer program [15] and multiple pathway databases such as Gene Ontology, KEGG Path-
way, Molecular Signature, Interpro Protein Domain, WikiPathways and Reactome. Signifi-
cantly enriched pathways are tested for the up- or down- regulated genes separately in each
comparison as shown in Fig 3B. Bar-plots are also provided to show most significant pathways
as well as the number of genes and the enrichment test p-values.

Meta-analysis. To increase the power of identifying DEGs across datasets, CHOmics pro-
vides a module to perform meta-analysis as illustrated in section 3.3.3 of supplementary tuto-
rial by using diverse methods including Rank Product (RP), p-values combined by Fisher
method, and p-values combined by maxP. The RP method is a non-parametric statistical test
to detect genes that are consistently upregulated (or downregulated) among the projects. The
p-value combining methods derive the combined p-value by using Fisher’s combination or
selecting the maximum p-value. CHOmics provides a summary plot of the significance of
genes across projects by bubble plot to show the trends of gene expression changes across
projects.
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Multi-omics and multi-layer visualization

One of the core modules in CHOmics is the interactive visualization tool that enables users to
compare features across projects and omics at different levels (e.g., gene and pathway). The
features to be viewed could be either a single gene or a list of genes (e.g., DEGs) and the sam-
ples to be compared could come from one project or across different projects.

Multi-omics visualization. For a specified gene, CHOmics can plot the expression level
of this gene across different omics data and under different conditions (e.g., time points) as
shown in Fig 4A. Users can interactively evaluate the features by grouping and coloring the
samples from different conditions. A set of genes can also be compared by employing hierar-
chical biclustering to explore intricated gene-sample relationship across omics (Fig 4B). In
addition, to summarize the extent of gene expression changes, CHOmics can provide an over-
view of the fold change and significance of features (e.g., DEGs) derived from the statistical
analysis across comparisons and omics as shown in Fig 4C.

A B
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Fig 4. The visualization of gene expression. (A) Box plot of a gene or (B) Heatmap of a list of genes from different conditions and omics. (C) DEGs of interest can
be visualized across comparisons and omics in a bubble plot.

https://doi.org/10.1371/journal.pchi.1008498.g004
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Multi-layer visualization. Besides multi-omics visualization of DEGs, CHOmics allows
users to characterize the comparisons on pathways from multiple databases. Given the com-
parison data inputs selected from projects, CHOmics can generate a heatmap for top enriched
pathways across comparisons. Users can check the heatmap intensity which indicates the
enrichment significance, and other enrichment information (e.g., number of enriched genes),
and then identify a specific pathway of interest for another layer of exploration (i.e., comparing
gene level changes in the context of a pathway). Pathway diagrams show the pathway structure
overlaid with the gene-level statistical results from different comparisons, demonstrating gene
expression patterns among comparisons as well as their relationship to the other genes in the
pathway.

Results
Use case demonstration

Casel: Multi-omics analysis on profiling CHO-S cell growth. Here we demonstrate
how to use CHOmics for analyzing multi-omics data (primarily transcriptomics and proteo-
mics) from CHO cell lines. A Chinese Hamster Ovary-Suspension (CHO-S) clone was
expanded and cultured. Starting at 72 hr into culture and every 12 hr thereafter to 108 hr,
cells were harvested for transcriptomic analysis via RNA-Seq (pair-end 2x50bp) and proteo-
mics analysis was conducted via mass spectrometry to identify genes differentially expressed
from exponential growth to stationary phase (see [16] for details on omics data collection
and preprocessing).

We first uploaded the RNA-Seq fastq files and initiated the built-in RNA-Seq pipeline. QC
metrics reports are generated as shown in Fig 2A. Summary plots show that all the samples
have moderate sequencing depth with at least 20 million reads, a high read mapping rate, and
similar distribution in gene read counts. After read mapping, samples can be clustered based
on gene expression profiles and variation can be further analyzed by PCA analysis. The PCA
plot (Fig 2C) suggests that the samples are mainly clustered based on collection time points.

After completion of the pipeline, a gene count table was generated and normalized for dif-
ferential expression analysis between the time points. Fig 3A lists DEG results from the com-
parison between 72 hr and 108 hr. 171 DEGs were significantly up-regulated at 108 hr, while
45 DEGs were down-regulated (FDR<0.05). The top DEGs with large effect size (absolute
value of logFC > 1) are labeled in the Volcano plot (Fig 3C). For instance, high upregulation
of the genes CTSA and CTSB at 108 hr indicates over-expression of these lysosome related
genes at longer culture time [17]. Down-regulation of the gene early growth response protein
1 (EGR1) suggests reduction of this transcription factor which functions in cell growth and
development [18]. In addition, identified DEGs can be further interpreted by pathway analysis
as shown in Fig 3D. The analysis indicates that up-regulated DEGs are significantly enriched
in some KEGG pathways related to cell development and cell death such as the lysosome, focal
adhesion and apoptosis pathways.

Similarly, in proteomics analysis, after mapping protein ID to gene ID, we uploaded the
protein measurement table and differential analysis results. PCA analysis on protein measures
show that samples are clustered according to the time points (S1 Fig; one sample at 96 hr was
excluded), which is in line with RNA-Seq results. The Volcano plot highlights multiple differ-
ential expressed proteins between time 108 hr and 72 hr in S2 Fig, including the up-regulation
TGM2, which is implicated in the regulation of cell growth, differentiation, and apoptosis, and
the down-regulation of SFPQ, which was reported to be critical for cell survival [19]. By over-
lapping DEGs from both omics analyses, we identified multiple genes with consistent changes
across omics, including genes TGM2, CRIP and CLTC. Pathway analysis was also performed
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and cross-checked with the results from transcriptomics analysis, showing some pathways
consistently enriched by upregulated genes including those involved in the HIF-1 signaling
pathway and down-regulated genes associated with the ribosome, glycolysis and gluconeogen-
esis (Fig 5A).

Case2: Multi-omics profiling of three CHO parental host cell lines. We used CHOmics
to re-analyze transcriptomics and proteomics data from a study of profiling three commonly
used parental cell lines (CHO-K1, CHO-DXBL11, and CHO-DG44) in suspension cultures
[20]. The transcriptomics data (RMA normalized log2 intensities) and proteomics data (nor-
malized and scaled protein levels) were obtained from the paper. Differential analyses between
the three CHO host cell lines were performed at both gene and protein levels using the R
limma package. The expression matrices and comparison results were uploaded to the CHO-
mics. Ensembl ID for transcriptome and CHO gene symbols for proteome reported in the
paper were recognized automatically by the CHOmics for gene mapping.

We demonstrated the reproducibility of CHOmics by performing PCA, differential analysis,
and GO enrichment analysis across omics data sets. The results (S3-S5 Figs) are in good agree-
ment with reported in the paper. Furthermore, CHOmics offers extra analysis and visualization
functionalities, such as PCA analysis on the subset of genes (e.g., genes from specific pathway)
as shown in S6 Fig, investigating the effect size of selected genes across multiple comparisons as
shown in the bubble plot (S7 Fig), and enrichment analysis on multiple pathway databases
(e.g., KEGG, WikiPathways) allowing users to map the differential analysis results from multi-
omics data sets on any specific pathway (e.g., Glutathione metabolism) as shown in S8 Fig.
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Discussion

Here, we presented CHOmics platform for the integrative and interactive exploration of omics
data from CHO cell lines. CHOmics is a web-based tool designed with considerable flexibility
in analysis, visualization, and management of CHO omics data. Users can perform omics data
analyses in a variety of ways through either launching the internal RNA-Seq pipeline to analyze
raw data or uploading intermediate results from external pipelines. Versatile functionalities
such as PCA and hierarchical clustering are provided to help users overview the data quality
and distribution, and statistical analyses (e.g, DE analysis, pathway enrichment) to further
explore the biological signals and interpretation. Moreover, CHOmics can summarize the
analysis results across omics, comparisons and projects by meta-analysis to increase the feature
detection power.

Another advantage of CHOmics is its ability to enable users to visualize data metrics and
analysis results in an integrative and interactive way. Users can visualize the expression profiles
of a gene or gene set across conditions or omics data sets, thus facilitating deeper understand-
ing and interpretation of biological findings. Given the integrative capability, users can visual-
ize the dynamics of omics data in response to conditions through time course analyses.
Beyond gene level, CHOmics also provides a bird’s-eye view of the functional pathways
enriched by differentially expressed genes between biological conditions. Furthermore, CHO-
mics can map gene-level expression changes to pathway diagrams. Thus, this multi-layer visu-
alization enables users to gain additional insights from colocalization of gene expression
changes of multiple experiments on the same pathway.

Finally, CHOmics offers an effective way of managing projects from different sources such
as internal or external data and/or analysis results. Along with flexibility in data input, CHO-
mics organizes data by hierarchical categories such as project, comparison, and samples. This
centralized design makes comparison across projects at multiple levels (e.g., gene, sample and
comparison) possible.

Availability and future directions

CHOmics is free to use and is distributed under GPL license. The demo of client-side is avail-
able at http://chomics.org and has been extensively tested with Chrome and Firefox browser.
Detailed tutorial can be accessed as supporting information and also available at https://bit.ly/
2PyUxk5 in high resolution format. The source code written by multiple programming lan-
guages PHP, R and JavaScript, is available at https://github.com/bachongz/ CHOmics. Installa-
tion procedure is provided at the link http://chomics.org/chomics/install.php. The demo site is
installed on a dedicated server from source code mainly for visualization of results. If the users
want to run the data preprocessing pipeline on a large-scale raw data, which usually requires
significant computational resources, it is recommended to install the platform on a local server
or create a Google cloud instance from publicly available Google Cloud machine Image "cho-
mics-0rg20200806". CHOmics server-side application has been tested on Ubuntu and CentOS
powered servers. Support for installing the system locally or in the cloud can be obtained by
contacting info@bioinforx.com. Although the current version of CHOmics only contains a
data processing pipeline for RNA sequencing, this is a continuous effort and more pipelines
for other omics data will be incorporated in the future. In addition, the open-source platform
can be extended to other species with minor configuration.

Supporting information

S1 Fig. Principle component analysis (PCA) on proteomics data. (A) PCA analysis on prote-
omics data shows that one sample at 96 hr is outlier. (B) The samples are clustered mainly by
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treatment (i.e., time points) after filtering out the outlier.
(TIFF)

S2 Fig. Volcano plot on proteomics data. The top differentially expressed proteins between
108 hr and 72 hr.
(TIFF)

S3 Fig. Principle component (PC) analysis plots of transcriptomics and proteomics data
from a study of profiling three commonly used parental cell in suspension cultures [20].
(A) Nine samples from three groups (CHO_DG44, CHO_Dukxbl11, and CHO_K1) were clus-
tered based on the first and second PCs of transcriptomics data. (B) The samples were clus-
tered based on the first and second PCs of proteomics data.

(TIFF)

S$4 Fig. Venn diagram plots to show overlap of differentially expressed genes between
CHOmics and reported from the paper [20] in both (A) transcriptomics and (B) proteo-
mics data.

(TIFF)

S5 Fig. Gene Ontology (GO) enrichment analysis of differentially expressed genes from
both transcriptomics and proteomics data. The enrichment analysis on (A) biological pro-
cesses, (B) molecular functions, and (C) cellular components of GO.

(TIFF)

S6 Fig. PCA plots of transcriptomics data on subset of genes. (A) The genes were selected
from (A) N-glycan biosynthesis pathway, and (B) oxidative phosphorylation pathway of
KEGG.

(TIFF)

S7 Fig. Bubble plot of selected genes across comparisons and omics. Common differentially
expressed genes from comparisons of both transcriptomics and proteomics data analysis are
shown. The bubble sizes are proportional to significance levels (-logFDR) of differentially
expressed genes in various comparisons that are color-coded.

(TIFF)

S8 Fig. Plots of KEGG pathway enrichment analysis. (A) Top 20 pathways enriched by up-
regulated differentially expressed genes from both transcriptomics and proteomics data. (B)
Pathways enriched by down-regulated differentially expressed genes. (C) Differential analysis
statistics from multi-omics data were aggregated into the pathway diagram of Glutathione
metabolism from KEGG database. Each box is divided into equal stripes to show color-coded
log2 fold changes capped at 1 where each stripe corresponds to one comparison.

(TIFF)

S1 Text. CHOmics tutorial.
(PDF)
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