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Abstract

Crystal Growth Modeling and Morphology Prediction of Complex Organic Molecules

by

Neha A. Padwal

Crystalline materials are ubiquitous in our daily lives - from the silicon wafer chips in

our electronic devices to food we thrive on and medicines prolonging our lifetime. Con-

trolling crystal growth properties becomes crucial to engineering material functionality.

A growth model is necessary for design, control and optimization of crystallization pro-

cesses. Moreover, it allows efficient exploration of growth conditions to form crystals with

desirable properties. Previous work on growth models has mainly focused on symmetric

organic molecules, salts and inorganic crystals. However, in the majority of cases the

molecules of interest are highly asymmetric and lack an inversion center. The current

models are plagued with flawed assumptions, making them unfit for real asymmetric

molecules. To that end, we have developed a novel growth theory that enables predic-

tion of fundamental growth parameters within a broader class of mechanistic multiscale

crystal growth models. The theory - ‘Simplified Steady-State Framework’is based on

identifying a small subset of most-probable surface events which dominate the surface

kinetics. In this work, we demonstrate the framework and its application to a Kossel

crystal, and AB-type crystal (Z = 2). We developed a Symbolic-Numerical digital tool

which allows generalization of the theory to crystals with various molecules in the unit

cell and demonstrate its applicability to crystals with four growth units in the unit cell

(Z = 4). The overarching goal of the project is development of a in-silico tool based on

reliable multiscale growth models to allow high throughput screening of design conditions

for crystal engineering of the general class of asymmetric organic molecular crystals.
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Chapter 1

Introduction

“No one can pretend that the overall position on mathematical models in

current use for design is satisfactory. Progress is required in both directions,

towards simpler models which give an adequate representation for the early

stages of design and towards more accurate models which reflect the true

influence of design variables for use in the later stages of design. On the latter

question, the problem is not so much one of numerical techniques but one of

basic under- standing of the physical mechanisms involved. ... Real progress

can only come from painstaking and detailed experimental and theoretical

work over the whole field of chemical engineering.”[1] (Prof. Roger Sargent

(1926-2018), Father of Process Systems Engineering)

With technological advances, process modeling and simulation software have revo-

lutionized the field of chemical engineering and process manufacturing in the last few

decades. Aspen Hysys, Aspen plus, CHEMCAD, gPROMS are the industry standard for

process modeling, simulation and design of various mainstream chemical operations and

have enabled streamlining the design of safe, efficient and sustainable processes. This

has also saved the chemical and hydrocarbon industry significant investment in time,
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and revenues and energy by allowing multi-variable design, control and optimization of

capital and operational costs. This was made possible due to the years of fundamental

research that enabled development of fundamental and process models, design principles

and subsequently simulation techniques that allow rapid prediction of system behaviours

for a range of input design variables.

On the other hand, the global pharmaceutical industry, valued at over a trillion USD

(in 2017)[2] has long been plagued with significant investment cost and long drug devel-

opment timelines right from the discovery stage to the bedside stage. On an average, for a

single drug to reach the patients requires investment of over 2 billion dollars, with merely

6-10 years remaining of patent-protected production of the drug.[3, 4] Over 90% of small

molecule active pharmaceutical ingredients (APIs) are delivered in crystalline form.[4] A

significant cause of the high costs is the R&D investments. The financial burden is com-

pounded by the lack of predictive models and simulation software for crystal engineering

and in-silico crystal design. This entails heavy investment in experiments and empirical

methodologies towards design and optimization of crystallization processes. Hence, com-

prehensive in-depth fundamental research is pivotal in key areas of crystal structure pre-

diction, solubility prediction, nucleation, crystal dissolution and growth studies, crystal

morphology selection. Multi-pronged and coordinated research efforts at the intersection

of experiments, theory and computations will expand and advance our understanding of

crystal growth and enable development of crystals with a purpose.[5] In this work, we

propose and deep dive into a new crystal growth theory for modeling growth parameters

and combine it with computations and experimental observations from the literature in

an effort to predict and thereby control crystal growth behaviour.

Apart from pharmaceutical industry, crystalline materials are ubiquitous in a range

of industries including materials and semiconductors, food and beverage, fuel cells, nan-

otechnology, chemicals, and polymers. Controlling and maintaining the properties of

2



Introduction Chapter 1

these crystalline materials is key to capturing the desired functionality of the product.

The substrates grown under different conditions give rise to crystals with a diverse range

of crystal properties. In order to explore the continuum of crystal properties, we require

the predictive ability of a growth function given the nature of growth conditions. This

predictive nature traces back to the need for a growth model that captures the physics

and chemistry of crystal growth. A growth model enables prediction of various crys-

tal properties such as the crystal shape or morphology, crystal size and polymorph or

the crystal structure. The final product functionality dictates desired properties of the

crystals. Any slight change in these properties could drastically affect key formulation

properties like toxicity, bioavailability, catalytic activity, dispersability, mechanical prop-

erties, etc.[4, 6] For instance, within the pharmaceutical space, a uniform distribution of

equidimensional crystals is desirable since they offer better dissolution, as well as ease

of processing. Bioavailability, a critical pharmacokinetic parameter, is the percentage of

ingested drug reaching systemic circulation. For low-solubility drugs, the bioavailabil-

ity depends on the dissolution behaviour of crystal facets and needs to be optimized to

ensure adequate amounts of the API reaches its target in human bodies. In catalysis,

specific facets of the crystalline surfaces offer higher catalytic properties and hence plate-

like morphology is preferred which exposes facets with the highest catalytic activity. On

the other hand, in LEDs rod-like crystals are desired since the anisotropy of properties

provides directional sensitivity to external stimuli.

Apart from the tunability of crystal-specific properties, a model is also necessary for

design and control of crystallization processes. The process systems engineering archi-

tecture is built upon mathematical models describing the system’s behaviour change in

response to design variables. Hence a growth model enables design of crystallization

process systems, installment of control systems and optimization of design variables with

respect to cost, energy requirement whilst growing crystals with desired properties and
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functionality.

Experiments have popularly been employed for exploring the space of growth param-

eters to trace the corresponding crystal property domain. Such an approach is time and

energy intensive and also ineffective in exploration of nuances in the crystal property

continuum to arrive at the global optimum that can potentially be achieved for a wide

range of growth conditions such as temperature, supersaturation and solvent conditions.

Growth models can better guide design of experiments in screening of parametric space

for optimal conditions of production.

Mathematical modeling of crystal growth phenomenon plays a key role in crystal habit

predictions. Crystal habit is the shape of the crystal and crystal morphology relates to

the specific faces bounding the crystal surface. The growth models can be used for shape

and morphology prediction based on relative growth rate estimates.[7, 8] The population

balance theory[9], widely used for modeling distribution of properties of a particulate

systems, also needs to be supplied with growth models to obtain the size distribution

of crystals and the associated dynamics. Growth models can also inform control of

polymorph in an MSMPR (Mixed Suspension Mixed Product Removal) crystallizer, as

derived through a linear stability analysis.[10] In case of batch crystallizers, polymorph

selection hinges on induction time of the most stable form. Hence, growth models are

indispensable to devise rational design principles for crystallization processes as well as

crystal form attributes.

1.1 Nonmechanistic Modeling Approaches

Given the diverse advantages, several growth models have been proposed in literature.

The growth models can be broadly categorised into the nonmechanistic and mechanic ap-

proaches. The nonmechanistic modeling approaches are based on associating the growth
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rate to a substrate physical quantity based on approximate empirical observations. The

mechanistic approach is based on encapsulating the growth mechanism at various scales

through solid-state physics, surface chemistry and thermodynamics. Major nonmecha-

nistic models are mentioned below,

1.1.1 Gibbs’ thermodynamic model

One of the first models for informing crystal habit was put forth by Gibbs around

1879.[11] Gibbs proved that at equilibrium, the total surface free energy of the crystal

will be minimized. The total surface energy contributes to the free energy penalty upon

crystal formation and is proportional to the surface area Ai of each face i with a sur-

face energy of γi. The free energy reward is incurred due to phase change into a more

thermodynamically stable crystal phase.

∆G = −V∆µ

VM

+
∑
i

γiAi (1.1)

where ∆µ is the difference in chemical potentials of the substrate crystal and solution

phases, V and VM are the crystal volume and molecular volume, respectively. The

equilibrium crystal shape is attained when the free energy is minimized and we get,

∑
i

γidAi = 0 (1.2)

The crystal shape which satisfies the above constraint is given by the Wulff construc-

tion.[12]

γ1
H1

=
γ2
H2

= ... =
γi
Hi

= 1 (1.3)

where Hi is the perpendicular distance of face i from a common origin. Note that the ori-

entation of the facets is characterized by Miller indices and fixed by the crystallography.
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However, the equilibrium shape is usually not attainable for crystals owing to the high

reorganization barriers, except for smaller crystals such as nanocrystals, wherein ther-

modynamics plays a greater role. Hence, kinetics of crystal growth will determine the

crystal habit and determine the shape of the crystal instead of the thermodynamics, as

also noted by Gibbs in a footnote of his article. Crystal habit is dominated by the kineti-

cally slowest-growing facets and
∑

i γiAi will not usually be minimized.[11, 13] Analogous

Figure 1.1: Pictorial depiction of the Frank-Chernov Condition[8, 14] for predicting
steady-state crystal morphology, considering cross-section of a crystal. Gi is the rela-
tive perpendicular growth rate of face i. Hi is the perpendicular distance of face i from
the origin O.

to the thermodynamically-controlled Wulff construct, the kinetically-controlled shape of

the crystal will reach a fixed time-independent steady-state shape and is given by the

Frank-Chernov Condition.[8, 14]

G1

H1

=
G2

H2

= ...
Gi

Hi

(1.4)

where G is the perpendicular growth rate of face i. The condition states that the distance

of a face i from a fixed origin will be proportional to its growth rate as depicted in Fig.

1.1. Zhang et.al.[15, 16] and Snyder et.al.[17] constructed a set of linear differential
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equations governing dynamic evolution of shape in conditions of growth and dissolution.

Steady-state analysis of differential equations revealed that the crystal evolves into a

unique shape at steady-state during constant growth conditions regardless of the initial

seed habit, which is given by the Frank-Chernov condition in Eq. 1.4. This steady-

state shape is a function of relative growth rates, which allows shape prediction without

estimation of rate constants. However, the unique steady-state shape during dissolution

is unstable and hence the system will continuously evolve away from the steady-state.

The Frank-Chernov condition forms the basis of shape construction from relative growth

rate calculations using the growth models in the rest of this dissertation.

1.1.2 BFDH model

One of the first nonequilibrium models for crystal habit was put forth by Bravais,

Friedel, Donnay and Harker (BFDH).[18–20] The BFDH model posits that the growth

rate (Ghkl) of a crystal face with Miller indices (hkl) is inversely proportional to the

interplanar spacing (dhkl) between successive layers of the face. This is based on the

general experimental observation that the faces dominating crystal shapes have high

interplanar spacing. Interplanar spacing is a crystallographic quantity and is a function

of the Miller indices and lattice parameters and constant for a given face. Hence, the

model can be easily implemented since it only requires the crystal unit cell parameters

and yields single shape prediction for a given crystal.

Ghkl ∝
1

dhkl
(1.5)

Although the model has shown to provide good estimates for some vapor-grown crystals,

it is usually not accurate for solution grown crystals.[21, 22]
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1.1.3 The Attachment Energy Model

Hartman and Perdok[23] initially introduced the concept of attachment energy. It is

defined as the energy per growth unit released when slice of the face (hkl) is attached to

the crystal. On the contrary, slice energy is the energy per growth unit released upon the

slice formation. A growth unit is the species integrating along the crystal surface. (e.g.,

molecule, ion) The lattice energy is the sum total of all solid-state interactions between

growth units in the crystal. Hence, the lattice energy is the combination of attachment

energy and slice energy.

Elat = Eatt + Eslice (1.6)

Attachment energy is the aggregate of out-of-slice interaction energies, while slice energy

is the aggregate of in-slice interactions. Hartman and Bennema[24], later put forth the at-

tachment energy model which posits that the growth rate of a crystal face is proportional

to its attachment energy.

Ghkl ∝ Eatt
hkl (1.7)

The model is based on the tenet that the stronger the bonds attaching the in-slice growth

units to the crystal, the faster will be the growth of the slice. The attachment energy

model has been observed to be an improvement over the BFDH model, since it goes

beyond the crystallographic inputs and accounts for the interaction energies between

growth units.[21] However, the model provides a single prediction for a given crystal and

does not account for the growth environment and hence it cannot explain the dynamic

shape changes observed for crystals in changing environments. To that end, the modified

attachment energy (MAE) aims to account for the solvent conditions by interfacing the

solid-state attachment energies with the solution environment of interest. MAE models

commonly utilize molecular dynamics (MD) simulations or force field-based molecular
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modeling to calculate the binding energies of solvent-crystal interactions to account for

additives, temperature, and solvent-mixtures.[25–28] Apart from the computational ex-

pense, the method is still based on an arbitrary linear functional form of dependence

of the growth rates with respect to attachment energies. Lack of kinetics-based and

mechanistic inputs to the model restricts its ability to provide predictions for a range of

crystal-environment systems.

1.1.4 Periodic Bond Chain Model

In a series of pivotal papers, Hartmann and Perdok[23, 29, 30] introduced the concept

of periodic bond chains to draw a connection between solid-state energetic and crystal

surface morphology. Periodic Bond Chains (PBCs) are chains of repeating strong inter-

growth unit interactions. A PBC vector provides the crystallographic directions which

are aligned with strong supramolecular bonds. Hartman and Perdok laid down guide-

lines for PBC selection and highlighted their implications on crystal morphology. The

theory is based on the hypothesis that the high bond energy chains inform morphology

developments in crystal growth such that prominent faces comprise of at least two strong

PBCs.

According to the theory, there are three types of faces, depending on the number of

PBCs running parallel through the face slice: flat faces (F faces) with at least two parallel

PBCs, stepped faces (S faces) with a single PBC and kinked faces (K faces) with no PBC

parallel to the face slice. The F faces are the slowest growing stable faces, growing layer-

by-layer and hence usually have a flat surface topography. In the mechanistic modeling

section 1.2, we study the role of PBCs in the growth of F faces. The S and K faces are

the faster growing faces, owing to low detachment barriers from lack of strong in-slice

interactions. The crystal surface is usually dominated by the slowest-growing F faces,

9
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Figure 1.2: Schematic depiction of various types of face structures based on the number
of PBCs parallel to the face slice, as put forth by Hartman and Perdok.[23, 29, 30] Three
types of faces depicted are F, S and K face types, parallel to two, one and zero PBCs,
respectively. Figure reproduced with permission from Lovette et al.[13]. Copyright 2008
American Chemical Society.

since the S and K faces grow much faster causing them to grow-out of the crystal shape.

1.2 Mechanistic Modeling Approach

Crystal growth is a multiscale process occurring across various time and length scales

- from surface integration of molecules to propagation of 2D nuclei across the crystal

surface. A mechanistic approach to modeling is a hierarchical framework with constituent

atomistic, mesoscale to continuum-scale models, transmitting information down or up

the hierarchy. Such a hierarchy can be broadly segregated into two levels: atomistic and

continuum scale models.[31] Atomistic models govern the elementary rates of attachment

and detachment and the solid-state physics and surface chemistry. Continuum models

govern the kinematics of growth depending on the growth mechanisms. Such an ab initio

framework accounts for the crystallography, solid-state physics, surface chemistry at the

interfacial level as well as the growth kinematics. This is contingent on fundamental

10
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understanding of crystal growth at various scales to effectively model the impact of

growth conditions as a function of temperature, supersaturation and solvent and their

interplay.

1.2.1 Atomistic Modeling: Step kinetics

Figure 1.3: Sequential events followed by a growth unit in the process of surface integra-
tion from solution (either solution-terrace-edge-kink or the solution-terrace-kink mecha-
nisms): terrace adsorption is followed by diffusion of the growth unit to a nearby step.
The growth unit further diffuses along the step to a nearby kink. The terrace ϕT , edge ϕE
and kink energies ϕK are half the broken-bond interactions along terrace, edge and kink
axes, respectively. Figure adapted with permission from Tilbury et al[32]. Copyright
2016 American Chemical Society.

Crystal growth at the most fundamental scale occurs via incorporation of growth

units at various sites along the surface. A growth unit (GU) is the chemical species that

integrates itself into a crystal surface when a driving force is applied (e.g., molecule,

ion, dimer). These growth units could be identical in the solution but incorporated into

the lattice in different orientations (e.g., organic crystals) or distinguishable in solution

(e.g., ionic or mixed crystals). The surface sites which are most favorable for attachment

11
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are kinks, because of their low energy penalty and ability to regenerate itself.[33–40]

Kinks are regenerated after incorporation of growth units, thereby acting as catalytic

sites resulting in further growth. A generalised pathway for growth unit attachment

is depicted in Fig. 1.3. The growth unit diffuses from the bulk solution to a terrace

site followed by partial desolvation. It then diffuses to an edge followed by diffusion

along the edge to a kink site leading to kink incorporation. Gradual GU incorporation

at kinks propels the step in the normal direction at a constant rate termed as the step

velocity. Studies of step dynamics for step velocity modeling are broadly divided into two

categorise: 1) diffusion of growth units[41, 42], and 2) direct integration at kinks[37, 38,

43–45]. In this work, we assume surface diffusion is fast enough and rate is limited by kink

integration of growth units.[32] The assumption is most appropriate for solvent-grown

and melt-grown crystals, wherein the free energy barrier is dominated by desolvation of

growth units.[39] This allows treating surface integration as a reaction process and the

elementary attachment and detachment rates are modelled as microkinetic expressions.

The step propagation is often considered to grow entirely from attachment at kinks,

hence step velocity v of a step i critically depends on the density of kinks.[41, 46–48]

v = aPukρk (1.8)

where aP is the step propagation length, ρk is the kink density and uk is the kink rate.

The kink rate is the net rate of attachment events at the kinks and modelled via suitable

elementary rate models.[36, 46, 49, 50] The kink densities are frequently modelled at

equilibrium using Frenkel’s equilibrium kink density ρeq formulation[51] based on the

Boltzmann distribution.

ρeq =
2exp(−βϕk)

1 + 2exp(−βϕk)
(1.9)
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where β = 1
kBT

is the thermodynamic beta, kB is Boltzmann constant, T is temperature,

and ϕk is the kink energy. The new theory introduced later in Chapter 2 will overcome

the equilibrium assumption in Eq. 1.9 to provide a nonequilibrium kink density model.

The kink rate depends on the elementary attachment and detachment rates modelled by

the random rain model[46] and is given by,

uk = j+ − j−k

j+ = k+xsatS

j−k = k−
k,i

(1.10)

where xsat is the solubility or saturation mole fraction, S is supersaturation, k+ is the

attachment rate constant, k−
k,i = k+e∆Wkβ is the detachment rate constant, and ∆Wk is

the work of detachment at kinks and is the summation of interactions broken along kink,

edge and terrace axes.

∆Wk = 2ϕRK + 2ϕRE + 2ϕRT (1.11)

where ϕRK ,ϕRE and ϕRT are the interaction energies along reverse kink, reverse edge

and reverse terrace directions, respectively. Expressions for k+ can be modelled through

reaction rate theory. For crystals with a single growth unit in the lattice such as Kossel

crystals (see section 1.4), where all kinks are equivalent, the net rate of attachment uk

will be constant across all kinks as derived in supplementray information of Sun et al.[52],

uk = j+ − j−k

= k+xsat(S − 1)

(1.12)

Hence, step velocity and kink density are the important parameters obtained from atom-

istic models. These parameters are supplied to the continuum-scale models and ulti-
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Figure 1.4: Growth trajectory map of a flat F face as a function of supersaturation.
Figure reproduced with permission from Lovette et al.[13]. Copyright 2008, American
Chemical Society.

mately determine the growth rates. In chapter 2, we delve further into several other kink

density and step velocity models and propose a novel theory for estimation of nonequi-

librium kink density and step velocities for asymmetric molecular crystals.

1.2.2 Continuum Modeling: Mechanisms of Crystal Growth

A crystal face grows in different regimes depending on the supersaturation. The evo-

lution of regimes with increase in supersaturation was observed experimentally by Land

and De Yoreo.[53] At a given supersaturation, a crystal face will grow in the regime that

yields fastest rate. Hence, it is possible for a crystal to have different faces growing in

different regimes. Fig. 1.4 depicts a typical growth map for a crystal face. At low super-

saturation, crystal growth is dominated by the classical Burton Cabrera Frank (BCF)

spiral growth mechanism,[41] in which screw dislocations provide the surface for attach-

ment of GUs. At moderate supersaturation, growth occurs by the 2D nucleation regime,

which has two sub-regimes. In the birth and spread sub-regime, formation of a 2D nu-

cleus of critical size is the rate determining step, after which it grows continuously across

the crystal surface. In the poly-nuclear sub-regime, nucleation rate is high and growth
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of multiple nuclei collectively contributes to growth of that layer. At very high supersat-

uration, surface integration of GUs is no longer the rate determining step and transport

effects must be accounted for. However, industrial crystallizers generally operate in the

layered growth regimes (spiral growth and 2D nucleation), since rough growth conditions

result in excessive secondary nucleation. Note, that such a transition is peculiar to the

F faces. The stepped and kink faces are always within the rough regime, because of a

zero roughening transition temperature.[54] Fig. 1.5 provides Atomic Force Miscroscopy

(AFM) deflection images of crystal surfaces growing in spiral growth, 2D nucleation and

transition to rough growth regimes.

During layered growth, the mechanistic route to modeling growth rate G estimates

the slice height h grown and time required to grow the slice (τ) of a face (hkl), which

depends on the growth mechanism or regime.

Ghkl =

(
h

τ

)
hkl

(1.13)

where τ is the spiral rotation time for spiral regime and face coverage time for the 2D

nucleation regime.

Spiral Growth

In a landmark paper in 1951, Burton-Cabrera-Frank[41] proposed the spiral growth

mechanism which posits that the imperfections in crystals, particularly screw dislocations

provide a renewable surface area for incorporation of growth units and hence growth of

the crystal giving rise to growth hillocks depicted in Fig. 1.6. The theory granted

explanation for high crystal growth rates observed at low supersaturation, which could

not be explained by the 2D nucleation owing to high free energy barriers. Since then

many spirals have been observed on crystal surfaces by AFM.[57–59] The dynamics of
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(a)

(b) (c)

Figure 1.5: AFM deflection images of experimental observations of crystal growth mecha-
nisms: a) spiral growth hillocks on L-cystine crystals. Figure reproduced with permission
from Shtukenberg et al.[55]. Copyright 2013 National Academy of Sciences, b) 2D nu-
clei on crystal surface of metal–organic framework MOF-5 and c) MOF-5 crystal surface
approaching rough growth. Figures reproduced with permission from Cubillas et al.[56].
Copyright 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

initial formation of a spiral from a screw dislocation are depicted in Fig. 1.7, wherein

the dislocation exposes a step providing surface for GU attachment causing it to grow

outward. As the step grows it exposes another step, which in turn starts growing upon

reaching a certain length termed as the critical length lc. Depending on the direction of

the dislocation, the process continues to generate clockwise or anticlockwise spirals. The

spiral edges grow via step propagation as discussed in section 1.2.1 and the rate of their

growth is given by the step velocity. Henceforth, the concepts of edge and step will be

used synonymously in this chapter. The growth rate of the face depends on the duration
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Figure 1.6: An anti-clockwise growth spiral on a crystal face. The spiral sides act as
crystal steps growing via kink incorporation.

required for the spiral to complete a single turn, which is the spiral rotation time τs.

Since each edge of the spiral only starts progressing in the normal direction once it has

reached its critical length, the rotation time is the duration required for all the steps to

reach their respective critical lengths.

G =
h

τs

τs =
∑
i

lc,i+1sin(αi,i+1)

vi

(1.14)

where i characterises a particular step and its properties, lc,i is the critical length of step

i, αi,i+1 is the angle between the orientations of steps i and i+1 and vi is the step velocity

of step i. The critical length of a step i is evaluated by the contributions to the Gibbs

free energy change during step dynamics. Upon addition of a layer of atoms along step

i, the free energy change ∆G increases due to increase in surface area, while it reduces

due to crystallization into a more thermodynamically stable state.[60, 61]

∆G(ni)

kBT
= 2

ϕk,i

kBT
(1− δni

)− ni ln (1 + σ) (1.15)
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Figure 1.7: Growth mechanism of a spiral starting from a screw dislocation, a) Top view
of the face depicting movement of steps, b) perspective view of the crystal depicting
spiral growth. The steps on the spiral follow the condition: (i) For a step i, v = 0 for
l < lc and v = vinf for l > lc. Figure reproduced with permission from Lovette et al.[13].
Copyright 2008 American Chemical Society.
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where σ = x
xsat

−1 is the crystallization driving force, x is the solute mole fraction, xsat is

the saturation mole fraction, ϕk is the kink energy, the Kronecker delta δni
ensures that

the surface penalty vanishes when there are no growth units along the step (ni = 0). The

number of growth units (ni) along step i is expressed as a function of its length li as

ni =
li
aE,i

(1.16)

where aE,i is the intermolecular distance along step i. At the critical length lc,i, the Free

energy change in Eq. 1.15 becomes zero and we get,

lc,i =
2ae,iϕk,i

kBT ln (1 + σ)
(1.17)

Step velocity vi is the rate at which the step progresses in the normal direction. Voronkov’s

condition[62] is used for instructing step dynamics which takes the form of a heaviside

function.

vi =


0 l ≤ lc,i

vinfi else

(1.18)

The condition states that the step begins to advance at a constant velocity, only after the

length of the edge reaches its critical length. The step velocity vinfi , henceforth referred

to as vi, is modelled through atomistic modeling such as Eq. 1.8. Constant step velocity

would ensue constant distances between respective sides of spirals which is in agreement

with experimental observations.[63, 64] Substituting Eqs. 1.12,1.14, 1.17 in the growth

model provides,

G = (k+xsat)(
h

τ ∗
)(σ ln (1 + σ)) (1.19)

Here, the first factor is solvent dependent, the second factor is face dependent and the

third factor depends on supersaturation. τ ∗ denotes the rotation time expression with
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Figure 1.8: Growth of 2D nucleus over a crystal surface.

supersaturation dependence extracted out. Most industrial crystals are grown within the

spiral growth regime since it offers a controlled growth environment.

2D Birth and Spread

As supersaturation is increased, the barrier to formation of a 2D nucleus on crystal

facets reduces and 2D nucleation becomes the predominant growth regime. The regime

manifests itself in two subregimes: 2D birth and spread[65] (low nucleation rates) and

polynuclear[66] (high nucleation rates). In 2D birth and spread mechanism, the rate

determining factor is the formation of a critical sized 2D nucleus, which subsequently

grows across the crystal face. In this subregime, the growth rate depends on the 2D

face coverage time. The full derivations of face coverage time in birth & spread and

polynucleur regimes for polygonal nuclei across solvent-grown crystals are covered by

Lovette et al.[48] and Tilbury et al.[61], respectively.

The face coverage time is derived by solving for full coverage by the growing 2D

nucleus for a constant nucleation rate.[48, 65] The face coverage of 2D birth and spread

τ2D,B+S is a function of nucleation rate J and step velocities vi of the nucleus edges.

τ2D,B+S = (Jf)−1/3 (1.20)
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where f is a function of step velocity (vi) and tangential velocity (vti) of the nucleus edges

i.

f =
1

6

N∑
i=1

viv
t
i (1.21)

Similar to the spiral edges, the edges of a 2D nuclei grow via step propagation and

modelled via kink incorporation as given in Eq. 1.8. This reinforces the importance of

step velocity models in growth rates of layered growth mechanisms, since the rotation

time of a spiral as well as the face coverage time depend on the rate of progression

of steps. The tangential step velocity (vti) of step i is a function of its step velocity

and that of its adjacent steps i − 1 and i + 1. If a step is growing fast enough, it

can have a negative tangential velocity and hence disappear eventually from the growing

nucleus.[47] The activated process of 2D nucleation occurs through formation of a critical-

sized 2D nucleus such that its formation occurs at an energetic expense, while growth is

energetically favorable. Hence, the nucleation rate J takes the form[48],

J = κ2De
−β∆Gc (1.22)

where κ2D is the prefactor and ∆Gc is the free energy barrier for formation of a 2D

critical nucleus. The free energy barrier ∆Gc is obtained by aggregating surface energy

penalty and volume reward of crystallization. ∆G is differentiated to solve for the size

of the critical nucleus and upon resubstitution we get[61],

∆Gc

kBT
=

1

4

(
sFϕE

kBT

)2(
1

ln(1 + σ)

)2

(1.23)

The most stable steps along a crystallographic plane align with chains of strong repeating

interactions[47] and hence provided by the periodic bond chains studied in Section 1.1.4.

Hence the shape of the critical nucleus and shape factor depend on the PBC directions
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and strength of their interactions.[61] The prefactor (κ2D) in Eq. 1.22 can be obtained by

applying stationary nucleation rate theory for circular nuclei to critical polygonal nuclei,

whose edges align with PBCs[67, 68] and rewriting J as,

J = zw+
CC

2D
0 (1.24)

where z is the Zeldovich factor[67], w+
C is the total rate of attachment to critical nu-

cleus[68], C2D
0 is the concentration of critical nuclei on the face. The expression for

Zeldovich factor[67, 69] upon resubstitution and simplification is given by[61],

z =

(
−d2∆G

dn2 |n=nc

2πkBT

)1/2

=

(
sFϕE

8πkBTn
3/2
c

)1/2

(1.25)

where sF is the shape factor and nc is the number of molecules within the critical-sized

nucleus, which can be calculated as a function of lattice and solid-state parameters. For

estimation of w+
C , all the attachment event rates (j+) at all the kinks on all the edges i

of the nucleus are considered.[61]

w+
C =

N∑
i=1

nC,iρk,ij
+ (1.26)

where nC,i is the number of molecules in the critical nucleus along step i. The attachment

rate can be estimated through the rate model expressed in Eq. 1.10 and constant across

all steps, since solubility is a crystal-solvent property. The concentration of adsorption

sites (C2D
0 ) on the face will depend upon the squared mean of characteristic length of

molecules along the edge.

C2D
0 =

1

( 1
N

∑N
i=1 aE,i)2

(1.27)

where aE is the intermolecular width along step i. Hence, all fundamental and interme-
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diate parameters in the growth model expression can be evaluated with the exception of

the rate constant k+. Substitution of the expressions in Eq. 1.20, provides us with the

growth rate of face in 2D birth and spread regime to a multiplicative constant k+. This

is analogous to the spiral growth model in Eq. 1.19.

2D Polynuclear

As we further increase the supersaturation, the nucleation rate increases such that

multiple 2D nuclei collectively contribute to the face coverage. In this regime, growth

is dominated by the nucleated areas instead of the lateral growth of nuclei via step

propagation. Hence, the face coverage time depends on the area of a critical nucleus Ac

in polynuclear regime and given by,

τ =
1

JAc

(1.28)

where the area can be evaluated from directions and strength of PBC interactions.[61]

The above mechanistic framework for spiral growth and 2D nucleation provides a

mathematical description of the phenomenon. All the parameters can be evaluated from

the equations above, except for the rate constant (k+) in the rate model. Providentially,

the growth models in layered regimes are all linear with respect to the rate constant.

Hence the assumption of isotropic k+ allows estimation of relative growth rates and

consequently crystal shape, by means of the Frank-Chernov Condition in Eq. 1.4 and

Fig. 1.1.

Rough growth

As supersaturation is increased further, the molecular incorporation into crystal sur-

face sites ceases to be the rate determining step. The growth of crystal surfaces is now
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restricted by how fast the substrate can diffuse across the surface boundary layer and is

available for its incorporation into kink sites. This describes the onset for rough growth

regime and mass transfer starts to dominate the growth rates. Lovette et al.[13] con-

ducted scaling analysis on the mass, heat and momentum balance equations for a crys-

tallization process system and based on the orders of magnitudes of the dimensionless

numbers demonstrated that in the layered growth regimes surface integration is rate-

limiting. As the driving force increases, the surface integration is fast enough to not be

the bottleneck for crystal growth. The rough growth is characterized by course surfaces

with significant number of kinks, owing to the high attachment rates. The growth is no

longer layer-by-layer, instead rapid attachment is observed across all types of sites across

the crystal facet. It must be noted that there can be different faces growing in different

mechanisms or regimes depending on the face properties. Generally, the low index faces

have more in-plane interactions and tend to grow by layered mechanisms, referred to as

F faces. On the contrary, the high index faces have low in-slice interactions and high

broken-bond interactions at the surface. This results in a significant number of kinks

along the faces. The rough growing faces typically grow 10-100 times faster than that of

crystals in layered growth regimes.[13] As a result, the S and K faces usually grow out

of the morphology, or if present, cause anisotropic needle or plate-like behaviour.

1.3 Solvent Effects

The choice of solvent has the potential to dramatically affect the morphology.[32]

Proper consideration of solvent effects remains crucial to reliable prediction of crystal

properties. The presence of a solvent incurs differential effects on surface energy of

various crystal faces, altering rates of molecular attachment and detachment. The change

of surface energies will influence all the interactions (ϕs) within the rate model. Within
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the mechanistic framework, the solvent-modified interactions are captured within the

elementary rates of attachment j+ and detachment j− in the form of the works ∆W such

as Eq. 1.11. The work of detachment at kinks ∆Wk is the summation of bond energies

broken during detachment along the edge, kink or terrace axes and is given by

∆Wk = 2(ϕRK + ϕRE + ϕRT ) (1.29)

where ϕRK , ϕRE, ϕRT denote broken bond energies in reverse kink, reverse edge and

reverse terrace directions, respectively as depicted in Fig. 2.3. The prefactor of 2 ac-

counts for the convention that ϕ represents half the bond energy between growth units.

Alternatively, the work is expressed with respect to the surface energies as,

∆Wk = 2(γKaPh+ γEaEh+ γTaEaP ) (1.30)

where γK , γE, and γT are the surface energies of kink, edge and terrace surfaces, respec-

tively. aP , aE and h are geometrical dimensions of the growth unit as depicted in Fig.

1.9.

Presence of a solvent affects the interfacial energy at the crystal surface. Specifically

the kink, edge and terrace broken bond energies at the surface will be altered based on

the interaction between crystal-solvent. Molecular dynamics (MD) simulations have been

widely performed towards quantification of solvent effects.[70, 71] In order to allow rapid

calculations, we use the bulk-interface approximation (Dupré equation[72]) to evaluate

solvent-modified bond energies, notwithstanding high fidelity of MD predictions. Based

on this approximation, the crystal-solvent interface energy depends on the individual

crystal γS and solvent cohesive energies γS and their work of adhesion ∆Wad,XS.[47, 73,
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Figure 1.9: Step diagram and depiction of surface energies along various components
of a step surface. γK , γE, and γT are the surface energies of kink, edge and terrace
surfaces, respectively. aP is the growth unit width in the direction of step growth, aE is
the growth unit width along the step and h is the growth unit height. Figure adapted
with permission from Tilbury et al.[32]. Copyright 2016 American Chemical Society

74]

γXS = γX + γS −∆Wad,XS (1.31)

where S and X denote solvent and crystal properties, respectively. The γXS may be

γK , γE, or γT . Several empirical relations have been proposed for expressing the work

of adhesion Wad,XS such as the Berthelot relation[75], Girifalo and Good’s parameteric

correction[76], Owen and Wendt’s modification[77], Fowkes’ method[78], etc. In this

work, we utilize van Oss, Chaudhury and Good[79, 80] solvent model, which provides a

practical approach to obtaining surface energies in the presence of solvent. The model has

been successfully applied for morphology predictions of various crystal-solvent systems

and allows fast estimation of solvent effects.[73, 81–83]

Assuming surface energies are a combination of acid-base and dispersive components,

γXS = (γd
X + γAB

X ) + (γd
S + γAB

S )− (W d
ad,XS +WAB

ad,XS) (1.32)
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where d and AB refer to dispersive and acid-base components, respectively. The cohe-

sive interactions generally have two components: coulombic character based on partial

charges obtained from electron density calculations and dispersive character. According

to van Oss, Chaudhury and Good[79, 80], the work of adhesion is estimated by taking a

geometric mean of the decoupled dispersive and acid-base components of the cohesive en-

ergies independently. The acid-base character is further separated into donating (+) and

accepting (-) components. Hence, the acid-based component of work of adhesion consists

of separate terms matching donating and accepting characteristics of crystal-solvent.

W d
ad,XS = 2

√
γd
Xγ

d
S

WAB
ad,XS = 2

√
γ+
Xγ

−
S + 2

√
γ−
Xγ

+
S

(1.33)

The dispersive and acid-base components of individual solvent γS and crystal γX interac-

tions are evaluated by appropriate atom-atom forcefields for the system of interest. For

instance, the AMBER forcefield[84, 85] was initially developed for proteins and nucleic

acid and subsequently generalized into GAFF[86] (Generalized Amber force field) for or-

ganic molecules. The Lifson forcefield is developed specifically for amides and carboxylic

acid.[87] The Coloumb-London-Pauli (CLP)[88] forcefield has been parameterized specif-

ically for crystals and will be used in our analysis for organic molecular crystals. The

solvent-modified interfacial interaction energies are then estimated using Eqs. (1.32) and

(1.33) and subsequently to calculate the solvent-modified work of detachment in Eq. 1.30.

1.4 Kossel and non Kossel Crystals

A Kossel Crystal is a cubic lattice of growth units forming equal interactions with each

of its six nearest neighbors.[33] Such a crystal forms a network of isotropic interactions

with a single type of growth unit. Examples of Kossel crystals in nature are limited, such
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Figure 1.10: Interaction network across a slice of a) naphthalene (centrosymmetric growth
unit), b) Tazofelone (Noncentrosymmetric growth unit). The interaction network is
generated using the software ADDICT.[90]

as a polymorph of Polonium.[89] Owing to their simplicity, Kossel crystals act as testing

subjects for crystal growth models. The vast majority of growth units are non-Kossel

and are broadly classified into two categories: Centrosymmetric and Noncentrosymmet-

ric. Centrosymmetric molecules have an inversion center that coincides with its center of

mass. These molecules have symmetric interaction spheres. The same bonds are exposed

to the solution at all the kink sites irrespective of step and face. Owing to isotropic in-

teractions, the centrosymmetric molecules behave in a Kossel-like fashion and the Kossel

models can be readily applied to Centrosymmetric molecules. Examples of this molecule

class are succinic acid and naphthalene. The noncentrosymmetric molecules do not have

an inversion centre and form asymmetric network of interactions. This results in various

types of kinks along different steps and faces. Moreover, steps with multiple growth units

consist of various configurations of steps as discussed later in Section 3.2. Asymmetry of

the molecule is distinct from asymmetry of the crystalline lattice.[81] A centrosymmetric

molecule has an inversion center aligned with its center of mass. Centrosymmetric space

groups have an inversion center as one of their symmetry elements. Examples of such

space groups are P21/c and P2/c.

The models discussed in the subsequent chapters in this dissertation pertain to growth

units with varying levels of complexity, irrespective of the space group, the molecule is
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crystallizing in. The new theory, namely Simplified Steady-State Framework, introduced

in Chapter 2 is first demonstrated for Kossel crystals and applied to naphthalene and

rubrene to demonstrate its utility for real molecules. Chapter 3 demonstrates extension

of the theory to crystals of noncentrosymmetric molecules with two growth units in the

unit cell and further generalized in Chapter 5 to various growth units in the unit cell.

1.5 Morphology Predictions and ADDICT

In previous sections, we summarized the multi-scale mechanistic modeling framework,

solid-state periodic bond chains, solvent effects and crystallographic faces types. These

distinct calculations form the basis of the software ADDICT[90–92], developed by the

Doherty research group at the University of California Santa Barbara. ADDICT stands

for “Advanced Design and Development of Industrial Crystallization Technology” and is

a crystal morphology prediction tool which allows calculation, visualization, and analysis

of the crystal habit formed as a function of the growth environment such as temperature,

supersaturation and solvent. Inputs to the software are crystallographic information,

Gaussian electron density calculations (partial charges on atoms), and growth environ-

ment descriptors (design variables). Sequential explanation of ADDICT’s workflow to

obtain morphology predictions is outlined below,

1. The inputs to ADDICT are .cif and .mol2 files. The cif file provides the crystal-

lographic input in the form of crystal structure data, symmetry operations, space

group and unit cell data. The X-ray extinction conditions of the space group dictate

stable low-index F faces with maximum in-plane interactions. Gaussian[93] and an-

techamber[94] can be utilized for electron density calculations to obtain mol2 files

with restrained electrostatic potential (RESP) charges. The mol2 file provides the

partial charges on atoms which are acted upon by appropriate atom-atom force-
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Figure 1.11: ADDICT’s crystal morphology prediction methodology implemented for
naphthalene, a) crystal structure allows crystallographic and unit cell information, b)
solid-state calculation of interaction energies provides the network of interactions and
PBCs, c) mechanistic model calculations provide spiral-shape estimates, d) steady-state
morphology from the relative growth rates. Figure reproduced with permission from Li
et al.[90]. Copyright 2016 Elsevier Ltd.
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fields. GAFF[86], CLP[88], and Lifson[87] are some of the forcefields built into

ADDICT. The intermolecular interaction energy calculations provide the network

of interactions running parallel to F face planes. The dispersive and coulombic

contributions to interactions are stored, for later modification of surface energies in

the presence of a solvent.

2. Chains of strong interaction chains, the PBCs, as discussed in Section 1.1.4, are

then identified based on a PBC algorithm elaborated by Li et al.[90] The aim is

to evaluate the directions of the most-stable steps emerging as edges of spirals

and 2D nuclei. These steps are assumed to align with PBC vectors.[47, 48, 81]

Such an assumption is acceptable so long as the roughening transition has not

been reached.[95] Once the steps are identified, energetic calculations are performed

to estimate the solvent-modified kink, edge and terrace bond energies using the

vOCG[79, 80] solvent model for each step.

3. With the interaction network and PBC directions in place, the atomistic growth

models (Section 1.2.1) within the mechanistic growth modeling framework are ap-

plied to estimate parameters such as the kink densities and step velocity for each

of the steps.

4. The continuum models (Section 1.2.2) are then applied to estimate relative growth

rates of the faces from kink densities and step velocities. The growth models al-

low estimation of growth rates up to a multiplicative constant, specifically the rate

constant k+. Estimation of the rate constant requires knowledge of the free en-

ergy landscape and hence contingent upon rare event molecular simulations, vastly

extending the timescale of calculations. Nonetheless, growth models of all the lay-

ered regimes are linear in the rate constant, allowing relative growth rate estima-

tion, without k+ estimates. After all the F faces are modeled in their appropriate
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regimes, the Frank-Chernov condition[14, 96] is used to obtain the steady-state

crystal shape by calculating the perpendicular distances from the origin given their

relative growth rates.

R1

x1

=
R2

x2

= ... =
Rn

xn

= 1 (1.34)

where Rf is the relative growth rate of face f, xf is the perpendicular distance of

face f from the origin. Estimation of xf for all the faces allows prediction of crystal

morphology as the convex hull of all the faces.

Such a methodology allows fast mechanistic model-based calculations for crystal morphol-

ogy predictions, since it does not require some of the expensive simulation techniques.

The enumerated calculations are modularized and hence performed in silos, which allows

the flexibility to incorporate new features and algorithms by integration at the appropri-

ate stage and utilizing the rest of the workflow. Chapter 2 introduces a novel framework

for obtaining step velocities. The new model will be integrated at stage 3) to obtain

renewed morphology prediction, retaining rest of ADDICT’s workflow. This serves as

a validation step for the new model by comparing how the crystal habit fares against

experimental observations and other models for a given set of growth conditions.

1.6 Permissions and Attributions

The content of this thesis is organized in the form of chapters, parts of which are

published as journal articles and enumerated below.

1. The content of Chapter 2 is reproduced in part with permission from:

Padwal, N.A.; Doherty, M.F., Simple Accurate Nonequilibrium Step Velocity Model

for Crystal Growth of Symmetric Organic Molecules. Crystal Growth & Design

2022, 22(6), 3656-3661.

32



Introduction Chapter 1

DOI:10.1021/acs.cgd.1c01366. Copyright 2022 American Chemical Society.

2. The content of Chapter 3 is reproduced in part with permission from:

Padwal, N.A.; Doherty, M.F. Step Velocity Growth Models for Molecular Crystals:

Two Molecules in the Unit Cell. Crystal Growth & Design 2024, 24(11), 4368-4379.

DOI:10.1021/acs.cgd.3c01508. Copyright 2024 American Chemical Society.

3. The contents of Chapter 4 is the result of a joint collaboration with Dr. Tobias

Mazal and reproduced in part with permission from:

Padwal, N. A.‡; Mazal, T.‡; Doherty, M. F., Modern Modeling and Simulation

Approaches for Morphology Predictions of Molecular Crystals. Industrial & Engi-

neering Chemistry Research 2024. (In press)

Unpublished work copyright 2024 American Chemical Society.

4. The contents of Chapter 5 is reproduced in part with permission from:

Padwal, N. A.; Doherty, M. F., Nonequilibrium Crystal Growth Model for Organic

Molecules of Real API Complexity. Crystal Growth & Design. (Manuscript under

review)
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Chapter 2

Simplified Steady-State Framework:

Kossel Crystal

Reproduced in part with permission from:

Padwal, N.A.; Doherty, M.F., Simple Accurate Nonequilibrium Step Velocity Model for

Crystal Growth of Symmetric Organic Molecules. Crystal Growth & Design 2022, 22(6),

3656-3661.

DOI:10.1021/acs.cgd.1c01366. Copyright 2022 American Chemical Society.

2.1 Introduction

Well-formed faceted crystals normally grow via layered growth mechanisms wherein

steps flow across crystal surfaces propelling the face to grow normally in a layered fashion.

Under a wide range of conditions, the slowest event is the incorporation of growth units

(molecules, ions, etc.) into the crystal surface. Bulk diffusion and surface diffusion are

fast relative to growth unit incorporation.[1] Growth models play a key role in crystal

morphology prediction and control. Mechanistic models are capable of providing fast and
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Figure 2.1: Schematic depiction of a crystal surface with a step growing laterally across
the face through attachment of growth units at various sites especially kinks.

accurate predictions of morphology by accounting for surface kinetics, and fundamental

sub-processes that result in growth of the crystal.[2, 3] Layered crystal growth regimes

studied in Chapter 1, such as the spiral and 2D nucleation, are preferred for controlled

crystallization conditions. Growth rate of the crystal face growing in such regimes is a

strong function of the step velocity - the constant rate at which steps progress across the

crystal surface. The step velocity depends on the density of favorable sites of attachment,

namely kinks, along the step. Kink sites are particular of interest because attachment

at these sites occurs with no change in exposed surface area, thus no increase in crystal

surface energy. Moreover, the kinks regenerate themselves upon incorporation of growth

units, and act as catalytic species paving the way for further growth of the steps. In

growth models, kink density is often approximated by its equilibrium value.[4–7] Hence,

Frenkel’s equilibrium density[8] given by Eq. (2.1) or multi-height equilibrium density[9]

given by Eq. (2.2) are normally used for kink density modeling.

ρ1eq =
2e−βϕk

1 + 2e−βϕk
=

2

2 + eβϕk
(2.1)

ρ∞eq =
2
∑∞

n=1 e
−nβϕk

1 + 2
∑∞

n=1 e
−nβϕk

=
2

1 + eβϕk
(2.2)
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where ϕk is the strength of interactions along the kink axis between growth units, β =

1
kBT

, kB is the Boltzmann constant and T is the absolute temperature. Increasing β

corresponds to reducing the system temperature and vice versa. Increasing ϕ corresponds

to increasing the strength of interactions between growth units, thereby increasing the

energy required to detach a growth unit from a crystal surface.

This chapter discuss previous models for Kossel crystal discussed in Section 1.4 and

proposes a new theory for modeling nonequilibrium kink density. Since centrosymmetric

molecules behave in a Kossel-like fashion[10], we apply the new theory to habit predictions

of naphthalene and rubrene to demonstrate its utility for real molecules.

2.2 Background

The development of several non-equilibrium kink density models rests on a steady-

state principle first suggested by Voronkov[11] in 1970, and implemented for single kinks.

Such an idea was also independently suggested by Frank[12] in 1974. The steady-state

principle states that kink density is determined by the rate of nucleation and annihila-

tion of kinks by collision. Subsequently, several models have been devised, following this

steady-state principle. Zhang and Nancollas[13] built a kinetic steady-state framework for

low kink densities on an infinitely long step. Joswiak et al.[14] devised a one-dimensional

nucleation framework employing the Becker-Doring model. Van der Eerden[15] formu-

lated a non-equilibrium steady-state kink density expression by modeling surface events

assuming statistical independence of adjoining sites and excludes multi-height kinks. This

framework was further extended by Cuppen et al.[16] in a landmark paper that models

non-equilibrium multi-height kink density in a rigorous framework, which considers all

possible step configurations, accounting for kinks of all heights. In addition to kinks,

these configurations include many low-probability events such as multi-height nuclei,
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multi-height pits, etc. This model exhibits excellent agreement with simulations and re-

duces to Eq. (2.2) at equilibrium. However, none of these models readily extend to more

realistic molecules of interest, such as active pharmaceutical ingredient molecules. This

necessitates the development of a non-equilibrium kink density model precise enough to

capture dominant supersaturation effects yet simple enough to be applied to a wide range

of molecules.

In this chapter, we employ Voronkov[11] and Frank’s[12] steady-state principle and

simplify the framework of Cuppen et al.[16] for Kossel crystals with a focus on only the

high density surface structures. The resulting Simplified Steady-State Framework (SSSF)

is based on identification of the most-concentrated surface sites and the high-probability

surface processes which capture majority of the supersaturation effects. The surface

events then are employed for steady-state analysis via balancing the rates of kink-forming

and kink-destroying events. Such a methodology provides a nonequilibrium kink density

model as a function of supersaturation for a Kossel crystal and by extension crystals of

centrosymmetric molecules. Only single and double height kinks are considered, while

multi-height kinks are neglected due to their low probability. The total kink density is

then utilised for step velocity predictions, which are then compared with kinetic Monte

Carlo (kMC) simulations taken from the literature.[14] In the subsequent chapters, we

will demonstrate generalizations of the framework to more complex non-Kossel molecular

crystals.

2.3 Rate Model

A schematic Gibbs free energy plot of attachment and detachment surface processes

is depicted in Fig. 2.2. Treating the surface integration step like a reaction allows for

modeling the attachment and detachment rates, as given by Eq. (2.3).[5, 17–19] For the
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Figure 2.2: Gibbs free energy landscape of attachment and detachment processes along
the reaction co-ordinate, q. State S denotes solvated growth unit and solvated kink site,
state ‡ denotes the transition state with partially solvated growth unit and desolvated
kink site, while state X denotes solvated kink site post surface integration of growth unit.
∆G‡ is the free energy barrier to surface integration of the growth unit; ∆G = GS −GX
is the free energy difference between the states S and X and depends on supersaturation.
Figure reproduced with permission from Li et al.[17] Copyright 2016 American Chemical
Society.

attachment process, ∆G is assumed to be dominated by desolvation of molecule in the

solution phase and independent of the site of attachment. The detachment rate depends

on the work of detachment and thereby site-dependent. Such a rate model is referred

to as the random rain model[15]. Li et al.[17] proposed a modification of the model to

account for the solvent effects. The work is attributed to summation of energies of bonds

broken and depends on the energetic environment within the step. In the presence of

solvent, the interaction energies ϕs must account for the solvent-induced surface energy

changes as discussed in Section 1.3

j+ = k+xsatS

j−i = k−
i = k+e−β∆Wi

(2.3)
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Figure 2.3: Energy of interactions of a crystal growth unit in different directions. The
interactions are categorised as intraedge (kink), interedge (edge), interslice (terrace) axes.
The kink (ϕK), edge (ϕE) and terrace (ϕT ) energies correspond to broken interactions
along respective axes facing the solution. The reverse kink (ϕRK), reverse edge (ϕRE) and
reverse terrace (ϕRT ) energies correspond to satisfied interactions along respective axes
that hold the growth unit to the crystal. Figure adapted with permission from Tilbury
et al.[20]. Copyright 2017 American Chemical Society.

where j+ is the attachment rate, k+ is the attachment rate constant, k−
i is the detachment

rate constant, xsat is the solute saturation mole fraction, S = x
xsat

is the supersaturation,

j−i is the detachment rate from a site with i nearest-neighbors along the edge (kink axis),

and ∆Wi is the work of detachment from site i. Hence i = 0, 1, 2 denote edge, kink and

pit sites, respectively. For a detachment from a kink, the work is given by,

∆W1 = 2ϕRK + 2ϕRE + 2ϕRT (2.4)
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where ϕRK , ϕRE and ϕRT are the interactions energies along reverse kink, reverse edge

and reverse terrace axes, respectively, as depicted in Fig. 2.3. The factor of two accounts

for the fact that ϕs are half the bond strengths. Microscopic reversibility of the rate

model[17] gives the following expression for saturation mole fraction,

xsat = e−β∆W1 (2.5)

The attachment rate constant k+ is modeled using appropriate rate theory such as the

transition state theory[21] or Kramers-type barrier crossing[22].

k+ = νe−β∆G‡
(2.6)

where ν is the frequency factor and ∆G‡ is the activation free energy barrier.

2.4 Methods

SSSF is based on the hypothesis that only a small set of densely-populated sites and

their interactions between each other, control majority of the surface kinetics. We start

from identifying the predominant kinks which are prevalent in highest concentrations.

As the kink height increases, the exposed broken bond interactions increase and the kink

density drastically reduces. Hence, the most-concentrated structures along a step are

the single and double-height kinks apart from the edge junction, which characterize flat-

regions on the step. Multi-height kinks beyond double-height are neglected due to their

low probability of occurrence along the step. The predominant junctions such as the

kinks and edge give rise to several types of sites along the step. The major sites are the

ones which densely occupy the configuration space and constitute of the predominant

kinks and edge. The major sites identified for such a step are depicted within the most-
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likely space (green oval) in Fig. 5.4a. Refer Appendix A for elaborate discussions on

predominant junctions (kink and edge), sites, identification and tables of major-sites and

most-likely events.

Figure 2.4: Surface kinetics diagram of a step along a Kossel crystal, depicting the most-
probable event space M within the sample space of all events U.

A crystal step is populated by various types of sites such as pits, kink sites and edge

sites. At any given supersaturation, the sites are constantly subjected to attachment and

detachment events, which result in frequent inter-conversion of sites into one another.

With regard to kinks, these processes can be categorised into three types:

1. Kink forming: Processes such as 1-D nucleation result in formation of kinks.

2. Kink destroying: Processes such as kink collision destroy kinks

3. Kink unaltering: Processes such as attachment at kinks leave the number of kinks

along the edge unchanged.
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It is important to note that the above categorization of processes is kink type-specific

(single-height, multi-height, etc). It is possible that an event that forms a single-height

kink also destroys a double-height kink in the process. Hence, different processes can be

grouped into the above three classes for each type of kink.

The various surface sites are constantly undergoing transformations through attach-

ment and detachment events. SSSF is based on identifying the crucial high probability

events which dominate the surface kinetics and subsequently the supersaturation events.

Within SSSF, we define the most-likely events as the events which convert the major

sites with each other. The most-likely events are then utilized is the steady-state analy-

sis. Fig. 2.4 schematically depicts the major sites within the space M (green oval) and

the most-likely events (directed arrows) which characterize the interactions between the

major sites.

Steady-state analysis is performed for the single and double-height kinks based on

balancing the rates of kink forming and kink destroying events to capture supersatura-

tion effects on kink density. Only the high concentration major sites are considered to

maintain simplicity of the framework for later application to more complex molecules.

2.4.1 Single-height Kinks

We parse through the most-likely events in search of relevant processes forming or

destroying single-height kinks. Fig. 2.5 schematically depicts processes affecting single

kinks. Attachment and detachment from site configurations (1) and (2), respectively,

form kinks. Similarly, attachment and detachment from site configurations (3) and (4),

respectively, destroys kinks. Hence, nucleation and pit-formation are single kink forming

events, while kink collision and de-nucleation are single kink destroying events. This

allows us to construct a steady-state master equation for single kinks given by Eq. (2.7).
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Figure 2.5: Most-likely surface events that result in formation or destruction of single
kinks. Growth units colored yellow mark changes in configuration during the event.

Refer to Appendix A for detailed derivation and table of major sites and the most-likely

surface processes.

ρ20(j
+ + j−2 ) =

ρ1
2

4
(j+ + j−0 ) (2.7)

where ρ0 is the density of edge, ρ1 is the single kink density, j−0 is the detachment rate

from edge sites and j−2 is the detachment rate from pit sites.

2.4.2 Double-height Kinks

Figure 2.6: Most-likely surface events that result in formation or destruction of double-
kinks. Growth units colored yellow mark changes in configuration during the event.

Similarly, we parse through the most-likely events in search of events affecting the

double-height kinks. Fig. 2.6 depicts dominant processes affecting the density of double-
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kinks. In the figure, detachment and attachment at site configurations (1) and (2),

respectively, form a double-kink. Similarly, attachment and detachment at site con-

figurations (3) and (4), respectively, destroys double-kinks. The master equation for

double-kinks given by Eq. (2.8) is a mathematical representation of the balance.

ρ1
2

2
(j+ + j−1 ) = ρ2ρ0(j

+ + j−1 ) (2.8)

where ρ2 is the density of double-kinks and j−1 is the detachment rate from kink sites.

It is noteworthy that a similar steady-state equation can be constructed for the edge

densities, however the equation is linearly dependent on the steady-state equations of

the single and double kinks. Since we only consider three types of sites, edge, kink, and

double-kink, their densities must sum to unity.

ρ0 + ρ1 + ρ2 = 1 (2.9)

The model thus consists of Eqs. (2.7), (2.8) and (2.9) which can be solved to yield our

simplified non-equilibrium (NEQ) kink density expressions for single and double-kinks.

ρ1 = 2

(
−2ẽp̃+ (ẽ+ 2p̃)

√
ẽp̃

ẽ2 + 4p̃2

)
(2.10)

ρ2 = 2p̃

(
ẽ+ 2p̃− 2

√
ẽp̃

ẽ2 + 4p̃2

)
(2.11)

where

ẽ = j+ + j−0 = k+xsatS + k−
0 = k+(xsatS + e−β∆W0) (2.12)
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and

p̃ = j+ + j−2 = k+xsatS + k−
2 = k+(xsatS + e−β∆W2) (2.13)

Note that these kink density expressions do not analytically reduce to the multi-height

equilibrium density expression at S = 1. This is because we are only accounting for the

predominant processes. Analytical equivalency at equilibrium is acquired only when all

possible site configurations are accounted.[16] However, the NEQ model-predicted kink

density at equilibrium accounts for about 99.4% of total kinks at βϕ = 2.5, and is numer-

ically indistinguishable from the multi-height equilibrium kink density. The percentage

only increases with βϕ as contributions from multi-height kinks reduce drastically with

increasing βϕ.

2.5 Results and Discussion

Figure 2.7: Plot of non-equilibrium kink density for a Kossel crystal vs S at bond energy
βϕ = 2.5. kMC simulation data points for the same Kossel system are obtained from
Cuppen et al.[16]

The step velocity, v, expression when kink sites are the primary sites of attachment
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is given by (Refer to Appendix A),

v = aP k+ ρT xsat (S − 1) (2.14)

where aP is the step propagation length, ρT is the total kink density and estimated as

the sum of kinks of all heights in Eq. (2.16). Step velocity is normalised so as to focus on

the effect of kink density and distill out the effect of other parameters on step velocity.

v

aP xsat k+
= ρT (S − 1) (2.15)

ρT = ρ1 + ρ2 (2.16)

An alternative approach to modeling step velocity is the aggregate of all the rates of

most-likely attachment and detach events such that,

v = aP{(
ρ21
4
j++ρ0ρ1j

++ρ20j
++ρ2ρ0j

++
ρ21
2
j+)−(

ρ21
4
j−0 +ρ0ρ1j

−
1 +ρ20j

−
2 +ρ2ρ0j

−
1 +

ρ21
2
j−1 )}

(2.17)

where the first term is the collection of all attachment events and the second term is

the collection of all detachment events. In the rest of the chapter, we’ll be using Eq.

2.15 for analysis because of its simplicity. However Eq. 2.17 provides a general approach

to modeling step velocity consistent with SSSF and allows generalization to complex

crystals to be studied in subsequent chapters.

The total kink density estimated for a Kossel crystal using Eqs. (2.16), (2.10) and

(2.11) is plotted as a function of supersaturation at βϕ = 2.5 in Fig. 2.7. This model is

compared with the multi-height equilibrium kink density model given by Eq. (2.2) along

with kMC simulation data for the same Kossel system taken from the literature.[16]

The equilibrium kink density depends only on the bond strength βϕ and predicts a
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single value, hence depicted by the horizontal line. The equilibrium model deviates

strongly from the observed behavior and is a poor estimate as supersaturation increases.

The non-equilibrium kink density is a strong function of supersaturation and increases

monotonically with increase in driving force. This is due to the increase in attachment

rates with supersaturation, while detachment rates remain the same. The model lines up

with the kMC simulation data despite only accounting for the single and double kinks,

validating the basis of the approach.

(a) βϕ = 2.5 (b) βϕ = 3

Figure 2.8: Plot of normalized step velocity for a Kossel crystal vs S−1 at bond energies:
(a) βϕ = 2.5, (b) βϕ = 3. The kMC simulation data points for the same Kossel system at
βϕ = 2.5 and 3 are obtained from Cuppen et al.[16] and Joswiak et al.[14], respectively.

In Fig. 2.8, normalized step velocity predictions obtained from the NEQ (Eqs. (2.10),

(2.11)) and equilibrium kink density models (Eq. (2.2)) are compared with kMC simu-

lation data from the literature.[14, 16] Increase in supersaturation increases the rate of

attachment (j+) and kink density and hence step velocity monotonically increases. The

model is in excellent agreement with kMC simulations despite accounting for only single

and double height kinks. Step velocity predictions from the equilibrium kink density

model deviate strongly from the kMC simulations as supersaturation increases. Hence,
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the equilibrium model can be applied only for small deviations from S = 1 (e.g., σ ≈ 0.5),

as is normally the case in cooling crystallization. However, anti-solvent crystallization

normally occurs at higher values of supersaturation where the non-equilibrium kink den-

sity model is required.

It is well known that at low values of driving force σ = S − 1, the step velocity, v,

is approximately linear in σ and the face growth rate, G is approximately quadratic in

σ as previously shown by Sours et al.[23] and Vekilov[5]. Over a wider range of σ, e.g.,

1 < σ < 5 we show in Appendix A that

ρT ∼ ρeq + aσ + bσ2 (2.18)

v ∼
(
ρeq + aσ + bσ2

)
σ (2.19)

G ∼
(
ρeq + aσ + bσ2

)
σ ln (σ + 1) (2.20)

The order of the polynomial fit for kink density is at least quadratic and depends on the

value of βϕ in the underlying mechanistic model.

2.6 Morphology Predictions

In order to validate the model with shape predictions, we deployed the morphology

prediction software, ADDICT. ADDICT’s infrastructure combines mechanistic crystal

growth engine[7, 24], solid-state energy, solvent effects and crystallography calculations.

The inputs to the program are crystal lattice parameters, solvent information, and solid-

state energetics. The Generalized Amber Force Field (GAFF) force field[25] is used for

solid-state interaction calculations. Periodic bond chains provide the structural informa-

tion and interaction environment of the most-stable within the crystal. As discussed in

Section 1.5, integrating the non-equilibrium model (Eqs. (2.10), (2.11), (2.16)) for step
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velocity estimates into the growth engine[2, 3, 26], enables relative growth rate predic-

tions for the slow-growing faces. The Frank-Chernov condition[27, 28] in Eq. (2.21) is

used to obtain the steady-state crystal shape by calculating the distance of faces from

an origin given their relative growth rates.

R1

x1

=
R2

x2

= ... =
Rn

xn

(2.21)

where Ri is the relative growth rate of face i, xi is the relative perpendicular distance of

face i from the origin.

Christofides and coworkers[29–32] have shown that kMC simulations are an effective

tool for predicting the face growth rates of lysozyme protein crystals. Their kMC growth

rate results are in good agreement with experiment. The predictions are captured by

fitting the simulated growth rate vs supersaturation curve to a third order polynomial

expression that is then used in a population balance model to predict crystal shape

distributions under various open loop and closed loop scenarios. The model developed in

this chapter can be used in a similar population balance setting, in which there is only

one adjustable parameter, namely k+. This parameter also needs to be estimated in the

Christofides approach. However, one advantage of our model is that no other growth

rate parameters need to be estimated. Moreover, it is worth mentioning that there is a

known method for predicting k+ from molecular simulation, as reported by Joswiak et

al.[33, 34] for sodium chloride crystal growth from aqueous solution.

2.6.1 Naphthalene

Model-predicted habits of naphthalene are compared with experimental habits at

three different ranges of supersaturation in Fig. 2.9. The proposed non-equilibrium

framework accurately predicts the crystal shapes at high and low levels of supersatura-
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Figure 2.9: Crystal habit predicted by non-equilibrium model vs experimental data for the
case of naphthalene growth from ethanol. Low and moderate σ experimental morpholo-
gies are adapted with permission from Grimbergen et al.[35]. Copyright 1998 American
Chemical Society

tion. In this case, shape change with increase in driving force is observed due to change

in growth regime from spiral to 2D birth & spread for the (1-1-1) faces that propels

them off the steady-state crystal shape. The non-equilibrium kink density model was

also used for estimating morphology at much higher supersaturations (such as σ = 1.5,

S = 2.5) where the equilibrium kink density model fails completely. The growth mecha-

nism remains unchanged on each face up to this value of supersaturation and the crystal

morphology remains similar to the predicted morphology shown in Fig. (2.9) at σ = 0.12.
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2.6.2 Rubrene

(a) (b)

Figure 2.10: Crystal habits of the orthorhombic polymorph of Rubrene: a) predicted by
non-equilibrium model, b) experimentally grown crystals by physical vapor transport.
Figure reproduced with permission from De Boer et al.[36] Copyright 2004 WILEY-VCH
Verlag GmbH & Co. KGaA, Weinheim.

Rubrene is a polycyclic aromatic hydrocarbon, commonly used in light emitting diodes

and field-effect transisters. The crystal structure of orthorhombic Rubrene with CSD ref

code QQQCIG08 is used for calculations. It crystallizes in the space group Cmca. The

unit cell has 4 molecules in the unit cell and the asymmetric unit is a quarter of the

molecule, hence Z = 4 and Z ′ = 0.25. The unit cell parameters are a = 26.838Å,

b = 7.1810Å, c = 14.332Å, α = 90◦, β = 90◦, γ = 90◦. Model-based predictions of the

orthorhombic polymorph of Rubrene are depicted in Fig. 2.10a for a growth environment

with T = 298K and S = 1.01. In experimental studies, the crystals are grown through

vapor deposition and characterized by an elongated needle or thin plate-like habit.[36]

The model predicts a long rod-like morphology and aligns with the experimental obser-

vations. Hence, the model is successful is providing reliable habit predictions for crystals

with centrosymmetric organic molecules.
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2.7 Conclusion

The simplified steady-state framework provides the platform for constructing master

equations by considering only the concentrated site configurations and event rates. The

master equations are then solved to obtain a non-equilibrium kink density model for

Kossel crystals and centrosymmetric molecules. The model is validated with respect

to kMC simulations. Integration of SSSF model into ADDICT allowed morphology

predictions, which demonstrated excellent agreement with experimental observations.

The lowest order polynomial approximation of the non-linear function for ρT as a function

of driving force σ = S − 1 is quadratic. This results in step velocity being at least cubic

in σ. However, most of the molecules of practical significance are complex and lack

an inversion center. Such a steady-state methodology will be generalised to non-Kossel

crystals in the subsequent chapters.
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Chapter 3

Simplified Steady-State Framework:

Molecular AB Crystals

Reproduced in part with permission from:

Padwal, N.A.; Doherty, M.F. Step Velocity Growth Models for Molecular Crystals: Two

Molecules in the Unit Cell. Crystal Growth & Design 2024, 24(11), 4368-4379.

DOI:10.1021/acs.cgd.3c01508. Copyright 2024 American Chemical Society.

3.1 Introduction

Industrial crystals are normally grown at temperatures and supersaturations con-

ducive to layered growth mechanisms such as spiral growth or 2D nucleation. Such

regimes ensure gradual addition of growth layers with low impurity uptake. Within the

layered regimes, the rate determining step is the integration of growth units along the

crystal surface.[1] Hence, surface diffusion and bulk diffusion are neglected. On the atomic

scale, growth of crystal layers occurs via attachment of growth units mainly at kink sites

along steps.[2–9] Gradual incorporation of growth units at various sites on a step in such
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a manner propels it in the normal direction at a rate called the step velocity. The veloc-

ities of steps along faces eventually determine the face growth rate and subsequently the

morphology, since crystal shape is dominated by the slowest-growing faces.[10] Hence,

appropriate step velocity models are crucial in mechanistic crystal growth models for

accurate prediction of crystal properties.

For a Kossel crystal, step kinetics and the influence of supersaturation and tempera-

ture on kink density and step velocity are well-studied. Several nonequilibrium kink den-

sity and step velocity models have been proposed for the Kossel case. The nonequilibrium

kink density models are based on Frank and Voronkov’s[11, 12] steady-state principle and

include Zhang and Nancollas[13], van der Eerden,[14], Cuppen et al.[8], Joswiak et al.[15]

However, these models are not readily extended to realistic molecular crystals. Chapter

2 introduced the novel theory of Simplified Steady-State Framework (SSSF) accounting

for only the most-likely surface events influencing formation and destruction of the pre-

dominant kink types. The theory provides the road map for formulation of steady-state

equations of the predominant kink types such as the single-height kink, double-height

kink and the edge junction. In this chapter, we generalise and extend SSSF to asymmet-

ric molecular crystals with two growth units in the unit cell. Note that Kossel models can

be applied to centrosymmetric growth units (e.g., symmetric organic molecules), owing

to the presence of an inversion centre in these molecules as discussed in Section 1.4.

One of the deepest unsolved problems in crystal growth is the development of a model

to capture step velocity at high supersaturation for real asymmetric molecules which have

asymmetric bonding interactions with their neighbors i.e. the non-Kossel crystals. The

key quantity needed for such models is accurate knowledge of the density of surface

docking sites along the moving crystal steps as a function of supersaturation i.e. the kink

density. The first model was developed in 1945 for Kossel Crystals by Frenkel[16] based

on statistically independent kinks and equilibrium considerations. Not surprisingly, he
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found that the equilibrium kink densities were Boltzmann distributed. This model, and

extensions of it for non-Kossel crystals, has been used universally to this day[7, 9, 17,

18]. However, the application of Boltzmann statistics to non-Kossel crystals is both

conceptually and quantitatively incorrect, owing to spatial correlations between surface

sites[9], even under equilibrium conditions. But we continue to use them because there

is no known alternative.

Crystal growth is inherently a non-equilibrium phenomenon and only occurs when

the solution is supersaturated. Many practical crystallization processes occur far from

equilibrium. Moreover, when the solute molecules being crystallized are asymmetric

they arrange themselves in very specific patterns, as they must, so that they create a

three dimensional solid with long-range crystallographic order. The surface sites are not

spatially independent.[9] In this work, we abandon both the equilibrium thinking, and

the spatial independence thinking. Instead, we develop a fully non-equilibrium approach

in which we identify the subset of most-concentrated surface sites that incorporate the

correct crystallographic relationships between the molecules. We limit the number of kink

types to include only those that are the most likely to occur - single and double kinks

and edges. That is the key simplification that makes the approach tractable. We then

formulate a set of steady-state master equations for the birth rate and death rate of kinks

which can be solved to determine the kink density. The resulting model is relatively

simple. It applies both near to and far from equilibrium, and correctly accounts for

configurational constraints via the use of conditional probabilities.

3.2 AB Organic Crystal System

In this chapter, we study the AB organic crystal with two growth units A and B in the

unit cell. The growth units are molecules in this study but in general can be ions, atoms,
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dimers, etc. The growth units are the same component and identical in solution but

integrate into the crystal lattice in different orientations. The molecules are allowed to

be non-centrosymmetric and do not necessarily have an inversion center. Hence, the AB

system can be characterized with Z = 2 and Z ′ = 1, 2, where Z is the number of molecules

in the unit cell and Z ′ is the number of molecules in the asymmetric unit. Asymmetry of

the molecule is distinct from asymmetry of the crystalline lattice.[17] A centrosymmetric

molecule has an inversion center aligned with its center of mass. Centrosymmetric space

groups have an inversion center as one of their symmetry elements. Examples of such

space groups are P21/c and P2/c. Models developed in this chapter are applicable to

asymmetric molecules crystallizing in any space group. Such a crystal will comprise

Figure 3.1: Different step configurations observed for an AB type organic crystal. The
PBCs illustrate examples of real network of interactions along corresponding step con-
figurations. The PBCs are generated by the software ADDICT.[19]

of steps with various local step structures of A and B growth units. This gives rise

to various step configurations as demonstrated in Fig. 3.1: alternating rows of A and

B (configuration 1), alternating columns of A and B (configuration 2) and checkered

pattern (configuration 3). Steps in different configurations constitute different kink types

and undergo different surface processes resulting in distinct step kinetics and must be
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analysed in silos.

Surface processes along a step consist of attachment and detachment of growth units

at various sites such as a pit, edge, and especially kink sites. A surface (step) process

can result in formation or destruction of different types of kinks. At steady-state, the

densities of all kink types settle to constant values. Therefore, the net rate of forma-

tion must equal the net rate of destruction for each of the kink types owing to multiple

surface processes under steady-state conditions[11, 12]. This is captured by the steady-

state master equations. Cuppen et al.[8], in their analysis of nonequilibrium kink density

for Kossel crystals, rigorously accounted for all possible surface events and constructed

steady-state equations for all heights of kinks summing to∞. In chapter 2, we introduced

the Simplified Steady-State Framework (SSSF) based on the hypothesis that only a few

of the surface events with greatest probability capture major supersaturation effects and

hence the overall surface kinetics. Therefore, the steady-state equations or master equa-

tions only involve the most-likely events in this work. This allows drastic simplification

of the model equations, which are then solved simultaneously in a numerical nonlinear

calculation to obtain supersaturation dependence of the kink densities. The model-based

predictions of kink density and step velocity are then compared to kMC simulations from

literature and serve as a validation for the model. The model-predictions of step velocities

are then integrated within the framework of the software ADDICT (Advanced Design

and Development of Industrial Crystallization Technology)[19] to obtain model-based

morphology predictions.

3.3 Methods and Approach

In this chapter, we extend and generalise the SSSF to the case of AB type crystals.

We perform steady-state analysis for the predominant junctions (e.g., single and double
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kinks and edges) accounting for only the most-probable events forming and destroying

the kinks. The majority of surface events have low probability and are neglected to

maintain simplicity of the framework. Although less-likely surface events are excluded

from the framework, the steady-state equations derived must satisfy certain constraints

owing to step topology and multiplicity of growth units. This is unlike the Kossel steps

with a singular type of growth unit. The constraints are as follows,

1. Stoichiometric constraints: the net rate of attachment of the two growth units A

and B should be equal in order to maintain overall stoichiometry of the unit cell.

The stoichiometric constraint provides a consistency check for the master equations

to satisfy.

2. Surface configuration constraints: In contrast to the Kossel case, the surface occur-

rence of kinks along the step are no longer structurally independent, but correlated

to their neighboring kinks to maintain the local step structure. Hence, conditional

probabilities are employed to accurately capture the probability of site occurrence

along steps, as discussed in Section 3.3.1.

Section 3.3.1 provides details on identification of densely-populated sites along the step,

and derives master equations accounting for high-probability surface events. The steady-

state equations thereby derived are then solved numerically to obtain nonequilibrium

kink densities as a function of supersaturation and other growth parameters such as tem-

perature, and solvent-modified surface interaction energies. The kink densities estimated

are then used for step velocity predictions through net attachment rate calculations of

each growth unit in the unit cell. Section 3.3.2 provides a detailed explanation of step

velocity modeling as a function of nonequilibrium kink densities.
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3.3.1 Modeling Nonequilibrium Kink Density

In this section, we discuss in detail the steady-state analysis and derive equations

governing step kinetics for step configuration 1 with alternating rows of A and B. Refer

to Appendix B for steady-state analysis of step configurations 2 and 3. A sequential

approach is outlined below, starting from identification of predominant junctions/kinks,

major surface sites and most-probable surface events:

(a) (b)

Figure 3.2: (a) Predominant kink and edge junctions along step configuration 1 with
alternating rows of growth units A and B (b) Crystalline lattice directions defined around
a growth unit, namely, kink, edge, terrace and reverse kink, reverse edge and reverse
terrace axes. ϕK , ϕE, ϕT represent half of the bond energy formed by the growth unit
along the kink, edge and terrace directions, respectively. These are the broken bond
interactions exposed to the solvent. Similarly, ϕRK , ϕRE, ϕRT represent half of the
bond energy formed by the growth unit along the reverse kink, reverse edge and reverse
terrace directions, respectively. The reverse bonds characterize interactions formed by the
growth unit with the crystalline lattice. The lattice directions are aggregate descriptors
and need not be orthogonal for real crystals. The step dimensions are characterized by
propagation length (aP ), step height (h) and growth unit width (aE). Figure reproduced
with permission from Tilbury et al.[18]. Copyright 2017 American Chemical Society.
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1. Identification of predominant junctions: Predominant junctions are the ones with

minimum broken bond interactions at the interface and are expected to densely

populate the step surface and hence the configuration space. This includes the

lowest energy junction types - edges, followed by single kinks and then double kinks.

(Refer to Appendix A for detailed discussion on junctions and sites) Henceforth,

kink junctions are referred to as simply kinks. We truncate the junction space at

double kinks since the concentration of kinks reduces exponentially with increase

in kink height. In an AB non-Kossel crystal, kinks consist of multiple types: A

and B single kinks, AB and BA double kinks, ABA and BAB triple kinks, etc. To

maintain simplicity, only the most populated junctions are included in the steady-

state analysis i.e., the edge, single and double-height kinks, with all kink heights

≥ 3 excluded. For step configuration 1, the predominant junctions are namely: A

edge, B edge, A kink, B kink, AB kink and BA kink and depicted in Fig. 3.2. For

step configuration 1, the east and west-facing kinks are equivalent since they have

alike energetic environments. On the contrary, for step configurations 2 and 3, the

east and west-facing kinks have dissimilar energetic environments and are treated

as distinct in Appendix B.

2. Identification of major sites and most-likely events: Sites comprise of adjoining

junctions or kinks, thus site densities are proportional to the product of individual

kink densities that form the site. An order-of-magnitude analysis is conducted to

shortlist major sites prevalent on the steps. For instance, the edge junctions, single

and double kinks are observed on the steps in decreasing orders of magnitude.

This allows us to identify the major sites which will densely-populate the step

surface similar to the procedure undertaken for Kossel crystal in Section A. For

step configuration 1, major sites are the sites which populate subset M in Fig. 3.3
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and provided in Table B.2. The surface events occurring with higher probability

along the step are the ones which act on major sites, transforming them into other

major sites. These are the so-called most-likely events and they are identified by

subjecting the major sites to attachment and detachment of a growth unit. All the

other type of surface events are less-likely and not accounted for in the framework

i.e., events transforming sites across subsets M and L and events transforming

sites within subset L. Refer to Appendix B for the table of major sites, most-likely

events, associated rates and density of sites for step configurations 1, 2 and 3.

Figure 3.3: Schematic description of surface sites prevalent on step configuration 1 and
surface events given by arrow descriptors. The surface sites can be segregated into two
sets: 1) Subset M consists of major sites and most-likely events transform major sites
into each other, 2) All other sites are assumed to sparsely populate the step surface and
belong to subset L. A few L sites are depicted here, there are many more. The events
which transform sites within subset L or across subsets occur at low probabilities and
are categorised as the less-likely events. The most-likely events and less-likely events are
depicted by solid and dashed arrows, respectively. The sample space of all surface sites
along the step is the union of the two sets U = M ∪ L.

3. Rate modeling: A stochastic approach is undertaken in modeling single-particle

elementary surface attachment and detachment rates. Surface diffusion is neglected,

which is justifiable for solvent-grown crystals owing to high free energy desolvation
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barriers for surface integration of growth units.add ref The rate model utilized

is based on a modification of the random rain model[14] by Li et al.[5] which

accounts for the thermodynamics of crystallization, detailed balance and solvent

effects. The attachment rate j+ is modeled as a first order physical reaction in

solute composition; and detachment rate j−i as zeroth order. The attachment rate

is assumed to be isotropic and independent of the site of attachment[4, 17, 19–

21] and growth unit, resulting in j+A = j+B = j+. The detachment rate j−A,i or j
−
B,i

depends on the work of detachment ∆Wi and hence is a function of the growth unit

detached (A or B) and the number of lateral neighbors i at the site of detachment.

j+ = k+xsatS = k+e−β∆W satS (3.1)

j−A,i = k−
A,i = k+e−β∆WA,i (3.2)

j−B,i = k−
B,i = k+e−β∆WB,i (3.3)

where S: supersaturation, k+: attachment rate constant, ∆WA,i: work of detach-

ment of A from site type i, ∆WB,i: work of detachment of B from site type i, and

xsat = e−β∆W sat is the saturation mole fraction. Here, i is the site type and char-

acterises the sites where i is the number of intra-row (along the kink axis) bonds

broken. The work of detachment ∆Wi is the summation of all the bonds bro-

ken during detachment and depends on the reverse kink, reverse edge and reverse

terrace bond energies of the growth unit dissociated at the site of detachment.

∆WA,i = 2iϕRK
A + 2ϕRE

A + 2ϕRT
A (3.4)

∆WB,i = 2iϕRK
B + 2ϕRE

B + 2ϕRT
B (3.5)

where i is the number of bonds broken along the row and characterizes the type of
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sites. The factor of two accounts for the convention that ϕs are half the total bond

strength. Fig. 3.4 depicts interaction spheres of growth units at various site types

of step configuration 1. The reverse interactions determine the detachment rates at

the corresponding sites. For instance, detachment of an adatom from a step results

in i = 0, since no bonds along the row are broken. During detachment from kinks a

single bond is broken along the kink axis and hence i = 1. Detachment from every

type of site requires the breaking of one reverse edge bond and one reverse terrace

bond, hence prefactors for ϕRE and ϕRT are dropped. For step configuration 1,

the east and west-facing kinks are equivalent since they have identical energetic

environments. Mathematically, this translates to the relation ϕK
A = ϕRK

A , ϕK
B =

ϕRK
B , which are satisfied for steps belonging to configuration 1. Refer to Appendix

B for analysis of step configurations 2 and 3, wherein east and west-facing kinks have

distinct energetic environments and warrant separate treatments. The saturation

Figure 3.4: Step surface of configuration 1: Interaction spheres around growth units at
various site types and the corresponding detachment rates are as follows: 1) B adatom
(j−B,0), 2) east-facing A kink (j−A,1), 3) A edge (j−A,2), 4) west-facing A kink (j−A,1), 5)

east-facing AB kink (j−A,1). The reverse interactions mark bonds formed by growth units
with the crystal. The terrace and reverse terrace bonds are perpendicular to the page
and not depicted for simplicity.
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work of detachment, ∆W sat, is the average of works of detachment of the growth

units A and B across all site types. Such a definition of xsat ensures all unique inter-

molecular bond energies in the interaction spheres of all the growth units in the

unit cell are accounted for and interfaced with the appropriate growth environment.

∆W sat =
∆WA +∆WB

2
(3.6)

= ϕRK
A + ϕRE

A + ϕRT
A + ϕRK

B + ϕRE
B + ϕRT

B (3.7)

Depending on the growth environment, the interactions are solvent-modified using

appropriate solvent models[22–25] as discussed in Section 1.3. The rate constants

k+
A and k+

B are a function of the desolvation barriers and since the growth units are

identical in solution the rate constants are assumed to be approximately equal.[9,

17, 18]

4. Event Rate Modeling: Following the earlier methodologies[8, 14] of modeling sur-

face processes, the rate of incorporation into a surface site is the product of ele-

mentary rate of attachment/detachment and number density of the pertaining site,

thereby effectively making the attachment rates second order. A site of attachment

or detachment is defined by the adjoining junctions J1 and J2. From step 1 above,

a junction is a type of kink or edge. The site density depends on the densities of ad-

joining junctions that constitute the site.[26] For Kossel crystals, the junctions can

be treated as statistically independent[27] and the probability of the site occurring

is the product of densities of constituting junctions. Thus,

ρs(J1, J2) = ρJ1 × ρJ2 (3.8)

where ρs is the site density, ρJ1 and ρJ2 are the densities of adjoining junctions,
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respectively.

Figure 3.5: Partition function of a site composed of adjoining junctions: A edge and A
kink. Given the position of A edge, α sums over all junctions that can be contiguous to it.
Given the position of A kink, β sums over all permissible junctions that can be contiguous
to it. East and west-facing kinks of the same type are identical for configuration 1 and
therefore have equal kink densities (ρeA = ρwA = ρA

2
, ρeB = ρwB = ρB

2
). For α summation,

only east-facing A kink is structurally permissible to adjoin A edge. Similarly, only
west-facing B kink is structurally permissible. As a result, ρA and ρB are halved in the
summation.

For non-Kossel crystals, incoming molecules from the solution can only be docked

in specific orientations depending on the spatial location. This restricts permis-

sible neighboring kinks. In order to maintain the topology of step configuration,

the positions of kinks are correlated are no longer structurally independent. The

presence of a junction J1 at a location constrains the neighboring junctions in the

same manner only A growth unit is integrated along A rows in configuration 1.

We use conditional probabilities[28] to account for the spatial correlation between
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kinks by modeling site probabilities as follows,

ρs(J1, J2) = P (J1 ∩ J2) = P (J1|J2)P (J2) (3.9)

=
ρJ1∑
β ρβ

ρJ2 (3.10)

ρs(J1, J2) = P (J2 ∩ J1) = P (J2|J1)P (J1) (3.11)

=
ρJ2∑
α ρα

ρJ1 (3.12)

where the denominators are summations
∑

α ρα and
∑

β ρβ over all possible junc-

tions that can adjoin J1 and J2, respectively. By the commutative nature of inter-

section probabilities, the intersection of sets must be equal such that P (J1∩J2) =

P (J2 ∩ J1). This results in the two summations to be equal and gives rise to a

partition function Q.

Q =
∑
α

ρα =
∑
β

ρβ (3.13)

A partition function in the context of a given step configuration is a collection

of kink densities arising out of constraints to maintain surface topology. For step

configuration 1, functions
∑

α ρα and
∑

β ρβ are equal for each pair of neighboring

junctions. Figure 3.5 provides structural representations of
∑

α ρα and
∑

β ρβ for

a specific site. Analysis of structurally permissible kink density sets for each of

the growth units along configuration 1, renders two partition functions, Q1 and Q2
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which are given by,

Q1 = ρA0 +
ρA
2

+
ρB
2

+ ρAB (3.14)

Q2 = ρB0 +
ρA
2

+
ρB
2

+ ρBA (3.15)

where ρA, ρB, ρAB, ρBA, ρA0, ρB0 are the densities of A kink, B kink, AB kink, BA

kink, A edge and B edge, respectively. Q1 and Q2 are utilized in steady-state equa-

tion models in the following subsection. In the subsequent master equation analysis,

the spatial kink correlations are accounted for in the form of conditional probabil-

ities utilizing partition functions. In the case of configurations where
∑

α ρα and∑
β ρβ are distinct collections of kink densities, the commutative property dictates

equivalence of
∑

α ρα and
∑

β ρβ functions. This results in additional equations in

the form of configurational constraints on kink densities, which are appended to

the steady-state master equations. Refer to Appendix C for a generalized approach

to evaluating partition functions and configurational constraints for a given step

configuration with variable number of growth units.

Figure 3.6: Most-likely events causing formation and destruction of A kinks.

5. Construction of Master Equations: Once the most-likely events have been identi-
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fied and their rates modeled, building master equations requires identifying how

each of the most-likely events affect the predominant junctions. According to the

steady-state principle[11, 12], the rate of formation of kinks must equal the rate

of destruction. In SSSF, the rate of formation is the summation of rates of all

the most-likely surface processes forming the specific junction/kink, similarly the

rate of destruction is the summation of rates of surface processes destroying the

junction/kink of interest. This permits construction of master equations for the

predominant junctions. For instance, events in the most-likely subset M in Fig.

3.3 which affect the density of A kinks are depicted in Fig. 3.6. Refer to Table B.2

for the detailed list of most-likely events, corresponding rates and their influence

on A kinks. The resulting master equation for A kink is,

2j+
ρ2B0

Q2

+ 2j−A,2

ρ2A0

Q1

− 2j+
ρ2A
4Q2

− 2j−A,0

ρ2A
4Q1

+[(j+ + j−A,1)
ρABρA0

Q1

− (j+ + j−B,1)
ρAρB
2Q2

+(j+ + j−B,1)
ρBAρB0

Q2

− (j+ + j−A,1)
ρAρB
2Q1

] = 0

(3.16)

where j+: attachment rate, j−A,i: detachment rate of A from site type i, j−B,i: detach-

ment rate of B from a site type i. It can be shown that the terms in square brackets

get cancelled through the method of substitution. Similarly, master equations are

constructed for B kinks,

2j+
ρ2A0

Q1

+ 2j−B,2

ρ2B0

Q2

− 2j+
ρ2B
4Q1

− 2j−B,0

ρ2B
4Q2

+[(j+ + j−A,1)
ρABρA0

Q1

− (j+ + j−B,1)
ρAρB
2Q2

+(j+ + j−B,1)
ρBAρB0

Q2

− (j+ + j−A,1)
ρAρB
2Q1

] = 0

(3.17)
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AB kinks,

(j+ + j−B,1)
ρAρB
2Q2

− (j+ + j−A,1)
ρABρA0

Q1

= 0 (3.18)

BA kinks,

(j+ + j−A,1)
ρAρB
2Q1

− (j+ + j−B,1)
ρBAρB0

Q2

= 0 (3.19)

B edge junction,

2j+
ρ2B
4Q1

+ 2j−A,0

ρ2A
4Q1

+ j+
ρA0ρB
Q1

+ j−A,1

ρA0ρA
Q1

− 2(j+ + j−B,2)
ρ2B0

Q2

−j+
ρAρB0

Q2

− j−B,1

ρB0ρB
Q2

+[(j+ + j−A,1)
ρAρB
2Q1

− (j+ + j−B,1)
ρBAρB0

Q2

] = 0

(3.20)

and A edge junction,

2j+
ρ2A
4Q2

+ 2j−B,0

ρ2B
4Q2

+ j+
ρAρB0

Q2

+ j−B,1

ρB0ρB
Q2

− 2(j+ + j−A,2)
ρ2A0

Q1

−j+
ρA0ρB
Q1

− j−A,1

ρA0ρA
Q1

+[(j+ + j−B,1)
ρAρB
2Q2

− (j+ + j−A,1)
ρABρA0

Q1

] = 0

(3.21)

The steady-state analysis provides six master equations with six unknown variables.

Each surface event results in formation of a junction in the process of destroying

another junction (or regeneration). This results in the set of master equations to

be linearly dependent since they are homogeneous and constructed from the same

set of most-likely surface events. As a result, the equations must be coupled with

the normalization condition. The normalization condition ensures the probability

densities sum to unity.

ρA0 + ρB0 + ρA + ρB + ρAB + ρBA = 1 (3.22)
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The set of equations given by Eqs. (3.16-3.20, 3.22) provide six independent equa-

tions with six unknown variables (ρ’s) along with design parameters (T and S)

and system parameters (ϕ’s) which can be solved for the nonequilibrium kink den-

sities. An additional equation can be constructed to establish the stoichiometric

constraint such that the net attachment rates of the two growth units are equal to

enforce the stoichiometry of the unit cell. However, the stoichiometric constraint

equation turns out to be linearly dependent on the above set of equations, hence

the model equations automatically satisfy the stoichiometric constraint.

6. Solving Master equations: The set of equations generated from the steady-state

analysis satisfy surface configurational and stoichiometric constraints. The equa-

tions are a function of all the kink densities and elementary rates of attachment/

detachment. The rates in turn depend on design parameters such as supersatura-

tion, temperature and system-specific parameters such as solid-state interactions

and solvent-modified bond energies. The site-specific works of detachment and

solvent-modified bond energies are obtained using an appropriate force field (e.g.,

GAFF[29], CLP[30], etc.) and solvent model (e.g., COSMO[25]) as detailed in

section 1.3. Note that the supersaturation dependence arises from the attachment

rate.

Solving the equations simultaneously allows estimation of nonequilibrium (NEQ)

kink density as a function of temperature, solid-state energetics and supersatura-

tion. In this work, we solve the equations numerically using a nonlinear root solver

in the optimize subpackage in SciPy library of Python. The numerical solutions

are compared with kMC simulations for varying levels of anisotropy. Anisotropy

is a quantitative measure of nonhomogeneity in the crystalline interaction spheres

between the two growth units A and B. Refer to section 3.5 for the results and
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detailed analysis.

3.3.2 Step Velocity

Above, the most-likely events are identified and used for generation of master equa-

tions to determine kink densities. We use the same approach for step velocity modeling,

hypothesizing that the same most-likely surface processes encapsulate major contribu-

tions to the motion of a step. The net rate of attachment of A growth units JA is the

summation of all the events resulting in its attachment or detachment from sites.

JA =
M∑
i

Ȧ+
i − Ȧ−

i (3.23)

JB =
M∑
i

Ḃ+
i − Ḃ−

i (3.24)

Ȧ+
i is the event rate i associated with attachment of A growth units. Ȧ−

i is the

event rate i associated with detachment of A growth units. Similarly Ḃ+
i and Ḃ−

i are

the attachment and detachment rates of B growth units at site i, respectively. The

events in the subset M (previously used in master equation formulation) are employed

for estimation of JA and JB. The quantities Ȧ±
i , Ḃ

±
i depend on the NEQ kink densities

which couples the previous master equation formulation and the step velocity model.

The net attachment rates are,

JA = j+(
ρ2B0

Q2

+
ρAρB0

Q2

+
ρ2A
4Q2

+
ρAρB
2Q2

+
ρBAρB0

Q2

)

−(j−A,2

ρ2A0

Q1

+ j−A,1

ρAρA0

Q1

+ j−A,0

ρ2A
4Q1

+ j−A,1

ρBρA
2Q1

+ j−A,1

ρA0ρAB

Q1

)

(3.25)
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JB = j+(
ρ2A0

Q1

+
ρBρA0

Q1

+
ρ2B
4Q1

+
ρABρA0

Q1

+
ρBρA
2Q1

)

−(j−B,2

ρ2B0

Q2

+ j−B,1

ρBρB0

Q2

+ j−B,0

ρ2B
4Q2

+ j−B,1

ρAρB
2Q2

+ j−B,1

ρBAρB0

Q2

)

(3.26)

By stoichiometry, the net rates of A and B are equal. Let the equivalent net rate be

J = JA = JB. Thus the step velocity v is proportional to the aggregate of net attachment

rates of all the growth units, with propagation length as the proportionality constant.

The equality JA = JB also serves as an additional consistency check that the NEQ kink

densities must satisfy.

v = aPJA + aPJB = 2aPJ (3.27)

where aP is the average step propagation length. Such a formulation of step velocity as

an aggregate of surface processes is identical to developments in an AFM experiment or

a kMC simulation i.e., steps progress owing to the net attachment of all growth units at

various sites along a step. [8, 9, 31, 32]

3.4 Row Instability

In Fig. 3.1, step configuration 1 has two row types: an A row and a B row. The

two rows have different energy attributes and expose different broken-bond interactions

to the solution. Such an anisotropy in row structures is captured by the concept of row

instability, introduced by Kuvadia and Doherty[17]. Accordingly, a row is defined to

be stable if the magnitude of interactions attaching it to the crystal is greater than the

broken bond interactions exposed to the solution. Reverse edge and terrace bonds fasten

the row to the crystal, and edge and terrace bonds are the broken-bonds at the surface

exposed to the solution. If for the row under consideration ϕRE + ϕRT > ϕE + ϕT , it is
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stable and if ϕRE + ϕRT < ϕE + ϕT , it is an unstable row. Such a definition of unstable

rows assigns a logical value of either stable or unstable to a row without commenting on

relative instabilities between different row types.

Tilbury et al.[18] introduced thermodynamic and kinetic row instabilities, allowing

for quantitative comparative analyses between different types of rows. Thermodynamic

row instability compares the averaged summation of edge and terrace energies across all

kinks spanning the row. Different row types r along an edge (e.g., A and B rows) are

characterized by different values of the arithmetic averages, ϕE
k,r + ϕT

k,r. The summation

averages out the broken interactions along the exposed surface of a row. The larger the

summation, the less stable is the row relative to other rows.

Kuvadia and Doherty[17] derived a net kink rate expression assuming a cyclic pro-

gression of kinks along the step. Later Tilbury et al.[18] formally introduced the concept

of kink cycle, along with maximal and submaximal kink cycles. A kink cycle is a periodic

cycle of incorporation of growth units at various kinks spanning single or multi-height

kinks. Maximal kink cycles are the ones which incorporate all the growth units in the

unit cell. Kink cycles which incorporate only a fraction of growth units in the unit cell

are termed as submaximal kink cycles. Multiple kink cycles can coexist along an edge

resulting in a highly interdependent nature of kink kinetics. Kinetic instability compares

the averaged work of detachment of kinks in a maximal kink cycle (∆W sat) to that of

the averaged work of detachment of kinks in kink cycle along row r of interest ∆W r.

The average work of detachment must be equal for maximal cycles on all edges of all

faces and this averaged work defines the saturation mole fraction xsat = e−β∆W sat . When

∆W r > ∆W sat, the row is stable owing to lower detachment rate. When ∆W r < ∆W sat

the row is unstable owing to higher detachment rates and postulated to demonstrate

dissolution-like behavior even under supersaturated conditions. Kinetic stability defined

in such a manner provides a comprehensive definition for row stability since it accounts
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for the intra-row interactions i.e., kink energy. This is unlike the previous definitions for

row stability which only account for the inter-row (edge energy) and inter-face (terrace)

interactions.

Kinetic instability is more relevant for a growing crystal under supersaturated con-

ditions and denotes a higher rate of detachment of growth units along the row. Tilbury

et al.[18] compared row instability between A and B rows by quantitatively assessing

the average work of detachments of A and B kinks along the respective rows. In this

work, we compare row stabilities by comparing average works of detachment across all

site types for the respective rows r. The higher the detachment work ∆Wr along a row,

the lower is the rate of detachment and hence higher the net attachment events for the

row. Higher values of ∆Wr correspond to higher kinetic stability. We use the following

criteria to determine the stability of rows: an A row is kinetically stable for,

∆WA > ∆WB (3.28)

and a B row is kinetically stable for

∆WB > ∆WA. (3.29)

Alternatively, Joswiak et al.[33] account for the supersaturation effects while defining

stability for A and B rows by considering the free energy change during attachment at

kink sites along the row relative to the other rows. Since kink sites are regenerated during

attachment, a net negative free energy change during kink attachment events corresponds

to a stable row progression. The anisotropy of interactions between A and B rows can

be characterized by deviation of respective works of detachment at kink sites from the
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average work of detachment, such that

δA = ∆W sat −∆WA

δB = ∆W sat −∆WB

(3.30)

From Eq. 3.6, ∆W sat is the average detachment work from a kink site, which results

in δA = −δB. The change in free energy ∆G when a growth unit is attached along an

A row is − lnS + δA, and along a B row is − lnS + δB. The − lnS term relates to the

free energy reward associated to phase change to a stable phase under supersaturated

conditions, while the δ term accounts for the surface penalty. The δ value determines

whether a kink attachment and subsequently growth of a 1-D nucleus along the row,

will result in decrease or increase of free energy. According to such a definition for row

instability, the growth unit with a negative surface penalty or δ value will always be

stable owing to a negative value for ∆G. However the growth unit with a positive δ

value, will be stable only at higher supersaturations S > eδ.

It must be noted that such definitions of row stability only refer to step configuration

1 owing to the presence of distinct row types. The concept of row stability does not exist

for step configurations 2 and 3, since each comprise of a single row type. The definitions

can be extended to multi-growth unit step configurations consisting of multiple types of

rows, such as the row configuration of four growth units depicted in Fig. 30 of Kuvadia

and Doherty[17].

The kink cycle framework, introduced by Kuvadia and Doherty[17] and formally de-

fined by Tilbury et al.[18], is based on ordering the attachment and detachment surface

processes in a sequential progression. The simplified steady-state framework models the

attachment and detachment processes as functions of kink densities and rate kinetics.

Unlike the kink cycle framework, SSSF does not assign a sequence to the events. Alter-
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natively, SSSF discretizes the cyclic kink progression and models individual attachment

and detachment events to organize them in the form of steady-state equations. More-

over, the kink cycle framework assumes 1D nucleation to be rapid enough to not play a

rate-determining role during step progression. Hence the kink cycle framework attributes

step progression entirely to kink attachment events and does not account for 1D nucle-

ation in step velocity modeling. SSSF accounts for the kink formation events in the form

of 1D nucleation, kink destructions via collisions, along with attachment at kink sites.

Hence, the two frameworks are consistent with each other, but differ in their treatment

of sequential vs non-sequential surface events and consideration of 1D nucleation. Refer

to Appendix E for a thorough examination of the kink cycle framework, its resemblance

to SSSF, and the areas where the two frameworks differ.

3.5 Results and Discussion

Figure 3.7: NEQ kink density predictions for step configuration 1 vs kink anisotropy ∆k

along the kink axis at S = 1. Here ϕK
B = ϕK

A + ∆k, ϕ
K
A = 2.5kBT , ϕ

E
A = ϕE

B = ϕT
A =

ϕRT
A = ϕT

B = ϕRT
B = 2.5kBT . As dictated by step configuration 1, ϕK

A = ϕRK
A , ϕK

B = ϕRK
B ,

ϕE
A = ϕRE

B , ϕE
B = ϕRE

A .
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We begin by applying the kink density model to the case of equilibrium conditions

(S = 1). NEQ kink densities are obtained from numerical solution of equations (Eq. 3.16-

3.20, 3.22) for varied levels of anisotropy at S = 1. The abscissa in Fig. 3.7 represent

anisotropy along kink axis ∆k, while keeping the edge and terrace interactions constant

and equal to 2.5kBT . In this figure increasing anisotropy refers to increasing the kink

energy of B growth units from 1kBT to 4kBT while keeping the A kink energy constant at

2.5kBT . This allows decoupling the effect of various directional growth unit interactions

on kink density. Along the abscissa axis, the zero point is the Kossel crystal where the

growth units acquire identical interaction spheres and all ϕ’s are equal. The A and B kink

densities intersect to give Kossel single-height kink density, AB and BA curves intersect

to give Kossel double-height kink density.

For negative anisotropies, ∆WA > ∆WB which results in a stable A row according

to Eq. 3.28. For positive anisotropies, ∆WB > ∆WA which results in a stable B row

according to Eq. 3.29. The single kink densities are larger than the double kink densities

for most values of abscissa except at high values of anisotropy. This is because increasing

anisotropy increases the inter-molecular bond strength between B growth units and hence

stabilizes the B row. An AB kink allows exposure of A rows on both sides and hence

become favorable for negative anisotropies when A is the more stable row. This also

explains why B kinks are densely populated at negative anisotropies and A kinks for

positive anisotropy. Further increase in anisotropy increases the energy of creation of

kinks and reduces the kink densities. In Chapter 4, Fig. 4.2 superimposes Fig. 3.7 with

kMC simulation data points.
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(a) (b)

Figure 3.8: (a)Normalized step velocity v
k+aP xsat

vs kink anisotropy ∆k along kink axis at

S = 1.1 for this model and kMC simulations from the literature[18] for step configuration
1. (ϕK

A = 4kBT , ϕ
E
A = ϕE

B = 4kBT , ϕ
T
A = ϕT

B = 4kBT ), (b)Normalized step velocity
v

k+aP xsat
vs edge anisotropy ∆e along edge axis at S = 1.1 for this model and kMC

simulations from the literature[18] for step configuration 1 (ϕE
A = 2kBT , ϕ

K
A = ϕK

B =
2kBT , ϕ

T
A = ϕT

B = 2kBT ). Step velocity is normalized with respect to the propagation
length aP , attachment rate constant k+ and solubility xsat to allow comparison with the
kMC data.

In Fig. 3.8a, normalized step velocity is graphed as a function of kink anisotropy, at a

constant supersaturation of S = 1.1. The normalization allows mapping the effect of kink

densities on step velocity while eliminating the effect of other system parameters such as

rate constant and propagation length. The normalized step velocity has a peak at the

Kossel point. This is because the growth units and consequently the A & B rows become

identical at the Kossel point, thus the kinks progress independently of each other. As

anisotropy is introduced on either side of the Kossel point, one of the rows is stabilized

and becomes favorable as the step progresses, which results in kink cycles[17]. Kink cycle

formation results in a highly inter-dependent motion of kinks and results in reduced step

velocity with increase in the magnitude of anisotropy.
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In Fig. 3.8b, normalized step velocity is reported as a function of anisotropy along the

edge ∆e at a constant value of S = 1.1. The two growth units differ in their interactions

along edge axes and form equivalent interactions along kink and terrace axes. Hence the

zero-point along the abscissa marks the Kossel point where step velocity peaks. Increase

in anisotropy favors step A over B and velocity plunges owing to kink cycle formation.

As observed from Figs. 3.8a and 3.8b, normalized step velocity demonstrates strong

dependence on the solid-state interactions, with an exponential drop with increasing

anisotropy along kink, edge or terrace axes.

(a) (b)

Figure 3.9: Normalized step velocity v
k+aP

vs supersaturation plots on a) a log scale and

b) linear scale, for step [011̄] on non-Kossel (011) face of a naphthalene crystal graph
following the notation of Cuppen et al.[9]. Such a step corresponds to step configuration
1. The kMC simulations were performed by Cuppen et al.[9] for the same crystal graph

with interaction network characterized by ϕa = 2kBT , δ = ϕq

ϕp
, such that 2ϕa = ϕp + ϕq

for different values of δ.

In Fig. 3.9, normalized step velocity is plotted as a function of supersaturation for

step [011̄] on non-Kossel (011) face of a model crystal graph[34, 35] derived from the

naphthalene crystal system and compared with kMC simulations from the literature.[9]

Such a step corresponds to step configuration 1. Fig. 3.9b provides insights into the

nature of dependence of step velocity on the driving force, while Fig. 3.9a presents long
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range behaviour of model and simulation predictions. In this crystal system, anisotropy

is quantified by the ratio δ. Step velocity exhibits a nonlinear monotonic increase with

supersaturation. This can be attributed to increase in the number of kinks along the

edge, which increases the prevailing sites of attachment along with an increase in the

frequency of attachment events. The nonlinear nature of the increase can be attributed

to the nonlinear nature of dependence of kink density on supersaturation.[26] The velocity

decreases with decrease in δ for the same supersaturation. Similar to the previous plots

in Fig. 3.8a and Fig. 3.8b, this is an attribute of kink cycle formation that results in

interdependence amongst kink progressions.

In the case of crystals with distinct components A and B, the free energy barriers

to surface integration of growth units will be different. Hence, the rate constant k+ in

the rate model will be distinct for the two growth units. As a result, the step velocity

can no longer be normalized with respect to k+ as done in Fig. 3.8 and Fig. 3.9. The

rate constants for each of the components will then have to be estimated and supplied

to the models for step velocity predictions. The models can be re-derived to account for

the multiplicity of rate constants and solved numerically in a similar manner as outlined

above. Several studies have explored AB systems with distinct components including

inorganic crystals[21, 36], ionic crystals[37, 38], semiconductor crystals[39], among others.

3.6 Morphology Predictions

We applied the above modeling approach to a real API for which experimental mor-

phology studies have been reported in the literature. We utilized the software ADDICT’s

framework[19, 40, 41] based on mechanistic models for crystal morphology predictions,

solid-state and interfacial and crystallographic calculations. Prerequisites and inputs to

ADDICT are system-specific and design parameters such as the crystallographic .cif file,
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gaussian[42] and antechamber[43] electron density calculations to determine atomic par-

tial charges (.mol2 files), and growth conditions such as temperature, supersaturation and

solvent information as well as selection of an appropriate forcefield and solvent model.

In Chapter 1, Section 1.5 elaborates ADDICT’s methodology in detail and explains the

role of atomistic models, such as SSSF, within the broader workflow.

Integration of SSSF within ADDICT’s framework, in place of the in-built atomistic

model, allowed estimation of kink densities and step velocities for all the steps on different

facets of the crystal. The step velocities are then processed by the continuum model

within ADDICT by selection of appropriate growth regimes for various facets, to yield

relative growth rates and subsequently the morphology and shape prediction. Following

such a routine, we applied the steady-state framework to doravirine precursor form I

(CSD refcode: OWIVEY) and compared it to experimental shape studies.

3.6.1 Case Study: Doravirine precursor

Doravirine is a pharmaceutical organic reverse transcriptase inhibitor launched by

Merck and Co., and used for treating HIV/AIDS.[44] A starting material to doravirine

is an ethyl ester compound as reported in the literature. [45, 46] The doravirine pre-

cursor (CSD refcode: OWIVEY) is recrystallized in an important step during produc-

tion to purge the impurities out. The experimental shape studies were conducted in an

ethanol/water 9:1 solvent mixture and the crystals were aged at around 0◦C. OWIVEY

form I crystallizes in the spacegroup P −1 and has two growth units in the unit cell with

Z = 2 and one asymmetric unit Z ′ = 1. The important face families are {01̄0}, {01̄1}

and {1̄1̄1} as depicted in the habit predicted by SSSF in Fig. 3.10b. The CLP force-

field[30] was used to calculate solid-state interactions. The van-Oss-Chaudhary-Good

solvent model[22, 23] based on estimations of dispersive and acid-base components of the
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adhesive energy is employed for obtaining solvent-modified bond energies. Morphology

predictions were performed in ethanol to simplify solvent calculations. SSSF-based mor-

phology predictions provide a parallelepiped shape under described growth conditions,

which is similar to experimental observations[44] in Fig.3.10a. Refer Appendix B for

intermediate calculations and results.

(a) (b)

Figure 3.10: (a) Experimental shape observations of OWIVEY form I in ethanol/water
9:1 solution. Figure reproduced with permission from Larpent et al.[44]. Copyright 2021
American Chemical Society. (b) Model-based in-silico morphology predictions.

3.7 Conclusions

The SSSF provides an engineering recipe to obtain fundamental quantities of kink

density and step velocity within the mechanistic crystal growth models. The framework

is based on a steady-state analysis of predominant kinks to balance the rates of forma-

tion and destruction. The equations obtained through the analysis are conditioned to

satisfy configurational and stoichiometric constraints before numerical solution. This es-

tablishes a simplified pathway for obtaining equilibrium kink densities as well as NEQ
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kink densities for non-Kossel crystals. This is substantial step towards accurate growth

models because the current Boltzmann distribution approaches for equilibrium kink den-

sity modeling only provide a rough approximation, owing to lack of surface correlation

accountability. Furthermore, the framework provides a step velocity description based on

aggregation of all attachment and detachment most-probable surface events. This allows

rapid predictions of NEQ kink densities and step velocities as a function of design and

system-specific parameters such as supersaturation, temperature and solid-state energet-

ics for organic AB-type crystals of general complexity such as API’s, OLED’s, etc. The

step velocities can then be used for growth rate predictions through the multi-scale mech-

anistic growth engine[20, 36, 47, 48] as detailed in Section 1.2. Prediction of growth rates

allows mapping growth conditions to properties such as morphology, size distribution and

polymorph. Chapter 4 further analyses the model predictions for varying conditions of

supersaturation, interactions and compares it with corresponding kMC simulations.

The methodology can be extended for organic crystals with Z > 2 in a similar fash-

ion: identification of step configurations, construction of steady-state equations for the

predominant kink and edge junctions, followed by numerical solution to obtain NEQ

kink densities and subsequently step velocities. However, with increase in the number

of growth units, the major sites and most-likely events to monitor will also rise in pro-

portion. This necessitates a strategy to automate the process of model building and

model solution. Chapter 5 will introduce a novel symbolic-numeric tool which allows

generalization of SSSF approach to variable number of growth units in the unit cell

through network theory and allows computation model development and execution. The

new model will enable rapid high-fidelity morphology predictions for crystals grown at all

supersaturation, including at high supersaturation such as via antisolvent crystallization.
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Chapter 4

SSSF Model and Simulations: A

Comparative Study

Reproduced in part with permission from:

Padwal, N. A.‡; Mazal, T.‡; Doherty, M. F., Modern Modeling and Simulation Ap-

proaches for Morphology Predictions of Molecular Crystals. Industrial & Engineering

Chemistry Research 2024. (Manuscript in press)

Unpublished work copyright 2024 American Chemical Society.

4.1 Introduction

Mechanistic modeling of crystal growth is a specialized class of models which accounts

for solid-state physics, interfacial chemistry and continuum mechanics across multiple

time and length scales. In case of layered growth mechanisms such as spiral growth and

2D birth & spread, flow of steps across the crystal surface in a layer-by-layer fashion re-

sults in normal growth of the facets. Hence, the study of step dynamics is an important

element in the development of accurate growth models. The rate of progression of steps
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is referred to as the step velocity; which critically depends on the density of sites of at-

tachment along the step and frequency of attachment events by solute molecules at these

sites. Prominent sites of attachment are kinks, since incorporation at kinks occurs with

little surface energy expense and the kinks are regenerated upon incorporation of growth

units. This results in the step velocity being a strong function of kink density. Chapter 2

introduced the theoretical basis of Simplified Steady-State Framework, its methodology

and proof-of-concept application to crystals of centrosymmetric molecules such as naph-

thalene and rubrene. Chapter 3 generalizes the theory to AB crystals which comprise of

several step configurations with distinct surface correlation conditions. Chapter 3 com-

pares the model-based step velocity predictions with kMC from literature and applies

it to API molecular crystals. In this chapter, we will further explore the SSSF-based

NEQ kink density and step velocity predictions and perform a comparative study with

kMC simulations for varying conditions of supersaturation and directional interaction

asymmetry. The NEQ kink densities are also compared with an equilibrium kink density

model from literature[1] (at supersaturation of unity) to demonstrate the importance of

accounting for spatial correlations in case of noncentrosymmetric molecules.

4.2 Background

In noncentrosymmetric molecular crystals, molecule asymmetry translates to anisotropies

in the network of bonding interactions around growth units. The number of molecules in

the unit cell is characterized by Z, and the molecules are usually labelled as A, B, C, etc.

The molecules are identical in the solution phase, but integrate into crystal in different

orientations and are hence characterized as distinct growth units A, B, C, etc. Within

the crystal, the different molecules have distinct spheres of interactions connecting them

to neighboring molecules. This results in different types of kink sites with unequal rates
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of detachment, which subsequently affect the step velocity in a distinct manner. As a

result, kink density models must account for the anisotropy of interactions as well as the

effect of supersaturation and temperature to provide accurate step velocity predictions.

For bimolecular crystals with growth units A and B, several studies towards modeling

and simulation of step velocity have been reported. Chernov and coworkers [2–4] derived

kink rate expression for binary and ternary crystal systems of dissociating substrates

such as ionic compounds. Zhang and Nancollas[5] derived kink density and step velocity

expressions for AB crystal steps growing under nonequilibrium conditions based on the

kink Creation–Propagation–Collision (CPC) Model[6]. Cuppen et al.[7] proposed a step

velocity model for an AB crystal system based on independent progression of A and B

kinks, and compared the model along with other models from the literature[3, 5] and

with kMC simulations. Cuppen et al. concluded that no single step velocity expression

provided a complete description for all step types; rather, the step velocity expression

depends on the local step structure. Kuvadia and Doherty[8] derived an overall kink

rate formulation for ABCD crystals and compared model-based morphology predictions

with experimental observations. Koo and coworkers compared several crystal growth

models based on morphology predictions and studied the impact of local growth unit

concentration[9, 10] on crystallization. Tilbury et al.[1] proposed a step velocity model

based on relative timescales of reorganisation and kink annihilation and validated it with

kMC simulations.

The earlier multi-molecular kink density models are based on the equilibrium Boltz-

mann distribution, which assumes statistical and spatial independence of surface kink

sites. This remains a major limitation of existing kink density models since kink sites

along step edges of asymmetric molecules are surface correlated owing to the step topol-

ogy.[7] This renders the existing kink density models seriously deficient, even under equi-

librium conditions. SSSF provides the unique ability to account for the spatial depen-

108



SSSF Model and Simulations: A Comparative Study Chapter 4

dence of kink sites through conditional probabilities during construction of steady-state

equations to obtained the step velocity model.[11, 12] In subsequent sections, we will fur-

ther analyse the SSSF model-based predictions with respect to the equilibrium models.

Kinetic Monte Carlo (kMC) simulations allow us to examine the temporal evolution

of processes for which we know all possible events and their corresponding rates. Monte

Carlo (MC) algorithms are often utilized to investigate physicochemical systems, includ-

ing but not limited to that of crystal growth kinetics [13]. Other fields of study in which

kMC is frequently used include heterogeneous catalysis, mineralogy, and reaction kinet-

ics[14–17]. Such an approach offers a distinct route to calculate relevant crystal growth

parameters such as step velocities and face growth rates; kMC simulations of crystal

growth may be used to study crystal surface phenomena (i.e., behavior of spiral edges)

to determine step velocities.

In this chapter, we apply our comparative analysis of model-based SSSF’s and kMC

simulations’ predictions to step configuration 1 of AB molecular crystals with alternate

rows of A and B.

4.3 Methods

4.3.1 Model Development

The SSSF[11, 12] is based on the hypothesis that step kinetics are predominantly

influenced by the most-likely surface processes obtained via tracking densely populated

sites along the step. Step dynamics comprise a large number of processes which simulta-

neously generate and destroy various types of kinks along the surface. Chapter 3 provides

elaborate discussion on development of master equations ( Eq. 3.16-3.21) and their nu-

merical solution to obtain NEQ kink densities. The step velocities are then estimated
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through expressions of net rates (Eq. 3.25-3.26) from the estimated NEQ kink densities.

Anisotropy ∆ is the quantitative difference between interaction energies formed by

growth units A and B in the unit cell. Anisotropy can be defined as specific to a crys-

tallographic axis. Along kink axis, the kink anisotropy ∆K is the difference between A

and B kink energies such that ∆K = ϕK
B − ϕK

A . Along edge axis, the edge anisotropy ∆E

is the difference between A and B edge energies such that ∆E = ϕE
B − ϕE

A. For a Kossel

crystal[18] with a single growth unit, all interactions are equal and the anisotropy is zero.

In the results and discussion section, the model-based kink density and step velocity

predictions are compared with simulations as a function of kink and edge anisotropy.

4.3.2 kMC Simulations

kMC simulations are utilized to investigate step behavior for the determination of kink

density and step velocities. The solid-on-solid rejection-free lattice kMC simulations are

performed. The general simulation workflow is depicted in Fig. 4.1. Steps are initialized

as flat structures with a levelled step front. The step evolves in time owing to attachment

and detachment of growth units across the step surface. The modified random-rain model

given in Eq. 3.1 is utilized for modeling elementary rates of attachment and detachment

events. The total rate, Γtot, is the sum of the rates for all events possible for a given

system configuration. At each Monte Carlo move, an event is carried out which influences

the step front. Randomly generated numbers determine the type of event as well as the

duration between events, ∆t. The process is repeated to evaluate the effect of multiple

sequential events on the step front. This allows estimation of various step characteristics

such as density of kinks along the step surface and the step velocity. Progression and

regression of the step front relates to its growth and dissolution, respectively. The inputs

to the simulation are growth conditions (i.e., supersaturation and temperature) as well as
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Figure 4.1: Flow diagram outlining the kMC simulation methodology. Figure and cap-
tion adapted with permission from Mazal et al.[19] Copyright 2024 American Chemical
Society.

simulation parameters (i.e., box size and iteration count). A comprehensive description of

the underlying methodology of employing kMC simulations for morphology predictions

for a general growth unit as well as impurity-mediated crystal growth is provided by

Mazal et al.[19–21]
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Figure 4.2: SSSF model predictions (lines) for densities of distinct kink types, namely, A
kink density (red solid line), B kink density (green solid line), AB kink density (yellow
solid line) and BA kink density (blue solid line) on Configuration 1 with kMC simulation
results (dots) of respective kink densities at varied dimensionless kink anisotropy, β∆K ,
at S = 1.0, where β = 1

kT
. The dashed lines of corresponding colors, provides the

equilibrium model[1] predictions under the same interaction anisotropic conditions. The
interaction spheres of A and B growth units are: ϕK

B = ϕK
A + ∆K , ϕ

K
A = 2.5kBT , and

ϕE
A = ϕE

B = ϕT
A = ϕRT

A = ϕT
B = ϕRT

B = 2.5kBT . For Configuration 1, ϕRK
A = ϕK

A and
ϕRK
B = ϕK

B . As we move to the right along the abscissa, we increase the B kink energy,
while keeping the A kink energy constant.

4.4 Results and Discussion

We deploy SSSF to model molecular systems having two noncentrosymmetric growth

units in the unit cell. Model predictions and kMC simulation results are compared below

for Step Configuration 1, the case of alternating rows of growth units. Kink density and

step velocity are individually examined as predicted by the two approaches as functions

of the anisotropy in bond energies between distinct growth units.

4.4.1 Kink Density

Figure 4.2 compares kink densities predicted by the SSSF model (Eqns. 3.16-3.22),

depicted by solid lines, with kMC simulations, depicted by dots, at equilibrium conditions
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(S = 1), for varying levels of kink anisotropy. Anisotropy quantifies the differences in

interaction strengths of the two growth units along kink, edge or terrace axes. Kink

anisotropy introduces asymmetry in interactions between the growth units along kink

direction. Hence zero kink anisotropy depicts the Kossel point since the two growth

units have identical interaction networks around them. Also shown in the figure are

equilibrium predictions using the Boltzmann kink density model depicted by dashed

lines for corresponding kinks.[1]

The differences between the two mechanistic model predictions (solid lines versus

dashed lines) are due to surface correlations. The equilibrium kink density model based

on Boltzmann description assumes the various kinks along steps to be statistically inde-

pendent. The topology of the step imposes constraints on permissible neighboring kinks

which translates to spatially correlated kink distribution along the step surface. SSSF

accounts for the interaction amongst kinks along the surface and hence the local sur-

face correlation. This explains the ability of the SSSF to provide nonequilibrium kink

densities which capture simulation trends away from the Kossel point.

Figure 4.3 compares model-predicted kink densities (SSSF) with kMC simulations

for varied levels of edge anisotropy. The kink energies for A and B are the same which

explains the equivalent A and B kink densities for varying levels of anisotropy. As

anisotropy increases from 0 to 5 along the abscissa, A rows become relatively more stable

compared to B rows. The double kink ρAB allows exposure of A rows on either sides of

the kink, which results in the rise in ρAB with increasing stability of A rows. Similarly,

ρBA exposes B rows on either side and hence its density decreases with anisotropy.
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Figure 4.3: SSSF model predictions (lines) for distinct kink types on Configuration 1 with
kMC simulation results (dots) at varied dimensionless edge anisotropy, β∆E, at S = 1.1.
Here ϕE

B = ϕE
A + ∆E, ϕ

E
A = 2kBT , and ϕK

A = ϕK
B = ϕT

A = ϕRT
A = ϕT

B = 2kBT . For the
interactions in reverse kink and reverse terrace directions are 2kBT . For Configuration
1, ϕRE

A = ϕE
B and ϕRE

B = ϕE
A. kMC simulations were conducted at S = 1.1, T = 298 K in

a box of size 2500× 240 growth units for up to 300 million MC steps.

4.4.2 Step Velocity

In Figure 4.4, kink densities and step velocity are plotted as a function of the di-

mensionless edge anisotropy. We define the edge anisotropy as the difference in edge

energies between growth units A and B: ∆E = ϕE
B − ϕE

A. Practically, we can interpret

edge anisotropy as the energetic difference between the two growth units along the edge

axis, where the sign of ∆E describes which growth unit experiences stronger forward

edge bonds. Hence, the 0 mark along the abscissa represents the Kossel crystal where

the two growth units become identical and the respective plots of A and B kink densities

intersect. We see that the SSSF kink density model predictions exhibit good qualitative

agreement with the kMC simulation data. Deviations for A and B kink densities can

be ascribed to second order supersaturation effects or long range surface correlations.

Nevertheless, the model is able to capture average surface kinetics of step progression as
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demonstrated by excellent agreement for the normalized step velocity predictions.

(a) (b)

Figure 4.4: (a) Kink density and (b) normalized step velocity v
aP xsat

model predictions
and kMC simulation results for Configuration 1 as a function of dimensionless edge
anisotropy, β∆E, at S = 1.5. The interaction spheres of A and B growth units are:
ϕE
B = ϕE

A +∆E, ϕ
E
A = 3kBT , ϕ

K
A = ϕK

B = ϕT
A = ϕRT

A = ϕT
B = 3kBT . As per step topology,

ϕRE
A = ϕE

B and ϕRE
B = ϕE

A. Simulation data are averaged over 5 simulations conducted at
S = 1.5, T = 298 K in a box of size 750× 250 growth units for 5 million MC steps.

Figure 4.5 depicts kink density and step velocity plots as a function of kink anisotropy.

We may define the kink anisotropy as the difference in kink energies between growth units

A and B: ∆K = ϕK
B − ϕK

A . Since the 0 value along abscissa represents the Kossel crystal,

A and B kink densities intersect at the point. The step velocity model demonstrates

excellent agreement with the kMC notwithstanding deviations in kink density predictions.
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(a) (b)

Figure 4.5: (a) Kink density and (b) normalized step velocity v
aP xsat

model predictions and
kMC simulation results for Configuration 1 as a function of dimensionless kink anisotropy,
β∆K , at S = 1.5. The interaction spheres of A and B growth units are: ϕK

B = ϕK
A +∆K ,

ϕK
A = 3kBT , ϕ

E
A = ϕE

B = ϕRE
A = ϕRE

B = ϕT
A = ϕRT

A = ϕT
B = ϕRT

B = 3kBT . As per step
topology ϕRK

A = ϕK
A and ϕRK

B = ϕK
B . Simulation data are averaged over 5 simulations

conducted at S = 1.5, T = 298 K in a box of size 750 × 250 growth units for 5 million
MC steps.

4.5 Conclusion

We have compared two approaches for determining step velocities and face growth

rates of molecular crystals: SSSF model and the kMC simulations. The SSSF model-

based approach accounts for only the most-probable surface events to generate master

equations followed by numerical solution of the nonlinear set of equations. The resulting

NEQ kink density and step velocity predictions are then compared to kMC simulations for

varying levels of interaction anisotropy and supersaturation. We see good agreement of

SSSF model predictions with kMC simulation results. Each approach correctly accounts

for both nonequilibrium effects (i.e., S ≥ 1) and for the fact that sites are correlated

by the surface configurations introduced by the crystallography of noncentrosymmetric

molecules. On the contrary, the equilibrium kink density model deviates from SSSF and
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kMC simulation predictions, owing to the lack of accountability of interdependence in

surface structures. Overall, exhibition of good convergence between SSSF model and

simulations further substantiates reliability of the model in providing rapid crystal prop-

erty estimations. In Chapter 5, we will deep dive into a new programmatic framework

for automation and generalisation of SSSF to crystals with variable number of growth

units in the unit cell.

117



Bibliography

(1) Tilbury, C. J.; Joswiak, M. N.; Peters, B.; Doherty, M. F. Modeling Step Velocities

and Edge Surface Structures during Growth of Non-Centrosymmetric Crystals.

Crystal Growth & Design 2017, 17, 2066–2080.

(2) Chernov, A. A.; Rashkovich, L. N.; DeYoreo, J. J. In AIP Conference Proceedings,

2007; Vol. 916, pp 34–47.

(3) Chernov, A. A.; Rashkovich, L. N.; Vekilov, P. G. Steps in solution growth: dy-

namics of kinks, bunching and turbulence. Journal of Crystal Growth 2005, 275,

1–18.

(4) Chernov, A.; Petrova, E.; Rashkovich, L. Dependence of the CaOx and MgOx

growth rate on solution stoichiometry. Non-Kossel crystal growth. Journal of Crys-

tal Growth 2006, 289, 245–254.

(5) Zhang, J.; Nancollas, G. H. Kink density and rate of step movement during growth

and dissolution of an AB Crystal in a nonstoichiometric solution. Journal of Colloid

and Interface Science 1998, 200, 131–145.

(6) Zhang, J.; Nancollas, G. H. Kink densities along a crystal surface step at low tem-

peratures and under nonequilibrium conditions. Journal of Crystal Growth 1990,

106, 181–190.

118



BIBLIOGRAPHY

(7) Cuppen, H. M.; Meekes, H.; van Enckevort, W. J. P.; Vlieg, E. Kink incorporation

and step propagation in a non-Kossel model. Surface Science 2004, 571, 41–62.

(8) Kuvadia, Z. B.; Doherty, M. F. Spiral Growth Model for Faceted Crystals of Non-

Centrosymmetric Organic Molecules Grown from Solution. Crystal Growth & De-

sign 2011, 11, 2780–2802.

(9) Shim, H.-M.; Koo, K.-K. Prediction of growth habit of β-cyclotetramethylene-

tetranitramine crystals by the first-principles models. Crystal Growth & Design

2015, 15, 3983–3991.

(10) Shim, H.-M.; Kim, J.-W.; Koo, K.-K. Molecular interaction of solvent with crystal

surfaces in the crystallization of ammonium sulfate. Journal of Crystal Growth

2013, 373, 64–68.

(11) Padwal, N. A.; Doherty, M. F. Simple Accurate Nonequilibrium Step Velocity

Model for Crystal Growth of Symmetric Organic Molecules. Crystal Growth &

Design 2022, 22, 3656–3661.

(12) Padwal, N. A.; Doherty, M. F. Step Velocity Growth Models for Molecular Crystals:

Two Molecules in the Unit Cell. Crystal Growth & Design 2024, 24, 4368–4379.

(13) Andersen, M.; Panosetti, C.; Reuter, K. A Practical Guide to Surface Kinetic

Monte Carlo Simulations. Front. Chem. 2019, 7, 202.

(14) Pineda, M.; Stamatakis, M. Kinetic Monte Carlo simulations for heterogeneous

catalysis: Fundamentals, current status, and challenges. The Journal of Chemical

Physics 2022, 156, 120902.

(15) Kurganskaya, I.; Trofimov, N.; Luttge, A. A Kinetic Monte Carlo Approach to

Model Barite Dissolution: The Role of Reactive Site Geometry. Minerals 2022,

12, 639.

119



BIBLIOGRAPHY

(16) Katsoulakis, M. A.; Vlachos, D. G. Coarse-grained stochastic processes and kinetic

Monte Carlo simulators for the diffusion of interacting particles. The Journal of

Chemical Physics 2003, 119, 9412–9427.

(17) Stamatakis, M.; Vlachos, D. G. A graph-theoretical kinetic Monte Carlo frame-

work for on-lattice chemical kinetics. The Journal of Chemical Physics 2011, 134,

214115.

(18) Kossel, W. Zur theorie des kristallwachstums. Nachrichten von der Gesellschaft

der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1927, 1927,

135–143.

(19) Mazal, T.; Doherty, M. F. Modeling Morphologies of Organic Crystals via Ki-

netic Monte Carlo Simulations: Centrosymmetric Growth Units. Crystal Growth

& Design 2024, 24, 179–192.

(20) Mazal, T.; Doherty, M. F. Modeling Impurity-Mediated Crystal Growth and Mor-

phologies of Centrosymmetric Molecules. Crystal Growth & Design 2022, 23, 369–

379.

(21) Mazal, T.; Doherty, M. F. Modeling Morphologies of Organic Crystals via Kinetic

Monte Carlo Simulations: Noncentrosymmetric Growth Units. Crystal Growth &

Design 2024, 24, 3756–3770.

120



Chapter 5

Graph Network Theoretic Tool for

Model Development

Reproduced in part with permission from:

Padwal, N. A.; Doherty, M. F. Nonequilibrium Crystal Growth Model for Organic

Molecules of Real API Complexity. Crystal Growth & Design. (Manuscript under review)

5.1 Introduction

The mechanistic approach to crystal modeling is based on a multi-scale framework.[1–

3] The mechanistic models encapsulate models at various scales, from atomistic to con-

tinuum, to capture the effect of molecular events on macroscopic properties, as discussed

in Chapter1. At the mesoscopic scale, propagation of steps across crystal surfaces is

crucial for the growth of facets, as depicted in Fig. 5.1. The step velocity, which is

the rate of step propagation, is an important parameter required for determination of

crystal growth properties.[4–6] Special sites namely kinks along the steps are key to

providing renewable docking points for attachment of molecules or growth units.[7–10]
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Hence, the step velocity depends on kink density. The majority of kink density models

are Boltzmann distribution-based equilibrium models[6, 11, 12] that fail to account for

the spatial correlation between surface sites or kinks.[6, 13] Chapters 2 and 3 elucidates

SSSF, a theoretical modeling approach, for predicting the kink density under nonequilib-

rium conditions of crystal growth and its influence on step velocity for the simple Kossel

step (Z ′ = 0.5)[14] and step types for an AB-type crystal (Z = 2).[13] In this chapter we

Figure 5.1: Schematic depiction of a crystal surface with a step growing laterally across
the face through attachment of growth units at various sites especially kinks.

generalize the framework to the general case of n noncentrosymmetric molecules in the

unit cell. The key to unlocking the generalization is the use of graph network theory to

develop the steady-state state equations that define the NEQ kink density.

Graphs have been commonly used in modeling a wide range of applications includ-

ing social network[15], image classification[16], cyber security[17], protein folding and

interfaces[18, 19], epidemiology[20], natural language processing[21] owing to their broad

expressive capabilities. The last decade has seen a significant effort in graph neural net-

works (GNN) as well as variation of GNNs such as graph convolution networks, graph

attentions networks and graph recurrent networks and their application to a variety of

deep learning tasks. On the other hand, graphical interpretation of nonstructured data

types such as text and images have accelerated research in graph reasoning models. The

application of graph theory extends beyond neural networks into the fields of crystal
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engineering and crystal growth.

The concept of networks in crystal growth has long been prevalent for representing the

supramolecular crystal interactions in the form of periodic bond chains (PBC), although

not articulated as networks.[22–24] A PBC is a 1D chain of strong repeating interactions

connecting molecules. Inspired from graph theory, the concept of crystal graph was

introduced by treating the molecules as point objects and the strong inter-molecular

interactions within the first coordination sphere as bonds connecting the point objects.[25]

Such crystal graphs are 3D network representations of crystal structure and are infinite,

and need to be truncated to finite sizes through periodicity of crystals. Strom[26, 27]

developed a programmable method using graph-theoretic concepts and algorithms for

identification of PBCs and their directions. The crystal graph-based systems were then

extensively studied and modeled for several types of crystal structures to inform the

growth behaviours of crystal faces[28–31]

In this chapter, we demonstrate the application of graph network theory to allow

implementation and generalization of SSSF to crystal steps with many growth units in

the unit cell (any Z). The implementation of SSSF to a crystal entails pertinent sub-

problems such as,

1. Identification of Step Configurations: Crystals with n number of growth units will

give rise to steps of several configurations. All the possible configuration types need

to be identified and appropriately assigned for real PBC networks and explained in

Appendix D.

2. Generation of master equations and configurational constraint equations: Graph

theory allows generation of master equations and will be detailed in Section 5.3.

The relevant partition functions and configurational constraints (refer Appendix C)

are separated generated and appended with the master equations, which provides
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the set of model equations.

3. Numerical solution of model equations: The model equations are over-defined with

more equations than the number of variables. Matrix operations allow transforming

the overdefined set to a well-defined set and removal of the superfluous equations.

The well-defined set is then solved numerically to obtain NEQ kink densities as

outlined in Section 5.5.

4. Application to real crystals and morphology prediction: Section 5.6 outlines the

workflow undertaken for applying graph theoretic implementation of SSSF to crys-

tals of realistic complexity.

Unlike the neural networks, the models developed in this work are not data-driven.

Nonetheless, graph network construct provides a suitable layout for streamlining the sur-

face kinetic description of sites and their interactions. We represent components of a

crystal surface as a graph of surface sites connected by surface events. Such a representa-

tion allows effective information storage and transfer for computational implementation

of SSSF model. The computational tool enables crystal type-specific model development

and allows the prediction of several graph attributes such as NEQ kink densities and step

velocities for any given crystal step configurations.

5.2 Graph Network Theory

A graph is a data structure type expressing connections between objects. A general

graph network consists of nodes and arcs and global attributes. Nodes are point objects

within a network, and arcs demonstrate connections between nodes as depicted in Fig.

5.2. We use the terminology arc instead of the more common edge, since edge has

alternate definition in Fig. 5.1 and also referred in previous chapters. The node and
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Figure 5.2: A general multi-directed graph network. The nodes are denoted by red dots
and characterized by ni. The arcs are directional and connect two nodes within the graph,
characterized by êi,j where i and j are the start node and end node, respectively. The
nodes and arc attributes are embedded with customized properties. The global attribute
G characterizes the graph and embedded with graph properties.

arc attributes are embedded with several properties of their own. For instance, a node

can be assigned a number identity, degree, number of neighbors, etc. Arcs are lines

connecting two nodes in the graph. An arc can be directional or weighted. Hence, an arc

is characterized by a number identity, weight and direction or other properties of interest.

The global attributes characterize the graph as a whole such as number of nodes, average

degree of connectivity, longest path, clustering coefficient, etc.

5.3 Surface Kinetics Perspective

The implementation of the Simplified Steady-State Framework is based on identifi-

cation of the major sites, a set of surface sites with the highest probabilities given a

step configuration of a crystal structure. From the surface kinetics perspective, major

sites constitute the graph nodes. The most-likely events are the surface events which

transform major sites into other major sites. When projected onto the graph, the most-
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likely events become the graph arcs connecting nodes. The nodes are embedded with site

attributes such as the kink types which constitute the site. The arcs are embedded with

event attributes such as the rate of the event, the type of growth unit displaced by the

event, etc. Such an abstraction allows the analysis of how the different kink types are

formed or destroyed by parsing through all the most-likely events, thereby streamlining

the development of steady-state equation balances based on the rate of formation and

destruction of various kink types.

A digital implementation of SSSF allows a flexible scaffold for identification of major

sites as well as most-likely events. The set of major sites can then be expanded to

account for more sites or contracted to simplify the equations. If we were to increase

the number of major sites within the definition, the model equations will naturally alter.

Different metrics can be programmed for identification of the major sites and events.

Moreover, the program allows rapid model development for different step configurations

with any number of growth units. Such a steady-state analysis is specific to the local

step structure and hence the step configuration of the crystal; just as SSSF has been

previously implemented for the individual step configurations in silos in Chapter 3. In

order to offer such a versatility over model-building and solving, we have developed the

computational network-theoretic tool. The tool allows generalization of the framework

to crystals with multiple growth units in the unit cell.

The computational tool broadly comprises of two engines, symbolic and numeric,

respectively. The symbolic engine develops the model, while the numeric engine solves

the model equations to provide the NEQ kink densities. The tool is fully programmed in

python and will enable implementation of SSSF for versatile model-building for crystals

with various Z values, i.e., Kossel, AB crystals, but also crystals with four or more growth

units in the unit cell. Such a computational encoding of the algorithm offers flexibility

within metrics employed for model generation. The symbolic engine is based on modeling
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the surface kinetics as a network encapsulating the site interactions. The numeric engine

is based on a nonlinear equation solver and parametric continuation which makes solving

for highly asymmetric crystal interactions tractable.

In the subsequent section, we elaborate on the tool engine and methodology for a

general crystal and later demonstrate its application to specific steps.

5.4 Methods

The computational model tool comprises of two separate engines: 1) Symbolic Engine

and 2) Numerical Engine. Chapter 2 provided a systematic approach for the execution

of the SSSF framework for a Kossel crystal step and Chapter 3 demonstrated it gen-

eralization to the three step configurations on a AB-type crystal. Such a systematic

stage-by-stage approach is divided across the symbolic and numeric engines of the tool

and outlined as follows,

5.4.1 Symbolic Engine

The symbolic engine performs the function of developing models in the symbolic

space. The sympy and networkx packages are employed for building equations in python.

Within the symbolic engine, we visualize surface kinetic transformations in terms of a

network such that the surface sites become nodes and the surface events become arcs,

which connect multiple surface sites. Surface events are the attachment and detachment

processes occurring along steps which transform different surface sites into each other.

The networkx package allows modeling the crystal surface kinetic process as a network.

Within SSSF, the set of major sites pave the way for identification of most-probably

surface events by studying the interplay of how these major sites interact with each

other.
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1. Predominant kinks and major sites: Initial stage is the identification of predominant

kinks, i.e., single and double-height kinks along with the edge junctions. Refer

Appendix A for detailed discussion on junctions and sites. The predominant kinks

are the critical sites of attachment along the step and when placed at adjoining

positions give rise to the major sites. Major sites are the high-density structures

along steps, which capture the effect of kinks and have an influential impact on the

surface kinetics. The major sites for a Kossel step are given in Fig 5.4a.

The major sites become the nodes within the network. (Refer to Fig. 5.4) The

nodes are embedded with the site attributes such as the kinks which constitute

the site, site density, its structure, and constituting kinks. In case of multiple

growth units along the step, surface correlation gives rise to partition functions

and configurational constraints, which are utilized in steady-state equations.[13].

Refer to Appendix C for obtaining surface configurational constraints and partition

functions for a given step configuration.

2. Most-likely events: The next stage is identifying the interactions between the major

sites. To that end, the major sites are then subjected to attachment and detachment

operations, to output two new sites, respectively. If the newly formed site belongs

to the list of major sites, then a connection is identified. Such a connection is a

most-likely event, which is an attachment or a detachment event depending on the

initial operation. Another possibility is that the newly formed site does not belong

to the set of major sites, in which case the event is not a most-probable event and

hence not an arc within the network. The process is repeated till all the arcs are

identified, which constitute our final set of most-probable events.

The most-likely events depict connections between the sites and become directed

arcs within the network (as shown in Fig. 5.4b). The arcs are embedded with event
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attributes such as the event rate, the growth unit mobilized, and a flag indicating

whether it is an attachment or a detachment event.

3. Construction of master equations: The steady-state principle states that the net

rates of formation and destruction will be equal for each type of kink. The steady-

state master equations are constructed to balance event rates which form or destroy

the predominant kink types. The most-likely events form the basis of building mas-

ter equations. We parse through the most-likely events and explore the impact of

each event on individual kinks. The rate of the event would contribute positively

to the master equation of the kink it forms and negatively to the kink it destroys.

Chapter 3 elaborates on modeling event rates, which considers the elementary at-

tachment and detachment rates and the density of kinks which constitute the site.

For instance, consider the nucleation event which forms kinks from edges. The rate

of a nucleation event j+ρ20 contributes to the formation of single-kinks in Eq. 5.2

and contributes to the destruction of edge junctions in Eq. 5.4. The process is

repeated for each event and the its rate expression is added to the relevant master

equation.

4. Additional surface constraints: Apart from the master equations, we need addi-

tional equations to fully define the system.[13] The normalization condition sums

all kink densities to unity. The east-west equivalence states that the net east-kink

densities must equal the net west-kink densities. The configurational constraints for

multi-growth-unit crystal surfaces capture the spatial correlation between different

kinks.

5. Construction of step velocity model: SSSF states that the the each attachment

and detachment event positively and negatively contributes to the step velocity,

respectively. The velocity is the sum of the net rates of attachment of each growth
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Figure 5.3: A Kossel step comprises of single type of growth unit or multiple growth
units which have identical surrounding interaction networks. The PBC network (dots
are growth units, lines are interactions) illustrate two examples: single growth unit vs
multiple growth units which are energetically equivalent. PBC networks are generated
using the software ADDICT.[32]

unit along the step.

The subsequent sections illustrate the networks of crystals and their application towards

model building for steps prevalent on a range of crystal types. A Kossel crystal consists

of growth units with identical interaction spheres from centrosymmetric molecules, which

give rise to a single-type of step configuration depicted in Fig. 5.3.

Application to Surface Kinetics: Kossel Crystal

In a Kossel crystal, growth units have an inversion center (Z ′ ≤ 0.5) which results in

identical interaction spheres for all the growth units in the unit cell. Fig. 5.3 illustrates

PBC network examples for a Kossel step: 1) A single type of growth unit (blue dot), 2)

distinct growth units (blue and red dots) that are energetically equivalent. As a result,

a single step configuration is observed on such crystals, which is the Kossel step. For

a Kossel step, the predominant junctions are single and double-height kinks along with
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the edge junction.[14] The major sites identified for such a step are depicted within the

most-likely space (green oval) in Fig. 5.4a. Refer to Appendix A for major site selection

from predominant junctions. The interaction between the major sites are then identified,

which become the most-likely events and depicted by the directed black arrows. The

surface site network in Fig. 5.4a is then converted to the graph network in Fig. 5.4b,

by interpreting the sites and events as nodes and arcs, respectively. Parsing through

(a) (b)

Figure 5.4: a) Surface kinetics diagram of a step along a Kossel crystal, depicting the
most-probable event space M within the sample space of all events U. b) The corre-
sponding graph network diagram for the most-probable events along the Kossel step.
The nodes denote the major sites and the arcs denote the most-probable events cap-
turing the interactions between the nodes. The attachment and detachment events are
denoted by the solid and dashed lines, respectively. j+ and j−k are the attachment and
detachment elementary rates, respectively, where k is the number of kink detachment
bonds.

the most-likely events, allows us to generate the master equations for the predominant

kink densities: edge density ρ0, single-height kink density ρ1 and the double-height kink

density ρ2. Li et al. proposed a rate model for elementary surface rates, accounting for

the thermodynamics and solvent effects of crystal surfaces as put forth in Section 2.3.
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Based on the rate model, the attachment rate is isotropic and depends on the solute

composition in solution (x), while the detachment rate depends on the bonds broken

during the process. The elementary attachment and detachment rates are given by,

j+ = k+xsatS

j−i = k+e−β∆Wi

(5.1)

where xsat is the saturation mole fraction and k+ is the attachment rate constant, S = x
xsat

is the supersaturation. The attachment rate constant follows an Arrhenius equation,

expressed as k+ = ν0 exp
(
−β∆G‡), where ν0 represents a frequency factor and ∆G‡

denotes the activation free energy barrier. The attachment rate is assumed to be isotropic

across the crystal surface. The detachment rate of a growth unit j−i is site-dependent,

and characterized by the number of bonds broken, i, along the kink axis.

The master equation for the single-height kink is,

2ρ20(j
+ + j−2 ) + [2ρ2ρ0(j

+ + j−1 )] = 2
ρ21
4
(j+ + j−0 ) + [2

ρ21
2
(j+ + j−1 )] (5.2)

It can be shown that the terms in square brackets cancel out, through substitution of

Eq. 5.3 in Eq. 5.2. The double-height kink steady-state equation is,

ρ21
2
(j+ + j−1 ) = ρ2ρ0(j

+ + j−1 ) (5.3)

In contrast to kinks, the flat portions of a step are characterized by edge junctions with

a density of ρ0.

2
ρ21
4
(j+ + j−0 ) = 2ρ20(j

+ + j−2 ) (5.4)

The equations are linearly-dependent and combined with the normalization equation to
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solve numerically.

ρ0 + ρ1 + ρ2 = 1 (5.5)

The equation set is then fed to the numerical engine to solve for the kink densities. Within

the numerical engine, once the kink densities are solved for, they are then supplied to

Eq. 5.6 to obtain the step velocities. The step velocity model is built by summing over

all the attachment and detachment rates such that

v = aP (
ρ21
4
j+ + ρ20j

+ + ρ2ρ0j
+ +

ρ21
2
j+)− (

ρ21
4
j−0 + ρ20j

−
2 + ρ2ρ0j

−
1 +

ρ21
2
j−1 ) (5.6)

where the first term is the collection of all attachment events and the second term is

the collection of all detachment events. The symbolic engine effectively generates Eqs.

5.2-5.6.

Application to Surface Kinetics: AB Crystal

AB crystals, with two molecules in the unit cell, consist of steps belonging to the

three types of configurations depicted in Fig. 5.5. The molecules are identical in solution

but differently oriented in the unit cell. (Z = 2) The SSSF implementation depends on

the local step structure and hence the step configuration. In this section, we illustrate

the network theory application to the step configuration with alternate rows of A and

B. A general Z = 2 crystal may display steps of all configurations and hence the model

equations must be derived for each of the step configurations in silos. Appendix D

elaborates on assignment of configuration to steps based on PBC networks.

We start from identification of the predominant kinks: A and B single kinks, AB and

BA double kinks and A and B edges. Major sites composed of the predominant kinks

are then identified in a manner similar to the Kossel step. The interactions between

the major sites become the most-likely events. The surface site network is recast into a
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Figure 5.5: Step configurations occurring along an AB crystal (Z = 2) and corresponding
illustrations of PBC networks. (dots are molecules, lines are interactions) PBC networks
are generated using the software ADDICT.[32]

graph network shown in Fig. 5.6 through an interpretation of major sites and most-likely

events as nodes and arcs, respectively. The nodes and arcs are also embedded with the

necessary attributes to provide the inputs to model development.

Li et al’s[33] modified random-rain model is utilized for the elementary attachment

rates similar to the previous Kossel crystal. The attachment rate j+ is isotropic, and

the detachment rate j−{A,B},i characterized by the growth unit detached and i neighbors

along the kink axis. The elementary rates are embedded in arc attributes of pertaining

events. The surface partition functions Q1 and Q2, which depend on the surface topology,

are obtained via investigating surface correlations. (Refer to Appendix C) The partition

functions are utilized for modeling density of major sites and become part of the node

attributes. For alternate A and B rows in Configuration 1, the partition functions are
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(a)

(b)

Figure 5.6: Crystal face with two molecules in the unit cell, AB crystals, constitute
steps of three configurations depicted in Fig. 3.2, out of which associated diagrams for
configuration 1 with alternate A and B rows are illustrated: a) Surface kinetics diagram
depicting the most-probable event space M within the sample space of all events U. b)
The corresponding graph network diagram for the most-probable events along the AB
step. The nodes denote the major sites and the arcs denote the most-probable events
capturing the interactions between the nodes. The attachment and detachment events
are denoted by the solid and dashed lines, respectively.

given by

Q1 = ρA0 +
ρA
2

+
ρB
2

+ ρAB (5.7)

Q2 = ρB0 +
ρA
2

+
ρB
2

+ ρBA (5.8)
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where ρA, ρB, ρAB, ρBA, ρA0, ρB0 are the densities of A kink, B kink, AB kink, BA

kink, A edge junction and B edge junction, respectively. Parsing through the most-likely

events, allows us to generate the master equations for the predominant kink densities as

follows: The master equation for A kink is,

j+
ρ2B0

Q2

+ j−A,2

ρ2A0

Q1

− j+
ρ2A
4Q2

− j−A,0

ρ2A
4Q1

+[(j+ + j−A,1)
ρABρA0

Q1

− (j+ + j−B,1)
ρAρB
2Q2

+(j+ + j−B,1)
ρBAρB0

Q2

− (j+ + j−A,1)
ρAρB
2Q1

] = 0

(5.9)

where j+: attachment rate, j−A,i: detachment rate of A from a site with i neighbors along

kink direction, j−B,i: detachment rate of B from a site with i kink neighbors. Master

equations are constructed for B kinks,

j+
ρ2A0

Q1

+ j−B,2

ρ2B0

Q2

− j+
ρ2B
4Q1

− j−B,0

ρ2B
4Q2

+[(j+ + j−A,1)
ρABρA0

Q1

− (j+ + j−B,1)
ρAρB
2Q2

+(j+ + j−B,1)
ρBAρB0

Q2

− (j+ + j−A,1)
ρAρB
2Q1

] = 0

(5.10)

Similarly, the symbolic engine correctly generates master equations for other types of

kinks and the complete set is provided in Chapter 3. It can be shown that the terms in

square brackets cancel out.

The master equations are then supplied to the Numerical engine for solution. The

step velocity model is the aggregate of the net attachment rates of each of the growth

units.

v = aP (JA + JB) (5.11)

where aP is the average step propagation length. JA, the net attachment rate of A is the
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sum of all the attachment event rates (first bracket) and deducting all the detachment

event rates (second bracket) which displace A growth units.

JA = j+(
ρB0

Q2

+
ρAρB0

Q2

+
ρ2A
4Q2

+
ρAρB
2Q2

+
ρBAρB0

Q2

)

−(j−A,2

ρ2A0

Q1

+ j−A,1

ρAρA0

Q2

+ j−A,0

ρ2A
4Q1

+ j−A,1

ρBρA
2Q1

+ j−A,1

ρA0ρAB

Q1

)

(5.12)

Similarly, the net attachment rate of B is the sum of all the attachment event rates (first

bracket) and deducting all the detachment event rates (second bracket) which displace

B growth units.

JB = j+(
ρ2A0

Q1

+
ρBρA0

Q1

+
ρ2B
4Q1

+
ρABρA0

Q1

+
ρBρA
2Q1

)

−(j−B,2

ρB0

Q2

+ j−B,1

ρBρB0

Q1

+ j−B,0

ρ2B
4Q2

+ j−B,1

ρAρB
2Q2

+ j−B,1

ρBAρB0

Q2

)

(5.13)

Since the net attachment rates are equal, to maintain the stoichiometry of the unit cell,

JA = JB = J . The step velocity becomes v = 2aPJ. The step velocity models in Eq.

5.12-5.13 and the master equations are effectively generated by the symbolic engine and

supplied to the numerical engine for estimating NEQ kink densities and subsequently the

step velocity.

Application to Surface Kinetics: ABCD Crystal

Crystals with four molecules in the unit cell grow via lateral growth of various types

of steps. Depending on the crystal topology, steps present themselves as belonging to

one of the several plausible configurations, some of which are depicted in Fig. 5.7.

Appendix D elaborates on assignment of configuration to steps based on the underlying

PBC networks. Each of the step configurations has a unique set ofmajor sites and surface

events. Each of the step configurations can be depicted by distinct graph networks. Fig.
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5.8 depicts the graph network for step configuration 1 with serial rows of growth units.

In this section, we briefly discuss and illustrate the graph network for configuration 1.

Similar to the previous steps, we start from identification of the predominant kinks and

Figure 5.7: Example step configurations for crystals with 4 molecules in the unit cell:
1) rows of single growth units, 2) rows comprising of a subset of all growth units, 3) a
single row-type consisting of all growth units. Illustrations of periodic bond chains for
corresponding step configurations in crystal networks. PBC networks are generated using
the software ADDICT.[32]

subsequently the major sites, which form the nodes within the graph network of Fig. 5.8.

The most-likely events are then identified based on the interactions of major sites. The

graph network representation of the surface kinetics facilitates development of steady-

state equations of the predominant kinks. For instance, consider the nucleation event of

A molecule atop a B edge, such an event forms A kinks and hence the rate of the event

will contribute to the A kink steady-state equation. Similarly, the contributions of all
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the events to the various types of kinks are collated in the form of a master equation set.

For a step with four growth units and configuration type 1 with cyclic rows of A, B, C

and D, the partition functions are given by,

Q1 = ρA0 + ρA/2 + ρB/2 + ρAD/2 + ρCB/2

Q2 = ρB0 + ρB/2 + ρC/2 + ρBA/2 + ρDC/2

Q3 = ρC0 + ρC/2 + ρD/2 + ρCB/2 + ρAD/2

Q4 = ρD0 + ρD/2 + ρA/2 + ρDC/2 + ρBA/2

where ρA, ρB, ρC , ρD, are the A, B, C and D single-height kinks, respectively. ρAD, ρDC ,

ρCB, ρBA are the double-height kinks and ρA0, ρB0, ρC0, ρD0 are the respective flat edge

A, B, C and D edge junctions, respectively. Parsing through the most-likely events for

the ones forming or destroying specific kink types generates the master equations. The

A kink master equation becomes,

j+
ρ2D0

Q4

+ j−A,2

ρ2A0

Q1

− j+
ρ2A
4Q4

− j−A,0

ρ2A
4Q1

+[j+
ρADρC0

Q3

+ j−A,1

ρADρA0

Q1

− j+
ρAρD
2Q4

− j−D,1

ρAρD
2Q4

]

+[j+
ρBAρD0

Q4

+ j−B,1

ρBAρB0

Q4

− j+
ρBρA
2Q1

− j−A,1

ρBρA
2Q1

] = 0

(5.14)

where j+ is the attachment rate and the detachment rate j−{A,B,C,D},i is characterized by

the growth unit detached and i neighbors along the kink axis (i broken interactions). It

can be shown that the terms in square brackets cancel out. The B kink master equation
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is,

j+
ρ2A0

Q1

+ j−B,2

ρ2B0

Q2

− j+
ρ2B
4Q1

− j−B,0

ρ2B
4Q2

+[j+
ρBAρD0

Q4

+ j−B,1

ρBAρB0

Q4

− j+
ρBρA
2Q1

− j−A,1

ρBρA
2Q1

]

+[j+
ρCBρA0

Q1

+ j−C,1

ρCBρC0

Q1

− j+
ρCρB
2Q2

− j−B,1

ρCρB
2Q2

] = 0

(5.15)

It can be shown that the terms in square brackets cancel out. Similarly, the rest of the

master equations are effectively generated by the tool within the symbolic engine, which

are then sent to the numerical engine for their solution.

5.5 Numeric Engine

The model equations generated by the symbolic engine are interpreted and solved

within the numeric engine. The symbolic engine utilizes the SymPy library within

python. The numerical engine utilizes the SciPy and NumPy libraries within python.

The symbolic engine provides a nonsquare overdetermined system of equations. This

is because for m predominant kink types, we have m master equations, which forms a

linearly-dependent set of equations. The set in then combined with a normalization con-

dition, east-west equivalence condition, and n configurational constraints for n growth

units in the unit cell. Hence we have a total of n+m+2 algebraic equations for m kink

densities to solve for. The nonlinear system solvers require a well-defined square set of

equations.

Within the Numeric engine, the algebraic system of equations (in variable x) are cast

in a matrix form M of coefficients, wherein number of rows is equal to the number of

equations and number of columns is equal to the number of terms within the equation

set. An additional column matrix y consisting of the terms within the equation set is also

generated, such that matrix multiplication will give the original set of algebraic equations
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x = My. The function rref within SymPy library performs matrix operations on the

rectangular coefficient matrix to convert it to a reduced row-echelon formM ′. This allows

weeding out linearly-dependent equations and transform the system of equations into a

well-defined square system x′ = M ′y. The square system x′ is then fed as input to a

nonlinear system solver fsolve in python, which uses a modified Powell method based

on trust region.[34, 35]

Owing to the elementary rates j+ and j− in Eq. 5.1, the equations have several

exponential terms built into them, with widely varying exponent values depending on

the magnitude of interactions along all directions which are the kink, edge and terrace

axes as depicted in Fig. 5.1. With divergent parameter values, the kink densities to

be solved for, are also orders of magnitude apart from each other. This results in a

hyper-sensitivity to initial guess caused by the curse of the exponential for crystals with

pronounced interaction asymmetry. The higher the interaction anisotropy, the greater is

the order of magnitude difference of kink densities. Pronounced numerical instabilities

are observed as follows:

1. Multiple solutions: The nonlinear set of equations may have multiple feasible solu-

tions. Hence, proper selection of initial guess is vital.

2. Poor Convergence: For certain extreme anisotropies, the solver may fail to converge

or converge slowly owing to the requirement of fine descretization and increase the

computational expense.

To tackle the above challenges, we perform parametric continuation. This is where

the parameters are varied incrementally and systematically from a known fixed point

to the parametric values of the crystal system of interest. This is possible because

we know the solution at the Kossel point. Since the kink densities for Kossel crystals

(crystals with centrosymmetric molecules) can be analytically estimated.[14] We simplify
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the interactions along the crystal step of interest into a reduced Kossel form such that

the growth units within the steps have identical energetic environments. This can be

done via averaging the interaction networks of the multiple growth units along the step.

The interaction spheres can then be incrementally varied by introducing anisotropy and

methodically approaching the desired fully asymmetric values from the known solution

at the Kossel point. In Fig. 5.9, the final crystal step interactions are reduced to a

corresponding Kossel step by dissolving asymmetries such that the growth units become

identical. Anisotropy is then gradually and systematically introduced along various axes

by navigating through several intermediate crystal steps. In each stage, the equation set

with parameters from the intermediate crystal step are solved for kink densities which

are supplied as guess values for the next stage. The process continues in an incremental

manner until full anisotropy is accounted for and the parameters of the final crystal are

reached.

Figure 5.9: Illustration of parametric continuation performed to arrive at the solution to
the final crystal step with anisotropic bonds. The solid dots are the growth units and solid
lines are the interactions. Different colored lines and dots, depict distinct interactions and
growth units, respectively. The interaction networks are generated using ADDICT.[32]

Subsequent calculation is the estimation of step velocity based on the model received

from the symbolic engine. The estimated kink densities from the numerical system solvers

are then utilized for step velocity predictions.
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5.6 Morphology Predictions and ADDICT

The software ADDICT[32, 36, 37] is a crystal morphology prediction tool which al-

lows calculation, visualization, and analysis of the crystal habit formed as a function of

the growth environment such as temperature, supersaturation and solvent. ADDICT

is a culmination of distinct calculations which constitute the multi-scale mechanistic

modeling framework, solid-state periodic bond chains algorithm, solvent effects and crys-

tallographic faces type calculations. Section 1.5 provides a comprehensive stage-wise

discussion of ADDICT’s methodology to calculate morphology predictions through in-

puts of crystallographic cif file, Gaussian electron density calculations (partial charges

on atoms), growth environment (design variables).

Such a methodology allows fast mechanistic model-based calculations for crystal mor-

phology predictions, since it does not require some of the expensive simulation techniques.

The enumerated calculations are performed in silos, which allows us to integrate the graph

theoretic tool at stage 3) to provide the NEQ kink densities and step velocities, retaining

the rest of ADDICT’s framework to predict morphology based on SSSF. This serves as

a validation for growth models by comparing how the crystal habit fares against exper-

imental observations for the given conditions of growth. We followed this methodology

and applied it to morphology prediction of real drug molecules using CLP forcefield and

vOCG solvent model.

5.6.1 Tazofelone

Tazofelone form III is a 5-lipoxygenase inhibitor and a potent antioxidant.[38] The

crystal structure of Tazofelone with CSD ref code WIMBAV13 is used for the calculations.

Tazofelone form III crystallizes in the space group P 1̄. The unit cell has 4 molecules

in the unit cell and two asymmetric units, hence Z = 4 and Z ′ = 2. The unit cell
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parameters are a = 11.2917 Å, b = 11.9167Å, c = 14.9597Å, α = 77.827◦, β = 75.208◦,

γ = 71.585◦. The experimental observation is taken from the literature[38], shown in

Fig. 5.10a. Tazofelone crystals are grown from water under slow evaporation at room

temperature. Fig. 5.10b depicts the SSSF-based morphololgy prediction of Tazofelone

grown from water at T = 298K and S = 1.04. The Tazofelone morphology predicted by

the tool is characterized by a rhomboidal plate-like shape, demonstrating good agreement

with the experimental observations.

(a) (b)

Figure 5.10: (a) Experimental shape observations of Tazofelone (CSD ref
code:WIMBAV13) in toluene. Figure reproduced with permission from Price et
al.[38]. Copyright 2014 Elsevier B.V. (b) Model-based in-silico morphology prediction
of Tazofelone in toluene.

5.6.2 Benzoic Acid

Benzoic acid is a carboxylic acid, commonly used as a drug or preservative. The

crystal structure of benzoic acid with CSD ref code BENZAC02 is used for the calcula-

tions. Benzoic acid molecules crystallize in the space group P21/c. The unit cell has 4

molecules in the unit cell and one asymmetric unit, hence Z = 4 and Z ′ = 1. The unit cell
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parameters are a = 5.4996Å, b = 5.1283Å, c = 21.950Å, α = 90◦, β = 97.37◦, γ = 90◦.

The experimental observation is taken from the literature and shown in Fig. 5.11a. Ben-

zoic acid crystals were grown in water from cooling crystallization and allowed to cool

naturally.[39] Fig. 5.11b depicts the SSSF-based morphololgy prediction of benzoic acid

monomer grown from water at T = 298K and S = 1.1. Benzoic acid molecules often form

dimers in various solvents.[40] Hence, calculations are also performed using the benzoic

acid dimer as the choice of growth unit. Fig. 5.11c depicts the SSSF-based morphololgy

prediction of benzoic acid dimer grown from water at T = 298K and S = 1.1. The

in-silico prediction for the dimer is more rod-like, while the morphology predicted for the

monomer is more needle-like. Both predictions demonstrate good qualitative agreement

with the experimental observations.
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(a) (b)

(c)

Figure 5.11: (a) Experimental shape observations of benzoic acid (CSD ref
code:BENZAC02) in water. Figure reproduced with permission from Liang et al.[39].
Copyright 2017 Elsevier Ltd. (b) Model-based in-silico morphology prediction of benzoic
acid monomer in water, (c) Model-based in-silico morphology prediction of benzoic acid
dimer in water.
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5.6.3 Lovastatin

Lovastatin is an API used for reducing the risks associated with cardiovascular dis-

eases and cholesterol.[41] The crystal structure of lovastatin with CSD ref code CEKBEZ

is used for the calculations. Lovastatin molecules crystallize in the space group P212121.

The unit cell has 4 molecules in the unit cell and one asymmetric unit, hence Z = 4 and

Z ′ = 1. The unit cell parameters are a = 22.154Å, b = 17.321Å, c = 5.968Å, α = 90◦,

β = 90◦, γ = 90◦. The experimental observation is taken from the literature and shown in

Fig. 5.12a. Lovastatin crystals are grown in isopropanol at low supersaturation (5-10%)

and at 16◦C in a quiescent crystallizer.[4] Fig. 5.12b depicts the SSSF-based morphololgy

prediction of lovastatin grown from isopronaol at T = 289K and S = 1.1. The in-silico

lovastatin morphology predicted by the tool has a needle-like shape, demonstrating good

agreement with the experimental observations.

(a) (b)

Figure 5.12: (a) Experimental shape observations of lovastatin (CSD ref code: CEKBEZ)
in isopropanol. Reproduced with permission from Kuvadia and Doherty[4]. Copyright
2011 American Chemical Society. (b) Model-based in-silico morphology prediction of
lovastatin in isopropanol.
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5.7 Discussion

In previous sections, we studied the operational framework of the new symbolic-

numeric tool, and its ability to generate and solve model equations based on SSSF to

provide NEQ kink densities and step velocity for a given step configuration. The tool can

be integrated into ADDICT to allow its application to real molecular crystals for rapid

morphology predictions. The tool has been successfully tested on crystals with one, two

and four noncentrosymmetric molecules in the unit cell. This leads to the question of its

application to a general crystal with six, eight or more molecules in the unit cell.

A crystal type with n molecules in the unit cell comprises of different types of step

configurations. The initial objective is identification of all the permissible configurations

possible for steps within the crystal type. A step configuration is defined by the structural

environment of growth units within the step. Identification of all configurations boils

down to recognizing distinguishing environments of growth units. The configurations

can be broadly categorized based on the number of growth units within a single row such

as: 1) rows of a single growth unit (step 1 of Fig. 5.7), 2) rows of two growth units

(step 3 of Fig. 5.7), and so on. Once the configurations are identified, the appropriate

configuration must be assigned from PBC networks. Refer to Appendix D for elaborate

discussions on both permissible and impermissible configurations and their assignment.

The next objective is the generation of master equations. Given the step configura-

tion, the symbolic-numeric tool employs its graph theoretic approach to develop steady-

state equations. The size and number of equations will depend on the number of growth

units. Greater the number of growth units, the more will be the number of major sites,

most-likely events and subsequently the number of equations. The increased complex-

ity may have a compounded effect on numerical idiosyncrasies discussed in Section 5.5,

necessitating need for advanced solvers, effective continuation techniques and scaling
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methods.

5.8 Conclusion

We have developed a generalized nonequilibrium crystal growth model based on a

steady-state framework. We programmed a symbolic-numeric tool which allows automa-

tion and computational implementation of the framework, SSSF, for variable number of

noncentrosymmetric growth units in the unit cell, Z = 1, 2, 4. The tool consists of two

engines: symbolic and numeric. The symbolic engine utilizes graph theory to generate

the model equations of the step surface. Graph theory provides an organized framework

to represent the step surface elements such as surface sites and their interactions through

surface events. Such a representation allows effective transfer of information for model

building in the symbolic space.

The model-equations developed in the symbolic engine are then sent to the numerical

engine for their solution. The model equations are an overdefined set of algebraic equa-

tions: for n kink densities, n+m+ 2 equations. (m is the number of growth units along

the step) The numerical engine performs matrix operations to reduce the superfluous set

of equations and derive a final set of well-defined equations. A numerical system solver

is then employed to arrive at the NEQ kink densities which satisfy the equations. A

parametric continuation is performed, wherein the anisotropy within step interactions

is dissolved to obtain reduced Kossel-equivalent interaction parameters. The solution is

known for a Kossel step, and it acts as a known fixed point.[14] The interactions are then

incremented systematically, by gradually introducing anisotropy to eventually reach the

final step interaction parameters.

The inputs to the tool are the crystal type (e.g. Kossel, AB, ABCD, etc), the step

configuration type (e.g. Kossel step, alternate A and B rows, etc.), the growth conditions
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(e.g., supersaturation and temperature), and the network of interactions around all the

growth units along the step. The tool allows estimation of important growth parameters

in mechanistic crystal growth models, i.e., kink densities and step velocity. The inte-

gration of the tool within ADDICT allows its application to complex organic molecules

for prediction of morphology from the relative growth rates of crystal facets. The graph

theoretic tool-based morphology predictions are compared with experimental shapes of

several drug molecules and demonstrates advantages of the tool to allow rapid crystal

property predictions for real API asymmetric compounds.

The tools allows the versatility to generate model equations and solve them for a

given step configuration of crystals with various growth units. The tool has been tested

for crystals with Z = 1, 2, 4. For crystals with Z > 4, the tool can still be applied once

the various step configurations are identified, although it has not been tested for Z > 4

crystal types.
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Figure 5.8: Graph network diagram for the step configuration with alternate rows of four
growth units A, B, C and D. The nodes denote the major sites and the arcs denote the
most-probable events capturing the interactions between the nodes. The attachment and
detachment events are denoted by the solid and dashed lines, respectively.
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Chapter 6

Summary, Conclusion and Future

Directions

6.1 Summary

Crystal growth is a multi-scale phenomenon spanning various time and length scales,

from the molecular level incorporation of growth units along surface sites to the layered

growth of 2D nuclei. In contrast to the nonmechanistic models, the multi-scale mechanis-

tic growth models best capture the physics and chemistry of crystal growth and enable

environment and system-specific prediction of crystal properties. The mechanistic mod-

els offer the flexibility to capture variations in growth environments and be coupled with

mass and heat transfer equations to provide a dynamic evolution of properties. However,

mechanistic models hinge on fundamental understanding of the process to mathemati-

cally encapsulate the mechanisms of crystal growth.

Steps along crystals play a critical role in building faces in a layered manner. The

fundamental parameters which stand out within the mechanistic growth models are the

step attributes of step velocity and kink densities. The kink densities are frequently ap-
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proximated to their equilibrium value and Boltzmann distribution is utilized for modeling

the equilibrium kink densities. We demonstrated that kink densities are indeed strong

functions of the supersaturation and hence vary with supersaturation and considerably

influence the step velocity predictions. Consequently, capturing the nonequilibrium na-

ture of kink densities by accounting for the effect of supersaturation is paramount to

accurate predictions of growth rates and subsequently the crystal properties.

To that effect, we proposed the novel theory of Simplified Steady-State Framework

to estimate NEQ kink densities and step velocity. SSSF is based on identification of the

most concentrated surface sites and studying their interactions to identify the highest

probability surface events. The rates of such events are then modeled to construct a

steady-state balance on the concentration of kinks and generate the so-called master

equations. The master equations are nonlinear in kink densities and the parameters

are supersaturation, temperature and the growth unit interactions along kink, edge and

terrace axes. The equations are then solved simultaneously in a nonlinear system solver

to provide the NEQ kink densities in a numerical calculation. The step velocities are

then estimated as a function of the calculated NEQ kink densities.

We start with application of SSSF to the simplest crystal - a Kossel Crystal (simple

cubic model crystals with isotropic interactions). Centrosymmetric molecules have iden-

tical interaction spheres and behave in a Kossel-like manner.[1] The NEQ kink densities

as well as step velocity are validated by kMC simulation data from literature. [2] The

software ADDICT was deployed to enable the application of SSSF to real crystals, by

integrating SSSF in place of the in-built step velocity models into ADDICT.

ADDICT[3–5] is a mechanistic crystal growth model-based morphology prediction

software. The software performs solid-state crystal energetic calculations to identify

the important crystal flat F faces and the strong chains of interaction (PBCs) which

form the backbone of steps along these faces. The energetic calculations along with
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in-built multi-scale growth models allow estimation of step velocities for each of the

steps on each of the crystal facet. The step velocities are then used for continuum-

scale models within ADDICT to estimate relative crystal growth rates of the faces. The

relative growth rates allow construction of convex hull, i.e., the crystal morphology to

provide rapid (order of seconds to minutes) crystal habit predictions and analysis of

morphology. Such an architecture combines solid-state, surface chemistry calculations,

atomistic and continuum crystal growth models, geometric construction algorithms in

silos. The compartmentalization affords us the flexibility to integrate SSSF model in place

of the in-built step velocity models within ADDICT’s infrastructure. Thereby allowing

us to test our new approach to real molecular crystals of varying levels of complexity

for a wide range of growth solvents and supersaturation and temperatures, as well as

polymorphs.

We then applied the SSSF model utilizing ADDICT to shape predictions for real

molecular crystal of naphthalene (CSD ref code: NAPHTHA10), and orthorhombic

rubrene (CSD ref code:QQQCIG08). The model-based morphology predictions demon-

strate excellent agreement with experimental shape observations for a range of crystal

systems.

Having successfully applied the framework to Kossel and centrosymmetric molecules,

we move to crystals with the next immediate level of complexicity - AB crystals (molecu-

lar crystals with two growth units in the unit cell). It should be noted that the molecules

A and B are the same component and are identical in the solution phase, but incorporate

into the crystal at different orientations and hence characterized as different growth units.

The growth units are allowed to be symmetrically nonequivalent i.e. Z = 2 and Z ′ = 1, 2,

where Z is the number of species in the unit cell and Z ′ is the number of asymmetric units

in the unit cell. The multiplicity of molecules within the unit cell results in different step

configurations in AB crystals, such that each configuration comprises of different types
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of kink sites and surface events and need to analysed individually. In AB crystals, a total

of three configurations are identified: alternate rows of A and B, alternate columns of A

and B, checkered A-B pattern. The SSSF-based steady-state equations are then derived

for each of the three configurations.

Unlike the Kossel crystals, for crystals with multiple growth units, the surface sites

are no longer independent of each other. The sites along step surfaces are spatially cor-

related to maintain the step topology. This renders the Boltzmann distribution-based

equilibrium models for AB crystals and beyond, inaccurate even at equilibrium let alone

under the nonequilibrium conditions of growth that crystals are subjected to. This is

because statistical independence of configurations is a key assumption of the Boltzmann

distribution. This further reinforces the need for NEQ models for the vast majority of

crystals of asymmetric molecules. SSSF offers the flexibility to account for the spatial

correlations between kink sites, in the form of conditional probabilities. This allowed for

effectively capturing the kink densities not only at equilibrium as depicted in Fig. 4.2,

but also the NEQ nature of kink density as depicted in Fig 4.3. The step velocities, hence-

forth estimated from the NEQ kink densities, are compared with kMC simulations and

exhibit excellent agreement for all the three step configuration types. (refer Figs. 3.9a

and 4.4b) Having validated the model through simulation data, we then applied SSSF

to several active pharmaceutical ingredients such as doravirine precursor (OWIVEY),

celecoxib (DIBBUL), β-glycine (GLYCIN), trimethoprim (AMXBPM10), among others.

The application to real crystals requires us to assign appropriate configurations to the

PBCs identified for each of the crystal facets within ADDICT. SSSF can then be im-

plemented for each of the steps to obtain their step velocities and subsequently the face

growth rates. The model-based morphology predictions ranged a wide array of geometric

shapes including needle, plate and rhomboidal shapes and display good agreement with

the corresponding experimental observations.
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Crystals of the immediate next complexity are the crystals with four or more molecules

in the unit cell. Such crystals will naturally have multiple step configurations. In order

to apply the theory to a real crystal, we must first identify all the potential configurations

of steps arising for such a crystal with the specific Z value. The model equations must

then be derived and solved for each of the configurations identified. Although SSSF lays

out the recipe for recognizing the major sites, surface events and subsequent creation of

steady-state equations, we can imagine the increase in the number of sites to account for

with increase in the number of molecules in the crystal repeating unit. This prescribes

the need for a practical tool with the ability to handle various crystal types with variable

number of molecules in the repeating unit and the various step configurations for such

crystals.

To that effect, we developed a symbolic-numerical computer program in python which

effectively automates implementation of SSSF and expands the applicability to crystals

with variable number of molecules in the repeating units. The computational tool com-

prises of two separate engines which work in conjunction to derive master equations and

their solution to provide NEQ kink densities and step velocity for the step of interest.

The symbolic engine performs the function of identification of the concentrated major

sites and explores their interactions to arrive at the most-probable surface events. Graph

network theory is utilized to represent the network of surface sites and their interac-

tions. Such a network representation allows systematic embedding of respective node,

arc and graph properties and hence derivation of steady-state equations given the step

configuration of a specific crystal type. The model equations generated by the symbolic

engine are then supplied as inputs to the numerical engine. The numerical engine also

accepts specific crystal and growth environment parametric inputs, such as the crystal

surface interactions, supersaturation and temperature. With the given conditions and

model equations, the numerical engine then employs nonlinear system solvers to solve the
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equations for NEQ kink densities and then uses the step velocity model (also supplied

by the symbolic engine), to calculate the step velocity.

We considered the ABCD crystals (with four molecules in the repeating unit) as a

proof-of-concept for our computational tool. A total of seven configurations are identified

for such a crystal. The symbolic engine performs equation derivation; the numerical en-

gine performs equation solution for all the step configurations. Similar to the AB crystals,

the application of the model to real crystals requires identification of PBCs which form

the basis of steps and their assignment of appropriate configuration type so the appro-

priate equations can be used for its step velocity calculations. The tool has been tested

for several APIs such as Lovastatin (LOVAST), benzoic acid (BENZAC02), Aspirin (AC-

SALA01), Tazofelone (WIMBAV13), among others. The model-based shape predictions

aligned with experimental observations for the APIs and other organic molecular crystals,

thereby exhibiting the potential of the framework in providing rapid in-silico morphology

predictions of complex organic molecules.

To summarize, we have developed a novel theory that allows predictions of funda-

mental crystal growth properties such as NEQ kink densities and step velocities. This

is in contrast to the previous equilibrium-based kink density models which are deficient

due to their lack of accountancy of spatial correlations. The model has been validated

for several complex molecular crystals with 1, 2 and 4 molecules in the unit cell. Based

on the CCDC database, this constitutes to about 34000, 90000 and 200000 crystals,

respectively, thereby expanding the applicability of current growth models to realistic

crystals. The model has been independently tested with kMC from the literature as

well as experimental data from literature. Further, we devised a computational tool for

deployment of the theory to construct and solve equations for a wide range of molecular

crystals with variable number of molecules in the unit cell (e.g. 1,2,4). This modeling

approach will play a crucial role in guiding the design, control, and optimization of crys-
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tallization processes and promote the development of complex molecular crystals with

precisely tailored properties.

6.2 Future Directions

Reliable models are essential in all emerging areas of research. The widespread usage

of crystals is industries necessitates fundamental research in mechanism of crystal growth

at all length scales, from atomic to continuum, through a combination of theoretical,

experimental and simulation approaches. Mechanistic crystal growth modeling continues

to be a predominant avenue of research. We address scope of improvement and further

areas of research in the following points:

1. Numerical Engine: For crystals with high anisotropy in interactions, the kink densi-

ties are usually several orders of magnitude apart from each other, at times as high

as 1020. This results in numerical idiosyncrasies and a hypersensitivity to initial

guess and the solver encounters difficulty resolving the solution. Parametric contin-

uation allowed proper tracing the solution curves for different degrees of anisotropy

along different crystallographic axes. However, the method falls short for some

extreme crystals such as bulkier molecules with high molecular weights or extreme

anisotropy crystals (difference of > 15kBT between solid-state interactions). Exam-

ples are ritonavir and paracetamol. This necessitates alternate advanced numerical

solvers with high accuracy, scaling techniques, and novel strategies to handle the

wide distribution of kink densities. A potential strategy would be treating the

steady-state equations like differential equations and then solving the system of

steady-state and configurational constraint equations dynamically as a differential-

algebraic equation initial value problem to arrive at the steady-state.
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2. Periodic bond chain algorithm: ADDICT is employed in this work for application

(a) (b)

Figure 6.1: Periodic bond chain network for faces of centrosymmetric and non-
centrosymmetric growth units: a)Face (110) of naphthalene (centrosymmetric growth
unit) (b) Face (011) of paracetamol (non-centrosymmetric growth unit). Different line
colors denote different bond energies, and the bond strength is proportional to the line
thickness.[1] The PBCs are generated using the software ADDICT.[3]

of SSSF to real molecules. The PBC algorithm forms the heart of solid-state cal-

culations within ADDICT. The algorithm is in charge of resolving the network of

interactions along crystal face slices into two or more chains/vectors which encapsu-

late the majority of interactions within the slice. The PBCs depict most-stable steps

on these faces and form the basis of interactions fed into step velocity calculations.

As illustrated in Fig. 6.1, the PBC networks of centrosymmetric molecules such as

naphthalene are much simpler with chains (e.g. the horizontal red-colored PBC)

comprising of a single type of bond and growth units having identical interaction

spheres. On the contrary for noncentrosymmetric molecules such as Paracetamol,

the chains comprise of multiple types of bonds, the growth units along a chain are

no longer collinear, their interaction spheres asymmetric and distinct. In such net-

works, account for the competing effects of chain strength and chain ’straightness’
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becomes crucial. The current algorithm in ADDICT calculates a meta-parameter

termed as the attractiveness ratio as a function of average chain strengths, angle

of interactions within a chain and step propagation length, to rank the chains in

the decreasing order of their attractiveness ratios to arrive at the best two or three

PBCs. The algorithm necessitates an upgrade to state-of-the-art PBC algorithm[6,

7], which are better equipped at handling the complexity of asymmetric interaction

networks.

3. Equilibrium kink density modeling of crystals with asymmetric molecules: In this

work, we have proposed a framework for evaluating the NEQ kink density, which can

effectively provide the equilibrium kink densities. However, the current equilibrium-

based models in the literature do not account for the surface correlations between

kinks. Potential research studies can explore the incorporation of surface correla-

tions in equilibrium kink density formulations.

4. Absolute growth rate predictions: Absolute growth rate predictions hinge on esti-

mation of elementary rate constants k+ to the physical reaction[8] of incorporation

of molecules within the crystal surface. Merely the relative growth rates are re-

quired to predict the shape of a crystal, and hence k+ need not be estimated.

This is because rate constants are all multiplicative constants in growth models

and cancel out for relative growth rates in case of pure component crystals. In

principle, the free energy landscape of the substrate desolvation and subsequent

crystal attachment forms the basis of determination of the rate constant. Crystal

growth and dissolution are complex processes with several local free energy minima

separated by barriers, resulting in nucleation and crystal growth to be rare events.

Rare event simulation sampling techniques such as Umbrella sampling[9], Metady-

namics[10], Replica Exchange[11, 12] are key to understanding the chemistry and
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thermodynamics at play at the most fundamental scale of crystal growth. The free

energy landscape obtained from the simulations can then be used to estimate ki-

netic and thermodynamic parameters involved in the model: rate constants of kink

attachment and detachment, detachment-to-solution work, and others. Incorpora-

tion of the values obtained from simulation would provide in silico absolute growth

rate predictions. The simulations can also provide insights about the chemistry

at play such as the effect of solvent molecules on surface events. This will be in-

strumental in identifying which assumptions need reassessment and enable further

improvement in growth models.

5. Cocrystals and Hydrates: Pure component organic molecular crystals are the key

subject of this work. For pure component crystals, the rate constants can be

assumed to be uniform across all facets and hence cancel out in relative growth

rate calculations. However, when the crystal comprises of multiple components

such as in cocrystals and hydrates, the rate constants of elementary surface events

will naturally be different for each of the distinct components. As a result, the rate

constant will no longer cancel out in relative growth rate estimates. Hence rapid

morphology predictions for multi-component crystals is impeded by time-intensive

rate constant analysis, requiring inputs from rare event sampling techniques.

6. Rough growth regime: The stepped and kinked faces are the ones with minimal

in-plane interactions, which results in low barriers to kink formation. This results

in high density of kinks and growth is uniformly favorable across the face. This

is in contrast to layered growth with favorable attachment propelling steps and

consequently normal growth of the face. Mechanistic models cater to the layered

growth regimes where the rate-determining step is the surface integration of growth

units. In the rough growth regime, diffusion effects dominate and mass transfer
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coefficient will determine the face growth rate. In this work, the S and K faces

are arbitrarily assigned a high enough relative growth rate compared to the F face

relative growth rate estimates. In order to effectively capture the growth rates of

S and K faces, rough growth models are crucial which in turn call for knowledge

about the mass and heat transfer conditions in the growth environment.
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Junctions, Sites and Identification of

Major sites

Reproduced in part from the supplementary information with permission from:

Padwal, N.A.; Doherty, M.F., Simple Accurate Nonequilibrium Step Velocity Model for

Crystal Growth of Symmetric Organic Molecules. Crystal Growth & Design 2022, 22(6),

3656-3661.

DOI:10.1021/acs.cgd.1c01366. Copyright 2022 American Chemical Society.

Introduction

The rate of step flow across crystal surfaces is crucial for mechanistic crystal growth

models. The step velocity critically depends on kink density. Chapter 2 introduces

Simplified Steady-State Framework for estimation of NEQ kink densities. The framework

implementation initiates with determination of predominant junctions, which in turn

enable identification of most-concentrated major sites. In this Appendix, we discuss the

definitions of junctions and major sites, the most-likely events and derivation of master
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equations.

Junctions and Sites

Figure A.1: Edge, kink and double-kink junctions and corresponding densities.

As depicted in Fig. A.1, junctions constitute the area of linkages between adjacent

growth units along the step direction. The various types of kinks represent types of

junction. As the kink height increases, more broken-bond interactions are exposed and

the kink density reduces drastically. As a result, the single and double kinks are consid-

ered as predominant junctions within SSSF and multi-height kinks are ignored. Apart

from the various types of kink junctions, an additional junction type is the edge which

characterizes the flat portions of a step. An edge junction exposes the least number of

broken-bond interactions and usually are more concentrated along steps. The edge and

kink densities (ρ0, ρ1, ρ2) refer to the density of junctions. The sum of densities of all

junctions must sum to 1, ρ0 + ρ1 + ρ + 2 = 1, which gives rise to the normalization

condition utilized in modeling equations. Henceforth, kink junctions will be referred to

as simply kinks.

Sites are positions occupied by a growth unit along a step. Sites are characterised by

adjoining junctions. For a Kossel crystal (orthogonal lattice with perpendicular alignment
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of growth units), the various types of sites are depicted in Figs. A.4a-A.4b. A site may

be subjected to 1) an attachment event such that the edge site undergoing nucleation

event in configuration (1) in Fig. A.4a or 2) a detachment of growth unit from the site

resulting in a new site in its place, for example, the pit-formation event at the same site

in configuration (2).

Major Sites

The predominant junctions are the single, double kinks and the edge. Since sites are

made of adjoining junctions, potential sites are identified by shortlisting all possible sites

that can form from the predominant junction. Major sites are the most-concentrated

sites composed of the predominant junctions which are at least as dense as the least

concentrated junction. In order to obtain major sites, we assume edge and kink densities

to be an order of magnitude apart from each other such that ρ0 ∼ 0.9, ρ1 ∼ 0.09,

ρ2 ∼ 0.009, as evidenced from the equilibrium models (Eqs. 1.9,2.2). This allows us to

arrive at the set of major sites as depicted in the most-likely space M in Fig. A.2. The

major sites are also tabulated within the Site column of Table A.1.

Most-likely Events

The major sites are then subjected to attachment and detachment events to identify

the most-likely events which transform sites within the space M and are responsible for

transformation of major sites into other major sites. The most-likely events are depicted

by solid arrows in Fig. A.2. Studying the influence of such events on formation and

destruction of single and double kinks allows construction of master equations.
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Figure A.2: Surface kinetics diagram of a step along a Kossel crystal, depicting the most-
probable event space M within the sample space of all events U.

Site density

The definition of sites as combination of junctions allows us to model densities of site

configurations as the product of densities of independent junctions that form the site.

This is based on the underlying assumption of negligible spatial or statistical correlation

between adjacent junctions which has been found to be acceptable for Kossel crystal.[1]

Hence, site densities are product of constituent junction densities. Density of an edge

site formed by adjacent edge junctions, is ρ0
2. Similarly, a kink site formed by adjoining

kink and edge junctions, will have a density of ρ0ρ1. The positive (west-facing) and

negative (east-facing) kinks contribute equally to single and double-height kink densities,

respectively, since they have identical environments. Hence, positive and negative single-

height kink density is ρ1
2

each. Positive and negative double-height kink density is ρ2
2

each. Consider site configuration 1 in Fig. A.4b, the site of detachment is formed by

adjacent positive kinks(
ρ21
4
) or negative kinks(

ρ21
4
). This results in the density of such a
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site to be
ρ21
4
+

ρ21
4
= ρ12

2
.

Rate Model

Figure A.3: Energy of interactions of a crystal growth unit in different directions. The
interactions are categorised in intraedge (kink), interedge (edge), interslice (terrace) axes.
The kink (ϕK), edge (ϕE) and terrace (ϕT ) energies correspond to broken interactions
along respective axes facing the solution. The reverse kink (ϕRK), reverse edge (ϕRE)
and reverse terrace (ϕRT ) energies correspond to satisfied interactions along respective
axes that hold the growth unit to the crystal. Figure adapted from Tilbury et al.[2]

The rate model described in Section 2.3 is used for modeling rate equations and

briefly described below. Treating the surface integration process like a reaction allows

for modeling the rates.[3–6] Attachment rate is assumed to be independent of site, while

detachment rate depends on the work of detachment [5]. The rate model used for at-
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tachment and detachment rates is

j+ = k+ xsat S (A.1)

j−i = k−
i = k+ e−β ∆Wi (A.2)

where j+ is the attachment rate, k+ is the attachment rate constant, k−
i is the detachment

rate constant, xsat is the saturation mole fraction, S = x
xsat

is the supersaturation, j−i

is the detachment rate from a site with i nearest-neighbors in the step direction (kink

axis), and ∆Wi is the work of detachment from site i. ∆Wi is the summation of broken

bond energy during detachment along the edge, kink or terrace axes and is given by

∆Wi = 2 (i ϕRK + ϕRE + ϕRT ) (A.3)

where, ϕRK , ϕRE, ϕRT denote broken bond energies in reverse kink, reverse edge

and reverse terrace directions, respectively as depicted in Fig. A.3. The prefactor of 2

accounts for the convention that ϕ represents half the bond energy between growth units.

The number of bonds broken depends on the type of site formed upon detachment. For

example, detachment work of kink sites (∆W1) is a summation of reverse kink, edge and

terrace energy. When a pit site (∆W2) is formed, reverse edge, terrace and two reverse

kink bonds are broken.

∆W2 = 2 (2 ϕRK + ϕRE + ϕRT )

For a Kossel crystal, which has equal bond strength in all directions (ϕ), the work of

detachment for a kink and pit site is 6ϕ and 8ϕ, respectively.
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(a) Single kink events (b) Double kink events

Figure A.4: Most-likely surface processes affecting single and double-kink density through
creation and annihilation events.

Simplified Steady-State Framework

The SSSF states that the concentrated major sites and most-likely events occuring

along step surfaces at higher rates, will determine the major supersaturation effects.

Within SSSF, master equations are constructed by balancing the rates of formation with

the rates of destruction of kinks. The most-likely events allow determination of rates

associated with respective kinks. The master equations are then solved simultaneously

to obtain non-equilibrium kink density expressions. We will only be accounting for single-

height and double-height kink junctions to maintain simplicity of the model.

For single height kinks, Fig. A.4a depicts the different events within the most-likely

events, which form or destroy single-height kinks. Nucleation and pit-formation events

produce kinks, while kink collision and de-nucleation events destroy kinks. A stochastic

approach is used to model these processes by accounting for the attachment/detachment

rate and the probability of sites (where attachment/detach occurs). For instance, process

(4) in Fig. A.4a, is an attachment (j+) event at pit sites. Pit sites are formed by adjacent

positive (ρ1
2
) and negative kink (ρ1

2
) junctions. Hence, the rate of the process is modeled

as j+
ρ21
4
. Note that events in Fig. A.4b also affect single-kink density, however these

terms cancel out owing to the double-kink master Eq. (2.8). A factor of 2 preceding all
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terms in Eq. (2.7) accounts for the creation and destruction of two single-kinks in these

events.

Refer to Table A.1 for the major sites and most-likely events their influence on density

of single-height kinks. The configurations in Site column are the major sites. These sites

configurations are subjected to attachment and detachment events. The change in the

number of single-height kinks upon the events is documented in respective columns. Eight

major sites are obtained, out of which only six affect kink creation and annihilation. Note

that that most-likely events inter-convert major sites into each other. Hence sites marked

“−” in columns two and three do not qualify as major sites and are not considered for

devising master equations. Balancing these rates yields a steady-state master equation

for single kinks.

2ρ2 ρ0(j
+ + j−1 ) + 2ρ20(j

+ + j−2 ) = 2
ρ1

2

4
(j+ + j−0 ) + 2

ρ1
2

2
(j+ + j−1 ) (A.4)

Similarly, the most-likely events that affect the density of double-height kinks are

depicted in Fig. A.4b. Detachment and attachment at sites in configurations 1 and 2,

respectively, forms double-height kinks. Attachment and detachment at sites in config-

urations 3 and 4, respectively, destroys double-height kinks. Refer to Table A.2 for list

of major site configurations that affect double-height kink density. Balancing the rates

yields a steady-state master equation for double-height kinks.

ρ2 ρ0(j
+ + j−1 ) =

ρ1
2

2
(j+ + j−1 ) (A.5)

The steady-state master equations for both the kink types, combined with the nor-

malization condition in Eq. (A.6)

ρ0 + ρ1 + ρ2 = 1 (A.6)
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(a) βϕ = 2 (b) βϕ = 2.5

(c) βϕ = 3.0

Figure A.5: Plot of normalised step velocity v/(aPk
+xsat) vs S − 1 for Kossel crystals at

bond energies: (a) βϕ = 2, (b) βϕ = 2.5 and (c) βϕ = 3. kMC simulation data points at
βϕ = 2, 3 are obtained from Joswiak et al.[7] and at βϕ = 2.5 are obtained from Cuppen
et al.[8]

can be solved simultaneously to obtain the following non-equilibrium kink density ex-

pressions:

ρ1 = 2

(
−2ẽp̃+ (ẽ+ 2p̃)

√
ẽp̃

ẽ2 + 4p̃2

)
(A.7)
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ρ2 = 2p̃

(
ẽ+ 2p̃− 2

√
ẽp̃

ẽ2 + 4p̃2

)
(A.8)

where

ẽ = j+ + j−0 = k+xsatS + k−
0 = k+(xsatS + e−β∆W0) (A.9)

and

p̃ = j+ + j−2 = k+xsatS + k−
2 = k+(xsatS + e−β∆W2) (A.10)

Eqs. (A.7) and (A.8) provide non-equilibrium kink density expressions for single and

double-height kinks, respectively. As evident from the rate model, supersaturation de-

pendence derives from j+.

Figs. A.5a, A.5b and A.5c plot normalized step velocity predicted using the non-

equilibrium kink density model (Eqs. (A.7) and (A.8)), multi-height equilibrium kink

density model (Eq. 2.2), and the models by Joswiak et al.[7], Cuppen et al.[8], Voronkov[9]

along with kMC simulations from the literature[7, 8]. Zhang and Nancollas’s[10] model

aligns exactly with Voronkov’s model predictions and hence not shown in Fig. A.5. Step

velocity increases with supersaturation due to increase in attachment rates and kink den-

sity. Step velocity decreases with increase in βϕ at constant S. This is because increase in

inter-molecular bond strength reduces rates of all surface processes. The model demon-

strates excellent agreement with kMC simulations despite accounting for only single and

double height kinks. This is in contrast to the other models, that account for kinks of

all heights to infinity. As ϕ increases, the contribution of multi-height kinks reduces and

all the models collapse closer to the simulation points. Unlike the other models, such a

simplified approach to kink density estimation allows extension to non-centrosymmetric

crystals with multiple growth units.
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The non-equilibrium equations, Eqs. (A.7) and (A.8) indicate non-linear dependence

of kink density on supersaturation. In order to get qualitative insights on the nature of

this dependence, polynomial approximations to the non-equilibrium total kink density

ρT are obtained utilising Eq. (A.11),

ρT = ρeq + aσ + bσ2 + cσ3 + ... (A.11)

where σ is the driving force S − 1 and ρeq is the NEQ kink density at σ = 0. This

value of ρeq is the SSSF-based estimate of kink density at equilibrium. Non-linear least

square fitting is conducted in Python 3.7 to obtain the model coefficients using the

scipy.optimize package. As seen in Fig. A.6, a quadratic polynomial is the lowest order

fit of the non-linear function for ρT . This results in step velocity being third order in

σ. The σ dependence of growth rate G depends on the specific growth regime. In case

of the spiral growth regime, a factor of ln (σ + 1) is introduced owing to critical length

calculations (Section 1.2.2).

ρ ∼ ρeq + aσ + bσ2 (A.12)

v ∼
(
ρeq + aσ + bσ2

)
σ (A.13)

G ∼
(
ρeq + aσ + bσ2

)
σ ln (σ + 1) (A.14)
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Figure A.6: Plot of total kink density, ρT vs driving force σ = S−1 at βϕ = 3 calculated
using the non-equilibrium model in Eqs. (9), (10) and (15) in the paper and its quadratic
approximation.
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Configuration Tables: Kossel Step

Table A.1: Configuration table of major sites for a Kossel step and their influence on
single-height kinks. The Attachment column denotes the change in the number of single-
height kinks upon incorporation of relevant growth unit at the site of interest. The
Detachment column denotes the change in the number of single-height kinks upon de-
tachment of growth unit from the site of interest. Events marked ‘−’ convert the site
into another out of the most-likely space and hence are not considered. The attachment
and detachment rate columns provide the rate of respective elementary reactions along
the step surface. The attachment rate is isotropic for all sites while detachment rate
depends upon the growth unit detached and the number of neighboring kink bonds bro-
ken. The site density depends on the density of adjoining junctions and the appropriate
partition function to account for the surface correlations. The sites are representative of
their corresponding mirror images, since the east and west facing kinks have equivalent
interaction networks. Similar tables can be constructed for all the predominant edge and
kink types.

Site Attachment Detachment
Attachment

rate

Detachment

rate

Density

of site

1 +2 +2 j+ j−2 ρ20

2 - - j+ j−1 ρ1ρ0

3 - - j+ j−1 ρ1ρ0

4 - -2 j+ j−0
ρ21
4

5 -2 - j+ j−2
ρ21
4
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6 -2 -2 j+ j−1
ρ21
2

7 +2 - j+ j−2 ρ2ρ0

8 - +2 j+ j−1 ρ2ρ0
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Table A.2: Configuration table of major sites for a Kossel step and their influence on
double-height kinks. The Attachment column denotes the change in the number of
double-height kinks upon incorporation of relevant growth unit at the site of interest.
The Detachment column denotes the change in the number of single-height kinks upon
detachment of growth unit from the site of interest. Events marked ‘-’convert the site
into another out of the most-likely space and hence are not considered. The attachment
and detachment rate columns provide the rate of respective elementary reactions along
the step surface. The attachment rate is isotropic for all sites while detachment rate
depends upon the growth unit detached and the number of neighboring kink bonds bro-
ken. The site density depends on the density of adjoining junctions and the appropriate
partition function to account for the surface correlations. The sites are representative of
their corresponding mirror images, since the east and west facing kinks have equivalent
interaction networks. Similar tables can be constructed for all the predominant edge and
kink types.

Site Attachment Detachment
Detachment

rate

Attachment

rate

Density

of site

1 - - j+ j−2 ρ20

2 - - j+ j−1 ρ1ρ0

3 - - j+ j−1 ρ1ρ0

4 - - j+ j−0
ρ21
4

5 - - j+ j−2
ρ21
4
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6 +1 +1 j+ j−1
ρ21
2

7 -1 - j+ j−2 ρ2ρ0

8 - -1 j+ j−1 ρ2ρ0
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Appendix B

Analysis of AB Crystal -

Configurations 2 and 3

Reproduced in part from the supplementary information with permission from:

Padwal, N.A.; Doherty, M.F. Step Velocity Growth Models for Molecular Crystals: Two

Molecules in the Unit Cell. Crystal Growth & Design 2024, 24(11), 4368-4379.

DOI:10.1021/acs.cgd.3c01508. Copyright 2024 American Chemical Society.

Introduction

An organic crystal with two growth units A and B constitutes of various configurations

of steps flowing across crystal surfaces as illustrated in Fig. B.1. Examples are alternating

rows or columns of A and B. Each of the steps have different interaction networks, and

types of kinks which interplay with other kinks in distinct ways resulting in distinct

surface kinetics. Hence, the steady-state analysis for each of the configurations results in

distinct master equations. Chapter 3 analyses step configuration 1 in Fig. 3.1 in detail.

In this Appendix, we demonstrate application of SSSF to step configurations 2 and 3 to
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derive the master equations, configurational constraints, step velocity expressions; the

resultant predictions of step velocities are compared with kMC. The SSSF-based model

equations are then applied for real molecular crystals of Celecoxib, beta-glycine and

Piracetam, based on the workflow discussed in Section 1.5. The major site configurations

are tabulated at the end of the Appendix for each of the three AB step configurations.

Figure B.1: Step configurations encountered on an organic crystal with two growth units
A and B. PBCs are generated using the software ADDICT.[1]

Step Configuration 2

Step configuration 2 defines a row with alternating columns of A and B. The hierar-

chical approach similar to the one utilized for step configuration 1 in chapter 3 is outlined

below:

1. Identification of predominant junctions: Owing to thermal fluctuations, steps have

a considerable concentration of kinks. The rate of step growth depends on the

concentration of kink junctions along the step. Generally, the density of kinks

reduces exponentially with kink height. For instance, single-height kinks are the
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most densely populated kinks along the step, followed by double-height kinks and

so on. We truncate the junction space at double-kinks to maintain simplicity of the

framework. Step configuration 2 requires individual treatment of east and west-

facing kinks since they have different interaction environments which will result in

them having unequal kink densities. This is distinct from step configuration 1 in

which east and west kinks have identical energetic environments and hence equal

kink densities.

Figure B.2: Predominant junctions along step configuration 2: edge, single and double
kinks. The superscripts e and w denote east and west facing kinks, respectively.

2. Identification of the major sites and most-likely surface events: Similar to the previ-

ous step configuration 1, an order-of-magnitude analysis is conducted to determine

the major sites that will be encountered on the step. The sites are then subjected

to attachment and detachment events to determine the most-likely events. These

are the events which transform major sites into each other. Table B.3 depicts the
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16 high probability sites that densely occupy configuration space along the step

and their influence on the east-facing A kinks. Similar tables can be constructed

for the other kink types.

3. Rate Modeling and Event Rate Modeling: The modified random rain model[2] as

described in Eq. 3.1 in Chapter 3 is utilized for modeling elementary attachment

and detachment rates. The attachment rate j+ is isotropic and the detachment rate

j− depends on the energy of bonds broken. The detachment rates are characterized

by growth unit and number of kink neighbors. For step configurations 2 and 3, east

and west facing kinks have different energetic environments and are identified as

distinct junctions. As a result, the detachment rates from east and west facing

kinks are distinct and subscripts e and w are added, respectively. The elementary

rates of detachment of A growth unit from east and west facing kinks are j−A,1,e and

j−A,1,w, respectively. Similarly, detachment rates for B growth unit from east and

west facing kinks are j−B,1,e and j−B,1,w, respectively.

Event rates are then constructed accounting for elementary attachment/detachment

rates and site densities. Partition functions (Q1 and Q2) which are collections of

kink densities, arise out of conditional probabilities to account for the kink correla-

tions. Different partition functions emerge depending on the step configuration and

nature of surface correlations. For step configuration 2, analysis of all structurally

permissible sets of junctions, for each of the growth units, yield two equivalent par-

tition functions as given in Eq. B.1 and defined by a single notation Q. Appendix

C provides a simpler, generalized approach for obtaining partition functions for a

given step configuration.

Q = ρBA + ρwA + ρeB + ρwAA + ρeBB = ρAB + ρeA + ρwB + ρeAA + ρwBB (B.1)
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where ρeA, ρ
w
A, ρ

e
B, ρ

w
B, ρ

e
AA, ρ

w
AA, ρ

e
BB, ρ

w
BB, ρAB, ρBA are the densities of Ae kink,

Aw kink, Be kink, Bw kink, AAe kink, AAw kink, BBe kink, BBw kink, AB edge

and BA edge, respectively.

The configurational constraint, Eq. B.1, is a result of the spatial characteristics that

junctions on LHS of Eq. B.1 are structurally permissible to only adjoin junctions

on the RHS of Eq. B.1. Since we have a single partition function, it cancels out

in the master equations (see last column in Table B.3). Hence, site densities are

modeled as simply the product of kink densities without the factor of Q in master

equations. However Q must be accounted for in step velocity modeling to account

for the site densities. Another equation is the east and west-facing kink equivalence,

ρeA + ρeB + ρeAA + ρeBB − (ρwA + ρwB + ρwAA + ρwBB) = 0 (B.2)

4. Construction of Master Equations: Steady-state master equations are then con-

structed through accounting the effect of most-likely events on predominant junc-

tions. The master equation for Ae kink is,

(j+ + j−B,2)ρBAρAB + (j+ + j−B,1,e)ρABρ
e
B − (j+ + j−A,0)ρ

e
Aρ

w
A − (j+ + j−A,1,e)ρBAρ

e
A

+[(j+ + j−B,1,e)ρ
e
BBρAB − (j+ + j−A,1,e)ρ

e
Aρ

e
B

+(j+ + j−A,1,e)ρ
e
AAρBA − (j+ + j−B,1,e)ρ

e
Aρ

e
B] = 0

(B.3)

where j+: attachment rate, j−A,i: detachment rate of A from a site with i lateral

neighbors along the kink axis, j−B,i: detachment rate of B from a site with i lat-

eral neighbors. The additional subscript e and w is added to distinguish between

detachment from east and west facing kinks, respectively. It can be shown that

the terms in square brackets get cancelled through the method of substitution.
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Similarly, master equations are constructed for Aw kink,

(j+ + j−B,2)ρBAρAB + (j+ + j−B,1,w)ρBAρ
w
B − (j+ + j−A,0)ρ

e
Aρ

w
A − (j+ + j−A,1,w)ρABρ

w
A

+[(j+ + j−B,1,w)ρ
w
BBρBA − (j+ + j−A,1,w)ρ

w
Aρ

w
B

+(j+ + j−A,1,w)ρ
w
AAρAB − (j+ + j−B,1,w)ρ

w
Aρ

w
B] = 0

(B.4)

Be kink,

(j+ + j−A,2)ρBAρAB + (j+ + j−A,1,e)ρBAρ
e
A − (j+ + j−B,0)ρ

e
Bρ

w
B − (j+ + j−B,1,e)ρABρ

e
B

+[(j+ + j−B,1,e)ρ
e
BBρAB − (j+ + j−A,1,e)ρ

e
Aρ

e
B

+(j+ + j−A,1,e)ρ
e
AAρBA − (j+ + j−B,1,e)ρ

e
Aρ

e
B] = 0

(B.5)

Bw kink,

(j+ + j−A,2)ρBAρAB + (j+ + j−A,1,w)ρABρ
w
A − (j+ + j−B,0)ρ

e
Bρ

w
B − (j+ + j−B,1,w)ρBAρ

w
B

+[(j+ + j−B,1,w)ρ
w
BBρBA − (j+ + j−A,1,w)ρ

w
Aρ

w
B

+(j+ + j−A,1,w)ρ
w
AAρAB − (j+ + j−B,1,w)ρ

w
Aρ

w
B] = 0

(B.6)

AAe kink,

(j+ + j−B,1,e)ρ
e
Aρ

e
B − (j+ + j−A,1,e)ρ

e
AAρBA = 0 (B.7)

AAw kink,

(j+ + j−B,1,w)ρ
w
Aρ

w
B − (j+ + j−A,1,w)ρ

w
AAρAB = 0 (B.8)

BBe kink,

(j+ + j−A,1,e)ρ
e
Aρ

e
B − (j+ + j−B,1,e)ρ

e
BBρAB = 0 (B.9)
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BBw kink,

(j+ + j−A,1,w)ρ
w
Aρ

w
B − (j+ + j−B,1,w)ρ

w
BBρBA = 0 (B.10)

AB edge,

−(j+ + j−B,2)ρBAρAB − (j+ + j−A,2)ρBAρAB − (j+ + j−B,1,e)ρABρ
e
B

−(j+ + j−A,1,w)ρABρ
w
A + (j+ + j−A,0)ρ

e
Aρ

w
A + (j+ + j−B,0)ρ

e
Bρ

w
B

+(j+ + j−A,1,e)ρBAρ
e
A + (j+ + j−B,1,w)ρBAρ

w
B + [(j+ + j−B,1,w)ρ

w
Aρ

w
B

−(j+ + j−A,1,w)ρ
w
AAρAB + (j+ + j−A,1,e)ρ

e
Aρ

e
B − (j+ + j−B,1,e)ρ

e
BBρAB] = 0

(B.11)

BA edge,

−(j+ + j−B,2)ρBAρAB − (j+ + j−A,2)ρBAρAB − (j+ + j−A,1,e)ρBAρ
e
A

−(j+ + j−B,1,w)ρBAρ
w
B + (j+ + j−A,0)ρ

e
Aρ

w
A + (j+ + j−B,0)ρ

e
Bρ

w
B

+(j+ + j−B,1,e)ρABρ
e
B + (j+ + j−A,1,w)ρABρ

w
A + [(j+ + j−B,1,e)ρ

e
Aρ

e
B

−(j+ + j−A,1,e)ρ
e
AAρBA + (j+ + j−A,1,w)ρ

w
Aρ

w
B − (j+ + j−B,1,w)ρ

w
BBρBA] = 0

(B.12)

respectively.

5. Solving Master Equations: The above system of master equations are linearly de-

pendent and must be augmented with the configurational constraints. The con-

figurational constraints devised in Eqs. B.1 and B.2 are appended to the system

of master equations to be solved simultaneously. The master equations satisfy the

stoichiometric condition that the net attachment rates of each of the growth units

in the unit cell must be equal to maintain the overall stoichiometry of the unit

cell (i.e., JA = JB is linearly dependent on the master equations). The equations

are also appended with the normalization condition, which ensures the summation

of kink densities is unity. The corresponding set of 10 equations in 10 unknowns
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in Eq. B.13 is linearly independent and is solved simultaneously to obtain NEQ

kink densities. The NEQ kink densities subsequently determine the step velocities

through the net attachment rates in Eqs. B.14, B.15.

(j+ + j−B,2)ρBAρAB + (j+ + j−B,1,e)ρABρ
e
B − (j+ + j−A,0)ρ

e
Aρ

w
A

−(j+ + j−A,1,e)ρBAρ
e
A = 0

(j+ + j−B,2)ρBAρAB + (j+ + j−B,1,w)ρBAρ
w
B − (j+ + j−A,0)ρ

e
Aρ

w
A

−(j+ + j−A,1,w)ρABρ
w
A = 0

(j+ + j−A,2)ρBAρAB + (j+ + j−A,1,e)ρBAρ
e
A − (j+ + j−B,0)ρ

e
Bρ

w
B

−(j+ + j−B,1,e)ρABρ
e
B = 0

(j+ + j−B,1,e)ρ
e
Aρ

e
B − (j+ + j−A,1,e)ρ

e
AAρBA = 0

(j+ + j−B,1,w)ρ
w
Aρ

w
B − (j+ + j−A,1,w)ρ

w
AAρAB = 0

(j+ + j−A,1,e)ρ
e
Aρ

e
B − (j+ + j−B,1,e)ρ

e
BBρAB = 0

(j+ + j−A,1,w)ρ
w
Aρ

w
B − (j+ + j−B,1,w)ρ

w
BBρBA = 0

ρeA + ρeB + ρeAB + ρeBA − (ρwA + ρwB + ρwAB + ρwBA) = 0

ρBA + ρwA + ρeB + ρwAA + ρeBB − (ρAB + ρeA + ρwB + ρeAA + ρwBB) = 0

ρBA + ρAB + ρeA + ρwA + ρeB + ρwB + ρeAA + ρwAA + ρeBB + ρwBB − 1 = 0

(B.13)

6. Step velocity modeling: The net attachment rates of A and B growth units are

JA = j+(
ρBAρAB

Q
+

ρeBρAB

Q
+

ρeBρ
w
B

Q
+

ρeBBρAB

Q
+

ρeAρ
e
B

Q
)

+j+(
ρwBρBA

Q
+

ρwBBρBA

Q
+

ρwAρ
w
B

Q
)

−(j−A,2

ρBAρAB

Q
+ j−A,1,e

ρeAρBA

Q
+ j−A,0

ρeAρ
w
A

Q
+ j−A,1,e

ρeAAρBA

Q
+ j−A,1,e

ρeAρ
e
B

Q
)

−(j−A,1,w

ρwAρAB

Q
+ j−A,1,w

ρwAAρAB

Q
+ j−A,1,w

ρwAρ
w
B

Q
)

(B.14)
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JB = j+(
ρABρBA

Q
+

ρeAρBA

Q
+

ρeAρ
w
A

Q
+

ρeAAρBA

Q
+

ρeAρ
e
B

Q
)

+j+(
ρwAρAB

Q
+

ρwAAρAB

Q
+

ρwAρ
w
B

Q
)

−(j−B,2

ρABρBA

Q
+ j−B,1,e

ρeBρAB

Q
+ j−B,0

ρeBρ
w
B

Q
+ j−B,1,e

ρeBBρAB

Q
+ j−B,1,e

ρeAρ
e
B

Q
)

−(j−B,1,w

ρwBρBA

Q
+ j−B,1,w

ρwBBρBA

Q
+ j−B,1,w

ρwAρ
w
B

Q
)

(B.15)

The step velocity is then given by,

v = aP (JA + JB) (B.16)

where aP is the average propagation length.

Step Configuration 3

Step configuration 3 defines a face pattern with checkered A and B growth units.

Within the context of the hieredgehical approach undertaken previously, we analyze

configuration 3 in a similar manner as follows,

1. Identification of predominant junctions: The predominant junctions are the ones

expected to occur most frequently on the surface configuration landscape. Such

junctions exposing minimal broken-energy interactions at the surface are identified

as the different types of edge, single kink and double kink. Increasing kink height

increases the interactions and reduces their density along the edge drastically. Pre-

dominant junctions for step configuration 3 are: AB edge, BA edge, east and west

facing A kink, B kink, AB kink and BA kink. Similar to step configuration 2, east

and west facing kinks warrant individual treatments since they are characterized

by different broken interactions at the junction.
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Figure B.3: Predominant junctions along step configuration 3: edge, single and double
kinks. The superscript e and w denote east and west facing kinks, respectively.

2. Identification of most-likely events: Table B.4 lists all the major sites observed

along the step, most-likely events, corresponding rates, densities and influence on

east-facing A kinks. Each of the sites are subjected to attachment and detachment

events to determine the most-likely events that influence the density of east-facing

A kinks. Similar tables can be constructed for other kink types.

3. Rate Modeling and event rate modeling: Similar to previous configurations, the

the rate model in Eq. 3.1 is utilized for attachment and detachment rates. Event

rates are then obtained by accounting for the density of major sites observed along

the step and the elementary attachment and detachment rates. Owing to the

commutative nature of intersection probabilities[3], the following partition functions
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are obtained.

Q1 = (ρAB + ρeAB + ρwBA) + ρeA + ρwA (B.17)

= (ρBA + ρeBA + ρwAB) + ρeA + ρwA (B.18)

Q2 = (ρAB + ρeAB + ρwBA) + ρeB + ρwB (B.19)

= (ρBA + ρeBA + ρwAB) + ρeB + ρwB (B.20)

This provides us with the configurational constraint,

ρ̂ = ρAB + ρeAB + ρwBA = ρBA + ρeBA + ρwAB (B.21)

The partition functions for this step configuration become,

Q1 = ρ̂+ ρeA + ρwA (B.22)

Q2 = ρ̂+ ρeB + ρwB (B.23)

4. Construction of Master Equations:

The master equation for Ae kink is,

(j+ + j−B,2)
ρBAρAB

Q2

+ (j+ρBA + j−B,1,eρAB)
ρeB
Q2

− (j+ + j−A,0)
ρeAρ

w
A

Q1

− (j+ρAB

+j−A,1,eρBA)
ρeA
Q1

2j+
ρeABρBA

Q2

+ 2j−B,1,e

ρeBAρAB

Q2

−2(j+ + j−A,1,e)
ρeAρ

e
A

Q1

= 0

(B.24)

where j+: attachment rate, j−A,i: detachment rate of A from a site with i lateral
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neighbors, j−B,i: detachment rate of B from a site with i lateral neighbors. The

additional subscript e and w is added to distinguish between detachment from east

and west facing kinks, respectively. It can be shown that the terms in square brack-

ets get cancelled through the method of substitution. Similarly, master equations

are constructed for Aw kink,

(j+ + j−B,2)
ρBAρAB

Q2

+ (j+ρAB + j−B,1,wρBA)
ρwB
Q2

− (j+ + j−A,0)
ρeAρ

w
A

Q1

−(j+ρBA + j−A,1,wρAB)
ρwA
Q1

2j+
ρwABρAB

Q2

+ 2j−B,1,w

ρwBAρBA

Q2

−2(j+ + j−A,1,w)
ρwAρ

w
A

Q1

= 0

(B.25)

Be kink,

(j+ + j−A,2)
ρBAρAB

Q1

+ (j+ρAB + j−A,1,eρBA)
ρeA
Q1

− (j+ + j−B,0)
ρeBρ

w
B

Q2

−(j+ρBA + j−B,1,eρAB)
ρeB
Q2

2j+
ρeBAρAB

Q1

+ 2j−A,1,e

ρeABρBA

Q1

−2(j+ + j−B,1,e)
ρeBρ

e
B

Q2

= 0

(B.26)

Bw kink

(j+ + j−A,2)
ρBAρAB

Q1

+ (j+ρBA + j−A,1,wρAB)
ρwA
Q1

− (j+ + j−B,0)
ρeBρ

w
B

Q2

−(j+ρAB + j−B,1,wρBA)
ρwB
Q2

2j+
ρwBAρBA

Q1

+ 2j−A,1,w

ρwABρAB

Q1

−2(j+ + j−B,1,w)
ρwBρ

w
B

Q2

= 0

(B.27)

ABe kink,

j−A,1,e

ρeAρ
e
A

Q1

+ j+
ρeBρ

e
B

Q2

− j+
ρeABρBA

Q2

− j−A,1,e

ρeABρBA

Q1

= 0 (B.28)
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ABw kink,

j−A,1,w

ρwAρ
w
A

Q1

+ j+
ρwBρ

w
B

Q2

− j+
ρwABρAB

Q2

− j−A,1,w

ρwABρAB

Q1

= 0 (B.29)

BAe kink,

j−B,1,e

ρeBρ
e
B

Q2

+ j+
ρeAρ

e
A

Q1

− j+
ρeBAρAB

Q1

− j−B,1,e

ρeBAρAB

Q2

= 0 (B.30)

BAw kink,

j−B,1,w

ρwBρ
w
B

Q2

+ j+
ρwAρ

w
A

Q1

− j+
ρwBAρBA

Q1

− j−B,1,w

ρwBAρBA

Q2

= 0 (B.31)

BA edge,

−(j+ + j−B,2)
ρBAρAB

Q2

− (j+ + j−A,2)
ρBAρAB

Q1

+ (j+ + j−A,0)
ρeAρ

w
A

Q1

+(j+ + j−B,0)
ρeBρ

w
B

Q2

+[j−A,1,e

ρeAρ
e
A

Q1

+ j+
ρeBρ

e
B

Q2

− j+
ρeABρBA

Q2

− j−A,1,e

ρeABρBA

Q1

+j−B,1,w

ρwBρ
w
B

Q2

+ j+
ρwAρ

w
A

Q1

− j+
ρwBAρBA

Q1

− j−B,1,w

ρwBAρBA

Q2

] = 0

(B.32)

AB edge,

−(j+ + j−A,2)
ρBAρAB

Q1

− (j+ + j−B,2)
ρBAρAB

Q2

+ (j+ + j−B,0)
ρeBρ

w
B

Q2

+(j+ + j−A,0)
ρeAρ

w
A

Q1

+[j−A,1,w

ρwAρ
w
A

Q1

+ j+
ρwBρ

w
B

Q2

− j+
ρwABρAB

Q2

− j−A,1,w

ρwABρAB

Q1

+j−B,1,e

ρeBρ
e
B

Q2

+ j+
ρeAρ

e
A

Q1

− j+
ρeBAρAB

Q1

− j−B,1,e

ρeBAρAB

Q2

] = 0

(B.33)
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respectively. Notice that Q1 and Q2 are distinct and do not cancel out in these

equations.

5. Solving Master Equations: Similar to the previous configurations, the above set

of master equations are linearly dependent and need to be supplemented with ad-

ditional equations for a unique solution. The configurational and normalization

conditions provide the necessary number of equations for a linearly independent

set of equations. Similar to previous configurations, the master equations are con-

sistent with the stoichiometric constraint and JA = JB is linearly dependent on the
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master equations. The resulting 10 equations in 10 unknowns is given below.

(j+ + j−B,2)
ρBAρAB

Q2

+ (j+ρBA + j−B,1,eρAB)
ρeB
Q2

− (j+ + j−A,0)
ρeAρ

w
A

Q1

−(j+ρAB + j−A,1,eρBA)
ρeA
Q1

+2j+
ρeABρBA

Q2

+ 2j−B,1,e

ρeBAρAB

Q2

− 2(j+ + j−A,1,e)
ρeAρ

e
A

Q1

= 0

(j+ + j−A,2)
ρBAρAB

Q1

+ (j+ρBA + j−A,1,wρAB)
ρwA
Q1

− (j+ + j−B,0)
ρeBρ

w
B

Q2

−(j+ρAB + j−B,1,wρBA)
ρwB
Q2

+2j+
ρwBAρBA

Q1

+ 2j−A,1,w

ρwABρAB

Q1

− 2(j+ + j−B,1,w)
ρwBρ

w
B

Q2

= 0

j−A,1,e

ρeAρ
e
A

Q1

+ j+
ρeBρ

e
B

Q2

− j+
ρeABρBA

Q2

− j−A,1,e

ρeABρBA

Q1

= 0

j−A,1,w

ρwAρ
w
A

Q1

+ j+
ρwBρ

w
B

Q2

− j+
ρwABρAB

Q2

− j−A,1,w

ρwABρAB

Q1

= 0

j−B,1,e

ρeBρ
e
B

Q2

+ j+
ρeAρ

e
A

Q1

− j+
ρeBAρAB

Q1

− j−B,1,e

ρeBAρAB

Q2

= 0

j−B,1,w

ρwBρ
w
B

Q2

+ j+
ρwAρ

w
A

Q1

− j+
ρwBAρBA

Q1

−j−B,1,w

ρwBAρBA

Q2

= 0

(j+ + j−B,2)
ρBAρAB

Q2

+ (j+ + j−A,2)
ρBAρAB

Q1

− (j+ + j−A,0)
ρeAρ

w
A

Q1

−(j+ + j−B,0)
ρeBρ

w
B

Q2

= 0

ρeA + ρeB + ρeAB + ρeBA − (ρwA + ρwB + ρwAB + ρwBA) = 0

ρAB + ρeAB + ρwBA − (ρBA + ρeBA + ρwAB) = 0

ρBA + ρAB + ρeA + ρwA + ρeB + ρwB + ρeAB + ρwAB + ρeBA + ρwBA − 1 = 0

(B.34)
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6. Step velocity modeling: The net attachment rates of A and B growth units are,

JA = j+(
ρABρBA

Q2

+
ρeBρBA

Q2

+
ρeBρ

w
B

Q2

+
ρeABρBA

Q2

+
ρeBρ

e
B

Q2

)

+j+(
ρwBρAB

Q2

+
ρwABρAB

Q2

+
ρwBρ

w
B

Q2

)

−(j−A,2

ρBAρAB

Q1

+ j−A,1,e

ρeAρBA

Q1

+ j−A,0

ρeAρ
w
A

Q1

+ j−A,1,e

ρBAρ
e
AB

Q1

+ j−A,1,e

ρeAρ
e
A

Q1

)

−(j−A,1,w

ρwAρAB

Q1

+ j−A,1,w

ρABρ
w
AB

Q1

+ j−A,1,w

ρwAρ
w
A

Q1

)

(B.35)

JB = j+(
ρBAρAB

Q1

+
ρeAρAB

Q1

+
ρeAρ

w
A

Q1

+
ρeBAρAB

Q1

+
ρeAρ

e
A

Q1

)

+j+(
ρwAρBA

Q1

+
ρwBAρBA

Q1

+
ρwAρ

w
A

Q1

)

−(j−B,2

ρABρBA

Q2

+ j−B,1,e

ρeBρAB

Q2

+ j−B,0

ρeBρ
w
B

Q2

+ j−B,1,e

ρABρ
e
BA

Q2

+ j−B,1,e

ρeBρ
e
B

Q2

)

−(j−B,1,w

ρwBρBA

Q2

+ j−B,1,w

ρBAρ
w
BA

Q2

+ j−B,1,w

ρwBρ
w
B

Q2

)

(B.36)

The set of master equations automatically satisfy the stoichiometric constraint

JA = JB. This can be shown by simple rearrangement of Eqns. B.34. The step

velocity is then given by,

v = aP (JA + JB) (B.37)

where aP is the average propagation length.

Results

In Fig. B.4, we apply our SSSF model to a non-Kossel crystal graph[5, 6] based

on naphthalene crystal structure[7]. The step configurations in Fig. B.1 correspond to

specific steps on facets of the crystal graph such that step configuration 1 corresponds

to step [011̄] on face (011), step configuration 2 corresponds to step [100] on face (001)

of the crystal graph and step configuration 3 corresponds to step [011] on face (100) of
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(a) (b)

Figure B.4: Normalized step velocity vs supersaturation S for (a) [100] step on non-
Kossel (001) face (step configuration 2), (b) [011] step on non-Kossel (100) face (step
configuration 3) of a naphthalene crystal graph. The step velocity is normalized by
akBT

h
≡ aPk

+, where a is the step propagation length and h is the Planck’s constant.
The solid lines are generated by our model, dots depict kMC data taken from literature[4].
The two colors correspond to the two different values of δ. (Refer Cuppen et al.[4])

the crystal graph. For both step configurations shown in Fig. B.4, step velocity displays

nonlinear increase with supersaturation owing to increase in the number of kink sites for

attachment as well as increase in the frequency of attachment. Similar to step velocity

behavior observed previously in Fig. 3.9, step velocity reduces with increase in interac-

tion anisotropy due to kink cycle formation resulting in association of kinks. However,

the dependence of step velocity on δ is much less pronounced for step configurations

2 and 3. The deviation of model predictions from kMC for step configuration 3 may

be due to increase in the contributions of events out of the most-likely space at higher

supersaturations.

OWIVEY Case study: Intermediate calculations

Table B.1 reports values of intermediate variables for morphology predictions reported

in Chapter 3 of OWIVEY-ethanol system at S = 1.5 and temperature of 273 K. CLP
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forcefield[8] was employed for solid-state calculations to obtain PBC directions and their

bond strengths. The model-based morphology prediction for OWIVEY constitutes the

flat F faces (01̄1), (01̄0) and (1̄1̄1). Fig. B.5 provides network of interactions across the

crystal F faces of OWIVEY. Fig. B.6 provides shape of the spirals for the crystal F

faces of OWIVEY. The van-Oss-Chaudhary-Good solvent model[9, 10] was employed to

obtain solvent-modified bond energies. A rate constant of k+ = 105/s was used for step

velocity calculations. The rate constant cancels out during estimation of relative growth

rates and hence does not affect the morphology predictions.

Table B.1: OWIVEY - ethanol system calculation results for intermediate variables in-
cluding: ϕPBC - average strength of periodic bond chain in kcal/mol, aP - average propa-

gation length in Å, aE - average growth unit width along the step in Å, lc - critical length
of the step in Å, v - step velocity in Å/s, conf - step configuration type from Fig. 3.1,

dhkl - interplanar spacing of the face in Å, G - growth rate of the face and R - relative
growth rate of the face.

kcal/mol Å Å Å Å/s Å
Face Step ϕPBC aP aE lc v conf dhkl G R

[100] 3.68 5.407 6.604 5.958 3.50 ×10−3 1
[11̄1̄] 5.805 5.097 7.006 72.074 2.97×10−3 3

(01̄1) [01̄1̄] 1.79 3.229 11.057 40.315 1.85×10−3 1 8.173 3.62×10−6 1
[1̄11] 5.805 5.097 7.006 72.074 4.19×10−4 3
[011] 1.79 3.229 11.057 40.315 8.76×10−6 1
[111] 5.84 6.137 5.818 29.827 2.10×10−4 2

[1̄00] 3.68 5.039 6.604 5.965 5.40×10−5 1
[1̄01] 6.41 5.415 6.146 34.81 3.37×10−3 3
[001] 1.63 3.299 10.089 21.263 2.39×10−3 1

(01̄0) [101] 8.535 5.632 5.909 45.643 3.39×10−3 3 8.769 1.26×10−5 3.49
[100] 3.68 5.039 6.604 5.958 1.56×10−3 1
[101̄] 6.41 5.415 6.146 34.81 3.04×10−3 3
[001̄] 1.63 3.299 10.089 21.266 2.02×10−4 1
[1̄01̄] 8.535 5.632 5.909 45.643 2.14×10−3 3

[011] 1.79 5.467 11.057 40.315 2.49×10−3 1
[101] 8.535 10.231 5.909 45.643 6.24×10−3 3

(1̄1̄1) [12̄1̄] 2.375 5.828 10.374 30.535 1.28×10−3 3 4.827 2.44×10−5 6.74
[01̄1̄] 1.79 5.467 11.057 40.315 2.58×10−4 1
[1̄01̄] 8.535 10.231 5.909 45.643 5.94×10−3 3
[1̄21] 2.375 5.828 10.374 30.535 2.91×10−3 3
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(a) (b)

(c)

Figure B.5: Periodic bond chain networks across the following flat F faces of OWIVEY
(A) (01̄1), (B) (01̄0), and (C) (1̄1̄1). PBCs are generated using the software ADDICT.[1]

Morphology Predictions

B.0.1 Celecoxib in Toluene

Celecoxib is an API molecule which grows in the P-1 space group and has the CSD

ref code DIBBUL. The unit cell parameters are a = 10.136, b = 16.778, c = 5.066,

α = 97.62◦, β = 100.65◦, γ = 95.95◦. We utitlized the CLP forcefield[8] to model the

solid-state interactions between the growth units and the vOCG[9, 10] solvent model

to calculate the solvent-modified bond energies. We then applied the SSSF model as

discussed in Section 1.5 to estimate kink densities and step velocities of the steps of

crystal facets, to obtain the morphology prediction depicted in Fig. B.7a. The predicted

morphology demonstrates a rectangular plate-like behaviour and is in good agreement

with the experimentally observed crystal shape of Celecoxib depicted in Fig. B.7b.[11]

206



Analysis of AB Crystal - Configurations 2 and 3 Chapter B

(a) (b)

(c)

Figure B.6: Spiral shapes for the following F faces of OWIVEY (A) (01̄1), (B) (01̄0),
and (C) (1̄1̄1). Spiral shapes are generated using the software ADDICT.[1]

(a) (b)

Figure B.7: a)SSSF model-based morphology prediction of Celecoxib grown in toluene
at 333 K and S = 1.02 b) SEM photographs of celecoxib recrystallized from toluene at
60°C. Figure reproduced with permission from Modi et al.[11]. Copyright 2013 American
Chemical Society.
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(a) (b)

Figure B.8: a) SSSF model-based morphology prediction of β-glycine grown in ethanol
at 298K and S = 1.01, b) Snapshot of β-glycine grown in (v/v) water-ethanol solvent
mixture. Figure reproduced with permission from Ferrari et al.[12]. Copyright 2003
American Chemical Society.

B.0.2 β-glycine in Ethanol

The βpolymorph of glycine grows in the P21 space group and has the CSD ref code

GLYCIN. The unit cell parameters are a = 5.077, b = 6.268, c = 5.380, α = 90◦,

β = 113.20◦, γ = 90◦. Similar to previous examples, we used the CLP forcefield[8]

and vOCG[9, 10] solvent model to calculate solid-state interactions and subsequently

the solvent-modified bond energies, respectively. We then applied the SSSF model as

discussed in Section 1.5 to estimate kink densities and step velocities for each of the

steps of crystal facets, to obtain the in-silico morphology prediction depicted in Fig.

B.8a. The SSSF-model predicts needle-like behaviour and is in excellent agreement with

the experimentally observed crystal shape of β-glycine as depicted in Fig. B.8b.[12]

B.0.3 Piracetam in Isopropanol

Piracetam is an API molecule which grows in the P-1 space group and has the CSD ref

code BISMEV. The unit cell parameters are a = 6.403, b = 6.618, c = 8.556, α = 79.85◦,
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(a) (b)

Figure B.9: a)SSSF model-based morphology prediction of Piracetam grown in iso-
propanol at 293 K and S = 1.1, b) Micrograph of Piracetam polymorph II crystals
grown in isopropanol. Figure reproduced with permission from Lynch et al.[13]. Copy-
right 2021 American Chemical Society.

β = 102.39◦, γ = 91.09◦. We then applied the SSSF model as discussed in Section

1.5, employing the CLP forcefield[8] and the vOCG[9, 10] solvent model to calculate the

nonequilibrium kink densities and step velocities of all the steps of crystal facets. The

predicted morphology as depicted in Fig. B.9a demonstrates a rectangular plate-like

behaviour and is in good agreement with the experimentally observed crystal shape of

Piracetam as depicted in Fig. B.9b.[13]
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Configuration Tables: Major Sites for the three step

configurations

Table B.2: Configuration table of major sites for step configuration 1 and their influence
on A kinks. The Attachment column denotes the change in the number of A kinks upon
incorporation of relevant growth unit at the site of interest. The Detachment column
denotes the change in the number of A kinks upon detachment of growth unit from the site
of interest. Events marked ‘−’ convert the site into another out of the most-likely space
and hence are not considered. The attachment and detachment rate columns provide the
rate of respective elementary reactions along the step surface. The attachment rate is
isotropic for all sites while detachment rate depends upon the growth unit detached and
the number of neighboring kink bonds broken. The site density depends on the density
of adjoining junctions and the appropriate partition function to account for the surface
correlations. The sites are representative of their corresponding mirror images, since the
east and west facing kinks have equivalent interaction networks. Similar tables can be
constructed for all the predominant edge and kink types.

Site Attachment Detachment
Attachment

rate

Detachment

rate

Density

of site

1 0 +2 j+ j−A,2

ρ2A0

Q1

2 +2 0 j+ j−B,2

ρB0

Q2

3 0 - j+ j−A,2

ρBρA0

Q1

4 - 0 j+ j−B,1

ρBρB0

Q2

5 0 - j+ j−B,2

ρAρB0

Q2
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6 - 0 j+ j−A,1

ρAρA0

Q1

7 - -2 j+ j−A,0

ρ2A
4Q1

8 -2 - j+ j−B,2

ρ2A
4Q2

9 - 0 j+ j−B,0

ρ2B
4Q2

10 0 - j+ j−A,2

ρ2B
4Q1

11 +1 - j+ j−A,2

ρABρA0

Q1

12 -1 -1 j+ j−B,1

ρAρB
2Q2
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13 -1 -1 j+ j−A,1

ρBρA
2Q1

14 - +1 j+ j−A,1

ρA0ρAB

Q1

15 +1 - j+ j−B,2

ρBAρB0

Q2

16 - +1 j+ j−B,1

ρBAρB0

Q2
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Table B.3: Configuration table of major sites for step configuration 2 and their influence
on east-facing A kinks. The Attachment column denotes the change in the number
of east A kinks upon incorporation of relevant growth unit at the site of interest. The
Detachment column denotes the change in the number of east A kinks upon detachment of
growth unit from the site of interest. Events marked ‘−’ convert the site into another out
of the most-likely space and hence are not considered. The attachment and detachment
rate columns provide the rate of respective elementary reactions along the step surface.
The attachment rate is isotropic for all sites while detachment rate depends upon the
growth unit detached and the number of neighboring bonds broken. The site density
depends on the density of adjoining junctions and the partition function to account
for the surface correlations. Sites 3-6 and 11-16 will have corresponding west-facing
counterparts, which are left out of the table because of their lack of impact on east-
facing A kinks. Construction of master equations for west-facing kinks will require the
consideration of corresponding west-facing sites. Similar tables can be constructed for
all the predominant edge and kink types.

Site Attachment Detachment
Attachment

rate

Detachment

rate

Density

of site

1 0 +1 j+ j−B,2

ρABρBA

Q

2 +1 0 j+ j−A,2

ρBAρAB

Q

3 +1 - j+ j−A,2

ρeBρAB

Q

4 - -1 j+ j−A,1,e

ρeAρBA

Q

5 -1 - j+ j−B,2

ρeAρBA

Q
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6 - +1 j+ j−B,1,e

ρeBρAB

Q

7 - -1 j+ j−A,0

ρeAρ
w
A

Q

8 0 - j+ j−A,2

ρeBρ
w
B

Q

9 - 0 j+ j−B,0

ρeBρ
w
B

Q

10 -1 - j+ j−B,2

ρeAρ
w
A

Q

11 +1 - j+ j−B,2

ρeAAρBA

Q

12 - +1 j+ j−B,1,e

ρeBBρAB

Q
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13 +1 - j+ j−A,2

ρeBBρAB

Q

14 - +1 j+ j−A,1,e

ρeAAρBA

Q

15 -1 -1 j+ j−A,1,e

ρeAρ
e
B

Q

16 -1 -1 j+ j−B,1,e

ρeAρ
e
B

Q
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Table B.4: Configuration table of major sites for step configuration 3 and their influence
on east-facing A kinks. The Attachment column denotes the change in the number of A
kinks upon incorporation of relevant growth unit at the site of interest. The Detachment
column denotes the change in the number of A kinks upon detachment of growth unit
from the site of interest. Events marked ‘−’ convert the site into another out of the
most-likely space and hence are not considered. The attachment and detachment rate
columns provide the rate of respective elementary reactions along the step surface. The
attachment rate is isotropic for all sites while detachment rate depends upon the growth
unit detached and the number of neighboring bonds broken. The site density depends
on the density of adjoining junctions and the appropriate partition function to account
for the surface correlations. Sites 3-6 and 11-16 will have corresponding west-facing
counterparts, which are left out of the table because of their lack of impact on east-
facing A kinks. Construction of master equations for west-facing kinks will require the
consideration of corresponding west-facing sites. Similar tables can be constructed for
all the predominant edge and kink types.

Site Attachment Detachment
Attachment

rate

Detachment

rate

Density

of site

1 +1 +1 j+ j−B,2

ρABρBA

Q2

2 0 0 j+ j−A,2

ρBAρAB

Q1

3 +1 - j+ j−B,2

ρeBρBA

Q2

4 - -1 j+ j−A,1,e

ρeAρBA

Q1

5 -1 - j+ j−A,2

ρeAρAB

Q1
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6 - +1 j+ j−B,1,e

ρeBρAB

Q2

7 - -1 j+ j−A,0

ρeAρ
w
A

Q1

8 -1 - j+ j−A,2

ρeAρ
w
A

Q1

9 - 0 j+ j−B,0

ρeBρ
w
B

Q2

10 0 - j+ j−B,2

ρeBρ
w
B

Q2

11 +2 - j+ j−B,2

ρeABρBA

Q2

12 - +2 j+ j−B,1

ρABρ
e
BA

Q2
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13 0 - j+ j−A,2

ρeBAρAB

Q1

14 - 0 j+ j−A,1,e

ρBAρ
e
AB

Q1

15 -2 -2 j+ j−A,1,e

ρeAρ
e
A

Q1

16 0 0 j+ j−B,1,e

ρeBρ
e
B

Q2
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Appendix C

Surface Partition Functions and

Configuration Constraints

Reproduced in part with permission from:

Padwal, N. A.; Doherty, M. F. Nonequilibrium Crystal Growth Model for Organic

Molecules of Real API Complexity. Crystal Growth & Design. (Manuscript under review)

In order to maintain the local step structure, the distribution of kinks along the step

is spatially correlated. The correlated nature of surface kinks in case of step configura-

tions with multiple growth units is discussed in Chapter 3. The inability of equilibrium

kink density models in accounting for these correlations, yields them deficient. Being a

kinetics-based modeling approach, SSSF provides the organisation to appropriately ac-

count for the probability of surface sites and the rate of elementary events along steps.

Within the steady-state approach of SSSF, surface correlations are captured through

conditional probabilities and arise in the form of surface partition functions and the

configurational constraints.

For a given step configuration, partition functions are collections of kink densities
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arising out of constraints to maintain surface topology. For a given step configuration,

the neighboring environment of growth units is fixed by crystallography of the unit cell.

In order to maintain the step configuration, incoming molecules from the solution can

only be docked in specific orientations depending on the spatial location. This restricts

permissible neighboring kinks. For instance, consider configuration 3 of an AB crystal

in Fig. B.1. Given the presence of A growth unit at a step location, the structurally

permissible kinks around the growth unit are constrained to be only a subset of the

predominant junctions, which are on either sides of the growth unit as depicted in Fig.

C.1.

Q1 = (ρAB + ρeAB + ρwBA) + ρeA + ρwA (C.1)

= (ρBA + ρeBA + ρwAB) + ρeA + ρwA (C.2)

where ρeA, ρ
w
A, ρ

e
B, ρ

w
B, ρ

e
AA, ρ

w
AA, ρ

e
BB, ρ

w
BB, ρAB, ρBA are the densities of Ae kink, Aw

kink, Be kink, Bw kink, AAe kink, AAw kink, BBe kink, BBw kink, AB edge and BA

edge, respectively.

When the same procedure is repeated for growth unit B, we get the following equation,

Q2 = (ρAB + ρeAB + ρwBA) + ρeB + ρwB (C.3)

= (ρBA + ρeBA + ρwAB) + ρeB + ρwB (C.4)

In this case, since the sets of kink types on either side of the growth units are different,

we get the following constraint,

ρ̂ = ρAB + ρeAB + ρwBA = ρBA + ρeBA + ρwAB (C.5)
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Figure C.1: Collections of kink types constrained by growth units along step configuration
with checkered pattern of A and B growth units, resulting in partition functions Q1 and
Q2, respectively.

This is the configurational constraint arising out of the restriction placed on possible

kink structures by growth units, The partition functions for this step configuration can

be simplified as follows,

Q1 = ρ̂+ ρeA + ρwA (C.6)

Q2 = ρ̂+ ρeB + ρwB (C.7)

For certain configurations such as the one with alternate rows of A and B, in case of

identical sets on either sides of A and B, there will be no configurational constraint as

discussed in Chapter 3. Nonetheless, we obtain two partition functions for each of the

growth units.

For crystals with four growth units in the unit cell, consider the step configuration

1 with rows of a single growth unit in Fig. C.2. The partition functions are determined
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Figure C.2: Some configuration types of steps on crystals with four growth units in the
unit cell namely A, B, C and D.

by studying the groups of kink densities permissible on both ends of the growth units as

depicted in Fig. C.3 for an A growth unit. Similar partition functions are constructed

for the rest of the growth units and are given below.

Q1 = ρA0 + ρA/2 + ρB/2 + ρAD/2 + ρCB/2

Q2 = ρB0 + ρB/2 + ρC/2 + ρBA/2 + ρDC/2

Q3 = ρC0 + ρC/2 + ρD/2 + ρCB/2 + ρAD/2

Q4 = ρD0 + ρD/2 + ρA/2 + ρDC/2 + ρBA/2

(C.8)

where ρA, ρB, ρC , ρD, are the A, B, C and D single-height kinks, respectively. ρAD, ρDC ,

ρCB, ρBA are the double-height kinks and ρA0, ρB0, ρC0, ρD0 are the respective flat edge A,

B, C and D edge junctions, respectively. Step configurations with single growth unit rows

results in east and west kink types to be identical and hence considered in combination,

give rise to the factors of one half in Eq. C.8. In a similar fashion, partition functions
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Figure C.3: Collections of kink types constrained by A growth unit along step config-
uration 1 with rows of growth units, resulting in the partition function Q1. PBCs are
generated using the software ADDICT.[1]

and configuration constraints are derived for each of the other step configurations. This

allows effective capture of spatial correlations between kink types owing to step topology.
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Appendix D

Identification & Assignment of Step

Configuration for Z = 4 Crystal

Reproduced in part with permission from:

Padwal, N. A.; Doherty, M. F. Nonequilibrium Crystal Growth Model for Organic

Molecules of Real API Complexity. Crystal Growth & Design. (Manuscript under review)

The identification of permissible configurations can be simplified through a catego-

rization of configuration types with 1, 2 or more growth units per row. A permissible

configuration is one where a particular growth unit has identical interaction environment

irrespective of its position along the step. This is because crystals are characterized by

long range order, where the unit cell is the minimum repeating unit. Translation of the

unit cell along the three axes yields the crystal structure of the compound. The unit cell

may consist of multiple growth units. Each growth unit within the unit cell is character-

ized by unique interaction networks. Nonetheless, the translational symmetry of crystals

ensures that a particular growth unit will have identical interaction network irrespective

of its position in the crystal lattice. By extension, a particular growth unit must also
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have identical environments at all positions in a step configuration. All the permissible

step configurations for a Z = 4 crystal are given in Fig. D.1.
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(a)

(b)

Figure D.1: All permissible step configuration types for a crystal with four growth units
A, B, C, D in the unit cell. PBC networks are generated using the software ADDICT.[1]

Based on the number of growth units per row ng, the Z = 4 crystal has the following
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types of configurations: 1) configuration 1 with ng = 1; 2) configurations 2 and 3 with

ng = 2; 3) configurations 4, 5, 6 and 7 with ng = 4. However, configurations 2 and 3 are

equivalent because they have identical topology with C and D growth units swapped. The

equation sets can be reproduced from each other by simply exchanging the definitions of

growth units C and D. Hence, effectively Z = 4 crystals have steps belonging in a total

of six permissible configurations.

The crystallographically impermissible configurations are disqualified because they

have identical growth units in more than one kind of interaction environment. Examples

of such configurations are given in Fig. D.2 for an ABCD and AB crystal types. It

is important to identify all possible step configurations growing along crystal facets of

multi-growth unit crystals. Study of PBC networks of actual compounds can help assess

and validate configuration types as provided by the PBC illustrations in Fig. D.1.

Application of SSSF to real molecules requires assignment of appropriate configura-

tion to PBC networks of various step structures. In case of nonorthogonal lattices much

like the PBC illustrations of model step configurations in Fig. D.1, the configuration

assignment is based on the directions of strongest PBCs along the face slice.[1]
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Figure D.2: Examples of crystallographically impermisisble configurations in a crystal
with 4 and 2 growth units in the unit cell, respectively.
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Appendix E

SSSF & Kink Cycle Frameworks:

Similarities and Differences

Reproduced in part from the supplementary information with permission from:

Padwal, N.A.; Doherty, M.F., Simple Accurate Nonequilibrium Step Velocity Model for

Crystal Growth of Symmetric Organic Molecules. Crystal Growth & Design 2022, 22(6),

3656-3661.

DOI:10.1021/acs.cgd.1c01366. Copyright 2022 American Chemical Society.

Kuvadia and Doherty[1] formulate steady-state equations in terms of probabilities of

kink state k by balancing flux into and out of state k via attachment and detachment

of growth units. In such a framework, a cyclic progression of kink types is assumed,

referred to in the paper as the kink cycle approach. The probabilities can be interpreted

as relative kink densities such that Pk =
ρk∑
ρ
where ρk is the kink density of kink type k.

Pk−1α + Pk+1νk+1 = Pk(α + νk) (E.1)
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where state k = 1, 2, 3, ..n, n is the number of different kink types in a single orientation,

α is the isotropic attachment rate, νk is the detachment rate at state k (α ≡ j+, νk ≡ j−k ).

The states repeat periodically: for n = 4, k = 1 to 4 such that when k = 1, in Eq. E.1,

k − 1 is 4. Similarly for k = 4, k + 1 is 1. For n = 4, we get the following set of

steady-state equations,

P4α + P2ν2 = P1(α + ν1)

P1α + P3ν3 = P2(α + ν2)

P2α + P4ν4 = P3(α + ν3)

P3α + P1ν1 = P4(α + ν4)

(E.2)

Note that the above set of equations generated from the kink cycle framework do not

account for 1D nucleation and assumes step progression is a culmination of attachment

at various kink states and not limited by 1D nucleation. Hence the equations do not

include edge densities and are expressed entirely in terms of kink state probabilities. At

steady-state, the kink rate is defined as the net rate of incorporation of growth units at

kinks.

u = n(αPk − νk+1Pk+1) (E.3)

The kink rate u is constant across all kink types as evidenced via rearrangement of Eq.

E.1. The set of equations in Eqs. E.2 is linearly dependent and hence combined with the

normalization condition to be solvable.

n∑
k

Pk = P1 + P2 + P3 + P4 = 1 (E.4)
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Solving Eqs. E.2-E.4 gives the following expression for kink rate u,

u = n[Pkα− Pk+1νk+1] (E.5)

= n
(αn − ν(n))∑n
r=1 α

n−rν(r−1)
(E.6)

The kink rate is then used for modeling step velocity as,

v = aPρTu (E.7)

where aP is the propagation length, and the total kink density ρT =
∑

ρ is obtained by

equilibrium kink density models defined by Kuvadia and Doherty[1].

The SSSF models step velocity as the summation of net attachment rates Jk at all kink

types. Eqns. 3.25-3.26, B.14-B.15, B.35-B.36 provide net attachment rate expressions for

step configurations 1, 2 and 3, respectively. The net attachment rates are summations of

individual event rates, which are expressed as products of specific site density (product of

kink densities) and elementary rate within SSSF. Alternatively, the kink cycle approach

also expresses Jk in terms of individual event rates, which in turn are expressed as product

of the specific kink density and elementary rate. This is because SSSF treats an event as

occurring at sites, while the kink cycle approach treats an event as occurring at kinks.

Such a distinction allows the SSSF to account for the nucleation rates as well and obtain

steady-state equations directly in terms of the kink densities (ρk) instead of the state

probababilities (Pk). In order to interpret the kink cycle approach through the SSSF
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lens, we expand the step velocity as follows,

v = aP

n∑
k=1

Jk (E.8)

= aP

n∑
k=1

ρk(α− νk) (E.9)

For n = 4 and k = 1 to 4 we get,

v = aP (ρ1(α− ν1) + ρ2(α− ν2) + ρ3(α− ν3) + ρ4(α− ν4)) (E.10)

Multiplying and dividing by the total kink density ρT , followed by reorganization of

terms gives,

v = aP (ρ1 + ρ2 + ρ3 + ρ4)(P1(α− ν1) + P2(α− ν2) + P3(α− ν3) + P4(α− ν4)) (E.11)

= aPρT ((P1α− P2ν2) + (P2α− P3ν3) + (P3α− P4ν4) + (P4α− P1ν1)) (E.12)

= aPρT × 4(P1α− P2ν2) (E.13)

= aPρTu (E.14)

Therefore, the SSSF accounts for attachment and detachment events at kink types

along with several other events such as formation of adatoms, denucleation and formation

of pits. Hence SSSF encompasses all events accounted for by the kink cycle approach

and some more. Moreover, the SSSF equations are written in terms of edge and kink

densities and hence the solution provides true steady-state kink densities as opposed to

the probabilities Pk in the kink cycle approach.
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