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Abstract—We propose a low complexity Generalized Linear Model
(GLM) for prioritizing slices during real-time H.264/AVC compressed
video streaming. We train the GLM over a video database to predict the
Cumulative Mean Square Error (CMSE) corresponding to individual
slice losses by using a combination of efficient video parameters which
can be easily extracted during the encoding of a frame. We prioritize
the slices generated within a Group of Pictures (GOP) based on the
predicted CMSE by using a Quartile Based Prioritization (QBP) scheme.
For comparison, we also perform QBP on measured CMSE values from
individual pre-encoded slice losses and analyze the priority misclassifi-
cations of the slices. We validate our model by applying Unequal Error
Protection (UEP) using RCPC codes to the different prioritized bitstreams
and evaluating their performance over noisy channels. Simulation results
show that predicted CMSE schemes achieve PSNR performance close to
that of the measured CMSE schemes for different slice sizes, video bitrates
and over different channel SNRs.

Index Terms—H.264/AVC video compression, real-time CMSE predic-
tion, slice prioritization, RCPC codes, unequal error protection.

I. INTRODUCTION

The demand for real-time video transmission over wireless net-
works is increasing rapidly. In order to efficiently utilize limited
wireless bandwidth, video data is compressed using sophisticated
video coding techniques such as H.264/AVC, which is the state-of-
the-art and widely used video coding standard jointly developed by
ITU and ISO [1]. As real-time transmission of multimedia content
is becoming popular, the study of video quality evaluation and
monitoring has also gained importance. Modeling video quality for
such systems has two basic requirements: firstly, the model should
account for various video application parameters accurately, and
secondly, the complexity of parameter calculation should be kept low.

Our work is motivated by past research in [2]–[6] where subjective
techniques are used to model the video packet loss visibility. The
authors in [2] focused on estimating Mean Square Error (MSE) using
three approaches (Full-Parse, Quick-Parse, and No-Parse) to access
spatio-temporal parameters. This work was extended to MPEG-2
video bitstreams in [3] using two techniques: (i) a tree based classifier
called Classification and Regression Trees (CART) [7] that labeled
each possible packet loss as being either visible or invisible, and (ii) a
Generalized Linear Model (GLM) which predicts the probability that
a packet loss will be visible to an average viewer. Scene significance
characteristics were explored in [4] through packet loss impairments
in MPEG-2 and H.264 compressed videos by using Patient Rule
Induction Method (PRIM). It was extended in [5] and a versatile
GLM was developed that is applicable for different compression
standards, concealment techniques and Group of Pictures (GOP)
structures by considering attributes of packet loss impairments.

Developing these perceptual loss visibility models using subjective
techniques is time consuming as human observers are needed to
evaluate a visibility score before parameters can be modeled. Though
we share the same motivation to gauge video quality, this paper
focuses on evaluating the relative importance of each H.264 video
slice, based on its expected loss distortion determined as predicted
Cumulative MSE (CMSE) from a low complexity GLM model.
By monitoring the video content being transmitted over a wireless
network, our low complexity model can be easily updated and re-
trained periodically to improve the prediction accuracy over time.
We propose a model development framework which determines the
subset of video parameters affecting slice loss distortion to predict the
CMSE value from a video database used as a training set. Later these
parameters are extracted real-time during the encoding process for
performing Quartile Based Prioritization (QBP) of slices transmitted
over an AWGN channel.

The remainder of the paper is organized as follows. Section II
discusses the video factors used to model the impact of a slice loss,
followed by the model development in Section III. Section IV dis-
cusses our QBP slice prioritization scheme and problem formulation
for minimizing the expected video distortion over an AWGN channel
by providing unequal error protection (UEP) using Rate Compatible
Punctured Codes (RCPC). The simulation setup and experimental
results are discussed in Section V. Section VI concludes the paper.

II. VIDEO FACTORS AFFECTING SLICE DISTORTION

We study the video factors that capture the effect of individual
slice losses on video quality and help in predicting their distortion
in terms of CMSE. We consider only those factors that are available
during the encoding process by evaluating (a) the encoded frame,
and (b) the error frame at the location of slice loss. Let the original
uncompressed video frame at time t be f(t), the reconstructed frame
without the slice loss be f̂(t) and the reconstructed frame with the
slice loss be f̃(t).

A. Encoded Frame Factors

The attributes of slice loss can be expressed in terms of the
underlying video content. The magnitude of distortion induced by
a slice loss is influenced by the presence of texture components,
luminance masking and motion masking. For our model, we study
the following factors extracted at the location of the slice loss during
the encoding process.

• Motion Characteristics: We compute the mean motion vectors
MOTX and MOTY over all the Macroblocks (MBs) in the slice.

689978-1-4673-2533-2/12/$26.00 ©2012 IEEE ICIP 2012



• AVGINTERPARTS: Represents the number of sub-partitions
averaged over the total number of MBs in the slice. If the
underlying motion is complex, AVGINTERPARTS would be
high.

• Maximum Residual Energy (MAXRSENGY): First, Residual
Energy (RSENGY) is computed for a MB as the sum of
squares of all its integer transform coefficients after motion
compensation. Then MAXRSENGY of a slice is equal to the
highest RSENGY value of all the MBs contained in it. If the
scene has high motion, then the MAXRSENGY would also be
high.

• Signal Characteristics: We consider mean SigMean and vari-
ance SigVar of the slice luminance. We also consider the slice
type Slice type, such as IDR or P or B slice, and it is treated
as a categorical factor in our model development framework
discussed in Section III.

B. Error Frame Factors

We characterize the slice loss in the error frame e(t) = f̂(t)−f̃(t),
by its amplitude and support (e.g., size, spatial extent, and temporal
duration). The size is controlled by slice size either in bytes or number
of macroblocks contained in it. The spatial extent is influenced by
the number of slice groups and FMO setting in H.264/AVC. The
amplitude depends heavily on the underlying video content and the
decoder concealment strategy, and may decrease as we progress
towards the end of the GOP due to the motion-compensation process
[5].

• Temporal Duration (TMDR): It is defined as the temporal error
propagation length due to a slice loss. A slice error in a non-
reference B frame has a TMDR of 1 since it is not used for
predicting other slices, while an error in a reference IDR slice
propagates to the end of GOP.

• Initial Mean Squared Error (IMSE): The IMSE of the loss of
a slice in a frame is computed between the compressed frame
f̂(t) and the reconstructed frame f̃(t) within the encoder instead
of the original uncompressed frame.

• Initial Structural Similarity Index (ISSIM): It is a measure
of the structural similarity [6] between two frames.

• Cumulative Mean Squared Error (CMSE): We use CMSE as
the ground truth in our model as it is an effective measure of
the distortion contributed by a slice loss which also captures the
error propagation within the GOP.

III. MODEL DEVELOPMENT

We generated a video database with sequences that have a wide
variety of scenes such as a bird’s eye view of a city, crowded areas,
portraits and still water. These videos were compressed using JM 14.2
reference software of H.264/AVC [8]. The GOP structure was IDR
B P ... B with GOP length of 20 frames. The frames were encoded
using dispersed FMO and a fixed slice configuration mode where the
size of the slice in bytes is predetermined by the user. At the decoder,
Motion Copy Error Concealment (MCEC) was used to conceal any
slice losses in P and B frames, and spatial interpolation was used
to conceal losses in the IDR frames. A training and test set for our
model development was formed by randomly splitting the database
into a 70:30 ratio, where we train our model on 70% of the data and
test on the remaining 30% of the data.

A. Overview of Model Development

We use a generalized linear model (GLM) to predict the CMSE
contributed by a single slice loss. Let Y = [y1, y2, ..., yN ] be a vector

of our response variable, i.e., measured CMSE values. Each data
point in Y is expressed as a linear combination of a known covariate
vector X = [x1, x2, ..., xp] and a vector of unknown regression
coefficients β = [β0, β1, ..., βp]

T . The regression coefficients are
estimated through an Iteratively Re-weighted Least Squares (IRLS)
technique. After estimating β, we use it to derive the predicted
response variable (i.e, predicted CMSE) vector Ŷ = [ŷ1, ŷ2, ..., ŷN ]
computed as Ŷ = E(Y) = g−1(Xβ) where g(·) is a link function.

B. Model Fittng

In the model fitting, a subset of covariates are chosen for the best
fit. We use the statistical software R [9] for our model fitting and
analysis. The steps for selecting covariates are as follows:

• Evaluating the Distribution of the Response Variable: A
visual analysis of the measured CMSE distribution revealed that
low CMSE values occurred with higher frequency than higher
CMSE values. Hence for our model, we classified our response
variable as a member of the exponential family of distributions
with identity as its link function.

• Akaike’s Information Criterion (AIC): We use the AIC index
[10] to determine the order in which the covariates are fitted.
It is defined as −2max(L) + 2p, where p is the number of
covariates and L is the log-likelihood estimate for the model.

• Choosing Covariates: We let Yk represent the model with a
subset of k covariates. The ith data point in Y

k, yk
i , where

i = 1, 2, ..., N is expressed as:

yk
i = βk

0 + βk
1xi1 + βk

2xi2 + . . .+ βk
kxik + εi (1)

Here, βk
0 is the intercept, βk

j , j = 1, 2, ..., k are the fitted coef-
ficients, xij represents the jth covariate for the ith observation
in Y

k, and εi is the error coefficient. The simplest model is
the Null Model having only the intercept βk

0 whereas the Full
Model has all the p covariates, i.e., k = p. We use a forward
stepwise approach to choose the covariates.
Step 1: We fit a group of p univariate models and compute their
AIC values. The best univariate model has the smallest AIC
value.
Step 2: We then fit (p − 1) multivariate models where each
model has two covariates. The first covariate is from the best
univariate model in Step 1 and the second covariate is chosen
from the remaining (p − 1) available covariates. We compute
the AIC values for the (p− 1) multivariate models and choose
the best multivariate model with the smallest AIC value. The
two covariates fitted at this stage would progress to the next
step to be fitted with the third covariate. This process of fitting
covariates is repeated until the stopping criterion is satisfied.

• Stopping Criterion: If the model with k + 1 covariates, has
a higher AIC index than the corresponding model with k

covariates the process stops. It is also possible that the full
model was fitted (i.e., k = p) and the stopping criterion has not
been satisfied, as was observed during our model fitting with
the factors described in Section II.

• Random Forests: We improve the performance of our model
by introducing two new factors which are interactions between
the three most important factors. We use a random forest [11],
which is a tree structured classifier, to determine the covariate
importance over a large number of decision trees. The trees are
grown to the full extent (i.e., trees are not pruned) through binary
recursive partitioning. Each response variable data point casts
a vote for the most important covariate. Finally random forest
outputs the most popular covariates.
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TABLE I: Final Model Coefficients in Order of Importance

Name of Covariate Regression Coefficient
IMSE 1.90 × 10−1

TMDR −1.30

MAXRSENGY −9.88 × 10−9

ISSIM −1.91 × 101

SigMean −3.03 × 10−1

SigVar −2.86 × 10−3

MOTX −2.98 × 10−1

MOTY −1.15

AVGINTERPARTS −1.08 × 101

Slice type.f2 1.20 × 101

Slice type.f3 −1.95 × 101

IMSE × TMDR 7.54 × 10−1

IMSE × MAXRSENGY 1.40 × 10−9

Intercept 9.45 × 101

We observed that IMSE, TMDR and MAXRSENGY are the most
important covariates as shown in Table I. We introduced interactions
between covariates IMSE and TMDR, and IMSE and MAXRSENGY
to improve the model. Intuitively, as IMSE increases, CMSE also
increases since slices that are harder to conceal result in higher distor-
tion. As TMDR increases, CMSE increases due to error propagation.
The regression coefficients of our final model are also reported in
Table I. CMSE shows a positive correlation with IMSE, indicating
that if a slice is harder to conceal, its propagative effects would also
be greater. Our interaction variables also show similar correlation
with CMSE.

IV. SLICE PRIORITY ASSIGNMENT AND PROBLEM

FORMULATION

In order to validate our model, we analyze and compare the
performance of Quartile Based Prioritization (QBP) on measured and
predicted slice CMSE values over an AWGN channel. The predicted
CMSE values are computed using GLM derived in Section III-A
after deriving video factors while encoding whereas measured CMSE
values are computed by decoding videos affected by individual pre-
encoded slice losses. We divide the slices from each GOP into
4 priorities based on the quartiles, where priority 1 slices have
highest predicted/measured CMSE and priority 4 slices have lowest
predicted/measured CMSE.

Our objective is to find the optimal Equal Error Protection (EEP)
and UEP code rate allocation for the four priorities in the different
bitstreams. We formulate the total expected video distortion of our
prioritized data as in [12]. Let RCH be the transmission bit rate of
the channel in bits per second. The video is encoded at a frame rate
of fs frames per second, and the total outgoing bit budget for a GOP
of length LG is RCHLG

fs
. The RCPC code rates are chosen from a

candidate set R of punctured code rates {R1, R2, R3, ..., RK}. The
expected video distortion within the GOP is the sum of the prioritized
slice loss distortion over the AWGN channel. The expected distortion
of the ‘jth’ slice depends on the measured/predicted CMSE distortion
due to its loss, Dp(j), slice error probability for a given channel SNR,
slice size Sp(j) in bits, and RCPC code rate ri for slice priority
i selected from the candidate set R. The optimization problem is
formulated as:

minr

{∑4
i=1

∑ni
j=1

[
1− (1− pb(SNR, ri))

(
Sp(j)

ri

)]
Dp(j)

}

subject to

(1)
∑4

i=1

∑ni
j=1

Sp(j)

ri
≤

(
RCHLG

fs

)
(2) ri−1 ≤ ri for i = 2, 3, 4

(2)

Here ni is the number of slices of priority i. The formulation only
considers slice loss distortion, and ignores compression distortion,
and so will be more applicable if compression distortion is negligible
compared to slice loss distortion. Constraint 1 in Equation 2 is
the channel bit rate constraint and constraint 2 ensures that higher
priority slices have code rates which are at least as good as the
code rates allocated to the lower priority slices. It speeds up the
optimization process by narrowing down the selection set of code
rate combinations for the four priorities. The optimization problem
is solved using Branch and Bound (BnB) with interval arithmetic
analysis [13] to yield the optimal UEP code rates. We also consider
EEP based transmission over the AWGN channel where the single
strongest code rate that can be used for all the slices within the
channel bit rate constraint is determined. Though the final bit rate
after adding the parity bits does not exceed the bit budget, there is
a possibility that not all of the available bits are utilized due to the
set R being a limited discrete vector of punctured code rates. To be
fair, we limit the bit budget of the UEP scheme to the number of bits
used by the EEP scheme.

V. SIMULATION SETUP AND EXPERIMENTAL RESULTS

We have studied the performance of out CMSE prediction model
on CIF Foreman and Tempete video sequences encoded at 512 Kbps
and 1024 Kbps using H.264/AVC JM 14.2 reference software [8].
Two different slice sizes, 300 and 900, bytes were used. Other
encoding parameters used can be found in Section III. Due to
the space constraints, we show results for only Foreman sequence
encoded at 1024 Kbps. We use scatter plots to examine the accuracy
of our prediction model based on the video factors in Table I.
The correlation coefficient, ρ indicates the strength of linearity
between the measured CMSE and predicted CMSE values. Figure
1 illustrates that the CMSE prediction model accuracy is high with
large correlation coefficient values. It also show outliers, which are
data points that were not predicted accurately. These data points result
in misclassification of the slices into different priorities.

(a) (b)

Fig. 1: Scatter plot of Predicted CMSE vs. Measured CMSE for Foreman
encoded at 1024 Kbps and slice size of (a) 300 bytes (ρ = 0.75), and (b)
900 bytes (ρ = 0.79).

Table II shows the percentage of slices contributed by each frame
type in the encoded bitstream. On an average, the IDR, P and B
frame slices contribute 25%, 55% and 20% slices, respectively. The
share of IDR slices decreases slightly as the slice size increases from
300 to 900 bytes. The converse is true for B slices.

TABLE II: Percentage Distribution of Slices in Foreman

SliceSize IDR P B
300 25.9 55.8 18.3
900 22.6 55.6 21.7
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Next, we discuss the misclassification of slices in different pri-
orities. If a slice is assigned a priority pi, such that i = 1, 2, 3,
or 4, based on the measured CMSE, then we define a first degree
(1◦) misclassification of the slice if it is assigned a priority pi+1 or
pi−1 based on the predicted CMSE. Likewise, a second degree (2◦)
misclassification would result if the slice is assigned a priority of
pi+2 or pi−2 based on its predicted CMSE value. In a third degree
(3◦) misclassification, a slice with the highest priority is assigned
the lowest priority or vice versa. A 1◦ misclassification represents
moderate CMSE prediction error and may be tolerable whereas a 2◦

and 3◦ misclassifications should be minimized. Also, it is desirable to
minimize misclassification of higher priority slices. Table III shows
the percentage misclassification for slices from each priority. For the
slice size of 300 bytes, less than 20% slices misclassified by 1◦

belong to priorities p1 and p2, and less than 8% and 4% slices are
misclassified by a degree of 2 and 3, respectively. For 900 byte slices,
less than 15% slices misclassified by 1◦ belong to priorities p1 and
p2, and less than 1% of the slices are misclassified by the 2◦. The total
misclassification is much smaller for 900 byte slices. We observed a
similar behavior for Tempete video sequence.

TABLE III: Percentage Slice Misclassification by Degree Corresponding
to Each Priority for Foreman using QBP Scheme.

Degree 300 900
1◦(p1/p2/p3/p4) 4.5/14.8/7.9/13.9 5.0/9.4/10.6/7.4
2◦(p1/p2/p3/p4) 0.9/0.4/4.5/1.9 0.1/0.2/0.1/0.5
3◦(p1/p2/p3/p4) 0.0/0.0/0.0/3.6 0.0/0.0/0.0/0.0

In addition to slice priority misclassification, we also studied
performance proximity of a predicted CMSE based QBP bitstream
transmission to that of a measured CMSE based QBP transmission
by evaluating the average PSNR (dB) performance of UEP and EEP
schemes over an AWGN channel. The mother code of the RCPC code
has rate 1

4
with memory M = 4 and puncturing period P = 8. Log-

likelihood ratio (LLR) was used in the Viterbi decoder. The RCPC
rates each slice priority can select from were {(8/9), (8/10), (8/12),
(8/14), (8/16), (8/18), (8/20), (8/22), (8/24), (8/26), (8/28), (8/30),
(8/32)}. The channel bitrate used for our test videos were 2.3 Mbps
for the encoding bitrate of 1024 Kbps. For a given video bitrate and
slice size, the video quality decreases with decreasing channel SNR
due to higher slice error probability caused by more channel errors.
Figure 2 shows the average PSNR computed over 100 realizations
of each AWGN channel for Foreman encoded at 1024 Kbps with
slice sizes of 300 and 900 bytes. Measured CMSE and Predicted
CMSE represent the UEP performance for slices prioritized based on
measured CMSE and predicted CMSE. At channel SNRs < 1 dB,
videos with EEP could not be decoded since too many slices were
corrupted. The UEP performance of the predicted CMSE scheme
closely follows that of the measured CMSE for both small and
large slices even though higher spatial correlation and compression
efficiency at larger slice sizes makes it more difficult to conceal. The
UEP schemes clearly demonstrate a significant gain over EEP since
greater protection is provided to priority 1 slices at the expense of
more priority 4 slices being lost over the channel. The gain decreases
as the channel gets better.

VI. CONCLUSIONS

We presented a low complexity scheme to predict the expected
CMSE using a generalized linear model. The proposed model used
a combination of low complexity parameters which were extracted
while the frame was being encoded. Both predicted CMSE and
measured CMSE contributions were used to classify slices into

(a) (b)

Fig. 2: Average PSNR performance of Foreman video over an AWGN
channel. Video was encoded at 1024 Kbps and slice size of (a) 300 bytes,
and (b) 900 bytes.

different priorities using the QBP scheme. We showed that second
degree and third degree priority misclassifications were minimal
indicating that we have achieved similar levels of prioritization in our
proposed scheme and the UEP performance of the predicted CMSE
prioritization over an AWGN channel is close to that of the measured
CMSE prioritization.
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