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Structural variation reshapes population 
gene expression and trait variation in 2,105 
Brassica napus accessions

Yuanyuan Zhang    1,7, Zhiquan Yang    2,3,7, Yizhou He    1, Dongxu Liu2, 
Yueying Liu1, Congyuan Liang2, Meili Xie1, Yupeng Jia2, Qinglin Ke1, 
Yongming Zhou2, Xiaohui Cheng1, Junyan Huang1, Lijiang Liu1, Yang Xiang4, 
Harsh Raman    5, Daniel J. Kliebenstein    6, Shengyi Liu    1   & 
Qing-Yong Yang    2 

Although individual genomic structural variants (SVs) are known to influence 
gene expression and trait variation, the extent and scale of SV impact 
across a species remain unknown. In the present study, we constructed a 
reference library of 334,461 SVs from genome assemblies of 16 representative 
morphotypes of neopolyploid Brassica napus accessions and detected 
258,865 SVs in 2,105 resequenced genomes. Coupling with 5 tissue population 
transcriptomes, we uncovered 285,976 SV-expression quantitative trait loci 
(eQTLs) that associate with altered expression of 73,580 genes. We developed 
a pipeline for the high-throughput joint analyses of SV-genome-wide 
association studies (SV-GWASs) and transcriptome-wide association studies 
of phenomic data, eQTLs and eQTL-GWAS colocalization, and identified 
726 SV–gene expression–trait variation associations, some of which were 
verified by transgenics. The pervasive SV impact on how SV reshapes trait 
variation was demonstrated with the glucosinolate biosynthesis and 
transport pathway. The study highlighting the impact of genome-wide and 
species-scale SVs provides a powerful methodological strategy and valuable 
resources for studying evolution, gene discovery and breeding.

SVs such as deletions, insertions, duplications and inversions represent 
a potentially important source of genetic diversity that can control 
phenotypic variation and enable organismal adaptation to diverse envi-
ronments1. Recent studies have shown that SVs can cause large-scale 
perturbations of regulatory regions and account for a greater propor-
tion of genomic variation than SNPs2,3. Studies on individual genes 
have shown cis- and trans-regulatory mechanisms of SVs on gene 
expression2,4,5. Further studies on three-dimensional (3D) interactions 

of chromosomes have indicated that SVs can alter higher-order chro-
matin organization to affect the expression of neighboring genes in 
humans6,7. In polyploid plants, large SVs frequently occur after genome 
duplication and can contribute to genome differentiation by remov-
ing genes8. Therefore, SVs may have a greater impact on polyploid 
genomes and accompanying trait innovation9–11. However, the extent 
and scale of genome-wide SV impact on gene expression, especially in 
polyploids, remain unknown. Previous studies have largely focused on 
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large number of similar genomic segments can cross-map on to multiple 
genomic sites14. Consequently, the vast majority of SVs have remained 
hidden, along with their impact on genomic and phenotypic diversity1,14. 
Therefore, a genomic resource of SVs and associated phenotypic variation 
is required at a species scale to empower our understanding of SV impact.

studying associations between SNPs and gene expression quantity, 
namely eQTLs (SNP-eQTLs)12,13.

A problem confronting the population analysis of SV impact on 
gene expression and trait variation is the unreliability of SV identification 
using short-read sequencing1. In polyploids, short-read sequences from a 
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Fig. 1 | Identification and characterization of the B. napus pan-SV.  
a, Geographic distribution of 2,105 B. napus accessions that were sequenced.  
The map was created using the map data function in the ggplot2 package.  
b, Phylogenetic analysis of 2,105 accessions based on SNPs. Line colors represent 
three rapeseed ecotypes, another two botanical varieties (var. pabularia and  
var. napobrassica) and resynthetics developed from hybridization between  
B. rapa and B. oleracea. The 16 representative B. napus accessions, including one 

rutabaga (swede) root fodder (Laurentian) and one resynthetic (No2127) for  
de novo assembling are indicated as black lines. c, The SV types and numbers  
of the 15 B. napus genome assemblies based on the reference cv. ZS11 genome. 
In b and c, ZS11 is for Zhongshuang11, ZS9 for Zhongshuang9, ZY821 for 
Zhongyou821 and ZY7 for Zheyou7. d, Distribution feature of SVs from  
2,105 B. napus accessions. Different tracks (i–vii) indicate the densities of genes, 
TE and GC content (i–iii) or abundance of SVs (iv–vii).
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Neopolyploid B. napus rapeseed/canola (AACC, 2n = 4x = 38) is an 
important crop for healthy edible oil, stockfeed and biofuel markets 
worldwide. Previous studies have identified small insertion/deletion 
(indel) variations and their associations with traits in the rapeseed 
accession population15, as well as SVs from eight genotypes and the 
corresponding variation in presence/absence associated with three 
traits in a nested association mapping population16. However, there is 
no report on the SV regulatory effect of large accession populations 
on gene expression and trait variation.

The present study aimed to explore the potential of integrating 
high-throughput population genomics with gene-editing technolo-
gies and reveal the extent and scale of genome-wide SV impact on gene 
expression, and thereby trait variation of the B. napus population com-
prising 2,105 diverse core accessions. To achieve this, we constructed 
a reference pan-SV library for reliable detection of SVs from the large 
resequenced population, thus enabling the establishment of extensive 
catalogs of SVs together with their regulated genes. Furthermore, cou-
pling the population genomic, transcriptomic and phenomic data, we 
established a joint analysis method involving SV-GWAS, SV-eQTL, TWAS 
(transcriptome-wide association study)17 and GWAS-eQTL colocaliza-
tion18 and revealed a substantial number of SV loci with a surprisingly 
wide regulatory effect on variation of gene expression and agronomi-
cally important traits.

Results
Identification and characterization of species-scale SVs
To investigate genome-wide SVs and their impact on gene expression 
at the B. napus species scale, we constructed a high-confidence refe
rence pan-SV library using 16 genomes, 6 assembled in the present 
study (Supplementary Tables 1–4 and Supplementary Note 1) and 10 
published ones16,19,20. These 16 accessions were representatives of global 
B. napus diversity, covering both subspecies (B. napus subsp. napus with  
three rapeseed ecotypes (spring, winter and semi-winter) and B. napus 
subsp. rapifera) and a resynthesized oilseed rape line. They were chosen 
from the 2,105 accessions collected from various countries (Fig. 1a,b 
and Supplementary Table 1). The six genomes of ZY821, Laurentian, 
ZS9, ZS42, HTR-1 and EST-2 were de novo assembled using combined 
Oxford Nanopore Technologies long reads (79-fold genome cover-
age) and Illumina short reads (67-fold genome coverage) with multiple 
assemblers21, yielding 6 new assemblies with an average contig N50 of 
5.18 Mb and an average length of 937.19 Mb (Supplementary Tables 2–4). 
The cv. Laurentian assembly was the first fodder crop genome available 
to date to the Brassica community.

We identified SVs by comparing the assemblies and long-read 
alignment to the ZS11 reference genome (Extended Data Fig. 1a). After 
highly stringent quality filtering, a total of 334,461 high-confidence, 
nonredundant SVs (>50 bp) were identified (Fig. 1c). Of them, a large 
inversion of 26.67 Mb was illustrated and verified using Hi-C link 
patterns and PCR amplification (Extended Data Fig. 1b–d and Supple-
mentary Note 2). Using this reference pan-SV library, we constructed 
a population SV map of 2,105 B. napus accessions resequenced by 
Illumina HiSeq with an average of 8.6-fold coverage by mapping the 
short reads on to the reference SVs using the Paragraph package22. 
The precision and recall rate of SVs excluding translocations were 
0.84 and 0.91 (Supplementary Table 5), respectively, comparable  
to human genomes22. In total, we identified 258,865 SVs including 
125,611 insertions, 124,744 deletions, 6,146 inversions and 2,364 
duplications, and their occurrence frequency, genomic distribu-
tion pattern and sizes are different, particularly between An and Cn  
(Fig. 1d, Extended Data Fig. 1e–h, Supplementary Tables 6 and 7 and 
Supplementary Note 3). These characteristics may reflect the dis-
tinct evolutionary features of the two subgenomes in neopolyploid 
B. napus.

To assess the contribution of SVs to genomic diversity, we con-
structed and compared SV- and SNP-based phylogenetic trees of the 

2,105 accessions and found apparent differences between the trees 
(Fig. 1b and Extended Data Fig. 1i), suggesting the independent distribu-
tion of SVs and SNPs, both of which contributed to genomic diversity.

Identification and characterization of eQTLs in population
To reveal the extent and scale of SV impact on population gene 
expression, we conducted SV-eQTL analyses in the two B. napus 
subpopulations. After filtering the 258,865 SVs for those with minor 
allele frequency (MAF) <0.01 and call rate <0.7, a total of 93,505 
high-quality/-confidence SVs were generated. For the SV-eQTL analy-
sis, RNA sequencing (RNA-seq) data were generated from five tissues, 
shoot apical meristems (SAMs), leaves, siliques at 18 d after pollination 
(d.a.p.) and developing seeds at 20 d.a.p. and 40 d.a.p., each sample 
with reads of ~6 Gb (Fig. 2a and Supplementary Table 8). The eQTL 
mapping was performed using transcripts from a total of 81,424 genes, 
each expressing in >5% of the accessions of the two subpopulations, 
against the 93,505 SV genotypes. A total of 285,976 SV-eQTLs was iden-
tified (Supplementary Table 9). Among the SVs of polyploid plants, 
homoeologous nonreciprocal translocation, an interesting kind of 
homoeologous exchange (HE) detectable by the method previously 
described23,24, occurs in B. napus23,24; however, we could not analyze 
them in SV-eQTL mapping owing to their low frequencies and some 
false positives that were difficult to circumvent in the populations 
(Supplementary Note 4).

In each SV-eQTL region, the highest significantly associated 
eSV (peak eSV) was defined as the lead eSV and, in total, 47,897 lead 
eSVs were identified (repeated ones in different tissues were just 
counted once), which regulated the expression of 73,580 target genes 
(referred to as eGenes) (Fig. 2b and Supplementary Table 9), account-
ing for 90% of the total expressed genes (81,424), which represents 
an unprecedented gene quantity and ratio. Based on the physical 
distance between lead eSVs and the associated eGenes, we divided 
these eQTLs into cis-eQTLs (≤1 Mb away from eGene) and trans-eQTLs 
(>1 Mb or on different chromosomes), identifying 66,003 cis-eQTLs 
(23%, corresponding to 30,827 lead eSVs) and 219,973 trans-eQTLs 
(77%, corresponding to 39,609 lead eSVs). Of the 47,897 lead eSVs, 
17% (8,288) are purely cis-eSVs, 36% (17,070) are purely trans-eSVs  
and the remaining 47% (22,539) have both cis and trans effects. Within 
a 1-Mb range, the number of cis-eSVs decreased with distance from  
the eGene (Extended Data Fig. 2a). More than half the lead eSVs 
regulate the expression of more than one gene either in cis or in 
trans, and 74% and 43% of eGenes are trans and cis regulated, respec-
tively, by more than one lead eSV (Fig. 2c,d). Of these, there are 8,631 
trans-lead eSVs, each of which simultaneously regulates >5 genes, 
and 10,217 eGenes, each of which is simultaneously regulated by  
>5 trans-lead eSVs, suggesting complex regulatory effects of SVs  
on gene expression.

In the regulation by trans-lead eSVs (Fig. 2e,f), 15% of the total 
lead eSVs regulate their eGenes on the same chromosome (intrachro-
mosome), whereas 54% regulate interchromosome eGenes. Of the 
trans-lead eSVs on interchromosomes, 44% regulate intra-subgenome 
eGenes; the remaining 56% (66% on An and 34% on Cn) regulate 
inter-subgenome eGenes and, despite Cn being 1.5× larger than An 
(Supplementary Table 7), the number of lead eSVs on An is 1.7× greater 
(Fig. 2e), indicating remarkably asymmetrical subgenome regulation 
between An and Cn.

We next investigated the genomic distribution of SV-eQTL hot-
spots that might harbor master regulators affecting a suite of down-
stream genes25. We identified 495 trans-eQTL hotspots regulating 
the expression of 59,914 genes (Fig. 2g and Supplementary Table 10). 
Enrichment and pathway analyses of eGenes strongly show that 
each trans-eQTL hotspot regulates a set of functionally connected 
genes or a gene network (Supplementary Table 11), revealing a way 
to link trans-SVs to their specific biological functions or the nature of  
SV effect.

http://www.nature.com/naturegenetics
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The eSV-mediated regulatory mechanisms of gene expression
Based on eSV annotation, sequence characteristics and/or its posi-
tion in relationship to the eGenes, we classified eSV-mediated regula-
tory mechanisms of gene expression alteration into eight categories 
(Fig. 2h, Supplementary Table 12 and Supplementary Note 5). These 
were (I) SV-mediated changes of regulatory sequences: of 2,485 SVs, 
1,476 at 2 kb upstream and, of 2,616 SVs, 1,598 at 2 kb downstream of 
genes are eSVs, and they putatively regulate 48,264 and 49,765 eGenes, 
respectively; (II) the SV effect through its transcription factors (TFs): 
there are 4,865 eSVs significantly associated with 260 TF genes, and 
another 5,042 eGenes could be matched to the putative upstream 260 
TFs by retrieving the previously established B. napus ‘TF-target gene’ 
database26 (Supplementary Table 13), suggesting that the eSVs in either 
cis or trans regulate expression of some eGenes by affecting the gene 
expression of TFs that target these eGenes; (III) the SV-changed activity 
of distal regulatory elements (enhancer); (IV) SV-mediated disrup-
tion of gene body; (V) transposable element (TE)-mediated SV effect; 
and moreover (VI–VIII), the SV effect that could also occur through 
its epigenetic regulation on gene expression. These eight categories  
are summarized in Supplementary Table 12 and Supplementary Note 5.  
In addition, 6,384 eSVs do not fall into the above categories and have 
no identifiable regulatory components. Overall, the effects of eSVs 

explain significantly greater gene expression variance in cis than in 
trans and those in categories I and V are higher than the others (Fig. 2i, 
Extended Data Fig. 2b,c and Supplementary Note 5).

These results revealed an intriguing landscape of the genome-wide 
impact of SVs on gene expression via cis and trans regulation in large 
populations and provided new insight into the complex mechanism 
of gene and trait regulation by SVs.

Identification of SV–gene expression–trait associations
With the above metadata and megadata, we proceeded to test the abil-
ity of the joint analyses of SV-eQTL, SV-GWAS, TWAS and eQTL-GWAS 
colocalization for high-throughput identification of associations link-
ing the SV effect on gene expression to trait variation in the B. napus 
populations (Fig. 2a). This would give an image of the extent and scale 
of the SV impact on population trait variation.

We first carried out SV-GWASs using 54 sets of phenotypic data, 
including seed quality, morphology and yield components of the above 
populations. We identified 817 SVs in 188 loci that were significantly 
associated with the traits (Fig. 2a and Supplementary Tables 14 and 
15). Of them, 686 SVs are lead eSVs for eQTLs associated with 5,084 
eGenes; 84 loci are overlapped between eQTL hotspot and GWAS QTLs 
(Supplementary Table 16), suggesting that eSVs of these eQTL hotspots 
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can influence trait variation. Then we used the above two sets of  
phenotypic and transcriptomic data to perform TWASs and identi-
fied 3,487 nonredundant genes that significantly associated with at  
least one trait (Supplementary Table 17). Of these genes, 311 genes are 
eGenes with their SV-eQTLs overlapping the GWAS loci, in which the 
significant associations between phenotypic traits and eGenes were 
also detected in TWASs. Finally, we identified 726 SV–gene expression–
trait variation associations involving 180 eSVs that regulate 311 eGenes 

which further regulate trait variation. Of these associations involving  
97 eSVs and 119 eGenes, 278 are supported by high colocalization pos-
terior probability of eQTL and GWAS loci and are thus causal SVs of trait 
variation (Fig. 3 and Supplementary Table 18). Figure 3 summarized 
part of the networks of causal SV–gene expression–trait variation 
associations and some detailed examples have been presented on  
an exemplar trait glucosinolate content in the next two sections to 
show how to identify these associations and underlying mechanisms, 
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plot of TWASs showing a significant association between 5C-glucosinolate 
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which also revealed an integrative landscape of how SVs reshaped 
variation of a trait.

The case studies on SV impact
To illustrate how complex trait variation is influenced by the SV–gene 
expression associations established above, we focused on molecular  
mechanisms affecting glucosinolate content (the biosynthesis  
and transport pathway). Glucosinolates specific to Brassicales are 
important compounds in plant defense against disease and insects, 
and in human nutrition/health such as anti-cancer effect27, and their  
biosynthesis in the green organs and subsequent transportation to 
seeds by transporters were extensively studied in Arabidopsis spp.28–30. 
Using total and individual glucosinolates measured in leaves and seeds 
in the two B. napus subpopulations, we identified 119 significantly 
associated SV-GWAS loci, many of them being new (Fig. 4a,b and  
Supplementary Tables 15 and 19). In the present study, we highlight 
key loci as cases to present detailed analyses of glucosinolates and 
underlying molecular mechanisms that were not dissected previously.

An insertion repressing downstream gene expression. We identi-
fied a significant and new locus that controls the glucosinolate ratio 
of 4C:(4C + 5C) and 5C:(4C + 5C) (representing the enzyme activities 
of side-chain elongation in glucosinolate biosynthesis) on chromo-
some A03 (Extended Data Fig. 2d,e). Within this SV-GWAS locus, only 
one gene, BnaA03.MAMf, the expression level of which is significantly 
associated with 5C-glucosinolate content in TWASs (Fig. 4c) and the 
link between SVs and BnaA03.MAMf expression variation, was estab-
lished by SV-eQTLs (Extended Data Fig. 2f). The Arabidopsis MAM1/2/3 
orthologs of BnaA03.MAMf encode methylthioalkylmalate synthase 
which determines the natural variation of glucosinolate side-chain 
elongation31, and its products significantly correlate with aphid feed-
ing behavior32. The regional eQTL and GWAS QTL are colocalized at a 
strong probability of PPH4 = 0.99, and a 1,454-bp insertion at 990 bp 
upstream of BnaA03.MAMf was identified as the causal variant for both 
BnaA03.MAMf expression and 5C:(4C + 5C) ratio (PPH4 = 0.76) (Fig. 4d,e 
and Extended Data Fig. 2g). Allelic analyses showed that the accessions 
without the 1,454-bp insertion had higher expression levels of BnaA03.
MAMf and lower 4C:(4C + 5C) or higher 5C:(4C + 5C) ratios (Fig. 4f–h).

To verify this SV effect, we constructed an expression vector con-
taining the 2.5-kb native promoter sequence of BnaA03.MAMf from a 
low seed glucosinolate cultivar, ZS11, without the 1,454-bp insertion and 
the BnaA03.MAMf coding sequence from an accession HTR-2 with the 
insertion in its promoter (Supplementary Note 6), and the vector was 
transformed into HTR-2. The increases of the transgenic lines in both 
BnaA03.MAMf expression and 5C:(4C + 5C) ratio (Fig. 4i,j) confirmed 
the 1,454-bp insertion effect (the category I). The aphid feeding bio-
assay showed that the transgenic lines with elevated BnaA03.MAMf 
expression were more attractive to aphids (Brevicoryne brassicae) than 
wild-type (WT) (HTR-2), indicating that the aphid prefers longer-chain 
glucosinolates which predominately exist in modern cultivars (Fig. 4k).

Insertion effect originated from harbored TFs. An A09 locus was 
identified by SV-GWASs (Extended Data Fig. 3a–c), which explains the 
highest phenotypic variance of total glucosinolate content in leaves 
(38%) and seeds (60%) among all GWAS loci. Among 25 TWAS genes 
significantly associated with total glucosinolate content, just one gene, 
BnaA09.MYB28, is involved in glucosinolate accumulation in the locus, 
which is orthologous to Arabidopsis MYB28 (AT5G61420) (Fig. 5a and 
Extended Data Fig. 3b,c) and BnaA09.MYB28 had a significant SV-eQTL 
(Extended Data Fig. 3d). Pairwise colocalization analysis indicated that 
a 41.6-kb insertion harboring BnaA09.MYB28 is the most significantly 
shared causal variant for both eQTL and GWAS signals (Fig. 5b and 
Extended Data Fig. 3c–e). The population allelic variation indicated 
that the presence of the insertion carrying BnaA09.MYB28 contributes 
significantly higher glucosinolate content (Fig. 5c,d). Consistently, 

RNA-seq data from 22 tissues/stages showed no expression of BnaA09.
MYB28 when the insertion was absent in the low glucosinolate cultivar 
ZS11, contrasting to the WT ZY821 (Extended Data Fig. 3f). Therefore, 
the regulatory effect of the 41.6-kb insertion on aliphatic glucosinolate 
content is from BnaA09.MYB28.

The BnaA09.MYB28/the eSV (41.6-kb insertion) within the above 
eQTL regulated the expression of a set of eGenes (Fig. 5e and Supple
mentary Note 7). The previous study indicated that Arabidopsis  
MYB28 is a key TF and regulates a suite of its downstream genes 
involved in aliphatic glucosinolate biosynthesis30,33. To check the 
trans-regulatory effect of BnaA09.MYB28/eSV in B. napus, we first 
measured the eGene expression pattern in the accessions with or with-
out BnaA09.MYB28/eSV. The results showed that transcripts involved 
in aliphatic glucosinolate biosynthesis were significantly higher in the 
accessions with BnaA09.MYB28/eSV (Fig. 5f). Furthermore, we devel-
oped near-isogenic lines (NILs) of the presence/absence of BnaA09.
MYB28/eSV and confirmed not only significantly higher total leaf  
glucosinolate content in the lines with BnaA09.MYB28 (Fig. 5g), but also 
the trans-regulation pattern of expression (Fig. 5h). The results revealed 
trans regulation of BnaA09.MYB28/eSV on downstream eGenes,  
causing variation in aliphatic glucosinolate content (category II).

Insertion effect originated from its enhancer elements. To elucidate 
the effect of an SV carrying enhancer elements on remote gene expres-
sion and its mechanism (category III), we examined the above datasets 
(Fig. 3 and Supplementary Tables 9–19) and revealed an overlapped 
GWAS QTL and eQTL of BnaC02.GTR2, the Arabidopsis ortholog of 
which plays a key role in glucosinolate transport29 (Figs. 4a,b and 6a 
and Extended Data Fig. 3g–i). BnaC02.GTR2, but not BnaC02.MYB28, 
significantly associated with total seed glucosinolate content in TWASs 
(Fig. 6a) and both genes belonged to different linkage disequilibrium 
(LD) blocks (Extended Data Fig. 3i). Colocalization of eQTL and GWAS 
loci pinpoints a 7,365-bp insertion to be the causal eSV at 20.3 kb 
upstream of BnaC02.GTR2 (Fig. 6b,c). The dynamic expression and 
population allelic analysis indicated significant contribution of the 
insertion to BnaC02.GTR2 expression and total seed glucosinolate 
content (Fig. 6d–f). Total seed aliphatic glucosinolate content was 
significantly positively correlated with the expression level of BnaC02.
GTR2 and related to the insertion (Fig. 6g).

The insertion contains a cluster of enhancer elements, especially 
CAAT-box motifs (Supplementary Table 20), which was thus predicted 
as a cis-acting DNA sequence to regulate BnaC02.GTR2 expression. To 
examine this, we first investigated the chromatin accessibility by assay 
for transposase-accessible chromatin with high-throughput sequencing 
(ATAC–seq)34 and chromatin folding/interaction (Hi-C)35 in the repre-
sentative high and low glucosinolate accessions, and ZY821 with the 
insertion and ZS11 without the insertion. By comparing read coverage 
depth in the regions surrounding this insertion after read alignment, we 
identified highly enriched strong ATAC–seq signals in both the enhancer 
sequence and flanking regions of the insertion in ZY821, but not in ZS11, 
indicating more accessibility of the chromatin regions with the inser-
tion and its flanking regions (Fig. 6h,i and Supplementary Note 8). By 
developing an iterative approach to pinpoint local clusters of chromatin 
interaction frequencies in Hi-C, we captured abundant interactions 
between the enhancer region and 12 nearby genes including BnaC02.
GTR2 in the ZY821 locus (Fig. 6h). We next detected the active enhanc-
ers mark, acetylation of histone 3 at lysine 27 (H3K27ac), by chromatin 
immunoprecipitation sequencing (ChIP–seq)36. We found that the 
enhancer sequence with the insertion in ZY821 was highly enriched for 
H3K27ac whereas the signals were absent in the corresponding region 
of ZS11 (Fig. 6j). As expected, the expression levels of 12 nearby genes, 
including BnaC02.GTR2, were noticeably higher in ZY821 than those 
in ZS11 (Fig. 6k). These results indicated that the 7,365-bp insertion 
confers seed glucosinolate content variation by rewiring chromatin 
spatial structure (Fig. 6l) to regulate at least BnaC02.GTR2 expression.
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Fig. 7 | A landscape of SVs affecting glucosinolate biosynthesis and 
transport and its application for breeding. a,b, The eSV haplotype alleles 
and corresponding key gene expression levels determining glucosinolate 
biosynthesis and transport. H (yellow) and L (blue) indicate the alleles for high or 
low aliphatic (a) or indolic (b) glucosinolate contents. For the legends of boxplots 
and P values, see Fig. 2i. c, Nine eSV haplotypes representing different contents of 
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of the glucosinolate biosynthesis and transport pathway. The regulatory  
modes of key gene expression (d) is mapped to the glucosinolate biosynthesis 

pathway (orange shadings) shown in an enlarged leaf (e). For simplicity, the 
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for biosynthesis. The orange arrows stand for glucosinolate transport paths to  
seeds for accumulation and the circular arrows for glucosinolate transport in 
siliques. The pathway construction was based on previous publications28,30,50.  
f, Leaf and seed glucosinolate contents in WT and BnaA09.GTR2-edited lines. For 
the legends of boxplots, see Fig. 2i. P values show the significance of differences 
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see Supplementary Table 21.
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The other cases. Following the above methods (Figs. 3–6), we can 
expand many examples based on Supplementary Tables 12 and 18. 
For glucosinolate content, we briefly presented additional five cases 
in Extended Data Figs. 4 and 5: identification of three indels that play 
contrast roles in regulating the other three BnaMYB28s’ expression 
and glucosinolate content, identification of an insertion decreasing 
BnaA02.MYB34 expression and altering indolic glucosinolate content 
and identification of a deletion that upregulates the second BnaGTR2 
gene expression to boost glucosinolate contents. We also presented 
two examples of other traits: one is a 3.7-kb CACTA-like TE insertion 
(category V) upstream of BnaA09.CYP78A9 identified within an eQTL 
hotspot (Hotspot-197; Fig. 2g) which enhances the expression of func-
tionally validated auxin biosynthesis gene BnaA09.CYP78A9 (ref. 37) in 
cis that trans-regulated seven well-known, auxin-responsive genes38–41 
and thereby increases silique length (Fig. 3 and Extended Data Fig. 6). 
The second (categories VI and VII) is an insertion that putatively medi-
ates cis and trans regulation of a series of cascade reactions through  
DNA methylation and histone modification to affect flowering  
(Supplementary Note 9).

SVs reshape genomic diversity for accelerating breeding
To uncover and demonstrate the role of the eSV–eGene associations 
in trait enhancement, we took an exemplar trait, the glucosinolate 
biosynthesis and transport (GBT) pathway and, presenting a landscape 
of SVs and the regulated genes, especially polyploid duplicated genes 
(Figs. 3–7 and Extended Data Figs. 2–5 and 7). SV-GWASs detected 549 
SVs in 119 loci significantly associated with 31 leaf and seed glucosi-
nolates and derived statistic indices (Supplementary Tables 15 and 19), 
all containing Arabidopsis orthologous genes involved in GBT. The 141 
eQTL-GWAS locus pairs were identified as colocalized loci (PPH4 > 0.50) 
that influence both gene expression and glucosinolate contents. Within 
the paired loci, 61 colocalized eSVs were identified as causal variants for 
alteration in the expression of 80 eGenes and contents of glucosinolates 
(Supplementary Table 18). The genes revealed by complementary and 
mutually evidence-supported analyses of GWASs, eQTLs and TWASs 
include 76 TFs, 324 enzyme genes and 36 transporter genes, providing  
an almost complete list of genes in the pathway (Figs. 3 and 7d and 
Extended Data Fig. 7a).

Further analyses revealed seven key loci, corresponding to nine 
haplotype (Hap) combinations, which dominate genetic variation 
and determine profiles and contents of different glucosinolates in  
B. napus (Fig. 7a–c). The responsible genes in all loci exhibited sig-
nificant expression differences between the accessions (Fig. 7b–e). 
Hap7–Hap9 are most common in high glucosinolate accessions, 
whereas Hap1 and Hap2 are most common in low ones (Extended  
Data Fig. 7b). Hap7–Hap9 are characterized by the BnaA09.MYB28 
alleles that confer 1.4- to 2.6-fold total leaf and seed glucosinolate 
contents when compared with Hap1 and Hap 2, respectively (Fig. 7c).

Germplasm with high leaf and low seed glucosinolates has been 
sought for resistance to fungal pathogens and insects42, because of the 
canola breeding for low erucic acid in seed oil required for human health 
and low glucosinolates in seed meal required for feeding animal initiated 
in the mid-twentieth century43. To our best knowledge, there is no such 
accession with desirable levels. The reason revealed from the above 
data is that glucosinolate biosynthesis in green tissues was disrupted by 
modern low-seed glucosinolate breeding, resulting in a highly positive 
correlation between leaf and seed glucosinolate contents (Extended 
Data Fig. 7c). Furthermore, we found that all the significantly associated 
loci with a large effect on seed glucosinolate content contain BnaMYB28, 
BnaMYB34 and BnaGTR2 on A09, C02 and C09, all locating within a syn-
tenic block on each B. napus chromosome with strong selective sweeps 
(Extended Data Fig. 7d–f). This synteny along with the allelic variation 
analysis showed that all haplotypes with low glucosinolate have non-
functional BnaMYB28 and/or BnaMYB34 TFs that are in linkage with func-
tional BnaGTR2s. To breed for a true zero canola would require creating 

nonfunctional BnaGTR2s in each narrow locus. To address the possibility 
with genome editing, we mutated BnaA09.GTR2 using clustered regularly 
interspaced short palindromic repeats (CRISPR)–cas9 (Extended Data 
Fig. 7g). The result showed the crucial role of BnaA09.GTR2 in decreasing 
seed glucosinolates while keeping or even increasing leaf glucosinolates 
(Fig. 7f). These indicate that SV analysis could enable the discovery of a full 
range of variants to fine-tune the levels, by conventional and biotechno
logical breeding, of different glucosinolate contents in leaves and seeds  
for canola quality of seeds and control of fungal diseases and aphids.

Discussion
Previous studies on individual SVs or in a few individual accessions 
have highlighted the effect of SVs on gene expression and trait 
variation2,4,5. Furthermore, the present study reveals the extent and 
scale of genome-wide SV impact across a species by developing the above 
described strategy to identify population SVs. Our data suggest a more 
widespread effect of SVs on gene expression (73,580 representing 76% 
of the B. napus genes) than that of SNPs revealed in maize and cotton 
(44% and 33% of their respective whole-genome genes, detected by 
SNP-eQTLs44,45). Furthermore, a powerful high-throughput joint analysis 
revealed 726 SV–gene expression–trait variation associations (Figs. 2–7 
and Extended Data Figs. 2–7), in which the trait case studies illustrate 
how SVs reshaped gene expression and trait variation. If using more 
tissue transcriptomic and phenomic data, the number of associations 
is expected to noticeably increase. These SVs and related information 
provide opportunities for conventional breeding to combine SVs with 
expected effect to breed expected varieties, but also open new avenues 
to create new/groundbreaking germplasm by genome editing46,47.

It may be worthwhile highlighting the advantages of the poly-
ploid SV identification and high-throughput joint analysis method 
described above: the SV identification strategy is cost saving and thus 
more feasible for detection of SVs from a large population and largely 
avoids crossmapping of polyploid duplicated genes/sequences1,8; 
the joint analysis method enables high-throughput identification of 
SV–gene expression–trait variation associations, which thus partially 
overcome the GWAS/eQTL disadvantage of hardly determining causal/
target genes within mapped loci, each usually containing many genes, 
and provides the capability to dissect how SVs regulate expression of a 
group of genes and thus enables construction of gene networks/path-
ways linking traits (Fig. 3 and Extended Data Fig. 7), in all of which genes 
to be identified are either functionally known orthologs in other plants 
or functionally uncharacterized, particularly polyploid duplicated 
genes that have undergone subfunctionalization or neofunctionaliza-
tion. More details are discussed in Supplementary Note 1.

HE is a noteworthy SV event in polyploids because it has been 
shown to affect trait variation23,24 and may play a role in genome 
evolution48,49. However, our analysis attempting to dissect the HE effect 
encountered difficulties, as a result of either HE’s peculiar features such 
as unusual genome distribution and very low frequency that do not 
meet the requirement of the current population genomics methods or 
inaccurate HE identification by the method previously described23,24, 
for example, uncertain HE boundaries and false HEs (Supplementary 
Note 4). New methods are needed to solve or avoid these issues (see 
Supplementary Note 4 for more details).
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Methods
Plant materials and growth conditions
The B. napus accessions in the present study were planted in Wuhan 
(30° 34′ N and 114° 20′ E), Yangluo (30° 43′ N and 114° 31′ E), Qinghai 
(36° 44′ N and 101° 45′ E) and Yangzhou (32° 37′ N and 119° 24′ E), in the 
six growth seasons (2012–2018). All accessions listed in Supplemen-
tary Table 1 were maintained by self-pollination. Crop management 
of field experiments for agronomic trait tests followed the standard 
protocol of the China National Rapeseed Variety Field Test. The bipa-
rental segregating population (ZS4 × H59) and NILs were planted in 
the experimental fields in Wuhan (30° 34′ N and 114° 20′ E), Yangluo 
(30° 43′ N and 114° 31′ E) and Qinghai (36° 44′ N and 101° 45′ E) in the 
growing seasons of 2014–2018.

Phenotyping
All field experiments for phenotypic evaluations were conducted in a 
randomized block design with at least 3 replicates, in which each plot 
had at least 30 plants with a space of 30 cm between rows and 20 cm 
between plants in a row. Sampling methods was dependent on specific 
traits. For morphological and yield-related traits, measurements were 
done directly in field at different plant development stages or in labs 
by randomly sampling ten plants from each plot. For quality traits and 
chemical compounds, leaves at the seedling or flowering stages and 
siliques or seeds from the main inflorescence were sampled and ana-
lyzed in labs. All measurements followed the standard protocol of the 
China National Rapeseed Variety Field Test or other specific protocols 
cited in the paper. For experiments in multiple environments, the best 
linear unbiased prediction values were estimated using R package ‘lme4’ 
(v.1.1-27) as the final phenotypic data for further analysis51. For the phe-
notype description and measurement, see Supplementary Methods.

Genome assembling
For the DNA extraction and library preparation of long-read sequencing 
for assembly of the six B. napus genomes, see Supplementary Methods. 
The assembly of de novo genomes was performed based on Nanopore 
reads using different genome assemblers, including Canu (v.1.8)52, 
wtdbg2 (v.2.5)53, Miniasm (v.0.3)54, Flye (v.2.4.1)55 and SMARTdenovo 
(v.1.0)56. For each accession, a best assembly based on contiguity met-
rics (N50, N90 and total genome size) was used for the downstream 
analysis. The assembled contigs were polished three times using Racon 
(v.1.3.1)57 with Nanopore reads as input to correct systematic errors 
of Nanopore reads. For the short reads were then mapped to contigs 
using BWA-MEM (v.0.7.15-r1140)58 and polished 3× using Pilon (v.1.22)59.

Anchoring and validation of B. napus cv. ZY821 assembly
For the Hi-C library preparation, sequencing and data processing, 
see Supplementary Methods. For contig anchoring, Hi-C reads were 
aligned to the polished contigs by Burrows–Wheeler Alignment 
(BWA)-MEM and Hi-C files were obtained using the Juicer pipeline60. 
The polished contigs were sorted and oriented using Hi-C data by 3D 
DNA pipeline (v.180922)61. Of 3,159 contigs 2,598 were anchored into 19 
scaffolds. These scaffolds were aligned to the reference genome ZS11 
using Mummer4 (v.4.0.0beta2) and named chromosomes A01–A10 
and C01–C09 (ref. 62). To evaluate the quality of the ZY821 genome 
assembly, two genome sequences, ZS11 (ref. 16) and Darmor-bzh (v.5)24 
were aligned to the ZY821 genome using Mummer4 (ref. 62) with the 
parameters ‘-c 100 -L 1000’ for collinearity analysis. Centromeric repeat 
sequences including CentBr, CRB, TR238 and PCRBr63 were aligned to 
the ZY821 assembly using NUCmer-MUMmer4 to identify the loca-
tions of centromeres. For the gene annotation of ZY821 genome, see 
Supplementary Methods.

SNP/indel calling for B. napus accessions
For the DNA extraction and library preparation of short-read sequenc-
ing for B. napus accessions, see Supplementary Methods. The short 

reads of each accession were aligned to the ZS11 reference genome16 
using BWA-MEM with default parameters. Then the reads with a map-
ping quality value <10 were filtered out by SAMtools (v.1.6)64. SNPs 
and small indels (≤50 bp) were identified using the Sentieon DNAseq 
pipeline (v.201911)65 for each accession. We filtered these data to 
include only biallelic SNPs/indels using GATK SelectVariants (GATK, 
v.3.6-0-g89b7209)66. To obtain high-quality SNPs, we discarded the 
SNPs with low mapping quality (‘QUAL < 30.0 || MQ < 50.0 || QD < 2’) by 
GATK VariantFiltration. At the population level, all SNPs/indels with 
MAF < 0.05 and missing >0.1 were discarded using VCFtools software 
(v.0.1.15)67. In addition, SNPs and indels with a heterozygosity rate of 
>50% were removed.

SV identification and pan-SV library construction
Both contig alignment and long-read alignment strategies were used 
to identify SVs from 16 B. napus genome assemblies (6 from the present 
study, 10 downloaded from National Center for Biotechnology Informa-
tion (NCBI) BioProjects: accession nos. PRJNA526961, PRJNA546246 
and PRJNA587046) (Supplementary Table 2).

First, we compared the contigs between the ZS11 reference genome 
and the other 15 assembled genomes using the NUCmer program with 
the parameters ‘nucmer - mum – noextend -L 1000‘ in MUMmer4. After 
filtering one-to-one alignments with a minimum alignment length of 
50 bp using the delta-filter program from MUMmer4 with parameters 
‘-1 -l 50 -i 95’ (ref. 62), NucDiff (v.2.0.3) was used to extract the features 
and coordinates of SVs with the MD flag68. All SVs were filtered out if 
they were low quality (flag: UNRESOLVED) and had ambiguous break-
points (flag: IMPRECISE), fewer than four supporting reads, <50 bp 
and duplicate calling.

Second, for long-read aligning of SV calling, we used NGMLR 
(v.0.2.8)14 to map the long read (>500 bp) of each accession on to 
the ZS11 reference genome, carried out the SV calling using Sniffles 
(v.1.0.7)14 and filtered the SVs with the same steps as above for the 
whole-genome alignment. Then, we merged SV sets from these two 
identification approaches using SURVIVOR (v.1.0.3) with the param-
eters ‘10 1 1 1 0 50’ (ref. 69) and combined them into a single variant 
call format (VCF) using the population-calling method of the Sniffles 
pipeline14.

To genotype SVs in 2,105 B. napus accessions, we aligned the  
Illumina short reads from each accession on to the pan-SV library  
using Paragraph (v.2.0)22 with default parameters and identified SVs for 
each accession according to the SV breakpoints in the pan-SV library. 
For all kinds of SVs (insertion, deletion, inversion and duplication),  
only split reads were used as evidence and each breakpoint was  
supported by at least four split reads. For deletions and duplications, 
the read coverage in the corresponding regions were checked further.

RNA-seq data analysis
For the RNA extraction and library preparation of RNA-seq, see Supple-
mentary Methods. After clipping the adapter sequences and removing 
the low-quality reads by Trimmomatic (v.0.36)70, the RNA-seq clean 
reads from each sample were mapped to the ZS11 reference genome 
using Hisat2 (v.2.1.2) with default parameters71. RNA-seq reads with 
mapping quality <10, and nonunique and unmapped reads were filtered 
using SAMtools (v.1.6)64. The abundance of genes or transcripts was 
calculated as transcripts per million (TPM) using StringTie software 
(v.1.3.6) with default settings72,73.

GWASs
After quality control and population-level SV filtering with MAF < 0.01 
and call rate <0.7, 93,505 high-confidence and high-quality SVs and 
7,452,135 SNPs + small indels (≤50 bp) of 2,105 accessions were obtained 
for further association analysis. The variants (SVs and SNPs) of GWAS 
accessions were selected by MAF > 0.05 of each of two subpopulations 
and then were imputed and phased using Beagle (v.5.1)74. GWASs were 
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performed for all traits using GEMMA (v.0.98.1)75. The population struc-
ture was controlled by including the first three principal components 
as covariates and an IBS kinship matrix derived from all variants (SNPs 
or SVs) calculated by GEMMA. We used Wald’s test in GEMMA to test 
the null hypothesis that no association exists between the SNPs/SVs 
and any of the trails, and Bonferroni’s corrected significance threshold 
(P = 1/n, where n represents the total number of SVs or SNPs) was set to 
determine the significance of associations.

Identification of SV-eQTLs
The expressed genes in five tissues (SAMs, young leaves, siliques at 
18 d.a.p. and developing seeds at 20 and 40 d.a.p.) of the accessions 
of the two subpopulations were analyzed for SV-eQTL mapping, but 
those genes with expression levels <0.1 (TPM < 0.1) in >95% of acces-
sions for each tissue were discarded. We then filtered genes with the 
expression level change within twofold between the 5th and the 95th 
percentile expression levels. In addition, we assessed mismapping of 
RNA-seq reads between An and Cn subgenomes and the results indicated  
that mismapping of RNA-seq reads is very low (<5%) (Supplementary 
Note 10), so its influence on eQTL detection is negligible.

To address the preconditions for identification of eQTLs, the 
gene expression values from a single tissue of which must follow a 
Gaussian distribution, we performed the quantile normalization of 
gene expression levels using the ‘qqnorm’ function in R (v.4.1.2) (http://
www.r-project.org). This normalization eliminates potential noise and 
could increase the power of detecting eQTLs76. The normalized gene 
expression values were then used as the phenotype for subsequent 
eQTL mapping.

SVs with MAF > 0.05 and call rate >0.7 of each eQTL population 
were used to perform eQTL mapping with GEMMA (v.0.98.1)75 to detect 
associations of SV–gene pairs. For each of the above SV–gene pairs, 
the P values were obtained from GEMMA by default (Wald’s test, two 
tailed) and Bonferroni’s corrected significance threshold (P = 1/n, 
where n represents the total number of SVs in eQTL mapping) was set 
for determining the significance of associations. We grouped all SVs 
significantly associated with target genes into a cluster if the distance 
between two consecutive SVs <50 kb, and the cluster with at least  
two significant SVs, was considered as a candidate eQTL, which was 
represented by its most significant SV (named as the lead eSV). Among 
eQTLs with strong LD (r2 > 0.2), only the most significant eQTL was 
retained as its representative. Based on the distance between the eQTL 
and the target genes, we subdivided an eQTL into cis-eQTL if its lead 
eSV was found within 1 Mb of the TSS or the TES of the target gene, and 
otherwise as trans-eQTL.

An eQTL hotspot was defined as influencing expression of many 
downstream target genes. We identified eQTL hotspots using the 
Hotscan program (v.05Oct2013)77. Different initial window sizes  
(5, 10, 50, 100, 200 and 500 kb) were tested, the significance level of the 
adjusted P value was set to 0.05 and finally 200 kb was used to achieve 
single-gene level resolution.

Gene set enrichment analysis on trans-eQTL hotspots
B. napus genes were annotated based on orthologous gene pairs across 
B. napus and Arabidopsis thaliana and A. thaliana gene ontology (GO) 
terms78. Then, GO enrichment analysis of the genes with expression 
regulated by 495 trans-eQTL hotspots was performed using R package 
clusterProfiler (v.3.10.1)79. The false discovery rate (FDR) threshold of 
0.01 was assessed as significant terms overlapping.

Analyses of ChIP–seq and ATAC–seq
The silique wall at 28 d after pollination (at the stage, BnaA06.GRT2 has 
the highest expression level) of the accessions ZY821 and ZS11 was har-
vested and immediately flash frozen into liquid nitrogen for ChIP–seq 
(H3K27ac) and ATAC–seq. For the library preparation and sequencing 
for ChIP–seq and ATAC–seq, see Supplementary Methods. Low-quality 

reads from raw data of ATAC–seq and ChIP–seq were filtered out using 
Trimmomatic (v.0.36) with parameters ‘ILLUMINACLIP: TruSeq3-PE.
fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36’ 
(ref. 70). Then, clean reads were mapped to ZS11 and ZY821 genomes 
using Bowtie (v.2.3.2)80 with the default parameters. PCR duplicates 
were removed using Picard tools (v.2.19, http://picard.sourceforge.
net). Peaks of ATAC–seq and ChIP–seq were called using the callpeak 
module of MACS2 software (v.2.1.3.3)81 with the parameters of ‘--shift 
-100 --extsize 200 --board -B -g 9.6e8’ and ‘-B -g 9.6e8’, respectively. All 
other kinds of ChIP–seq data analyses in the present study (H3K4me1, 
H3K4me3, H3K9me2 and H3K27me3) were also followed as above. For 
the assessment of quality control for whole ChIP–seq and ATAC–seq 
data in the present, study see Supplementary Note 10.

SV annotation (regulatory effect annotation of eSVs)
To identify various potential regulation mechanisms of SVs on gene 
expression, we carried out SV annotation, including SV genome annota-
tion (gene model, TF and TE), regulatory elements, epigenetic modi-
fications, small RNA and so on. Generally, we annotated each eSV for 
potential regulation of eGenes by vcfanno82. In brief, the first annotated 
SV genomic elements identified relationships of SV physical positions 
with flanking genomic elements. SV genomic elements, such as gene 
bodies, TFs and 2-kb upstream and 2-kb downstream regions of genes, 
were annotated based on alignment on B. napus genome assemblies. 
For a possible regulatory relationship between TF genes and the other 
eGenes of SV-eQTL, we retrieved data from the previously established 
database BnIR with the ‘TF–target gene’ relationships26. For SV epige-
netic regulation annotation, sequence reads from ChIP–seq of his-
tone modifications (H3K4me1, H3K4me3, H3K9me2, H3K27me3 and 
H3K27ac), chromatin accessibility (ATAC–seq) and RNA polymerase 
II (RNAPII) occupancy of accessions from the present study and pub-
lished data (GSA Bioproject, accession no. PRJCA013095 and NCBI 
BioProject, accession no. GSE143287) were mapped to the ZS11 refer-
ence genome to call peaks. If a peak exists, an epigenetic signal exists 
in the genomic region under the peak. If >50 bp of an SV or >20% of its 
length overlaps with the genomic region, the SV was considered to have 
an epigenetic signal. For enhancers, genomic regions for overlapping 
peaks of ATAC–seq and H3K27ac were computed using intersectBed 
in BEDtools (v.2.26.0-114-g4c407ce)83, but the sequences from 2 kb 
upstream of a TSS to 2 kb downstream of a TES were excluded; if a 
genomic region with overlapping peaks overlaps with an SV, the SV was 
considered to carry or disturb an enhancer. For post-transcriptional 
regulation annotation, we downloaded B. napus primary small RNA 
sequence data from PmiREN (https://pmiren.com) and mapped them 
to the pan-SV genome to annotate SV-encoding small RNA informa-
tion. We further classified the primary small RNA derived from TEs 
within SVs. For DNA methylation, we collated DNA methylation data 
(whole-genome bisulfite sequencing (WGBS–seq)) from our methyla-
tion sequencing and published data (NCBI BioProject, accession no. 
GSE143287) and mapped these data to the ZS11 reference genome. If 
>50 bp of an SV or >20% of its length overlaps with a methylation signal, 
the SV was considered to have a DNA methylation signal.

TWASs
We conducted TWASs using the sets of transcriptomic and phenomic 
data used above for SV-eQTL and GWAS analyses17,84. The EMMAX 
(v.beta-07Mar2010) module was used to perform the TWAS tests17,85. 
Bonferroni’s corrected significance threshold (P = 1/n, where n rep-
resents total number of genes in TWASs) was set for determining the 
significance of associations.

Colocalization analysis of GWASs and eQTLs
To assess the probability of a causal SV that causes both gene expres-
sion variation detected by SV-eQTLs and an agronomic trait variation 
detected by SV-GWASs, we applied COLOC (v.5.1.0)18 and LocusCompare 
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(v.0.2.1)86 to compute posterior causal probabilities for each SV in 
SV-eQTLs and SV-GWASs. Against the five hypotheses of the Bayesian 
colocalization (COLOC) method: (1) a genetic locus has no associations 
with either the SV-eQTL or the SV-GWAS investigated (H0); (2) the locus 
is associated only with gene expression (H1); (3) the locus is associated 
only with the agronomic trait (H2); (4) the locus is associated with both 
via independent SVs (H3), even if their associated loci are overlapped; 
and (5) the locus is associated with both traits through a shared SV (H4). 
All SVs within overlapped loci of eQTLs and GWAS QTLs were tested for 
colocalization using default parameters of the software. The posterior 
probability of H4 (PPH4) > 0.50 was considered strong evidence for a 
colocalized locus of an eQTL-GWAS pair that influence both target gene 
expression and GWAS trait, and PPH4 of eSV (>0.50) was considered as 
a causal SV shared by eQTLs and GWASs18.

Construction of the NILs of BnaA09.MYB28
F1 seeds were obtained by crossing the B. napus homozygous line H59 
(BnaA09.MYB28present in a 41.6-kb insertion) with ZS4 (no insertion 
and BnaA09.MYB28absent). The heterozygous plants were backcrossed 
with ZS4 to the BC4F2 generation and, in each generation, the BnaA09.
MYB28present allele was genotyped by SNPs/indels near the insertion. 
The BC4F2 plants were self-pollinated to obtain BC4F3 plants for further 
analysis. The leaf and seed glucosinolate contents were compared 
between NILs homozygous for either present or absent BnaA09.MYB28.

Generation of BnaA03.MAMf transgenic plants
Total RNA was extracted from seedling leaves of B. napus cv. HTR-2 and 
used for complementary DNA synthesis using PrimeScript RT reagent Kit 
with genomic DNA Eraser (Takara, cat. no. RR047A). The full-length CDS 
sequence of BnaA03.MAMf from HTR-2 cDNA was amplified by PCR. The 
genomic fragment of the BnaA03.MAMf promoter sequence (2.44 kb) 
from ZS11 was amplified by PCR. The amplified coding sequences  
(CDSs) and promoter sequences were synchronously cloned into  
HandIII–BamHI-digested PBI121 vector by homologous recombina-
tion using ClonExpress MultiS One Step Cloning Kit (Vazyme, cat. no. 
C113-01) to obtain pBnaA03.MAMfZS11::BnaA03.MAMfHTR-2 recombinant 
vector. The physical structure of binary vectors used in the present study  
was shown in Supplementary Note 6. The construct was introduced 
into HTR-2 by an Agrobacterium-mediated transformation method87. 
The positive pBnaA03.MAMfZS11::BnaA03.MAMfHTR-2 transgenic plants 
were identified by PCR-based genotyping on genomic DNA. The  
primers used in the present study are listed in Supplementary Table 22. 
For the expression measurement (reverse transcriptase–quantitative 
PCR (RT-qPCR)) of transgenic plants, see Supplementary Methods.

Aphid proliferation assay
Adult aphids were collected and transferred to the seedlings of  
B. napus cv. HTR-2. After 2 d, adults were removed and only their prog-
enies were kept on the plants to ensure that all aphids were the same 
age (±1 d) at the start of the experiment. After 1 week, six aphids of the 
same origin were transferred by a soft brush to each test plant (WT and 
three pBnaA03.MAMfZS11::BnaA03.MAMfHTR-2 transgenic lines) at 90 d 
after sowing. For pBnaA03.MAMfZS11::BnaA03.MAMfHTR-2-1, pBnaA03.
MAMfZS11::BnaA03.MAMfHTR-2-2 and pBnaA03.MAMfZS11::BnaA03.
MAMfHTR-2-3 and WT, each of ten plants was randomly placed on a flat 
surface and evenly spaced ~10 cm apart, and all plants were grown in 
16-cm pots in a greenhouse and under a regimen of 12 h light (21 °C):12 h 
dark (18 °C). A set of morphologically uniform plants was chosen for 
the bioassay. The experiments were with three replicates. Then, after 
another 5 d within the linear proliferation phase, the number of aphids 
per plant were counted manually.

Gene editing of BnaA09.GTR2 by CRISPR–Cas9
Two small guide (sg)RNA target sequences, specifically targeting 
the first and second exon regions of BnaA09.GTR2 in ZY821 genome, 

were designed. CRISPR–Cas9 plasmid construction was conducted 
according to He et al.47. In brief, to assemble two guide RNAs, a single 
PCR fragment flanked by two sgRNA targets was amplified from the 
pCBC-DT1T2 vector with two pairs of partially overlapping primers, 
of which two forward and two reverse primers, respectively, contain 
one of the two target sites. Then the PCR fragment was purified and 
inserted into the binary vector pHSE401 by a restriction–ligation 
reaction using BsaI restriction enzyme (New England Biolabs, cat. no. 
M0202V) and T4 Ligase (New England Biolabs, cat. no. M0202V). The 
CRISPR–Cas9 binary vector pHSE401-2gR-BnaA09.GTR2b, verified by 
sequencing, was transformed into B. napus cv. ZY821 hypocotyls using 
the Agrobacterium-mediated method87. The physical structure of binary 
vectors used in the present study has been shown in Supplementary 
Note 6. Genomic DNA from individual transgenic plants was extracted 
for PCR analysis. The PCR products containing the target sites were 
amplified with specific primers BnaA09GTR2-F/BnaA09GTR2-R and 
then cloned into pEASY-T3 vector (TransGen Biotech, cat. no. CT301-01) 
for sequencing. The primers used in plasmid construction and mutant 
identification are listed in Supplementary Table 22.

Statistical analysis
All statistics applied in the present study were performed in R (v.4.1.2) 
and provided alongside the respective analysis in Methods, the main 
text and figure legends. The statistical tests of significance in GWASs, 
eQTLs, TWASs and colocalization analysis have been described above.
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We have read the Nature Portfolio Authorship Policy and confirm that 
this manuscript complies with the policy information about author-
ship: inclusion and ethics in global research. The researchers who fulfill 
the authorship criteria are included as co-authors.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All sequencing and genome assembly data used in the present study 
have been deposited into the NCBI database: the long-read sequenc-
ing data and genome-assembled contigs data of six B. napus acces-
sions (BioProject, accession nos. PRJNA1155214 and PRJNA1149936), 
short-read data of genome resequencing of 366 accessions (BioProject, 
accession no. PRJNA1156901), population RNA-seq data of SAMs, leaves 
and siliques (BioProject, accession nos. PRJNA1149544, PRJNA1157560 
and PRJNA1153365, respectively), and the data of Hi-C sequencing, 
ATAC–seq and Chip–seq (H3K27ac) of ZY821 and ZS11 accessions 
(BioProject, accession no. PRJNA1155718). All the above data have 
also been deposited into the National Genomics Data Center (https://
ngdc.cncb.ac.cn/?lang=en) database under the GSA Bioproject, 
accession no. PRJCA013095. The other data generated in the previous  
studies are publicly available under: the GSA Bioproject, accession no. 
PRJCA002836 for RNA-seq data of 20-d.a.p. and 40-d.a.p. developing 
seeds; the NCBI BioProject, accession nos. PRJNA526961, PRJNA546246 
and PRJNA587046 for the 10 genome assemblies; the NCBI BioProject, 
accession nos. SRP067370, SRP125656 and SRP155312, the GSA BioPro-
ject, accession no. PRJCA002835 and the ENA Project, accession nos. 
PRJEB5974 and PRJEB6069 for short-read data of genome resequenc-
ing of 1,739 accessions. All genome assemblies, annotations and SV 
information are available at the BnaOmics Portal88 (https://BnaOmics.
ocri-genomics.net). Source data are provided with this paper.

Code availability
All software and tools used in the present study are publicly available 
as described in Methods and the Nature Portfolio Reporting Sum-
mary. The customized scripts and codes used in the present study 
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are available via Zenodo at https://doi.org/10.5281/zenodo.13365025 
(ref. 89).
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Extended Data Fig. 1 | Construction and characterization of the B. napus 
panSV genome. (a) Overview of SV analysis workflow for panSV construction. 
#1, #2, #3 and up to 15 accessions in step 1 and 2 indicate accession genomes. (b) 
A demonstration of a large inversion with 26.67 Mb in length detected between 
ZS11 and ZY821 by genome assembly alignment (top) and Hi-C contact maps 
(bottom). (c, d) Verification of the large inversion by PCR amplification of its 
break point. PCR primers for ZS11 and ZY821 are indicated as corresponding 
color arrows in schematic diagram (c) and gel electrophoresis plot (d). The 
experiments were repeated three times with similar results. (e) Relationship 

between the frequency and the number of SVs in 2,105 accessions (bin width 
is 100 bp). (f) Relationship between size and the number of SVs in the 2,105 
accessions (bin width is 100 bp). (g) The numbers and ratios of SVs with different 
sizes. (h) Correlation between SV number and distance of SVs to chromosome 
arm ends. For each SV, the distance was calculated and divided into 500-kb bins. 
r is Pearson correlation coefficient. P value was calculated using F test for the 
linear regression model with two-tailed test. Here, the observed value of P value 
is almost zero. (i) Phylogenetic analysis of 2,105 B. napus accessions based on SVs. 
The 16 assembled accessions are indicated as black lines.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Lead eSV distance to eGenes, the difference in gene 
expression variance between cis-eQTL and trans-eQTL and effects of 1,454-bp 
insertion on short-chain glucosinolates. (a) Distribution of distance (<100 kb) 
between lead eSVs in eQTLs and corresponding eGenes. (b) Gene expression 
(as a phenotype) variance explained by cis-eQTLs (n = 66,003) and trans-eQTLs 
(n = 219,973). The violin plots show the distribution density, and the box plots 
show the distribution quantiles. Here, the observed value of P value is almost 
zero. (c) Accumulated effect of multiple lead eSVs on gene expression. The dots 
within boxes represent average values. (n = 33,609, 45,855, 46,349, 39,636, 29,220 
and 59,368 for six groups, respectively.) (d, e) Local Manhattan plots of SV-GWAS 
for the ratios of 4C/(4C + 5C) (d) and 5C/(4C + 5C) (e), both represent the  

side-chain 4C and 5C aliphatic glucosinolates in leaves. Deep blue dots represent 
SVs; red triangles indicate causal SV (1,454-bp insertion) in the promoter of 
BnaA03.MAMf. The gray dashed line represents the Bonferroni-corrected 
significance threshold (two-sided P = 1.82 × 10−5). (f) Local Manhattan plot of 
eQTL on BnaA03.MAMf expression. Each dot stands for an SV and pink square  
for the causal SV significantly associated with expression of BnaA03.MAMf. The 
gray dashed line represents the Bonferroni-corrected significance threshold 
(two-sided P = 1.86 × 10−5). The color bar indicates linkage disequilibrium (r2).  
(g) Identification of the 1,454-bp insertion located in the promoter region of 
BnaA03.MAMf through assembled genome comparison (top) and long-read 
alignment (bottom). In (b, c), see Fig. 2i for the legends of boxplots and P values.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | The additional evidence of eSV case studies in  
Figs. 5 and 6. (a–c) Local Manhattan plots of SV-GWAS for 8 kinds of leaf 
aliphatic glucosinolate contents (a), total leaf (b) and seed (c, top) glucosinolate 
contents on chromosome A09. See Supplementary Table 14 for glucosinolate 
abbreviations. The bottom of (c) shows the 41.6-kb insertion leading to the 
present/absent of BnaA09.MYB28 in different accessions. (d) Local Manhattan 
plot of eQTL of BnaA09.MYB28 expression. (e) PCR amplification to verify the 
break point of the insertion. PCR primers for ZY7 and ZY821, both with the 
insertion, and ZS11 without the insertion are indicated as corresponding color 
arrows. The experiments were repeated three times with similar results.  
(f) Expression patterns and statistics of all BnaMYB28 family members in low 
(ZS11) and high (ZY821) glucosinolate accessions. L: leaves; R: roots; DAP: days 
after pollination. The box plots (right part) show the statistics of the expression 
levels of each BnaMYB28 from 22 tissues in ZY821. P values show the significance 

of differences between the expression level of BnaA09.MYB28 and that of each of 
other BnaMYB28s in the two-tailed paired t tests. (g, h) Local Manhattan plots of 
SV-GWAS of the leaf (g) and seed (h, top) glucosinolate contents. In the bottom 
of (h), the red triangle represents the causal SV locating together with BnaGTR2.
C02 in the same LD block which separates (vertical dash lines) from the other 
LD block with BnaC02.MYB28. (i) Local Manhattan plot of eQTL of BnaC02.GTR2 
expression. In (a–c) and (g, h), see Extended Data Fig. 2d for the legends. The 
gray dashed line represents the Bonferroni-corrected significance threshold for 
GWAS (two-sided P = 1.82 × 10−5). In (d) and (i), see Extended Data Fig. 2f for the 
legends. The gray dashed line represents the Bonferroni-corrected significance 
threshold for eQTL (two-sided P = 1.80 × 10−5 for BnaA09.MYB28 and two-sided 
P = 1.83 × 10−5 for BnaC02.GTR2). In (f) and (n), see Fig. 6g for the legends of 
statistical test and P value.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Identification of two insertions/deletions that play 
contrast roles in regulating the expression of the other two BnaMYB28s 
and contents of glucosinolates. (a) Local Manhattan plot of SV-GWAS of seed 
glucosinolate contents highlighting a significantly associated 901-bp SV.  
(b) Diagram showing the 901-bp insertion at the upstream of BnaC02.MYB28 
in a cis-eQTL. (c) BnaC02.MYB28 expression pattern in ZS11 (without the 
insertion) and ZY821 (with the insertion). (d, e) Allelic variation in BnaC02.MYB28 
expression (d) and seed glucosinolate contents (e) between the accessions with 
presence (n = 77) or absence (n = 100) of the 901-bp insertion. (f) Correlation 
between seed glucosinolate content and BnaC02.MYB28 expression in B. napus 
population. (g–i) Local Manhattan plots of SV-GWAS of leaf (g) and seed (h) 
glucosinolate contents. The causal SV near BnaC07.MYB28 (i) was separated  
from the other LD block containing BnaC07.MYB34. (j) Local Manhattan plot of 
eQTL of BnaC07.MYB28 expression. For the legends, see Extended Data Fig. 2f. 
The gray dashed line represents the Bonferroni-corrected significance threshold 

(two-sided P = 1.86 × 10−5). (k–m) Allelic variation in BnaC07.MYB28 expression 
levels (k) and total glucosinolate contents in leaves (l) and seeds (m) between  
the accessions with (n = 100) or without (n = 173) the 9,374-bp deletion.  
(n) Correlation between seed glucosinolate content and BnaC07.MYB28 
expression in B. napus population. (o) Screenshot showing that the 9,374-bp 
deletion increases chromatin accessibility in the promoter region of BnaC07.
MYB28, potentially enhancing gene expression for higher glucosinolate 
content. The middle two panels show difference of the enrichment of chromatin 
accessibility (ATAC-Seq) in the promoter region (indicated by an arrow) of 
BnaC07.MYB28 in two representative accessions (ZY821 with the deletion and 
ZS11 without the deletion). The bottom three panels show long-reads coverage 
supporting the SV’s existence with BnaC07.MYB28. In (a), (g) and (h), see 
Extended Data Fig. 2d for the legends of symbols and statistical test for GWAS.  
In (d), (e), (k–m), see Fig. 2i for the legends of boxplots and P values. In (f) and (n), 
see Fig. 6g for the legends of statistical test and P value.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Identification of three pairs of SVs/InDel─key genes 
affecting glucosinolate contents. (a, b) Local Manhattan plots of SV-GWAS 
highlighting a target InDel significantly associated with total glucosinolate 
contents in leaves (a) and seeds (b). (c–e) The causal InDel identification and 
gene re-annotation. This 4-bp InDel locates in one of two contiguous BnaA09.
MYB28s in the ZS11 reference genome (c), but the single-molecule long-read 
isoform sequencing (Iso-seq) revealed only one gene in this region (d), and 
leading to re-annotation as one single gene BnaC09.MYB28ZY (e). (f) Sequence 
comparison of DNA and amino acids of BnaC09.MYB28 between ZS11 and ZY7. 
(g, h) Population allelic variation in glucosinolate contents in leaves (g) and 
seeds (h) between the accessions with or without the 4-bp deletion (n = 237 
and n = 95 for leaves; n = 218 and n = 92 for seeds), suggesting the 4-bp deletion 
increases glucosinolate contents. (i, j) Local Manhattan plots of SV-GWAS 
highlighting a target 1,339-bp insertion significantly associated with Indol-3-
ylmethyl glucosinolate content (i) and total indolic glucosinolate content (j) in 
leaves. (k, l) Diagram showing the 1,339-bp insertion in the promoter region of 
BnaA02.MYB34 (k) in a cis-eQTL (l). (m, n) Population allelic variation in BnaA02.

MYB34 expression (m) and total indolic glucosinolate content (n) between the 
accessions with (n = 11) or without (n = 143) the 1,339-bp insertion, indicating the 
insertion decreases total indolic glucosinolate content through downregulating 
BnaA02.MYB34 expression. (o) Local Manhattan plot of SV-GWAS highlighting a 
367-bp deletion significantly associated with total seed glucosinolate contents. 
(p, q) Diagram showing the 367-bp deletion in upstream of BnaA09.GTR2b (p) in 
a cis-eQTL (q). (r) Expression patterns of BnaA09.GTR2b and BnaA09.GTR2a in 
ZS11 (with the deletion) and ZY821 (without the deletion). (s, t) Population allelic 
variation in BnaA09.GTR2b expression (s) and total seed glucosinolate contents 
(t) between the accessions with (n = 241) or without (n = 49) the 367-bp deletion. 
In (a, b), (i, j) and (o), see Extended Data Fig. 2d for the legends of symbols and 
statistical test for GWAS. In (g, h), (m, n) and (s, t), see Fig. 2i for the legends of 
boxplots and P values. In (l) and (q), see Extended Data Fig. 2f for the legends. The 
gray dashed line represents the Bonferroni-corrected significance threshold for 
eQTL (two-sided P = 1.83 × 10−5 for BnaA02.MYB34 and two-sided P = 1.80 × 10−5 
for BnaA09.GTR2b).
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Extended Data Fig. 6 | See next page for caption.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01957-7

Extended Data Fig. 6 | A TE insertion increasing silique length by cis- and 
trans-regulating expression of downstream genes. (a) Local Manhattan plot 
of SV-GWAS highlighting a 3.7-kb insertion (red triangle arrow) significantly 
associated with silique length. See Extended Data Fig. 2d for the legends. The 
gray dashed line represents the Bonferroni-corrected significance threshold 
(two-sided P = 1.84 × 10−5). (b) Local Manhattan plot of TWAS showing an 
association between gene expression in siliques at 18 DAP and silique length 
in which BnaA09.CYP78A9 exhibits a most significant association. See Fig. 4c 
for the legends. The gray dashed line represents the Bonferroni-corrected 
significance threshold (two-sided P = 1.80 × 10−5). (c) Colocalization analysis 
of the eQTL regulating BnaA09.CYP78A9 expression in silique at 18 DAP (x axis) 
and GWAS QTL of silique length (y axis), suggesting a causal SV (insertion) that 
is 3.7 kb transposable element (TE). See Fig. 4d for the legends. The horizontal 
and vertical gray dashed lines represent the Bonferroni-corrected significance 

threshold of GWAS (two-sided P = 1.84 × 10−5) and eQTL (two-sided P = 1.83 × 10−5), 
respectively. (d) Diagram showing that the 3.7-kb insertion is cis-eSV upstream 
of 5’-end of the target gene BnaA09.CYP78A9. Blue pentagon with IAA indicates 
auxin compounds. (e) Population allelic variation in BnaA09.CYP78A9 expression 
level between the accessions with (n = 162) or without (n = 21) the insertion 
in the population. (f) Expression of the downstream auxin-responsive genes 
upregulated by the 3.7-kb insertion in trans-eQTL hotspot-197 (n = 162 with 
insertion and n = 60 without insertion). (g) Population allelic variation in silique 
length between the accessions with (n = 162) or without (n = 21) the insertion 
in the population. (h) Local Manhattan plots of eQTL on expression of BnaA09.
CYP78A9 and seven downstream auxin-responsive genes. See Extended Data  
Fig. 2f for the legends. The gray dashed line represents the Bonferroni-corrected 
significance threshold (two-sided P = 1.83 × 10−5). In (e–g), see Fig. 2i for the 
legends of boxplots and P values.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Summary of SV impact on glucosinolates biosynthesis 
and transport, and selective sweep on loci governing glucosinolate content 
and editing of BnaA09.GTR2. (a) Summary of SV impact on gene expression in 
the glucosinolate biosynthesis and transport pathways in B. napus. Bold arrows 
represent glucosinolate biosynthesis, degradation and transport reactions; dash 
arrows indicate the transport steps. The three numbers in brackets beside each 
gene, such as MAMs (13, 6, 7), represent: 13 is the total number of homologous 
genes that have SV-eQTL, 6 is the total number of homologous genes whose 
expression levels were significantly associated with glucosinolate contents in 
TWAS, and 7 is the total number of homologous genes that locate in SV-GWAS loci 
of glucosinolate contents. Genes were named based on function annotation and 
their orthologous/syntenic relationship with Arabidopsis. Pathway information 
from previous publications28,30,88. (b) The frequencies of eSV haplotypes 
(identified in Fig. 7a) determining leaf and seed total glucosinolate contents.  
(c) The correlation between total glucosinolate contents of leaves and seeds  

in a B. napus population. See Fig. 6g for the legends of statistical test and  
P value. (d) The linked key genes MYB28, MYB34 and GTR2 on three B. napus 
chromosomes A09, C02 and C09 are syntenic to an ancestral block in  
A. thaliana Chromosome 5. (e, f) Selective sweep loci governing glucosinolate 
content in leaves (e) and seeds (f). The values of πL/πH (the ratio of nucleotide 
diversity) and FST (genome differentiation) were estimated from SVs between 
the accessions with extremely high (H, top 20%) and extremely low (L, bottom 
20%) glucosinolate contents. The horizontal gray dash lines are the genome-wide 
thresholds for selective sweeps. The vertical dash lines show the loci with both 
GWAS and selection signals containing BnaMYB28, BnaMYB34 and BnaGTR2. 
(g) Characterization of BnaA09.GTR2b edited using CRISPR/Cas9 in ZY821. The 
protospacer adjacent motif (PAM) is highlighted in bold (CCA and CCG). CRISPR/
Cas9 sgRNA-1 and sgRNA-2 targeting the first and second exons of BnaA09.
GTR2b, respectively, are shown in red. The blue letters and hyphens indicate 
insertions and deletions in edited plants, respectively.
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