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Abstract. In a continuous-time quantum walk on a network of qubits, pretty good state
transfer is the phenomenon of state transfer between two vertices with fidelity arbitrarily
close to 1. We construct families of graphs to demonstrate that there is no bound on the size
of a set of vertices that admits pretty good state transfer between any two vertices of the set.
Keywords. Continuous-time quantum walks, pretty good state transfer
Mathematics Subject Classifications. 05C50, 05C38

1. Introduction

Let X be a simple finite graph, with adjacency matrix A, for some fixed ordering of the vertex
set V (X). Let CV (X) denote the Hilbert space in which the characteristic vectors ea, a ∈ V (X),
form an orthonormal basis. A continuous-time quantum walk on X , based on the XX-Hamilto-
nian [Kay11, IV.E], is given by the family U(t) = exp(−itA) of unitary matrices, for t ∈ R,
operating on CV (X). Two phenomena of central importance in the theory are perfect state
transfer (PST) and pretty good state transfer (PGST). Let a and b be vertices of X . We say
that we have perfect state transfer from a to b at time τ if |U(τ)b,a| = 1. In other words, an initial
state ea concentrated on the vertex a evolves at time τ to one concentrated on b. The concept
of pretty good state transfer is an approximate version of perfect state transfer. We say that we
have pretty good state transfer from a to b if for every real number ϵ > 0 there exists a τ ∈ R
and a unimodular complex number γ such that ∥U(τ)ea−γeb∥ < ϵ. It is not hard to see that the
relation on V (X), whereby vertices a and b are related if we have perfect state transfer from a
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to b at some time, is an equivalence relation. Likewise the relation defined by pretty good state
transfer from a to b is another equivalence relation. In these terms, a well known observation of
Kay [Kay11, IV.D] states that each PST-equivalence class can have at most two members. This
property of perfect state transfer is undesirable for the purpose of routing. By contrast, [PB17,
example 4.1] shows that in the cartesian product P2□P3 of paths of lengths 2 and 3, the 4 vertices
of smallest degree form a PGST-equivalence class. A natural question then is: How large can
a PGST-equivalence class be? The main aim of this paper is to construct examples of graphs
with arbitrarily large PGST-equivalence classes. Our examples are generalizations of the ex-
ample above in that they are finite cartesian products of paths of different lengths and the large
PGST-equivalence class is the set of vertices of minimum degree (the “corners”). In order for the
corners to be PGST-equivalent the path lengths of the cartesian factors have to be selected rather
carefully to satisfy certain arithmetic conditions which enter into the problem via Kronecker’s
approximation theorem, a theorem whose relevance to pretty good state transfer was first noted
in [GKSS12] and [VZ12]. Please see [CG21] for more background on continuous-time quantum
walk on graphs.

Since pretty good state transfer in a cartesian product implies pretty good state transfer for
each cartesian factor, the paths involved must have pretty good state transfer between their end-
vertices. Such paths have been classified in [GKSS12]; they are the paths of length p−1 or 2p−1,
where p is a prime, or of length 2e − 1 for e > 1. Thus, we consider only cartesian products of
paths of these lengths. In Section 3 we first classify the cartesian products for which all corners
are strongly cospectral, as strong cospectrality is necessary for pretty good state transfer. The
results in Sections 4 and 5 lead to the following classification which is the main result of this
paper.

Theorem 1.1. LetX be a cartesian product of paths. All corners ofX belong to the same PGST-
equivalence class if and only if one of the following holds, up to permutation of the cartesian
factors:

1. X = P2e−1□Pp−1, for some e ⩾ 2 and prime p ⩾ 3.

2. X = P2e−1□P2p−1, for some e ⩾ 2 and prime p ⩾ 3.

3. X = Pp1−1□ · · ·□Pph−1□P2q1−1□P2qk−1, where h, k ⩾ 0 and p1, . . . , ph, q1, . . . , qk are
distinct primes such that p1, . . . , ph ≡ 1(mod 8) and q1, . . . , qk ≡ 1(mod 4).

4. X = P2e−1□Pp1−1□ · · ·□Pph−1□P2q1−1□P2qk−1, where h, k ⩾ 0, e ⩾ 2 and p1, . . . , ph,
q1, . . . , qk are distinct primes such that p1, . . . , ph≡1(mod 8) and q1, . . . , qk≡1(mod 4).

We reach the following consequence immediately.

Corollary 1.2. For integer n ⩾ 2, there exists a graph that has pretty good state transfer
among n vertices.

In Section 6, we show on the contrary that there is no cartesian product of paths with pretty
good state transfer among all corners when the Laplacian matrix is used as the Hamiltonian of
the quantum walk.
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2. Notation and background results

Let A be the adjacency matrix of X . We consider the spectral decomposition of A,

A =
k∑

r=1

θrEr, (2.1)

where θ1,. . . , θk are the distinct eigenvalues of A and Er is the idempotent projector onto the θr
eigenspace.

Two vertices a and b are said to be strongly cospectral if and only if for all r we
have Erea = ±Ereb. The terminology is justified by the fact that the above condition implies
that (Er)a,a = (Er)b,b for all r, which is one of several equivalent definitions of cospectrality
of a and b.

Strong cospectrality is a fundamental notion in the study of quantum state transfer, and is a
necessary condition for both perfect state transfer and pretty good state transfer [God12]. The
eigenvalue supportΦu of a vertex u is the set of eigenvalues θr for whichEreu ̸= 0. If u and v are
strongly cospectral thenΦu = Φv and this set is the disjoint union ofΦ+

u,v = {θr | Ereu = Erev}
and Φ−

u,v = {θr | Ereu = −Erev}.
If an eigenvalue of X is simple, then the corresponding projector is a rank one symmetric

matrix. The following lemma is then immediate from the above definition of cospectrality.

Lemma 2.1. If X has simple eigenvalues then two vertices that are cospectral are strongly
cospectral.

The following theorem [BCGS17, Theorem 2] (also [KLY17, Lemma 2.2]) is our main tool.
It is a direct application of of Kronecker’s approximation theorem to quantum walks.

Theorem 2.2. Let X be a simple graph. Then two vertices u and v are in the same PGST-
equivalence class if and only if the following conditions hold.

(a) u and v are strongly cospectral.

(b) There is no sequence of integers {ℓi} such that all three of the following equations hold:

(i)
∑

i ℓiθi = 0;

(ii)
∑

i ℓi = 0;

(iii)
∑

i:θi∈Φ−
u,v

ℓi ≡ 1 (mod 2).

Let Pn denote the path of length n. Pretty good state transfer between extremal vertices has
been characterized in [GKSS12], and between internal vertices in [vB19]. We shall make use
of the extremal case, in which pretty good state transfer occurs if and only if n + 1 = p or 2p,
where p is a prime, or if n+ 1 is a power of 2. We shall consider the cartesian product

X = Pn1□Pn2□ · · ·□Pnk
(2.2)

of k paths, where k is a positive integer.
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Lemma 2.3. If pretty good state transfer occurs between (x1, y1) and (x2, y2) in X□Y then
pretty good state transfer occurs between x1 and x2 in X .

Proof. Let UX(t) and UY (t) denote the transition matrices of X and Y , respectively. Their
cartesian product, X□Y has transition matrix UX(t)⊗ UY (t). As

|UX(t)x1,x2 | , |UY (t)y1,y2| ⩾
∣∣∣(UX(t)⊗ UY (t)

)
(x1,y1),(x2,y2)

∣∣∣ ,
pretty good state transfer from (x1, y1) to (x2, y2) in X□Y implies pretty good state transfer
from x1 to x2 in X and pretty good state transfer from y1 to y2 in Y .

By a corner ofX = Pn1□Pn2□ · · ·□Pnk
, we shall mean a vertex (a1, . . . , ak) in which every

component ai is an end of Pni
. There are 2k corners. It follows from Lemma 2.3 that if there

is pretty good state transfer between any two corners of X , then for i = 1, . . . , k, ni + 1 = pi
or ni + 1 = 2pi, for some prime pi, or ni + 1 is a power of 2.

3. Large classes of strongly cospectral vertices in path products.

It is well known (an unpublished result of G. Coutinho) that by taking cartesian products of
paths of suitable lengths, one can obtain arbitrarily large equivalence classes of mutually strongly
cospectral vertices. In this section, we include a proof for completeness, and in order to introduce
notations that we shall need later on.
Lemma 3.1. The automorphism group of X acts transitively on the corners. Hence the corners
are mutually cospectral.

In order for the corners of X = Pn1□Pn2□ · · ·□Pnk
to be mutually strongly cospectral, we

will need to choose the paths of lengths ni more carefully, so thatX will have simple eigenvalues,
and Lemma 2.1 will apply. The proof of the simplicity of the eigenvalues will make use of some
well known properties the eigenvalues of paths and of cyclotomic fields, which we shall now
discuss.

The adjacency matrix of Pn has eigenvalues 2 cos rπ
n+1

= e
rπ
n+1

i + e−
rπ
n+1

i. The degree of
the minimal polynomial of 2 cos π

n+1
is d := 1

2
ϕ(2(n + 1)) where ϕ is the totient function.

For r = 1, . . . , d, using Tr to denote the Chebyshev polynomial of the first kind of degree r, we
have

cos
rπ

n+ 1
= Tr

(
cos

π

n+ 1

)
.

Thus {
1, 2 cos

π

n+ 1
, 2 cos

2π

n+ 1
, . . . , 2 cos

(d− 1)π

n+ 1

}
(3.1)

is a basis of the field, Fn+1, generated by the eigenvalues of Pn over Q.
When n+ 1 = p for some prime p, let αr := 2 cos rπ

p
, (r = 1, . . . p− 1). It follows from the

minimal polynomial of the primitive 2p-th root of unity that

1 +

p−1
2∑

j=1

(−1)jαj = 0. (3.2)
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Lemma 3.2. Let p ⩾ 5 be a prime and let αj = 2 cos
(

jπ
p

)
, (1 ⩽ j ⩽ p−1

2
). Then for

every 1 ⩽ r < s ⩽ p−1
2

, the set {1, αr, αs} is linearly independent over Q.

Proof. The degree of α1 is d = p−1
2

. If 1 ⩽ r < s < d, the set {1, αr, αs} is a subset of the
basis {1, α1, . . . , αd−1} of Fp, so it is linearly independent.

It remains to consider αd. By Equation (3.2), we may replace any element in

{αj : 1 ⩽ j ⩽ d− 1 and j ̸= r}

by αd in {1, α1, . . . , αd−1} to get another basis of Fp containing 1, αr and αd.

The eigenvalues ofP2p−1 are βr := 2 cos
(

rπ
2p

)
, for r = 1, . . . , 2p−1. The fieldF2p generated

by these eigenvalues over Q is the intersection of the 4p-th cyclotomic field with the field of real
numbers, so |F2p : Q| = p − 1. We also have F2p = Q(β1). The minimal polynomial of e

π
2p

i

yields

1 +

p−1
2∑

j=1

(−1)jβ2j = 0. (3.3)

Lemma 3.3. Let p ⩾ 7 be a prime and let βr = 2 cos
(

rπ
2p

)
, (1 ⩽ r ⩽ p − 1). Then for

every 1 ⩽ r < s ⩽ p− 1, the set {1, βr, βs} is linearly independent over Q.

Proof. The degree of β1 is p − 1. For 1 ⩽ r < s ⩽ p − 2, {1, βr, βs} is a subset of the
basis {1, β1, . . . , βp−2}. Hence it is linearly independent over Q.

Using Equation (3.3), we may replace any element in
{
β2j : 1 ⩽ j ⩽ p−3

2
and 2j ̸= r

}
by βp−1 in {1, β1, . . . , βp−2} to get another basis of F2p containing 1, βr and βp−1.

Corollary 3.4. Suppose n = p− 1 for some prime p ⩾ 5, or n = 2p− 1 for some prime p ⩾ 7.
For any two non-zero eigenvalues λ and λ′ of Pn such that λ ̸= ±λ′, the set {1, λ, λ′} is linearly
independent over Q.

The eigenvalues of X , counting multiplicity, are the
∏k

i=1 ni numbers λ1 + λ2 + · · · + λk,
where λi is an eigenvalue of Pni

.

Lemma 3.5. Let p1, . . . , pk ⩾ 5 be distinct primes. Suppose ni = pi − 1 or ni = 2pi − 1.
Then X = Pn1□ · · ·□Pnk

has simple eigenvalues.

Proof. We may assume k > 1, since paths have simple eigenvalues. As X is the Cartesian
product of the paths Pni

’s, the eigenvalues of X are the values λ1 + λ2 + · · · + λk where λi is
an eigenvalue of Pni

. Suppose

λ1 + λ2 + · · ·+ λk = λ′
1 + λ′

2 + · · ·+ λ′
k. (3.4)

where the λi and λ′
i are eigenvalues of Pni

. Suppose for a contradiction that for some i we
have λi ̸= λ′

i. Then there must be another index j with λj ̸= λ′
j . Without loss of generality we

can assume that i = 1 and that p1 ⩾ 7 if n1 = 2p1 − 1. We rewrite (3.4) as

(λ′
1 − λ1) = (λ2 − λ′

2) · · ·+ (λk − λ′
k). (3.5)
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The left member of (3.5) lies in the cyclotomic field of order 4p1 while the right member lies in a
cyclotomic field of order 4m, where m is coprime to p1. The intersection of these fields is Q(i),
but we also know that the eigenvalues are real, so it follows that the common value of (3.5) must
be rational.

If, without loss of generality, λ1 = 0 then λ′
1 /∈ Q contradicting Equation (3.5). Otherwise,

as λ1 /∈ Q, we cannot have λ′
1 = −λ1. Then by Corollary 3.4, the set {1, λ1, λ

′
1} is linearly

independent over Q, contradicting the rationality of λ′
1 − λ1 in (3.5). Hence X has simple

eigenvalues.

Lemma 3.6. Let X be as in Lemma 3.5 and let Y = P2e−1□X , e ⩾ 2. Then the eigenvalues
of Y are simple.

Proof. The eigenvalues of Y , counting multiplicity are the (2e − 1)
∏k

i=1(ni) complex num-
bers λ0+λi+ · · ·+λk, where λ0 is an eigenvalue of P2e−1 and for 1 ⩽ i ⩽ k λi is an eigenvalue
of Pni

. Let λ′
i, i = 0,1,. . . , k similarly denote eigenvalues and consider the equation

λ0 + λ1 + λ2 + · · ·+ λk = λ′
0 + λ′

1 + λ′
2 + · · ·+ λ′

k. (3.6)

We shall show that λi = λ′
i for all i. Suppose λ0 = λ′

0. Then we can cancel these terms and we
have an equation expressing equality of two eigenvalues of X . So Lemma 3.5 gives the desired
conclusion. Therefore we may assume λ0 ̸= λ′

0.
Let F2e denote the field generated by the eigenvalues of P2e−1. This is the intersection of

the real field with the cyclotomic field Q(ω), where ω = e
iπ
2e is a primitive 2e+1-th root of unity.

Let FX denote the field generated by the eigenvalues of the path factors in X . Then FX lies
in a cyclotomic field of order 4m, where m is odd. It follows that F2e ∩ FX = Q. Thus, if
we rearrange (3.6) by isolating λ0 − λ′

0, we see that λ0 − λ′
0 ∈ Q. The eigenvalues of P2e−1

are ωr + ω−r, for r = 1, . . . , 2e − 1. We assume for a contradiction that λ0 ̸= λ′
0. The only

rational eigenvalue is zero, for r = 2e−1, so λ0 and λ′
0 must both be irrational.

The Galois group of Q(ω) over Q consists of the 2e automorphisms of the form ω 7→ ωa,
where a ∈ Z/2e+1Z is odd. The Galois automorphisms of F2e = Q(ω + ω−1) are obtained
by restriction of those for Q(ω), and form a cyclic group of order 2e−1. By Galois theory,
the subfields of F2e correspond bijectively with the subgroups of the Galois group. Thus, for
each d with 1 ⩽ d ⩽ e there is a unique subfield of degree 2d−1, and this subfield must be the
field F2d = Q(ω2e−d

) ∩ R, as this field has the right degree. An eigenvalue ωr + ω−r is
Galois conjugate to ω2d + ω−2d , where 2d divides r exactly, so Q(ωr + ω−r) = F2d .
Suppose Q(λ0) ̸= Q(λ′

0). Then {1, λ0, λ
′
0} is linearly independent over Q, a contradiction.

Therefore we may assume Q(λ0) = Q(λ′
0). Thus, λ0 = ωr + ω−r and λ′

0 = ωs + ω−s,
where 1 ⩽ r, s ⩽ 2e − 1 and r and s are exactly divisible by the same power of 2, say 2d.
In other words ωr and ωs are both odd powers of ω2e−d , a primitive 2d+1-th root of unity.
Now 2d + 1 is odd and the (2d + 1)-th power of ω2e−d is −ω2e−d . It follows that there is Galois
automorphism of Q(λ0) sending λ0 to −λ0 and λ′

0 to −λ′
0. Since λ0 − λ′

0 is a nonzero rational
number, we have our final contradiction. This proves that Y has simple eigenvalues.

From Lemmas 3.5, 3.6 and 2.1, we draw the following conclusion.
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Corollary 3.7. Let p1, . . . , pk ⩾ 5 be distinct primes. Suppose ni = pi − 1 or ni = 2pi − 1.
Further, let n0 = 2e − 1, e ⩾ 2. Then in X = Pn1□ · · ·□Pnk

and Y = Pn0□X , all corners are
mutually strongly cospectral.

The following results imply that if the primes in the above corollary are not distinct, then the
corners of X = Pn1□Pn2□ · · ·□Pnk

are not mutually strongly cospectral.

Lemma 3.8. Let y1 and y2 be vertices in a graph Y and E be an idempotent projector for some
eigenspace of Y . Let z be a vertex in a graph Z and µ ∈ Φz with corresponding idempotent
projector F .

If W is an idempotent projector for an eigenspace of Y□Z such that (E ⊗ F )W ̸= 0
and We(y1,z) = αWe(y2,z) for some α ∈ C, then Eey1 = αEey2 .

Proof. Since (E ⊗ F )W ̸= 0, we can write

W = E ⊗ F +
∑
j

Erj ⊗ Fsj

where the Erj ’s and the Fsj ’s are idempotent projectors for Y and Z, respectively, different
from E and F .

Multiplying E ⊗ F on the left to both sides of We(y1,z) = αWe(y2,z) gives

Eey1 ⊗ Fez = αEey2 ⊗ Fez,

and Eey1 = αEey2 .

Corollary 3.9. Let y1 and y2 be vertices in a graph Y and let z be a vertex in a graph Z.
If (y1, z) is strongly cospectral to (y2, z) in Y□Z, then y1 is strongly cospectral to y2 in Y .

Lemma 3.10. If gcd(n+1,m+1) ⩾ 3, then (1, 1) and (n, 1) are not strongly cospectral vertices
in Pn□Pm.

Proof. We use Er to denote the idempotent projector onto the
(
2 cos rπ

n+1

)
-eigenspace of A(Pn),

and Fs to denote the idempotent projector onto the
(
2 cos sπ

m+1

)
-eigenspace of A(Pm).

Let g = gcd(n + 1,m + 1), hn = n+1
g

and hm = m+1
g

. Without loss of generality, we
assume hn is odd. Then

θ = 2 cos

(
hnπ

n+ 1

)
+ 2 cos

(
2hmπ

m+ 1

)
= 2 cos

(
2hnπ

n+ 1

)
+ 2 cos

(
hmπ

m+ 1

)
is an eigenvalue of Pn□Pm. If W is the idempotent projector of the θ-eigenspace
of Pn□Pm, then both (Ehn ⊗ F2hm)W and (E2hn ⊗ Fhm)W are non-zero. As Ehne1 = Ehnen
and E2hne1 = −E2hnen, Lemma 3.8 implies We(1,1) ̸= ±We(n,1).

Corollary 3.11. If gcd(ni + 1, nj + 1) ⩾ 3, for some 1 ⩽ i < j ⩽ n, then the corners
of Pn1□Pn2□ · · ·□Pnk

are not mutually strongly cospectral.
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4. No pretty good state transfer among all corners

We shall identify pairs of paths whose cartesian product does not have all four corners in the
same PGST-equivalence class. If any of these pairs appears as factors in Pn1□ . . .□Pn−k, then
Lemma 2.3 implies that the corners of Pn1□ . . .□Pnk

are not in the same PGST-equivalence
class.

The following lemma covers Pp−1□Pp−1, Pp−1□P2p−1, P2p−1□P2p−1, and P2e−1□P2f−1,
for e, f ⩾ 2.
Lemma 4.1. If gcd(n + 1,m + 1) ⩾ 3, then the four corners of Pn□Pm do not form a PGST-
equivalence class.

Proof. It follows immediately from Corollary 3.11 and Theorem 2.2.

For each pair of paths considered in this section, we give a sequence of integer {ℓrs} that
satisfies the three conditions in Theorem 2.2(b) using the 2× 2 matrices

A =

[
1 0
−2 1

]
, B =

[
1 −1
−2 2

]
and C =

[
−1 2
1 −2

]
. (4.1)

4.1. Pp1−1□Pp2−1

For i = 1, 2, let pi be an odd prime and α
(i)
r = 2 cos rπ

pi
, it follows from Equation (3.2)

and α
(i)
r = −α

(i)
pi−r that

2 +

pi−1∑
r=1

(−1)rα(i)
r = 0. (4.2)

Lemma 4.2. If p1 ≡ 3 (mod 4), then there is no pretty good state transfer from (1, 1)
to (p1 − 1, 1) in Pp1−1□Pp2−1.

Proof. Define the (p1 − 1)× (p2 − 1) matrix

L :=


A B · · · B
C 0 · · · 0
... ... . . . ...
C 0 · · · 0


containing

(
p2−1
2

− 1
)

copies of B and
(
p1−1
2

− 1
)

copies of C. Note that the entries of the r-th
row of L sum to (−1)r+1 and the entries of the s-th column of L sum to (−1)s.

Let ℓrs = Lr,s, for 1 ⩽ r ⩽ p1−1 and 1 ⩽ s ⩽ p2−1. For Condition (b)(i) of Theorem 2.2,
we have

p1−1∑
r=1

p2−1∑
s=1

ℓrs(α
(1)
r + α(2)

s ) =

p1−1∑
r=1

(
p2−1∑
s=1

ℓrs

)
α(1)
r +

p2−1∑
s=1

(
p1−1∑
r=1

ℓrs

)
α(2)
s

=

p1−1∑
r=1

(−1)r+1α(1)
r +

p2−1∑
s=1

(−1)sα(2)
s ,
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which is 0 as a result of Equation (4.2).
Since the entries of L sum to zero, Condition (b)(ii) holds.
Now Φ−

(1,1),(p1−1,1) =
{
α
(1)
r + α

(2)
s : r is even

}
, we have

∑
r, s : r even

ℓrs =
∑
r even

(−1)r+1 = −
(
p1 − 1

2

)
.

If p1 ≡ 3 (mod 4), then the sequence {ℓrs} satisfies Conditions (b)(i) to (b)(iii) of Theorem 2.2,
so there is no pretty good state transfer between (1, 1) and (p1 − 1, 1) in Pp1−1□Pp2−1.

Lemma 4.3. If p1 ≡ 5 (mod 8) and p2 ≡ 1 (mod 4), then there is no pretty good state transfer
from (1, 1) to (p1 − 1, 1) in Pp1−1□Pp2−1.

Proof. Using the 2× 2 matrices in Equation (4.1), we define the p1−1
2

× p2−1
2

matrix

L :=


A B · · · B
C 0 · · · 0
... ... . . . ...
C 0 · · · 0


containing

(
p2−1
4

− 1
)

copies of B and
(
p1−1
4

− 1
)

copies of C. Let

ℓrs =

{
Lr,s if 1 ⩽ r ⩽ p1−1

2
, and 1 ⩽ s ⩽ p2−1

2
,

0 otherwise.

Similar to the proof of Lemma 4.2, we have

p1−1∑
r=1

p2−1∑
s=1

ℓrs(α
(1)
r + α(2)

s ) =

p1−1
2∑

r=1

(−1)r+1α(1)
r +

p2−1
2∑

s=1

(−1)sα(2)
s .

It follows from Equation (3.2) that this sum is equal to zero, and Condition (b)(i) of Theorem 2.2
holds. The sequence {ℓrs} also satisfies Condition (b)(ii) and∑

r, s : r even

ℓrs = −
(
p1 − 1

4

)
.

If p1 ≡ 5 (mod 8), then the sequence {ℓrs} satisfies Conditions (b)(i) to (b) (iii) of Theorem 2.2
and there is no pretty good state transfer from (1, 1) to (n1, 1).

4.2. P2p1−1□P2p2−1

For i = 1, 2, let β(i)
r = 2 cos rπ

2pi
. Note that β(i)

pi = 0.
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Lemma 4.4. If p1 ≡ 3 (mod 4), then there is no pretty good state transfer from (1, 1)
to (2p1 − 1, 1) in P2p1−1□P2p2−1.

Proof. We first consider the case where p2 ≡ 1 (mod 4). Define the p1+1
2

× p2−1
2

matrix L as

β
(2)
2 β

(2)
4 · · · · · · β

(2)
p2−3 β

(2)
p2−1

β
(1)
2

β
(1)
4

...

...

β
(1)
p1−5

β
(1)
p1−3

β
(1)
p1−1

β
(1)
p1



A B · · · B

C 0 · · · 0

... ... . . . ...

C 0 · · · 0

C 0 · · · 0


containing

(
p2−1
4

− 1
)

copies of B and
(
p1+1
4

− 1
)

copies of C. Let

ℓrs =


L r

2
, s
2

if r is even with 2 ⩽ r ⩽ p1 − 1, and s is even with 2 ⩽ s ⩽ p2 − 1,

L p1+1
2

, s
2

if r = p1, and s is even with 2 ⩽ s ⩽ p2 − 1,

0 otherwise.

(We list on the right of L the eigenvalues of P2p1−1 associated with each row of L, and above L
the eigenvalues of P2p2−1 associated with each column of L.)

For Conditon (b)(i) in Theorem 2.2, we have

2p1−1∑
r=1

2p2−1∑
s=1

ℓrs
(
β(1)
r + β(2)

s

)
=

p1−1
2∑

j=1

 p2−1
2∑

k=1

Lj,k

 β
(1)
2j +

 p2−1
2∑

k=1

L p1+1
2

,k

 β(1)
p1

+

p2−1
2∑

k=1

 p1+1
2∑

j=1

Lj,k

 β
(2)
2k

=

p1−1
2∑

j=1

(−1)j+1β
(1)
2j + 0 +

p2−1
2∑

k=1

(−1)kβ
(2)
2k .

which is equal to 0 by Equation (3.3).
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It is straightforward to check that
∑

r,s ℓrs = 0. Since

Φ−
(1,1),(2p1−1,1) = {β(1)

2j + β(2)
s : 1 ⩽ j ⩽ p1 − 1, 1 ⩽ s ⩽ 2p2 − 1},

we have

p1−1∑
j=1

2p2−1∑
s=1

l2j,s =

p1−1
2∑

j=1

p2−1
2∑

k=1

Lj,k =

p1−1
2∑

j=1

(−1)j+1 ≡ 1 (mod 2).

It follows from Theorem 2.2 that there is no pretty good state transfer from (1, 1) to (2p1−1, 1).
When p2 ≡ 3 (mod 4), we define the p1+1

2
× p2+1

2
matrix L as

β
(2)
2 β

(2)
4 · · · · · · β

(2)
p2−5 β

(2)
p2−3 β

(2)
p2−1 β

(2)
p2

β
(1)
2

β
(1)
4

...

...

β
(1)
p1−5

β
(1)
p1−3

β
(1)
p1−1

β
(1)
p1



A B · · · B B

C 0 · · · 0 0

... ... . . . ... ...

C 0 · · · 0 0

C 0 · · · 0 0


containing

(
p2+1
4

− 1
)

copies of B and
(
p1+1
4

− 1
)

copies of C. Let

ℓrs =


L r

2
, s
2

if r is even with 2 ⩽ r ⩽ p1 − 1, and s is even with 2 ⩽ s ⩽ p2 − 1,

L p1+1
2

, s
2

if r = p1, and s is even with 2 ⩽ s ⩽ p2 − 1,

L r
2
,
p2+1

2
if s = p2, and r is even with 2 ⩽ r ⩽ p1 − 1,

0 otherwise.
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For Conditon (b)(i) in Theorem 2.2, we have
2p1−1∑
r=1

2p2−1∑
s=1

ℓrs
(
β(1)
r + β(2)

s

)
=

p1−1
2∑

j=1

 p2+1
2∑

k=1

Lj,k

 β
(1)
2j +

 p2+1
2∑

k=1

L p1+1
2

,k

 β(1)
p1

+

p2−1
2∑

k=1

 p1+1
2∑

j=1

Lj,k

 β
(2)
2k +

 p1+1
2∑

j=1

L
j,

p2+1
2

 β(2)
p2

=

p1−1
2∑

j=1

(−1)j+1β
(1)
2j + 0 +

p2−1
2∑

k=1

(−1)kβ
(2)
2k + 0

= 0.

We also have
∑

r,s ℓrs =
∑

r,s Lr,s = 0, and

p1−1∑
j=1

2p2−1∑
s=1

l2j,s =

p1−1
2∑

j=1

p2+1
2∑

k=1

Lj,k =

p1−1
2∑

j=1

(−1)j+1 ≡ 1 (mod 2).

It follows from Theorem 2.2 that pretty good state transfer does not occur between (1, 1)
and (2p1 − 1, 1).

4.3. P2p1−1□Pp2−1

For r = 1, . . . , 2p1 − 1, let βr = 2 cos rπ
2p1

be the eigenvalues of P2p1−1. For s = 1, . . . , p2 − 1,
let αs = 2 cos sπ

p2
be the eigenvalues of Pp2−1.

Lemma 4.5. If p1 ≡ 3 (mod 4) and p2 ≡ 1 (mod 4), then there is no pretty good state transfer
from (1, 1) to (2p1 − 1, 1) in P2p1−1□Pp2−1.

Proof. Define the p1+1
2

× p2−1
2

matrix L as

α1 α2 · · · · · · α p2−3
2

α p2−1
2

β2

β4

...

...

β(p1−1)/2

βp1



A B · · · B

C 0 · · · 0

... ... . . . ...

C 0 · · · 0
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containing
(
p2−1
4

− 1
)

copies of B and
(
p1+1
4

− 1
)

copies of C. Let

ℓrs =


L r

2
,s if r is even with 2 ⩽ r ⩽ p1 − 1, and 1 ⩽ s ⩽ p2−1

2
,

L p1+1
2

,s
if r = p1 and 1 ⩽ s ⩽ p2−1

2
,

0 otherwise.

For Conditon (b)(i) in Theorem 2.2, we have
2p1−1∑
r=1

p2−1∑
s=1

ℓrs (βr + αs)

=

p1−1
2∑

j=1

 p2−1
2∑

s=1

Lj,s

 β2j +

 p2−1
2∑

s=1

L p1+1
2

,s

 βp1 +

p2−1
2∑

s=1

 p1+1
2∑

j=1

Lj,s

αs

=

p1−1
2∑

j=1

(−1)j+1β2j + 0 +

p2−1
2∑

s=1

(−1)sαs

= 0.

It is straightforward that Condition (b)(ii) holds. For Condition (b)(iii),

Φ−
(1,1),(2p1−1,1) = {βr + αs : r is even},

and

∑
r is even

p2−1∑
s=1

ℓrs =

p1−1
2∑

j=1

p2−1∑
s=1

Lj,s =

p1−1
2∑

j=1

(−1)j+1 = 1 (mod 2).

By Theorem 2.2, there is no pretty good state transfer between (1, 1) and (2p1 − 1, 1)
in P2p1−1□Pp2−1.

Lemma 4.6. If p2 ≡ 3 (mod 4), then there is no pretty good state transfer from (1, 1)
to (1, p2 − 1) in P2p1−1□Pp2−1.

Proof. Define the (p1 − 1)× (p2 − 1) matrix

L :=


A B · · · B
C 0 · · · 0
... ... . . . ...
C 0 · · · 0


containing

(
p2−1
2

− 1
)

copies of B and
(
p1−1
2

− 1
)

copies of C. Let

ℓrs =

{
L r

2
,s if r is even with 2 ⩽ r ⩽ 2p1 − 2, and 1 ⩽ s ⩽ p2 − 1,

0 otherwise.
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For Condition (b)(i) of Theorem 2.2,
2p1−1∑
r=1

p2−1∑
s=1

ℓrs (βr + αs) =

p1−1∑
j=1

(
p2−1∑
s=1

Lj,s

)
β2j +

p2−1∑
s=1

(
p1−1∑
j=1

Lj,s

)
αs

=

p1−1∑
j=1

(−1)j+1β2j +

p2−1∑
s=1

(−1)sαs

= 2

p1−1
2∑

j=1

(−1)j+1β2j +

p2−1∑
s=1

(−1)sαs

= 0.

As the entries of L sum to 0, Condition (b)(ii) holds.
For Condition (b)(iii),

Φ−
(1,1),(1,p2−1) = {βr + αs : s is even}

and ∑
s is even

2p1−1∑
r=1

ℓrs =
∑

s is even

p1−1∑
j=1

Lj,s =
∑

s is even

(−1)s =
p2 − 1

2
≡ 1 (mod 2).

By Theorem 2.2, there is no pretty good state transfer between (1, 1) and (1, p2 − 1)
in P2p1−1□Pp2−1.
Lemma 4.7. If p1 ≡ 1 (mod 4) and p2 ≡ 5 (mod 8), then there is no pretty good state transfer
from (1, 1) to (1, p2 − 1) in P2p1−1□Pp2−1.

Proof. Define the p1−1
2

× p2−1
2

matrix

L :=


A B · · · B
C 0 · · · 0
... ... . . . ...
C 0 · · · 0


containing

(
p2−1
4

− 1
)

copies of B and
(
p1−1
4

− 1
)

copies of C. Let

ℓrs =

{
L r

2
,s if r is even with 2 ⩽ r ⩽ p1 − 1, and 1 ⩽ s ⩽ p2−1

2
,

0 otherwise.

For Condition (b)(i) of Theorem 2.2,

2p1−1∑
r=1

p2−1∑
s=1

ℓrs (βr + αs) =

p1−1
2∑

j=1

 p2−1
2∑

s=1

Lj,s

 β2j +

p2−1
2∑

s=1

 p1−1
2∑

j=1

Lj,s

αs

=

p1−1
2∑

j=1

(−1)j+1β2j +

p2−1
2∑

s=1

(−1)sαs

= 0.
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As the entries of L sum to 0, Condition (b)(ii) holds.
For Condition (b)(iii),

Φ−
(1,1),(1,p2−1) = {βr + αs : s is even}

and ∑
s is even

2p1−1∑
r=1

ℓrs =
∑

s is even

p1−1
2∑

j=1

Lj,s =
∑

s is even

(−1)s =
p2 − 1

4
≡ 1 (mod 2).

By Theorem 2.2, there is no pretty good state transfer between (1, 1) and (1, p2 − 1)
in P2p1−1□Pp2−1.

5. Pretty good state transfer among corner vertices

In this section we shall classify the path products where pretty good state transfer occurs among
all corners.

By the following lemma, it is enough to fix a corner and show that it has pretty good state
transfer to each adjacent corner in a given path product, in order to prove that there is pretty good
state transfer between an arbitrary pair of corners.

Lemma 5.1. Pretty good state transfer defines an equivalence relation on a set of vertices.

Proof. By Theorem 8.7.2 of [CG21], for ϵ > 0, there exists time τ such that ∥U(τ)− I∥ < ϵ, so
pretty good state transfer occurs from each vertex to itself in a graphX . SinceU(t) is symmetric,
pretty good state transfer is a symmetric relation.

Suppose pretty good state transfer occurs from a to b and from b to c in a graph X . For ϵ > 0,
there exist times τ1 and τ2 and unimodular complex numbers γ1 and γ2 such that

∥U(τ1)ea − γ1eb∥ <
ϵ

2
and ∥U(τ2)eb − γ2ec∥ <

ϵ

2
.

Since U(τ2)
−1 = U(−τ2) is unitary, we have ∥γ1eb − γ1γ2U(τ2)

−1ec∥ < ϵ
2
. By the triangle

inequality

∥U(τ2 + τ1)ea − γ1γ2ec∥ = ∥U(τ1)ea − γ1γ2U(τ2)
−1ec∥

⩽ ∥U(τ1)ea − γ1eb∥+ ∥γ1eb − γ1γ2U(τ2)
−1ec∥

< ϵ.

We see that pretty good state transfer occurs from a to c in X .

Further, as the automorphism group acts transitively on the set of corners, we may as-
sume that the fixed corner is (1, 1, . . . , 1), so it is enough to prove pretty good state transfer
between (1, 1, . . . , 1) and (1, . . . , ni, . . . , 1) for all i. For convenience of notation, we may rear-
range the cartesian factors so that the factor of interest is the first one.
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5.1. X = Pp−1□Z

Lemma 5.2. Let p ≡ 1 (mod 8). Let Z be a finite graph and denote by FZ the field generated
by its eigenvalues. Assume that Fp ∩ FZ = Q. Then if, for some vertex z of Z the vertices (1, z)
and (p−1, z) inPp−1□Z are strongly cospectral, there is pretty good state transfer between (1, z)
and (p− 1, z).

Proof. We recall that the eigenvalues of Pp−1 are αr = 2 cos rπ
p

, r = 1,. . . , p − 1. We shall
apply Theorem 2.2 to the vertices (1, z) and (p − 1, z). By assumption, Condition (a) of The-
orem 2.2 holds. Let µ1, . . . , µm be the eigenvalues of Z. Then the eigenvalues of Pp−1□Z are
the values αr + µj for 1 ⩽ r ⩽ p− 1 and 1 ⩽ j ⩽ m. We shall assume that there is a sequence
of (p− 1)m integers ℓrj that satisfy Conditions (b)(i) and (b)(ii) of Theorem 2.2 and prove that
Condition (b)(iii) is impossible.

Condition (b)(i) takes the form ∑
r,j

ℓrj(αr + µj) = 0 (5.1)

and Condition (b)(ii) is ∑
r,j

ℓrj = 0. (5.2)

The set Φ−
(1,z),(p−1,z) consists of those eigenvalues αr + µj for which r is even. Therefore Con-

dition (b)(iii) is ∑
r, j: r even

ℓrj ≡ 1 (mod 2).

For r = 1,. . . , p− 1, let ar =
∑

j ℓrj . Then we can we rewrite (5.1) as

p−1∑
r=1

arαr = −
∑
r,j

ℓrjµj. (5.3)

The left hand side of (5.3) lies in Fp, while the right hand side lies in FZ . So by our hypothesis
on the intersection of these fields, the common value of (5.3) must be rational and, in fact, an
integer, since it is clearly an algebraic integer. We denote this integer by s. Then we have

p−1∑
r=1

arαr =

p−1
2∑

r=1

(ar − ap−r)αr = s. (5.4)

Using Equation (3.2), we can replace 1 in {1, α1, . . . , α p−3
2
} with α p−1

2
to form a basis

{α1, . . . , α p−1
2
} of Fp. Then Equations (3.2) and (5.4) give

p−1
2∑

r=1

(ar − ap−r + (−1)rs)αr = 0,
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and ar − ap−r = (−1)r+1s, for r = 1, . . . , p−1
2

.
Thus, for i = 1, . . . , (p−1)

2
,

a2i − ap−2i = −s.

Summing over i yields ∑
r, j: r even

ℓrj −
∑

r, j: r odd

ℓrj = −(p− 1)

2
s,

and if we add this equation to (5.2) we obtain

2
∑

r, j: r even

ℓrj = −(p− 1)

2
s.

Thus, since p1 ≡ 1 (mod 8), we have
∑

r, j: r even ℓrj ≡ 0 (mod 2). Therefore, we have
shown that whenever the first two conditions (b)(i) and (b)(ii) of Theorem 2.2 are true the third
condition (b)(iii) is false.

5.2. X = P2p−1□Z

Lemma 5.3. Let p ≡ 1 (mod 4). Let Z be a finite graph and denote by FZ the field gen-
erated by its eigenvalues. Assume that F2p ∩ FZ = Q. Then if, for some vertex z of Z the
vertices (1, z) and (2p − 1, z) in P2p−1□Z are strongly cospectral, there is pretty good state
transfer between (1, z) and (2p− 1, z).

Proof. We recall that the eigenvalues of P2p−1 are βr=2 cos rπ
2p

, r=1,. . . , 2p−1. Let µ1, . . . , µm

be the eigenvalues of Z. Similar to the proof of Lemma 5.2, we shall assume that there is a
sequence of (2p− 1)m integers ℓrj that satisfy Conditions (b)(i) and (b)(ii) of Theorem 2.2 and
prove that Condition (b)(iii) is impossible.

Condition (b)(i) takes the form ∑
r,j

ℓrj(βr + µj) = 0 (5.5)

and Condition (b)(ii) is ∑
r,j

ℓrj = 0.

The set Φ−
(1,z),(2p−1,z) consists of those eigenvalues βr + µj for which r is even. Therefore Con-

dition (b)(iii) is ∑
r, j: r even

ℓrj ≡ 1 (mod 2).

For r = 1,. . . , 2p− 1, let ar =
∑

j ℓrj . Then we can we rewrite (5.5) as

2p−1∑
r=1

arβr = −
∑
r,j

ℓrjµj. (5.6)
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The left hand side of (5.6) lies in F2p, while the right hand side lies in FZ . So by our hypothesis
on the intersection of these fields, the common value of (5.6) must be an integer, denoted by s.
As βp = 0, we have

2p−1∑
r=1

arβr =

p−1∑
r=1

(ar − a2p−r)βr = s. (5.7)

Using Equation (3.3), we can replace 1 in {1, β1, . . . , βp−2} with βp−1 to form a basis
{β1, . . . , βp−1} of F2p. It follows from Equations (3.3) and (5.7) that

p−1
2∑

j=1

(
a2j − a2p−2j + (−1)js

)
β2j +

p−1
2∑

j=1

(a2j+1 − a2p−2j−1)β2j+1 = 0,

and the coefficients of the βr’s are zero. For i = 1, . . . , (p−1)
2

, we have

a2i − a2p−2i = (−1)i+1s.

Since p−1
2

is even, summing over i yields
p−1
2∑

i=1

a2i −
p−1∑

i= p+1
2

a2i = 0,

and ∑
r, j: r even

ℓrj =

p−1
2∑

i=1

a2i +

p−1∑
j= p+1

2

a2j = 2

 p−1∑
j= p+1

2

a2j

 ≡ 0 (mod 2).

Therefore, we have shown that whenever the first two conditions (b)(i) and (b)(ii) of Theorem 2.2
are true the third condition (b)(iii) is false.

5.3. X = P2e−1□Z

Let γr := 2 cos rπ
2e

(r = 1 . . . , 2e − 1) be the eigenvalues of P2e−1.

Lemma 5.4. Let Z be a finite graph and denote by FZ the field generated by its eigenvalues.
Assume that F2e ∩ FZ = Q. Then if, for some vertex z of Z the vertices (1, z)
and (2e − 1, z) in P2e−1□Z are strongly cospectral, there is pretty good state transfer
between (1, z) and (2e − 1, z).

Proof. Let µ1,. . . ,µm be the eigenvalues of Z. We apply the criteria of Theorem 2.2. The strong
cospectrality condition (a) of that theorem holds by assumption. The eigenvalues inΦ−

(1,z),(2e−1,z)

are γr + µj with r even. Suppose Condition (b)(i) of Theorem 2.2 holds. Then, as in previ-
ous arguments, we isolate the terms coming from eigenvalues of P2e−1 and use the hypothe-
sis F2e ∩ FZ = Q, and obtain an equation

2e−1∑
r=1

arγr = s,
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where ai, s ∈ Z. Note that γ2e−1 = 0. So we have

2e−1−1∑
r=1

arγr +
2e−1∑

r=2e−1+1

arγr = s.

Since γ2e−r = −γr, the above equation becomes

2e−1−1∑
r=1

(ar − a2e−r)γr = s.

As γ1 has degree 2e−1, the set {1, γ1, . . . , γ2e−1−1} is linearly independent. Hence ar = a2e−r,
for r = 1, . . . 2e−1, and s = 0. It follows that

∑
r odd ar is even. If we assume Condition (b)(ii) in

Theorem 2.2, then
∑2e−1

r=1 ar = 0. Therefore
∑

r even ar is even. Then by Theorem 2.2 we have
pretty good state transfer between (1, z) and (2e − 1, z).

Lemma 5.5. For prime p ⩾ 3 and e ⩾ 2, there is pretty good state transfer between (1, 1)
and (1, p− 1) in P2e−1□Pp−1.

Proof. We shall apply Theorem 2.2. The condition on strong cospectrality is satisfied, by Corol-
lary 3.7. Recall the eigenvalues of Pp−1 are αr = 2 cos( rπ

2p
), r = 1,. . . ,p−1. The set Φ−

(1,1),(1,p−1)

consists of the eigenvalues γi + αr where r is even.
Suppose Condition (b)(i) of Theorem 2.2 holds. Thus for some integers ℓir, we have∑

i,r

ℓi,r(γi + αr) = 0

Then, as in Lemma 5.4 we move the eigenvalues of P2e−1 to the left side and those of Pp−1 to
the right side, resulting in the equation∑

i,r

ℓirγi = −
∑
i,r

ℓirαr.

Next we use use the fact that F2e ∩ Fp = Q. We may argue exactly as in Lemma 5.4 to deduce
that the common value of (5.3) is zero. Thus, if we set ar =

∑
i ℓir, we have

p−1∑
r=1

arαr =

p−1
2∑

r=1

(ar − ap−r)αr = 0.

We saw in the proof of Lemma 5.2 that {α1, . . . , α p−1
2
} is a basis of Fp. Hence ar = ap−r,

for r = 1, . . . , p−1
2

, and
∑

r even ar =
∑

r odd ar. Taking into account Condition (b)(ii) of Theo-
rem 2.2, we obtain

∑
r even ar = 0. Therefore, by Theorem 2.2, we have pretty good state transfer

from (1, 1) to (1, p− 1).

Lemma 5.6. For prime p ⩾ 3 and e ⩾ 2, there is pretty good state transfer between (1, 1)
and (1, 2p− 1) in P2e−1□P2p−1.
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Proof. The proof is very similar to that of Lemma 5.5. We shall apply Theorem 2.2. The
condition on strong cospectrality is satisfied, by Corollary 3.7. Recall the eigenvalues of P2p−1

are βr = 2 cos( rπ
2p
), r = 1,. . . ,2p − 1. Note that βp = 0. The set Φ−

(1,1),(1,2p−1) consists of the
eigenvalues γi + βr where r is even. Suppose Condition (b)(i) of Theorem 2.2 holds. Thus for
some integers ℓir, we have ∑

i,r

ℓir(γi + βr) = 0

Then, as in Lemma 5.4 we move the eigenvalues of P2e−1 to the left side and those of P2p−1 to
the right side, resulting in the equation∑

i,r

ℓirγi = −
∑
i,r

ℓirβr.

Next we use use the fact that F2e ∩ F2p = Q. We may argue exactly as in Lemma 5.4 to deduce
that the common value of (5.3) is zero. Thus, if we set ar =

∑
i ℓir, we have

2p−1∑
r=1

arβr =

p−1∑
r=1

(ar − a2p−r)βr = 0.

Since β1 has degree p − 1, {β1, . . . , βp−1} is a basis of F2p which implies ar = a2p−r,
for r = 1, . . . , 2p− 1. Thus ∑

r even

ar = 2 (a2 + a4 + · · ·+ ap−1)

so Condition (b)(iii) of Theorem 2.2 can never hold. Therefore by Theorem 2.2, we have pretty
good state transfer between (1, 1) and (1, 2p− 1).

5.4. Proof of Theorem 1.1

With Lemma 2.3 and the results in Sections 4 and 5 at our disposal we are now ready to prove
Theorem 1.1, the classification of path products in which there is pretty good transfer among all
corners.

Suppose X = Pn1□ . . .□Pnk
, k ⩾ 2, has pretty good state transfer occurring between

any two corners. By Lemma 2.3, ni + 1 is either a power of two, p or 2p for some prime p,
for i = 1, . . . , k. By Lemma 4.1, we can assume that there are distinct primes p1, . . . , pf ,
q1, . . . , qh such that

X = Pp1−1□ . . .□Ppf−1□P2q1−1□ . . . P2qh−1

where f and h are non-negative integers whose sum is at least two, or

X = P2e−1□Pp1−1□ . . .□Ppf−1□P2q1−1□ . . . P2qh−1,

for e ⩾ 2 and f + h ⩾ 1.
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Suppose f + h ⩾ 2. It follows from Lemmas 4.2 to 4.6 that p1, . . . , pf ≡ 1 (mod 8)
and q1, . . . , qh ≡ 1 (mod 4). Thus, X has the form of parts (3) or (4) in the statement of
Theorem 1.1.

Conversely, suppose X has the form of (3) or (4) in Theorem 1.1. We will show that X has
pretty good state transfer among all of its corners. By the discussion at the beginning of this
section, it suffices to show that there is pretty good state transfer between (1, 1, . . . , 1) and an
adjacent corner, which we can assume to be (n1, 1, . . . , 1), where n1 is one of the path lengths
in (3) or (4). First by Lemma 3.7, we have strong cospectrality between these vertices. Then,
depending on n1, we can apply Lemmas 5.2 to 5.4, taking Z to be the product of the other factors
in X and z to be the vertex (1, . . . , 1) of Z, to deduce pretty good state transfer. We must check
that the hypotheses on the field intersections in Lemmas 5.2 to 5.4 are satisfied. The eigenvalues
of a path Pn lie in the intersection of the cyclotomic field of order 2(n + 1) with the real field.
It follows that the field Fn1+1 ∩ FZ in these Lemmas is a subfield of the threefold intersection
of the real numbers, a cyclotomic field of order 2(n1 + 1) and a cyclotomic field of order m,
where gcd(m, 2(n1 + 1)) = 4. Hence Fn1+1 ∩ FZ = Q. This completes the proof that the
graphs X in (3) and (4) have pretty good state transfer among all corners.

When f +h = 1, Lemmas 3.7, 5.4 to 5.6, show that pretty good state transfer occurs among
all four corners of P2e−1□Pp−1 and P2e−1□P2p−1 for e ⩾ 2 and prime p ⩾ 3.

Theorem 1.1 gives a construction of graphs that admit pretty good state transfer among n
vertices, for n ⩾ 2.

6. No Laplacian Pretty good state transfer among corner vertices

For the Heisenberg Hamiltonian, the continuous-time quantum walk on X is given
by exp(−itLX), where LX is the Laplacian matrix of X [Kay11, IV.E]. We shall see in this
section that, contrary to Theorem 1.1, there is no cartesian product of two or more paths with
Laplacian pretty good state transfer between any two corners.

Given two simple finite graphs X and Y on n and m vertices, respectively, the Laplacian
matrix of their cartesian product is

LX□Y = LX ⊗ Im + In ⊗ LY .

The transition matrix of X□Y based on the Heisenberg Hamiltonian is

exp(−itLX)⊗ exp(−itLY ).

Hence Lemmas 2.3 and 3.8 apply to the Laplacian matrix of X□Y .
Laplacian pretty good state transfer occurs between extremal vertices of Pn if and only if n

is a power of 2 [BCGS17]. By Lemma 2.3, if Pn1□ · · ·□Pnk
has Laplacian pretty good state

transfer between any two corners then each ni is a power of 2. The Laplacian matrix of a path P2e

has eigenvalues 0, and 2 + 2 cos πr
2e

, for r = 1, . . . , 2e − 1. The idempotent projector of the 0-
eigenspace is 1

n
Jn, where Jn denotes the n× n matrix of all ones. The extremal vertices of P2e

have full eigenvalue support with

Φ−
1,2e =

{
2 + 2 cos

πr

2e
: r odd

}
.
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Lemma 6.1. Suppose f ⩾ e ⩾ 1. The vertices (1, 1) and (2e, 1) in P2e□P2f are not strongly
cospectral.

Proof. LetEr be the idempotent projector of the
(
2 + 2 cos πr

2e

)
-eigenspace ofL(P2e), and letFs

be the idempotent projector of the
(
2 + 2 cos πs

2f

)
-eigenspace of L(P2f ).

Let W be the idempotent projector of the Laplacian matrix of P2e□P2f corresponding to the
eigenvalue θ = 2 + 2 cos π

2e
. As

θ =
(
2 + 2 cos

π

2e

)
+ 0 = 0 +

(
2 + 2 cos

2f−eπ

2f

)
,

both
(
E1 ⊗

(
1
2f
J2f
))

W and
((

1
2e
J2e
)
⊗ F2f−e

)
W are non-zero. Since E1e1 = −E1e2e

and
(

1
2e

)
J2ee1 = +

(
1
2e

)
J2ee2e , it follows from Lemma 3.8 that We(1,1) ̸= ±We(2e,1).

Theorem 6.2. There is no Laplacian pretty good state transfer among the corners
of Pn1□ · · ·□Pnk

, for all n1, . . . , nk ⩾ 2.

Proof. By Lemma 2.3, we need to consider only the case where n1, . . . , nk are powers of two.
First observe that Pn1□ · · ·□Pnk

is isomorphic to (Pn1□Pn2)□ (Pn3□ . . .□Pnk
) with an

isomorphism given by

(v1, v2, . . . , vn) 7→
(
(v1, v2), (v3, . . . , vk)

)
.

Lemmas 6.1 and 2.3 rule out Laplacian pretty good state transfer from ((1, 1), (1, . . . , 1))
to ((n1, 1), (1, . . . , 1)) in (Pn1□Pn2)□ (Pn3□ . . .□Pnk

) when n1 and n2 are powers of two.
Hence there is no Laplacian pretty good state transfer from (1, 1, . . . , 1) to (n1, 1, . . . , 1)
in Pn1□ · · ·□Pnk

.
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