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ABSTRACT OF THE THESIS

Oncogenic Potential of Fibroblast Growth Factor Receptor Translocations

by

Katelyn N. Nelson
Master of Science in Chemistry
University of California, San Diego, 2015

Professor Daniel J. Donoghue, Chair

Fibroblast Growth Factor Receptors (FGFRs) are critical for cell proliferation
and differentiation. Mutation and/or translocation of FGFRs lead to aberrant signaling
that often results in developmental syndromes or cancer growth. As sequencing of
human tumors becomes more frequent, so does the emergence of FGFR translocations
and fusion proteins. The research conducted in this work will focus on a frequently
identified fusion protein between FGFR3 and transforming acidic coiled-coil containing
protein 3 (TACC3). Through titanium dioxide-based phosphopeptide enrichment

(Ti02)-liquid chromatography (LC)-high mass accuracy tandem mass spectrometry

Xi



(MS/MS), it is apparent that the fused coiled-coil TACC3 domain results in constitutive
phosphorylation of key activating FGFR3 tyrosine residues. Fusion of FGFR3 and
TACC3 also results in MAPK pathway activation, nuclear localization, and cell
transformation. Introduction of K508R FGFR3 kinase dead mutation abrogates these
effects, except for nuclear localization which is due solely to the TACC3 domain.
FGFR3-TACC3 also produces IL-3 independent growth and cell proliferation. Taken
together, these results suggest that FGFR3 kinase activity is essential for the oncogenic

effects of the FGFR3-TACC3 fusion protein and could serve as a therapeutic target.
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Chapter 1

Functions of Fibroblast Growth Factor Receptors in Cancer Defined by Novel

Translocations and Mutations
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Mini review
Functions of Fibroblast Growth Factor Receptors in cancer defined by
novel translocations and mutations

Leandro H. Gallo, Katelyn N. Nelson, April N. Meyer, Daniel ]. Donoghue *

Department of Chemistry and Biochemistry, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093-0367, United States

ARTICLE INFO ABSTRACT

The four receptor tyrosine kinases (RTKs) within the family of Fibroblast Growth Factor Receptors
(FGFRs) are critical for normal development but also play an enormous role in oncogenesis. Mutations
and/or abnormal expression often lead to constitutive dimerization and kinase activation of FGFRs, and
represent the primary mechanism for aberrant signaling. Sequencing of human tumors has revealed a
plethora of somatic mutations in FGFRs that are frequently identical to germline mutations in
developmental syndromes, and has also identified novel FGFR fusion proteins arising from chromosomal
rearrangements that contribute to malignancy. This review details approximately 200 specific point
mutations in FGFRs and 40 different fusion proteins created by translocations involving FGFRs that have
been identified in human cancer. This review discusses the effects of these genetic alterations on
downstream signaling cascades, and the challenge of drug resistance in cancer treatment with
antagonists of FGFRs.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

Article history:
Available online 20 April 2015

Keywords:

Fibroblast Growth Factor Receptor
Translocation

Development

Rhabdomyosarcoma
Myeloproliferative syndrome

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Overview of canonical FGFR signaling

Receptor tyrosine kinases (RTKs) represent important signal
transducers in the cell membrane and are comprised of nearly
twenty families of homologous proteins in humans, with almost 60
distinct members [ 1]. In the FGFR family, four homologous human
receptors have been identified: FGFR1, FGFR2, FGFR3 and FGFR4.
All of the FGFRs exhibit three extracellular immunoglobulin (Ig)-
like domains, a membrane-spanning segment and a split tyrosine

Abbreviations: ARMS, alveolar rhabdomyosarcoma; BSS, Beare Stevenson cutis
gyrata syndrome; CFS, chromosomal fragile site; CC, coiled coil domain; EMS, 8p11
myeloproliferative syndrome (EMS); ERMS, embryonal rhabdomyosarcoma; FN,
fibronectin domain; Ig, immunoglobulin-like domain; IMD, IRSp53/MIM domain;
ITD, internal tandem duplication; JM, juxtamembrane domain; LIsH, LIS1-
homologous domain; LZ, leucine zipper domain; KD, kinase domain; KI, kinase
insert domain; LADD, lacrimo auriculo dento digital syndrome; ORF, open reading
frame; RMS, rhabdomyosarcoma; SAM, sterile alpha motif; SADDAN, severe
achondroplasia with delayed development and acanthosis nigricans; SP, signal
peptide; SPFH, stomatin/prohibitin/flotillin/HfIK/C domain; TK domain, tyrosine
kinase domain; TD, thanatophoric dysplasia; TM, transmembrane domain; ZF, zinc
finger domain.

* Corresponding author. Tel.: +1 858 534 7146.

E-mail addresses: legallo@ucsd.edu (LH. Gallo), kanelson@ucsd.edu

(K.N. Nelson), ameyer@ucsd.edu (A.N. Meyer), ddonoghue@ucsd.edu
(DJ. Donoghue).

http://dx.doi.org/10.1016/j.cytogfr.2015.03.003

kinase domain. Fibroblast Growth Factors (FGFs), a large family of
related growth factors, act in concert with heparin sulfate
proteoglycans (HSPGs) as high-affinity FGFR agonists [2,3]. The
splicing of FGFRs results in further distinction of ligand specificity
accompanied by altered biological properties, in which the most
studied splicing isoforms involve the third immunoglobulin-like
domain of the receptors [4]. For FGFR2 and FGFR3, the first half of
third Ig domain consists of an invariant exon (I11a), and splicing of
the second half of third Ig domain results in either IlIb isoform
(exons 7 and 8) or lllc isoform (exons 7 and 9). Generally, the IlIb
isoforms of FGFRs are expressed in tissues of epithelial origin
whereas the lllc isoforms are expressed in mesenchymal tissues
[5].

Binding of FGF/HSPG to FGFR induces the dimerization of
receptor monomers in the plasma membrane, followed by trans-
autophosphorylation of tyrosine residues located in the cyto-
plasmic kinase domain. This tyrosine phosphorylation triggers the
binding of Src homology (SH2) domain of phospholipase C gamma
(PLCy) to the receptor, resulting in the activation of PKC. Activation
also induces RAS-MAPK and PI3K-AKT signaling via FRS2 and
GRB2 adaptor proteins. Additional pathways activated by FGFRs
include Jun N-terminal kinase and JAK/STAT pathways. FGFR
signaling results in cellular proliferation and migration, anti-
apoptosis, angiogenesis and wound healing (Fig. 1) [6].

1359-6101/© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0).

Please cite this article in press as: Gallo LH, et al. Functions of Fibroblast Growth Factor Receptors in cancer defined by novel
translocations and mutations. Cytokine Growth Factor Rev (2015), http://dx.doi.org/10.1016/j.cytogfr.2015.03.003
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Cellular Proliferation, Differentiation,
Survival, Anti-Apoptosis, Angiogenesis

Fig. 1. FGFR signaling pathways. FGF ligand binds to FGFR monomers, leading to the dimerization and subsequent tyrosine autophosphorylation of the receptor. This event
leads to activation of FGFRs and various downstream proteins, resulting in cellular proliferation, differentiation, survival, anti-apoptosis and angiogenesis.

2. FGFRs are mutated in human syndromes and cancers
2.1. Nomenclature of mutations with respect to isoforms

The alternatively spliced isoforms of FGFR1, FGFR2 and FGFR3
result in considerable confusion in numbering specific mutations,
depending upon the convention employed by the original authors.
In Table 1, we have presented the residue numbers in FGFR1 for
both the Al and aB1 isoforms, in FGFR2 for the IlIb and Illc
isoforms, in FGFR3 for the IlIb and Illc isoforms, and FGFR4 for the
Uniprot P22455-1 and P22455-2 isoforms. Throughout this
manuscript, we will refer to the numbering for the isoforms
FGFR1 aAl, FGFR2 IlIb, FGFR3 IlIb, and full-length FGFR4 (Uniprot
P22455-1), although a specific mutation may have been described
initially in the other isoform. Rarely, a mutation may occur at a
residue that is not present in either of the most common isoforms;
in these unusual cases, this other isoform is identified in Table 1.

2.2. Cysteine mutations in the extracellular domain lead to aberrant
activation of FGFRs

Many mutations in the extracellular domains of FGFRs induce
tyrosine kinase activation by disulfide bond disruption. For
instance, each Ig domain of FGFR2 is stabilized by a disulfide
bond between pairs of cysteine residues: Cys62 and Cys107 in Ig-1,

Cys179 and Cys231 in Ig-ll, Cys278 and Cys340 in Ig-IIl [7].
Mutations in FGFR2 that perturb a disulfide bond in the
extracellular domain result in increased receptor activation, such
as the C278F mutation in Crouzon and Pfeiffer Syndromes, or the
mutation of C340 to S or Y in Crouzon Syndrome. These are
examples of craniosynostosis syndromes exhibiting premature
closure of cranial sutures, accompanied by defects in chondrocyte
signaling and brain development [8]. This same theme is
recapitulated in somatic mutations involved in human cancer as
exemplified by the C278F mutation and the mutations C340F/R/S/
W/Y identified in spermatocytic seminoma [9]. Conceptually
similar mutations that remove a critical Cys residue also occur
in FGFR3 and FGFR4 (Table 1, Fig. 2).

Conversely, the addition of a single cysteine mutation creates an
unpaired cysteine that can participate in abnormal intermolecular
disulfide bond formation leading to receptor activation. One such
example is FGFR2 W290C, a mutation causing Pfeiffer Syndrome,
which has also been identified in lung squamous cell carcinoma
and spermatocytic seminoma (Table 1). A conceptually similar
mutation is that of FGFR2 S352C in Crouzon Syndrome [10,11],also
identified in spermatocytic seminoma. Other examples of FGFR2
mutations that introduce a new cysteine residue in the extracellu-
lar domain include R203C, Y281C, S320C, Y338C, and S373C, which
have been identified in various cancers including breast cancer,
endometrial carcinoma, lung squamous cell carcinoma and

Please cite this article in press as: Gallo LH, et al. Functions of Fibroblast Growth Factor Receptors in cancer defined by novel
translocations and mutations. Cytokine Growth Factor Rev (2015), http://dx.doi.org/10.1016/j.cytogfr.2015.03.003
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spermatocytic seminoma (Table 1, Fig. 2). Some of these
mutations have been shown to result in increased receptor
autophosphorylation and elevated phosphorylation of FRS2,
MAPK and STAT3 [12]. The FGFR2 W290C and S320C mutants
: have been shown to contribute to tumor formation in xenograft
88 models, and such tumors were sensitive to a selective FGFR
inhibitor BJG398, which caused dramatic tumor shrinkage [12].
Overall, these gain-of-function mutations lead to constitutive
FGFR activation and drive cellular proliferation and tumor
progression. Note that in Fig. 2, all mutations such as W290C
that have been identified in human cancer and as developmental
syndromes are shown in red. Mutations identified only in human
cancer are shown in black.

Mutations that introduce a novel cysteine residue also occur in
FGFR3, such as R248C and S249C which, as congenital mutations,
cause Thanatophoric Dysplasia Type I (TDI), a severe achondro-
plasia typically causing neonatal lethality. As somatic mutations,
they have been identified in bladder cancer, cervical cancer,
gallbladder cancer, head and neck squamous cell carcinoma, lung
squamous cell carcinoma, multiple myeloma, sebborheic keratosis,
and spermatocytic seminoma (Table 1). These mutations are able
to induce colony formation in NIH3T3 anchorage-independent
assays, transform myeloid Ba/F3 cells to IL-3 independence [13]
and cause ligand-independent receptor activation [ 14]. Treating IL-
3-independent Ba/F3 cells expressing these FGFR mutants with the
multikinase inhibitor ponatinib (AP24534) inhibited proliferation
[13].

Reference

2.3. Non-cysteine mutations in the extracellular domain lead to
aberrant activation

Mutations in FGFR2 at N549 cause Crouzon and Pfeiffer Syndromes. Analogous to

Role in developmental syndromes
FGFR3 N540K in Hypochondroplasia

Non-cysteine mutations in the extracellular domain are also
able to activate FGFRs, such as P252R/S/T mutations in FGFR1 in
melanoma, lung adenocarcinoma and spermatocytic seminoma
(Table 1). Autosomal dominant mutations at this codon lead to
Pfeiffer Syndrome [15]. This residue is located in the Igll-Iglll
linker region and contributes to increased receptor activation by
decreasing the dissociation rate of the receptor and the FGF ligand
[16]. Mutations in the analogous FGFR2 residue, P253R/S, are
associated with Apert Syndrome [17,18] and have been frequently
identified in cancers, including endometrial carcinoma, lung
adenocarcinoma, oral squamous cell carcinoma and spermatocytic
seminoma (Table 1). Cells expressing FGFR2 P253R exhibit
increased FRS2 phosphorylation and increased FGF2- and FGF9-
induced activation of MAPK signaling [19]. A patient with oral
squamous cell carcinoma expressing FGFR2 P253R responded to
the multikinase inhibitor pazopanib (GW786034B), which effec-
tively reversed cellular transformation and contributed to tumor
shrinkage [13].

Another well-studied non-cysteine substitution is S252W in
FGFR2, which occurs in approximately 67% of patients with Apert
Syndrome, a developmental syndrome characterized by cranio-
synostosis and syndactyly [20,21]. The pathophysiological effect of
this mutation comes from the higher affinity of FGFR2 for a greater
repertoire of FGF ligands due to the formation of a hydrophobic
patch that stabilizes the ligand-receptor interaction [16]. This
mutation leads to aberrant activation of MAPK signaling and
interferes with proper endochondral bone development [22].
Mutations at this position, either S252W, S252F, or S252L, have
been identified in cervical squamous cell carcinoma, endometrial
carcinoma, gallbladder cancer and spermatocytic seminoma
(Table 1). FGFR2 S252W leads to colony formation and anchor-
age-independent proliferation of endometrial carcinoma cells,
whereas treatment with FGFR inhibitor PD173074 results in
decreased FRS2 phosphorylation, colony formation and tumor cell
proliferation [23].

Location in receptor

N-term

KD1
KD1
K1

Other
isoform

V510E/L/M
A514V

2.
a
w
(=2}
=
2

Residue in
P22455-2
C56S

R72L
T122A
A175T
R234H
G536D

Mutation/isoform
Residue in
P22455-1
C56S

R72L
T122A
A175T
R234H
N535D/K
V550E/L/M
A554V
G576D

Rhabdomyosarcoma

FGFR4
Disease

Note: References for germline mutations in developmental disorders are: [2,18,29,77,78,93,184-190].

Table 1 (Continued )
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Fig. 2. FGFR mutations identified in human cancer. Mutations present in both developmental syndromes and cancers are highlighted in red. Mutations present only in cancer
are shown in black. The residue numbers are based on the following isoforms according to Table 1: aA1 for FGFR1, IlIb for FGFR2, 11Ib for FGFR3, and full-length form FGFR4

(Uniprot P22455-1).

Overall, mutations in the extracellular domains of FGFRs,
especially numerous for FGFR2 (Fig. 2), have been overwhelmingly
detected in both developmental syndromes and cancers. These
mutations lead to aberrant receptor signaling either by abnormal
disulfide bond formation and receptor dimerization or by
increasing the affinity of the receptor for an expanded repertoire
of FGF ligands.

2.4. Activating mutations in the transmembrane domain of FGFRs

Biochemical studies suggest that activating mutations adja-
cent to or within the transmembrane domain of RTKs induce a
rotation in the dimer interface of receptor monomers, contribut-
ing to increased receptor activation [24]. Recently, the juxta-
membrane domain has been shown to synergize with the

transmembrane domain to stabilize the unliganded FGFR3 dimer
[25].

The introduction of an abnormal Cys residue in the transmem-
brane domain of FGFRs represents one category of activating
mutation. For instance, the Y376C mutation in the transmembrane
domain of FGFR2 has been identified in adenoid cystic carcinoma,
endometrial carcinoma and spermatocytic seminoma (Table 1). Ba/
F3 cells, normally IL-3 dependent, exhibit proliferation and
survival in the absence of IL-3 when expressing FGFR2 Y376C
[26]. As a congenital mutation, it causes Beare-Stevenson Cutis
Gyrata Syndrome (BSS), a severe craniosynostosis syndrome with a
high risk of infant death due to respiratory complications [27]. In
FGFR3, the introduction of a cysteine residue adjacent to or within
the transmembrane domain, such as G372C, S373C, Y375C, G377C,
1378C or Y381C, also leads to ligand-independent receptor
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activation [28]. Such mutations have been identified in a variety of
cancers, including bladder cancer, gallbladder cancer, multiple
myeloma, sebborheic keratosis and spermatocytic seminoma
(Table 1). Some of these same mutations have been identified
congenitally as causing TDI [29].

Other mutations within the transmembrane domain do not
involve the creation of a novel cysteine residue, such as the 1379V
mutation in FGFR2 identified in lung adenocarcinoma (Table 1).
Another example in FGFR3 is G382R that leads to achondroplasia,
the most common rhizomelic dwarfism, originally identified in the
Illc isoform as the famous G380R mutation [30,31]. This mutation
leads to abnormal localization of FGFR3 to the plasma membrane,
including a slower rate of internalization and degradation. In
addition, this mutation leads to increased receptor activation [28],
dimerization and MAPK activation [32]. A mutation at the
paralogous site in FGFR2, C383R, has been identified in endome-
trial carcinoma, esophageal adenocarcinoma and lung squamous
cell carcinomas. Expression of FGFR2 C383R has been shown to
transform NIH3T3 cells [33].

A similar mutation in the transmembrane domain of FGFR4,
G388R, is a common single nucleotide polymorphism (SNP) which
has been examined in many cancers, including bladder, breast,
colon, head and neck, kidney, liver, lung and ovarian cancers, and
neuroblastoma [34]. It is still unclear whether the G388R mutation
is a reliable marker for cancer risk and prognosis. Genomic analysis
of breast epithelial cells revealed that roughly half of the patients
(53%) exhibited a heterozygous FGFR4 G388R variant [35]. Breast
cancer cells expressing FGFR4 G388R exhibit increased motility
and proliferation [36] and acquire resistance to adjuvant therapy
[37]. In contrast, another report found that this SNP is not a
relevant prognostic marker for both node-positive and node-
negative breast cancers [38]. In prostate cancer, cells expressing
FGFR4 G388R display increased proliferation, motility, invasion
and metastasis [39]. In pituitary tumors, the G388R mutation
changes hormone secretion by enhancing growth hormone (GH)
production and leads to S727 phosphorylation of STAT3 that
translocates to the mitochondria and modulates changes in
cellular metabolism [40]. The long term significance of this
common polymorphism in human cancer will require further
study.

2.5. Mutations in the kinase domain of FGFRs

The kinase domain of FGFRs is the site of several mutations
with significant impact both in human cancer and developmental
syndromes. Of particular importance are mutations within the
activation loop containing the signature motif YYKK and the
major autophosphorylation site, present in all FGFR family
members. First identified in FGFR3, mutations within this motif
profoundly increase kinase activation, receptor autophosphor-
ylation and downstream signaling [41-43]. These mutations
were initially identified in the Illc isoform as K650E or K650M,
with the former causing the neonatal lethal syndrome TDII, and
the latter causing SADDAN (Severe Achondroplasia with Delayed
Development and Acanthosis Nigricans) [29,44,45]. The homolo-
gous mutations K6551 and K656D/E/M/N in FGFR1 have been
identified in pilocytic astrocytoma, glioblastoma and rosette
forming glioneural tumor (Table 1). Similarly, in FGFR2, the
mutations K660E/M/N have been identified in breast cancer,
cervical squamous cell carcinoma, endometrial carcinoma, lung
squamous cell carcinoma, medulloblastoma, pilocytic astrocyto-
ma and spermatocytic seminoma (Table 1). In FGFR3, the
mutations K652E/M/N/Q/T have been identified in bladder
cancer, gallbladder cancer, head and neck squamous cell
carcinoma, multiple myeloma, seborrheic keratosis and sperma-
tocytic seminoma (Table 1). Curiously, somatic mutations in the
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YYKK motif of FGFR4 have not yet been identified in human
cancer, but this seems only a matter of time.

These activating mutations lead to different processing and
trafficking of the receptors through the secretory pathway [46,47].
For instance, the FGFR3 mutations K652E/M lead to intense
receptor phosphorylation and also defects in glycosylation and
maturation, causing intracellular localization within the endo-
plasmic reticulum (ER). The high level of tyrosine phosphorylation
associated with the receptors in the ER induces activation of STAT1,
STAT3 and STATS5 through the direct recruitment of JAK1 to the ER
and/or Golgi [46]. Nordihydroguaiaretic acid (NDGA), a compound
that inhibits protein trafficking from the ER to Golgi, was found to
inhibit tyrosine phosphorylation of FGFR3 KG650E resulting in
impairment of STAT1, STAT3 and MAPK signaling [48].

Although activating mutations in the kinase domain of FGFR3
have been overwhelmingly detected in aggressive cancers, these
mutations are often present in low-grade papillary urothelial
bladder cancers [49,50]. Generation of a mouse model with the
murine equivalent of FGFR3 K652E expressed in the urothelium
did not induce the onset of bladder tumors in mice, but when
combined with deletion of PTEN (a negative regulator of PI3K-
AKT), urothelial tumorigenesis occurred. Combining the activated
FGFR3 with mutations in KRAS or Beta-catenin led to tumor
formation in skin and lung through upregulation of PI3K-AKT
signaling [51]. Thus, in these microenvironmental contexts, it
appears that activating mutations in FGFR3 may synergize with
other mutations that activate PI3K-AKT signaling in these cancers
[52,53]).

Another mutation originally identified as a human develop-
mental syndrome deserves special mention. As a congenital
mutation, the FGFR3 mutation N542K, originally described in
the Illc isoform as N540K, causes the mild dwarfing syndrome
hypochondroplasia [54]. Biochemical studies have shown that this
mutation provides constitutive kinase activation, but much less
than mutations in the YYKK motif [41,55]. This site is located in the
loop between the «C helix and the 4 strand in the kinase hinge
region. This residue participates in a network of hydrogen bonds
that functions as a molecular brake to inhibit FGFR2. This
activating mutation disengages this inhibitory network in the
hinge region and constitutively activates the kinase activity of the
receptor [56]. Somatic mutations at this site commonly occur in
human cancer. In FGFR1, the mutation N546K occurs in
glioblastoma, pilocytic astrocytoma and rosette forming glioneural
tumors. In FGFR2, the mutations N550D/H/K have been identified
in breast cancer, endometrial carcinoma, gallbladder cancer, head
and neck squamous cell carcinoma and spermatocytic seminoma.
In FGFR3, the mutations N542K/S/T/V have been found in bladder
cancer and spermatocytic seminoma. Lastly, in FGFR4, the
mutations N535D/K have been identified in rhabdomyosarcoma
(Table 1).

Recently, the importance of the kinase insert (KI) domain in the
functionality of RTK families was described [57]. In comparison
with other RTKs, FGFRs exhibit a short 15-amino acid kinase insert
domain. The KI domain of each FGFR contains possible phospho-
acceptor sites, such as Y583 and Y585 in FGFRI1. Interestingly, a
phosphomimic mutation of Y589D has been identified in the
kinase insert domain of FGFR2 in cervical carcinoma [58]. This
residue is analogous to Y585 in FGFR1, in which phosphorylation of
Y583 and Y585 has been shown to be critical for mitogenesis,
transformation of Ba/F3 cells to IL3-independence and cellular
proliferation [59]. Mutations in this region may provide a
conformational change that increases kinase activation. In FGFR2,
these mutations include P583L in colorectal cancer, G584V/W in
lung adenocarcinoma and lung squamous cell carcinoma, M585V
in cervical squamous cell carcinoma, S588C in breast cancer and
[591M in lung adenocarcinoma. These mutations collectively
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define a patch from P583-1591 in the KI domain of FGFR2 which
must be involved in the regulation of normal receptor activity and,
when disturbed by mutation, participates in oncogenesis. In
FGFR4, KI domain mutations include G576D in rhabdomyosarcoma
and P583Q in colorectal cancer (Table 1).

2.6. FGFR mutations in cancers of the central nervous system

Pilocytic astrocytoma (PA) is a common central nervous system
neoplasm that accounts for approximately 20% of pediatric tumors
[60] and usually involves alterations within the MAPK pathway;
frequent mutations occur in BRAF such as V60OE, or translocations
resulting in a KIAA1549-BRAF fusion protein [61,62]. Genetic
sequencing of non-cerebellar PA tumors identified mutations in
the kinase domain of FGFR1, including N546K and K656E/M/N [63]
(Table 1). These N546K and K656E mutations have recently been
identified in rosette-forming glioneuronal tumors (RFNTs), which
are rare cerebellar parenchyma-derived tumors histologically
similar to PA [64]. These mutations, interestingly, have been
found in RFNT occurring in the fourth ventricle, a rare site for PA.
These studies indicate that FGFR1 plays a critical and active role in
the tumorigenesis of a subset of extracerebellar tumors in the
absence of activated BRAF.

Several mutations in each FGFR have been identified in
glioblastoma. In FGFR1, these mutations include N546K, R576W
and K656E; in FGFR2, Q212K and G463K; in FGFR3, E468K and
R605Q; and in FGFR4, Q144E and R434Q (Table 1) [65]. Except for
the FGFR1 N546K and K656E mutations, analogous to the
hypochondroplasia and TDII mutations in FGFR3, the mode of
action for most of these mutations is not well understood. Of much
greater significance in glioblastoma are translocations involving
FGFRs, which will be discussed later.

2.7. FGFR4 activation in rhabdomyosarcoma (RMS)

Activating mutations in FGFR4 have not, so far, been linked to
developmental syndromes. However, it is clear that activating
mutations in FGFR4 play a direct role in the aggressiveness of some
pediatric tumors. Rhabdomyosarcoma (RMS), a soft-tissue sarco-
ma, is a relatively common type of pediatric tumor histologically
divided into two subtypes: embryonal (ERMS) that occurs in the
head, neck and trunk, and alveolar (ARMS) often found in the
extremities [66,67].

Activating mutations in the kinase domain of FGFR4 have been
identified in approximately 7.5% of primary RMS tumors, including
N535D/K, V550E/L, A554V and G576D mutations (Tables 1 and 2)
[68]. FGFR4 N535K and V550E mutants lead to increased STAT3
activation and drive in vivo pulmonary metastasis in xenograft
models. Dose-dependent inhibition of mutated FGFR4 signaling by
the multi-kinase inhibitor ponatinib leads to ablation of STAT3
signaling resulting in decreased RMS tumor growth in vivo [69].
This small-molecule inhibitor may be a promising candidate to
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treat other cancers harboring these FGFR4 mutations [70].
Additionally, recent genomic sequencing of RMS tumors has
revealed the V550L/M mutations in the kinase domain of FGFR4 in
ERMS tumors (Table 1) [71]. The Val residue at codon 550 is a
gatekeeper residue that controls the accessibility of ATP in the
FGFR catalytic pocket [72].

ARMS is the more severe subtype and 75-80% of ARMS
tumors exhibit a t(2;13) or t(1;13) chromosomal translocation
that generates PAX3-FKHR or PAX7-FKHR fusion proteins,
respectively. FGFR4 is a direct transcriptional target of PAX3-FKHR
in which the enhancer PAX motif is downstream of the FGFR4 gene,
and PAX3-FKHR binding leads to increased expression of FGFR4 in
ARMS. Inhibition of PAX3-FKHR with shRNA leads to reduced
expression in ARMS tumors [73]. PAX3-FKHR-mediated increased
transcription of FGFR4 supports cell survival via the increased
expression of antiapoptotic protein BCL2L1, as shown by shRNA-
mediated suppression of FGFR4 that decreases BCL2L1 expression
|74] (Fig. 3).

The existence of activating mutations in FGFR4, more com-
monly found in ERMS, suggests a similar functional role as fulfilled
by the fusion protein PAX-FKHR in ARMS; both pathways result in
increased FGFR4 activation.

2.8. Loss-of-function mutations in FGFR2 in melanoma

Thus far, mutations in FGFRs have been described as resulting
in increased kinase activation. In contrast, all FGFR2 mutations
in melanoma - including mutations located in the kinase
domain - lead to loss-of-function of the receptor (Table 1). Of
particular interest is A649T in FGFR2 detected in a patient
homozygous for this mutation in melanoma [75]. This residue is
located in the FGFR2 activation loop. The introduction of the Thr
side chain hinders the phosphotransfer reaction that is critical
for proper receptor activation, thus resulting in loss-of-function
[76]. Ba/F3 cells expressing FGFR2 A649T exhibit decreased
cellular proliferation compared to wild-type FGFR2, and this
mutation blocks FGF2-induced activation of MAPK signaling.
This mutation was first detected as an autosomal dominant
mutation in lacrimo-auriculo-dento-digital (LADD) Syndrome
[77]. These patients exhibit congenital anomalies affecting the
salivary glands, lacrimal glands, teeth and ears. In contrast with
activating mutations in FGFR2 that generally lead to Pfeiffer,
Apert, Crouzon and Beare-Stevenson Syndromes marked by
severe craniosynostosis, LADD patients do not exhibit such
severe phenotypes.

2.9. Stop codon read-through mutations in FGFR3

Thanatophoric Dysplasia (TD) is the most common lethal form
of chondrodysplasia. The K652E activation loop mutation in the
FGFR3 causes TDII, and mutations in the extracellular domains
are usually responsible for TDI. However, TDI can also be caused

Table 2
Mutations in FGFR4 and PAX-FKHR Fusions in rhabdomyosarcoma.
Mutation Histology PAX-FKHR Pathway activation Phenotype Target drug/outcome Refs.
N535D ERMS Absent FGFR4 autophosphorylation; Pulmonary lesions; pulmonary Ponitinib/Apoptosis [68,69]
STAT3 activation; DNA replication Metastases; decreases survival
N535K Unknown Absent
V550E ERMS Absent FGFR4 autophosphorylation; Pulmonary lesions; pulmonary Ponitinib/Apoptosis
STAT3 activation; DNA replication Metastases; decreases survival
V550L ARMS Present
V550L ERMS Absent
A554V ARMS Present
G576D ARMS Present
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Fig. 3. FGFR4 signaling contributes to progression of RMS. In ARMS, the PAX-FKHR fusion protein functions as a transcriptional factor to stimulate FGFR4 expression, which
upregulates proliferative and anti-apoptotic pathways. Inhibition of FGFR4 with ponatinib suppresses these effects.

by unusual mutations at the stop codon of FGFR3, allowing
additional in-frame translation of an additional 423 nt. These
read-through mutations can result in the introduction of a Cys,
Gly or Arg (X809C/G/R). The resulting FGFR3 is 114 amino acids
longer, and the elongated hydrophobic C-terminal region adopts
an a-helix conformation suggested to serve as a second
transmembrane domain that activates FGFR3 [78,79]. Recently,
additional mutations to Leu, Ser, or Trp at the stop codon have
been detected in patients with TDI [80]. Remarkably, in
spermatocytic seminoma, stop codon mutations X809C/G/R/T
in FGFR3 have been observed in 21/29 (72%) of patients [9]
(Table 1). These mutations clearly support cellular proliferation
and clonal expansion of spermatogonia via FGFR3 activation in
these tumors.

2.10. The challenges of drug resistance in tumors with mutated FGFRs

The overall efficacy of tyrosine kinase inhibitors can be limited
due to acquired mechanisms of chemotherapy resistance, which
impedes treatments and leads to tumor relapse [81]. A well-
documented drug resistance mechanism may include the emer-
gence of secondary mutations in gatekeeper residues, such as
T790M in EGFR in 50% of erlotinib- and gefitinib-resistant tumors
[82,83] and T3151 mutation in BCR-ABL in imatinib-resistant
Chronic Myelogenous Leukemia (CML) [84,85]. Similarly, mutation
of the gatekeeper residue V561M in FGFR1 has been shown to
confer in vitro drug resistance to pyrido-[2,3-d]pyrimidine multi-
kinase inhibitor PP58 [86].

Dovitinib (TKI-258) is an ATP-competitive multikinase
inhibitor with activity against FGFRs [87]. This drug has
shown promising pre-clinical anti-tumor activity in cancers
driven by FGFR activation such as multiple myeloma and acute

myelogenous leukemia [88-90]. In response to dovitinib, FGFR2
mutations were observed including N550H/K/S/T, V565I, E566A/
G and K642N, which resulted in increased receptor kinase
activity. Residues N550, E566 and K642 are part of a triad
that forms a network of autoinhibitory hydrogen bonds termed
the molecular brake. Drug-resistant mutations at these sites
disrupt this molecular brake in the kinase hinge region of FGFR2
[91]. Furthermore, FGFR2 mutations at N550 and K642 have
been identified in adenoid cystic carcinoma, breast cancer,
endometrial carcinoma, gallbladder cancer, head and neck
squamous cell carcinoma and spermatocytic seminoma
(Table 1) [23,32,92,93].

Furthermore, the use of FGFR inhibitors AZD4547 and AZ8010
for diseases such as multiple myeloma, gastric cancer and
urothelial cancer, has been shown to decrease tumor proliferation
[94]. In order to identify potential mechanisms of resistance to
FGFR inhibitor AZ8010 in multiple myeloma, AZ8010-resistant
multiple myeloma KMS11 cells (KMS11-R) were generated.
KMS11-R cells, which express FGFR3 Y375C, exhibited elevated
levels of phosphorylated FGFR and FRS2, and increased STAT3 and
MAPK signaling [94]. Genomic sequencing of KMS11-R cells
revealed a secondary mutation in the gatekeeper residue V557M
in FGFR3, which is analogous to the V561M mutation in FGFR1 in
PP58-resistant cells. Molecular simulation predicts that the Met
side chain is approximately 25% bulkier than the Val at position
561 in FGFR1, and it restricts the binding of FGFR inhibitor
PD173074 to the catalytic domain [86].

Effective cancer treatments depend upon the prediction of
drug-resistance mechanisms evolved in tumor cells. Without such
predictions, the efficacy of chemotherapy agents is compromised,
contributing to a decrease in treatment progression resulting in
tumor relapse.
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3. FGFR translocations and fusion proteins in cancer
3.1. FGFR fusion protein discovery across a variety of cancers

Fusion proteins are continually being discovered in a variety of
human cancers. Particularly, fusions involving FGFRs are prevalent
in hematological cancers and solid tumors. The existence of
translocations involving FGFRs has been known since the late
1990s, when a patient with T-cell lymphoblastic lymphoma was
found to harbor a ZNF198-FGFR1 fusion, now also referred to as
ZMYM2-FGFR1. Lymphoma or leukemia cases from the 1970s and
1980s described disease characteristics similar to the now well-
defined disease, 8p11 myeloproliferative syndrome (EMS). This
correlation may arise because FGFR1 fusions in leukemia and
lymphoma often originate as EMS. According to the World Health
Organization, EMS is classified as “myeloid and lymphoid
neoplasms with FGFR1 abnormalities,” and has also been called
“stem cell leukemia/lymphoma” [95].

In EMS, FGFR1 located at 8p11.22 is often disrupted by
chromosomal translocation, resulting in a fused coding region.
The fusions in EMS consistently result in FGFR1 fused to an N-
terminal dimerization domain (Fig. 4), an alteration that has also
been found in breast cancer, lung squamous cell carcinoma,
phosphaturic mesenchymal tumor, rhabdomyosarcoma and
leukemia (Table 3) [96-99]. With FGFR as the 3’ partner, the
ligand-binding extracellular domain and transmembrane do-
main are excluded from the fusion protein, with only the FGFR
kinase domain attached to the 5' protein partner. Dimerization of
this fusion type would result only from the N-terminal
oligomerization domain, not FGF ligand binding. In solid tumors,
it is more common to find FGFR as the 5 fusion gene, with the
breakpoint consistently found in exons 17, 18, or 19, leaving the
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extracellular, transmembrane and kinase domains intact. When
the extracellular domain is present, dimerization is thought to
increase with the addition of FGF ligand. Although the domains
present in fusion proteins vary, the intact FGFR kinase domain is
always retained, indicating this domain is critical for a
functioning fusion protein and cancer progression. It is rare to
see an FGFR fusion protein with an additional FGFR activating
mutation. The reason may be that either event alone may be
sufficient for cancer to progress, although the dual activation of
an FGFR both by mutation and translocation could provide
additional oncogenic potential. Additionally, while some FGFR
fusions occur with high tissue specificity, others occur across
many cancer types [100].

3.2. Dimerization of FGFR induced by the fusion partner

In FGFR fusion proteins, almost all fusion partners contribute a
known dimerization domain which allows the FGFR to dimerize
and autophosphorylate the kinase domain, leading to activation
and downstream signaling, increased cell proliferation and cancer
progression (Fig. 1). Recently, an FGFR3 fused to transforming
acidic coiled-coil containing 3 (TACC3) has been discovered in
glioblastoma, bladder cancer, lung cancer, oral cancer, head and
neck squamous cell carcinoma and gallbladder cancer [96,97,101-
107] (Table 3). Additionally, FGFR1-TACC1 has been identified in
glioblastoma [106,108]. The coiled-coil domain of TACC3 is
assumed to bring the FGFR3 portion of the fusion proteins close
together, inducing activation. FGFR3-TACC3, FGFR3-BAIAP2L1, and
FGFR2-CCDC6 have been shown to dimerize presumably through
their coiled-coil domains [96]. The FGFR2-BICC1 gene fusion has
been found in cholangiocarcinoma, colorectal cancer and hepato-
cellular carcinoma [96,109-111]. The self-associating sterile alpha
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Fig. 4. Structural organization of select FGFR fusion proteins. Schematic representations are presented for the more common (n > 5) FGFR fusions identified in human cancers
and cell lines. The most common breakpoint of each fusion is shown. Occurrence numbers (n) indicate the total number of times the fusion has been identified, including
breakpoints not shown in the figure. See Table 3 for full list of FGFR fusions and translocations.
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motif domain (SAM) of BICC1, containing a helix-loop-helix
domain, fused 3’ to FGFR2, is believed to instigate constitutive
dimerization of FGFR2 in order to produce an active receptor [ 100]
(Fig. 4).

Other dimerization domains found in FGFR fusion proteins are
believed to have the same function. FGFR fusion partner domains
include zinc-finger, leucine zipper, coiled-coil, SAM, LIS1-homolo-
gous (LIsH), IRSp53/MIM (IMD), BAG, FN1, AFF3, and stomatin/
prohibitin/flotillin/HfIK/C (SPFH) domains (also known as the
prohibitin PHB domain) (Table 3). Other fusions thought to dimerize
by self-association domain include FGFR2-CASP7 in breast cancer,
which dimerizes through active site loops, and CPSF6-FGFR1, which
dimerizes through a RNA recognition motif [95,96,112]. The most
frequent fusion partner domain is the coiled-coil, occurring in the
proteins mentioned above; in addition, the other coiled-coil fusion
proteins are BCR-FGFR1 [113], CEP110-FGFR1 [95], CUX1-FGFR1
[114], FGFR10P2-FGFR1 [115], FGFR2-AHCYL1 [109], FGFR2-CIT
[116], FGFR2-FAM76A [117], FGFR2-KIAA1598 [110], FGFR2-
KIAA1967 [96], FGFR2-OFD1 [96], FGFR2-PPHLN1 [118], FGFR2-
TACC3 [111], LRRFIP1-FGFR1 [95], MYO18A-FGFR1 [95], TRIM24-
FGFR1 [95], and TPR-FGFR1 [119].

In order for autophosphorylation to occur, RTKs need to be
exactly aligned. It has been shown that dimerization of the
intracellular domain alone will not activate the receptor. Ligand
binding rotates and aligns the extracellular juxtamembrane
domain and intramembrane «-helices, leading to intracellular
kinase domain alignment, dimerization and activation [24]. To
create an active FGFR fusion protein, the dimerization domain
must provide the correct alignment. The most common FGFR1
fusion in EMS is ZNF198-FGFR1, which contains either 4 or 10 zinc
finger domains and a proline-rich domain from ZNF198, followed
by the tyrosine kinase domain of FGFR1 (Fig. 4) [95]. The proline-
rich domain is a self association domain and is essential for
dimerization and activation of FGFR1 [120].

An exception to the activation-by-oligomerization theme is an
internal tandem duplication (ITD) of FGFR1 in a patient with
pilocytic astrocytoma [60], resulting in a duplication of the FGFR1
kinase domain. ITD has previously been observed in Acute Myeloid
Leukemia with FLT3, another receptor tyrosine kinase. This ITD,
which occurs in the juxtamembrane domain of FLT3, leads to
enhanced receptor activation and increased downstream signaling
of MAPK and STAT5 [121].

3.3. Altered cellular localization of FGFR by the fusion partner

Often, the creation of FGFR fusion proteins not only activates
FGFR and its canonical pathways, but results in an incongruous
FGFR localization as well. Some partner proteins can lead to
localization of FGFR to a cellular compartment other than the
plasma membrane. Fusion proteins that have been shown to have
irregular localization include FGFR10P-FGFR1, CEP110-FGFRI1,
ZNF198-FGFR1, and TEL-FGFR3 in lymphoma and FGFR3-TACC3
in glioblastoma. Wild-type FGFR10P (FGFR1 oncogenic partner)
and CEP110 (centriolin) are centrosomal proteins. Once engaged in
a fusion with FGFR1, FGFR10P localizes the kinase domain to the
centrosome through a CAP350 interaction [122]. CEP110 is
involved in centriole maturation and localizes to the centrosome
via an 170-amino acid region in the C-terminus, a region retained
inthe CEP110-FGFR1 fusion. Instead of the expected localization to
the centrosome, cytoplasmic expression of the fusion protein was
observed [123]. Continuous kinase activity and inappropriate
cytoplasmic localization due to CEP110-FGFR1 fusion formation
may result in increased cell viability and hematopoietic stem cell
growth. The fusion proteins ZNF198-FGFR1 and TEL-FGFR1 have
been identified as cytoplasmic proteins [95,99]. The translocation
of ZNF198 and FGFR1 genes removes the FGFR1 transmembrane
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domain and the C-terminal nuclear localization signal of ZNF198,
which most likely leads to cytoplasmic localization.

Expressed FGFR3-TACC3 has been shown to localize to the
mitotic spindle poles in dividing mouse astrocytes, most likely due
to recruiting effects of TACC3. In addition, the fusion protein
increased the percentage of aneuploidy by greater than 2.5-fold
[106]. As TACC3 is an important component of mitotic spindle
assembly and is involved with the attachment of chromosomes to
microtubules, it is most likely playing a role in chromosomal
segregation errors. During mitosis, wild-type TACC3 is strongly
diffused around centrosomes, due to the localizing effects of the C-
terminal coiled-coil [124]. As this domain is present in the FGFR3
fusion, multiple effects could be implicated by the fusion protein
such as localization of FGFR3-TACC3 to the centrosome or a novel
biochemical activity. During interphase, wild-type TACC3 has been
found to be concentrated in the nucleus [124]. The location of the
FGFR3-TACC3 fusion in non-dividing cells has not yet been
identified.

Although the localization of ERLIN2-FGFR1 has not yet been
investigated, wild-type ERLIN2 anchors to the ER membrane via
an N-terminal binding motif. This motif is still present when
ERLIN2 is fused to FGFR1, and may be affecting fusion protein
location [125]. The fusion results in the SPFH oligomerization
domain of ERLIN2 fused 5’ to exon 4 of FGFR1, and was detected in
breast cancer.

Thus, for these and other FGFR fusion proteins discussed: is the
salient biological feature the localization of the FGFR kinase
domain to a novel cellular compartment? Or, is it the constitutive
dimerization and activation of the FGFR kinase domain, regardless
of the localization of the normal fusion partner, that is
determinative? Much further experimental research will be
required to arrive at a definitive answer.

3.4. Downstream signaling impacts of fusion proteins

FGFR fusion proteins have been shown to activate the normal
FGFR pathways, specifically the PI3K/AKT, MAPK, and JAK/STAT
pathways (Fig. 1). FGFR3-TACC3, FGFR3-BAIAP2L1, and FGFR2-
CCDC6 increase activation of PI3K/AKT and MAPK pathways [100].
FGFR2-TACC3 has also been shown to increase MAPK activation,
but only a moderate increase of FRS2 phosphorylation of the PI3K
pathway has been seen [111]. In wild-type FGFR1, FRS2 normally
binds to the juxtamembrane domain between amino acids 407 and
433. In many FGFR1 fusions, this domain is either fully or partially
disrupted by translocation of the fusion partner, which results in
an inability to recruit FRS2. This has been shown to occur in
ZNF198-FGFR1, but may occur in other fusion proteins with FGFR
as the 3’ partner. However, although FRS2 interaction with
ZNF198-FGFR1 was undetectable, the PI3K pathway remained
active [95].

In addition to the activation of MAPK and PI3K pathways, cells
expressing FGFR10P-FGFR1 exhibit increased phosphorylation of
STAT1 and STAT3, but not STAT5 [126]. Furthermore, ZNF198-
FGFR1 activates STAT5, FGFR3-TACC3 activates STAT3, and FGFR3-
BAIAP2L1 and FGFR2-CCDC6 increase STAT1 activation [100,122].
ERLIN2-FGFR1 and CEP110-FGFR1 have been shown to be
biologically active through tyrosine phosphorylation of the
respective fusion proteins, but further downstream signaling
activation has not been explored [96,123]. Despite an overall
increase in cell proliferation pathway activation, a contrasting
study reports a failure to over-activate MAPK and AKT by FGFR3-
TACC3 [106]. Studies exploring FGFR2-AHCYL1 and FGFR2-BICC1
fusions report an absence of AKT and STAT3 phosphorylation,
although the MAPK pathway remained active [109]. Additionally,
TEL-FGFR3 directly interacts with and activates STAT3 and STATS5,
presumably through the FGFR3 portion of the protein, an
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interaction that has not been shown with other fusion proteins
[99].

Fusions with FGFR as the 5’ partner usually result in a deletion
of the last exon of FGFR, which includes the tyrosine residue
important for PLCy binding [127]. In bladder cancer, cells
transfected with FGFR3-TACC3 or FGFR3-BAIAP2L1 were unable
to activate PLC+y, due to a deletion of the last exon of FGFR3 in both
fusion proteins [102] (Fig. 4) Chromosomal rearrangements such
as these also result in the loss of the 3’ UTR (untranslated region) of
FGFR, significant as a region that contains various microRNA
(miRNA) regulation sites. MiR-99a is normally present at high
levels in the brain and results in a downregulation of FGFR3
translation. The formation of FGFR3-TACC3 fusion in glioblastoma
results in a loss of the miR-99a site, which leads to the
overexpression of FGFR3-TACC3. This miRNA site is unique to
FGFR3, but overexpression due to a loss of miRNA regulation could
occur in any FGFR fusion where the 3’ UTR region contains a
regulatory miRNA site [105].

Interestingly, nuclear pore complex proteins have been
identified in fusion proteins with FGFR1. RANBP2-FGFR1, TPR-
FGFR1, and NUP98-FGFR1 have all been identified in EMS
[95,119,128]. Mechanistically, these may be similar to other fusion
proteins discussed previously in that two of these possess
dimerization domains, with RANBP2 (RAN binding protein 2, also
NUP358) containing a leucine zipper domain and TPR (Translo-
cated Promoter Region) containing a coiled-coil domain (Table 3).
A dimerization motif in NUP98 has not yet been identified,
however. Also mechanistically unclear is the fusion partner AFF3
(AF4/FMR2 Family, Member 3, also known as LAF4), a nuclear
transcriptional activator, which has been identified as the 3’ fusion
partner with FGFR2 (Table 3). AFF3 has also been found fused to the
MLL gene in acute lymphoblastic leukemia [129]. It is unclear
whether the significant biochemical consequence of these fusion
proteins is manifested in the dimerization and activation of the
FGFR partner, or whether the abnormal nuclear localization of the
FGFR component represents the key event.

All EMS cases with FGFR1 fusions have thus far been negative
for the BCR-ABL fusion gene, which occurs in 85-90% of CML. The
remaining cases either contain other translocations or are
classified as BCR-ABL negative CML, or atypical CML. Some of
these atypical CML cases are now linked to the broad spectrum of
EMS cases, due to the presence of a translocation involving the
8p11 region [130]. Patients with BCR-FGFR1 [t(8;22)(p11;q11)]
fusion are often referred to as CML-like due to their greater
resemblance to CML than to EMS. BCR has been shown to interact
with Grb2 by phosphorylation of Y177 [95]. This interaction is
thought to be important for BCR-ABL signaling in CML patients, and
may be playing a role in EMS patients with BCR-FGFR1 as well.

3.5. Inhibition of FGFR fusion proteins

Through the use of various drug treatments, a reduction of cell
proliferation and FGFR fusion protein activity has been accom-
plished. Studies indicate that an active FGFR kinase domain drives
cancer progression, thus the goal of many cancer treatments is to
inhibit the FGFR portion of the fusion [106,109]. FGFR inhibitors
have been used in vitro to reduce phosphorylation of FGFR and
subsequent downstream signaling proteins. FGFR kinase inhibi-
tors AZD4547, BGJ398, and PD173074 have inhibited growth of
FGFR3-TACC3-expressing Rat1A and glioma stem-like cells (GSC-
1123). PD173074 and AZD4547 both resulted in tumor shrinkage
during in vivo mouse xenograft studies as well [106]. For fusions
FGFR2-AHCYL1 and FGFR2-BHCC1, both BGJ398 and PD173074
were successful inreducing in vitro fusion activity and cell growth
[109]. In bladder cancer, sensitivity of FGFR3-TACC3 and FGFR3-
BAIAP2L1 to the kinase inhibitors PD173074, dovitinib, SU5402,
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and BGJ398 has been reported [102]. BGJ398 and dovitinib are
currently involved in numerous clinical trials (clinicaltrials.gov).

FGFR3 translocations were also targeted using the heat shock
protein 90 (HSP90) inhibitor, ganetespib (STA-9090). By
inhibiting HSP90, hundreds of proteins soon become degraded,
which disrupts oncogenic signaling pathways. Ganetespib
treatment of bladder cancer cell line RT112, which contains
FGFR3-TACC3, resulted in a decrease of fusion protein expres-
sion and cell viability. Expression of the apoptosis facilitator
protein BIM (BCL2-Like 11, or BLC2L11) was induced, indicative
of apoptotic pathway activation. Combination of ganetespib
with BGJ398 proved to be the most effective in causing cell death.
However, ganetespib had differential effects on protein expres-
sion and cell viability in RT4 and SW780 cell lines, which contain
FGFR3-TACC3 and FGFR3-BAI1AP2L1, respectively. While HSP90
inhibitors 17-AAG and 17-DMAG reduced cell viability, resis-
tance to ganetespib was exhibited. This discrepancy may be due
to differences in drug movement or metabolism [131]. Other
HSP90 inhibitory compounds were effective in killing cells
expressing BCR-ABL in vitro [122]. These results collectively
indicate the potential of HSP90 inhibitors against fusion positive
cases.

In cholangiocarcinoma, pazopanib (GW786034B) followed by
ponatinib (AP24534) treatment, both RTK inhibitors, induced anti-
tumor activity in a patient with FGFR2-TACC3. Ponatinib treatment
also led to anti-tumor activity in a patient exhibiting FGFR2-
MGEAS fusion. Ponatinib has been FDA approved for treatment of
the drug resistant T315] mutation in BCR-ABL fusion protein in
CML [111].

In EMS, the small number of patients who have achieved long
term remission have received hematopoietic stem cell transplan-
tation. Many therapies used for acute lymphoblastic leukemia,
acute myeloid leukemia, and myeloproliferative neoplasms have
proven unsuccessful or display only short term remission against
EMS. FGFR1 kinase inhibitor SU5402 has shown promise,
demonstrating inhibitory effects in cells expressing BCR-FGFR1
or ZNF198-FGFR1. Interestingly, PI3K, farnesyltransferase, and p38
inhibitors were also successful in reducing growth of these cells,
whereas MEK inhibitor PD98059 was not [130]. This is distinct
from the MEK inhibitor U0126, which was shown to inhibit growth
of cells expressing FGFR3-TACC3 [105]. While dovitinib has been
successful in inhibiting the proliferation of Ba/F3 cells transfected
with ZNF198-FGFR1 or BCR-FGFR1 and cell lines expressing
FGFR10P2-FGFR1, a push for effective FGFR1 inhibitors is needed
for EMS cases [132].

3.6. Translocations leading to FGFR overexpression without creation
of a fusion protein

Some translocations do not create a novel fusion protein;
rather, these result in overexpression of FGFR. In the translocations
of SLC45A3-FGFR2 in prostate cancer and IgH-MMSET-FGFR3 in
Multiple myeloma (MM), the partner gene promoter now controls
FGFR transcription, which alters the expression levels of the
receptor. SLC45A3-FGFR2 translocation results in the endogenous
promoter and exon 1 noncoding region of SLC45A3 attached 5’ to
the FGFR2 gene, which places FGFR2 transcription under the
control of an androgen-regulated promoter. This leads to FGFR2
overexpression and oncogenicity [96].

Multiple myeloma (MM) is characterized by a growth of
malignant cells in the bone marrow. In approximately 20% of MM
cases, a t(4;14) (p16.3;q32) translocation places MMSET and
FGFR3 under the control of the IgH promoter, leading to
overexpression of FGFR3 [133]. The overexpressed FGFR3 often
contains an additional mutation, resulting in functional changes
such as resistance to tyrosine kinase inhibitors (V557M),
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constitutive dimerization (Y375C), or constitutive kinase activa-
tion (K652E) [94]. However, one third of cases with this
translocation lose FGFR3 expression while IgH is overexpressed.
Additionally, although rare, translocations between FGFR3 and an
immunoglobulin gene enhancer have been found in chronic
lymphocytic leukemia (CLL), including t(4;14) (p16;q32) between
FGFR3 and IgH, and t(4;22) (p16;q11.2) involving FGFR3 and IgL
[134,135).

MM cases with the t(4;14) translocation have shown partial
responsiveness to the FGFR3 inhibitor PD173074 and RTK inhibitor
sunitinib (SU-11248). During in vitro studies, both inhibitors halted
cell growth and inhibited FGFR3 activity, inducing an apoptotic
response. However, during in vivo studies, tumor growth in the
translocation-positive model was not inhibited by sunitinib, even
though sunitinib was active in the translocation-negative tumors.
The difference between the in vitro and in vivo data may be due to a
difference in tumor microenvironment [133]. These studies also
revealed that RTK inhibitors PD173074, sunitinib, and vandetanib
(ZD6474) inhibited viability of Ba/F3 cells transformed with
ZNF198-FGFR1. Sunitinib, which inhibits many RTKs, is approved
for metastatic renal cell carcinoma treatment [133], and is being
examined in clinical trials for relapsed multiple myeloma patients.
Additionally, masitinib (AB1010, a TK inhibitor) has entered phase
II clinical trials for MM patients with the t(4;14) translocation
[clinicaltrials.gov].

3.7. Genomic events that contribute to FGFR fusion proteins

Although the occurrence of FGFR fusion proteins may be rare,
there are similarities between fusions. Fusions with FGFR as the 5
partner have only been found in solid tumors so far. In contrast,
fusions with FGFR as the 3’ partner have consistently been found in
EMS, which predisposes patients to either lymphoma, leukemia, or
both. A few exceptions have been ERLIN2-FGFR1 found in breast
cancer [96], BAG4-FGFR1 in lung squamous cell carcinoma (LUSC)
[96], FOXO1-FGFR1 in rhabdomyosarcoma [136], TEL-FGFR3 in
lymphoma [99], FN1-FGFR1 in phosphaturic mesenchymal tumor
[137], and SQSTM1-FGFR1 in leukemia [138] (Table 3).

While the mechanism and cause of gene rearrangements is
unknown, both intrachromosomal and interchromosomal rear-
rangements have been identified. Rearrangements in the form of
tandem duplication, inversion, deletion, or translocation have all
been identified as FGFR fusion formation events. Translocations
occur when two double stranded breaks on different chromosomes
rearrange and repair [100]. Fusion genes joined by a translocation
can result in the formation of a reciprocal gene (i.e. FGFR2-BICC1
and BICC1-FGFR2 genes). This has been reported in some cases,
such as BCR-FGFR1, CEP110-FGFR1, FGFR10P-FGFR1, FGFR2-
AHCYL1, FGFR2-BICC1, HERVK-FGFR1, LRRFIP1-FGFR1, RANBP2-
FGFR1, SQSTM1-FGFR1, TIF1-FGFR1, and ZNF198-FGFR1 fusions
[95,109-111,123,128,138,139]. However, reciprocal transloca-
tions have not been shown to be translated into functional
proteins. The majority of these studies do not report the presence
of a reciprocal fusion gene, and this may be indicative of another
genetic alteration, such as an insertion or complex rearrangement,
which would preclude the formation of the reciprocal gene [95].

The formation of these chromosomal rearrangements may
occur due to common chromosomal fragile sites (CFSs). An
increasing number of studies have identified CFSs as areas
commonly affected by deletions, amplifications, and rearrange-
ments in cancer [140]. CFSs have become linked to genomic
instability, the driving force of cancer. Chromosomal breakpoints
identified in cancer match to 67% of fragile sites induced in vitro
[140]. All individuals posses CFSs, and these regions have been
identified as evolutionarily conserved. CFSs contain tandem repeat
sequences, often flexible AT-rich repeats and the formation of
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non-B-DNA secondary structures. Additionally, the fragile nature
of CFSs has been linked to a lack of replicating origins within the
CFS region, which may lead to incomplete replication. CFS
expression is also specific to tissue or cell type. An investigation
should be made into the correlation between CFS and tumor-
specific gene rearrangements, as seen with some FGFR fusion
protein expression. Mutagens and carcinogens often target CFS
regions. Regulation of CFS occurs by DNA damage response
proteins, including the ataxia telangiectasia mutated (ATM)
pathway. This pathway is downregulated in cholangiocarcinoma
patients with FGFR2 fusions [118].

CFS FRA10F has been identified at 10q26, a region which
contains the FGFR2 gene [111], though some indicate FGFR2 is
proximal to FRA10F [140]. FGFR2 is also surrounded by ribosomal
protein pseudogenes (RPS15AP5 and RPL19P16), which contain
repetitive bases, leading to genomic instability [111]. Although not
thoroughly investigated, these factors could be an indication of the
high level of genomic rearrangements seen in the FGFR2 region. In
this regard, it may be noteworthy that 10 of 107 cholangiocarci-
noma patients simultaneously exhibited two different fusions,
FGFR2-BICC1 and FGFR2-PPHLNT1 [118]. CES regions have also been
identified on the X chromosome, in regions flanking the ODF1 gene,
which has been identified in a FGFR2-ODF1 fusion in thyroid
cancer [96,140]. As seen (Table 3), FGFR1, FGFR2, and FGFR3
rearrangements predominate while, for unknown reasons, FGFR4
fusions are strikingly absent.

4. Concluding remarks

Aberrant FGFR signaling, either due to activating mutations or
the presence of fusion proteins, supports cellular proliferation,
tumorigenesis, and cancer progression. Although extensive re-
search has shown that targeting FGFRs with small molecule
inhibitors halts receptor activation, downstream signaling and
results in tumor shrinkage, secondary mutations that contribute to
drug resistance in tumors are challenges to successful clinical
treatment. In addition, FGFRs fused to dimerizing partners brings a
new level of complexity in terms of receptor activation and the
specificity of small-molecule inhibitors. The development of FGFR
therapeutics with personalized specificity will advance treatments
of patients whose tumors harbor activated FGFRs via mutation or
fusion protein.
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Chapter 2

Oncogenic Gene Fusion FGFR3-TACC3 Regulated by Tyrosine Phosphorylation

ABSTRACT

The discovery of translocations and fusion proteins involving Fibroblast Growth
Factor Receptors (FGFRs) are becoming increasingly common in human cancers. Their
presence leads to aberrant signaling that contributes to cell proliferation and cancer
growth. A fusion protein between FGFR3 and transforming acidic coiled-coil
containing protein 3 (TACC3) has become frequently identified in glioblastoma, lung
cancer, bladder cancer, oral cancer, head and neck squamous cell carcinoma,
gallbladder cancer, and cervical cancer. Through extensive analysis of the FGFR3-
TACCS3 fusion protein by titanium dioxide-based phosphopeptide enrichment (TiO2)-
liquid chromatography (LC)-high mass accuracy tandem mass spectrometry (MS/MS),
constitutive activation of the FGFR3 through altered phosphorylation of tyrosine
residues can be seen due to the fused TACC3 coiled-coil domain. The FGFR3-TACC3
fusion protein also displays nuclear localization dependent on the fused TACC3, as well
as altered cellular function, such as MAPK pathway activation, and cell transformation.

These effects can be abrogated by introduction of K508R FGFR3 kinase dead mutation,
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indicating kinase activity is required for oncogenicity of FGFR3-TACC3. IL-3
independent growth and cell proliferation assays confirmed the oncogenic potential of
the fusion protein. These results demonstrate the oncogenic effects of FGFR3-TACC3

in human cancers due to an over-stimulated FGFR3 kinase domain.

INTRODUCTION

A subset of the Receptor Tyrosine Kinase (RTK) family is the Fibroblast
Growth Factor Receptor (FGFR) family, which contains four homologous receptors:
FGFR1, FGFR2, FGFR3, and FGFR4. FGFR activation results in changes in cellular
proliferation and migration, anti-apoptosis, angiogenesis, and wound healing. All
FGFRs contain three immunoglobulin-like (Ig) domains, a transmembrane (TM)
domain, and a split tyrosine kinase (TK) domain. Binding of Fibroblast Growth Factors
(FGFs) and heparin sulfate proteoglycans (HSPGSs) to the extracellular Ig domains
collectively induces FGFR activation through dimerization of receptor monomers and
trans-autophosphorylation of kinase domain activation loop tyrosine residues. Tyrosine
phosphorylation of the kinase domain initiates activation of RAS-MAPK, PI3K-AKT,
and JAK/STAT pathways (1).

Mutations in FGFRs have been linked to numerous human cancers and somatic
disorders, many of which have been extensively studied. More recently, FGFR fusion
proteins have also begun to emerge in multiple cases of human cancers (1). Since their
initial discovery in the late 1990s, the detection of these fusion proteins has steadily
increased at an alarming rate. The focus of this paper is a fusion protein consisting of

FGFR3 fused to transforming acidic coiled-coil containing protein 3 (TACC3) that has
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been identified in glioblastoma, lung cancer, bladder cancer, oral cancer, head and neck
squamous cell carcinoma, gallbladder cancer, and cervical cancer (1,2). The FGFR3-
TACCS3 fusion protein is a consequence of a 70 kb tandem duplication at 4p16.3 (3).
This causes a reversal of the two genes, as TACC3 is normally upstream of FGFR3.
TACC3 is a member of the TACC family, which consists of 3 known human proteins,
TACCL1, TACC2, and TACCS, all of which are involved in key roles of microtubule
organization during mitosis. TACC3 is believed to be essential for the stabilization of
kinetochore fibers and the mitotic spindle. A particularly important domain of this
family is the C-terminal coiled coil domain (named TACC domain), which is highly
conserved in all family members. This domain is believed to play an important role in
localization of the protein during mitosis (4).

The frequent occurrence of this fusion protein across many cancer types leads to
the question of how this protein is contributing to cancer progression. Is FGFR3
becoming constitutively activated due to the presence of the TACC domain? Is the
presence of the coiled-coil domain able to stimulate activation loop phosphorylation in
the FGFR3 kinase domain? Does the TACC3 domain play an important role in
advancing cancer progression, or is its key role to activate the tyrosine kinase? While
studies have investigated FGFR3 and TACC3 as separate entities, little has been
defined about the FGFR3-TACCS3 fusion protein. This paper investigates various
properties of this fusion protein and its contribution to cancer progression, including
mass spectrometry analysis of phosphorylation of key tyrosine residues, downstream

signaling, cell transformation, and localization.
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RESULTS
Constitutive phosphorylation of FGFR3-TACC3 fusion protein

In the FGFR3-TACCS3 fusion protein, tyrosine kinase domain dimerization and
autophosphorylation may be elevated by the presence of the TACC3 coiled coil
domain, which could be crucial to cancer progression. To investigate changes in
phosphorylation and biological activity, various FGFR3-TACC3 DNA derivatives were
constructed. All fusion constructs contain the breakpoint between exon 18 of FGFR3 to
exon 11 of TACC3 as shown in figure 5, chosen due to the high occurrence of this
particular fusion breakpoint (3,5). This fusion is predicted to contain the extracellular,
transmembrane, and intracellular kinase domains of FGFR3 fused 5’ to the coiled-coil
domain of TACC3 (6). Constitutively activated FGFR3 clones were produced by
mutation of K650 to E. This mutation is known to cause Thanatophoric Dysplasia type
I1 (TDII), a lethal form of achondroplasia, and is a highly activating and pathogenic
FGFR3 mutation (1). The kinase activity of FGFR3 was abrogated by K508 to R
mutation, known as the “kinase-dead” (KD) mutant (figure 5A).

To examine the phosphorylation of each fusion construct compared to FGFR3
WT, FGFR3(K650E), and FGFR3(K508R), constructs were expressed in HEK293
cells, collected and immunoprecipitated with an N-terminal FGFR3 antibody (figure
5B, top panel). An increase in tyrosine phosphorylation was seen in FGFR3-TACC3
compared to FGFR3 WT (lanes 2 and 6). No phosphorylation signal could be detected
for the kinase-dead FGFR3 with or without the fused TACC3 (figure 5B). These results
show that tyrosine phosphorylation of the fusion protein was increased by the presence

of dimerizing TACC3 coiled coil and can be amplified by the presence of the activating



K650E mutation. Quantitation of phosphorylation levels shows a 2-fold increase in
tyrosine phsophorylation on the FGFR3-TACC3 fusion protein compared to FGFR3

WT (figure 5C).
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Figure 5. Increase in tyrosine phosphorylation by introduction of the TACC domain.
(A) Schematic of FGFR3-TACC3 fusion protein. The N-terminal extracellular ligand-
binding domain, transmembrane (TM), kinase, and kinase insert (K1) domains of
FGFR3 are followed by a 3 amino acid linker (residues ASM), and fused to TACC3
starting at exon 11, which contains a coiled-coil domain. The location of K508 and
K650 are shown. (B) Various mutation and fusions with FGFR3 were expressed in
HEK293 cells, immunoprecipitated with FGFR3 antibody, and immunoblotted with
phosphotyrosine antibody (top panel). Expression of the constructs were visualized in
the lysates by immunoblotting with FGFR3 antisera (middle panel) and TACC3
antisera (bottom panel). (C) Quantification of tyrosine phosphorylation showing the
standard error of the mean for 3 independent repeats, normalized to FGFR3(K650E).
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LC-MS/MS analysis identifies elevated and novel phosphorylation sites

The strong increase in tyrosine phosphorylation seen by Western blot led to the
question of whether TACC3 leads to a constitutively phosphorylated FGFR3 kinase and
if additional or novel phosphorylation sites exist on the fusion protein. In order to
explore this possibility, titanium dioxide-based phosphopeptide enrichment (TiO,)-
liquid chromatography (LC)-high mass accuracy tandem mass spectrometry (MS/MS)
was used with samples from HEK293T cells expressing FGFR3 or FGFR3-TACC3
derivatives to identify significant phosphorylation sites. Immunoprecipitation with the
FGFR3 N-terminal antibody and on-bead tryptic digestion revealed strong FGFR3
activation loop phosphorylation at residues Y647 and Y648 in both fusion proteins and
non-fused FGFR3 and FGFR3(K650E) (figure 6B), indicating the receptor was
constitutively active in all samples. Mass spectrometry analysis performed on the
FGFR3 (K508R) derivatives detected no phosphorylated tyrosine residues (data not
shown). All tyrosine phosphorylation sites detected on the fusion protein are indicated
in figure 6C.

By comparing non-fused FGFR3 to FGFR3-TACCS3, the effect of the coiled-coil
domain on receptor phosphorylation and activation can be seen (figure 6A, 6B). Not
only are phosphorylation levels more robust, but additional phosphorylation sites can be
detected in the FGFR3 portion of the fusion, such as Y577, Y599, and Y607 (figure 6B,
1st and 3rd panels), indicating that receptor phosphorylation is over-stimulated in a
ligand independent manner due to the presence of the TACC domain. The presence of

the activating mutation K650E in FGFR3-TACC3 shows that the presence of the TACC
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domain leads to higher phosphorylation intensity levels of the receptor (figure 6A, 2nd

and 4th panels).
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Figure 6. Phosphorylated tyrosine residues in FGFR3, FGFR3(K650E), FGFR3-
TACC3, and FGFR3(K650E)-TACC3 identified by mass spectrometry analysis. (A)
The intensity of the phosphotyrosine residues detected are presented normalized to 2
phosphoserine residues (S424 and S444) which were found to be constitutively
phosphorylated across all samples. Duplicate, independent samples were subjected to
mass spectrometry analysis. (B) For each phosphotyrosine residue detected, the
percentage of intensity within the total protein is presented. (C) Schematic of FGFR3-
TACC3 with the location of all tyrosine phosphorylation sites identified by LC-MS/MS.
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Representative phosphorylated spectra are shown in figure 7. A commonly
identified FGFR3 WT peptide containing double phosphorylation of Y647 and Y648 in
the activation loop is shown in panel A. In FGFR3-TACC3 fusion protein constructs,
this double phosphorylated peptide becomes less frequent, with detection of peptides
containing single Y647 phosphorylation becoming more common (figure 6, figure 7B,
7C). Also shown are spectra containing primary phosphorylation sites Y577, Y798, and

Y867 in FGFR3-TACC3 and FGFR3(K650E)-TACCS3 (figure 7D, 7E, 7F).
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Figure 7. Representative spectra of selected peptides. The relative intensity of select
ions of major phosphorylation sites are shown. Due to space constraints, not all
identified ions are labeled. Identification of samples are as follows: A) FGFR3 WT (B)
FGFR3-TACC3 (C) FGFR3(K650E)-TACC3 (D) FGFR3-TACC3 (E) FGFR3-TACC3

(F) FGFR3(K650E)-TACCS.
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There are four tyrosine residues in the TACC3 portion of the FGFR3-TACC3
fusion protein: Y798, Y853, Y867, and Y878, corresponding to residues Y684, Y739,
Y753, and Y764 in TACC3 WT. In FGFR3-TACCS3, it was previously unknown if
these tyrosine residues were also phosphorylated, possibly by the fused kinase domain,
and if they play a role in cancer development. Through MS analysis, phosphorylation
sites Y798, Y853, and Y867 were identified in FGFR3-TACCS3 (figure 6C). Due to
tryptic digest peptide size, Y853 was only recovered by a peptide miscleavage and
Y878 was unable to be recovered. Increasing receptor activation by K650E mutation
led to an increase in intensity levels of TACC3 tyrosine phosphorylation (figure 6A, 3rd
and 4th panels).

Of the phosphorylation sites detected in the TACC3 portion of the fusion
protein, Y798 and Y853 have been previously identified as a phosphorylation sites in
TACC3 WT. The function of these sites is unclear and these residues are not conserved
in the TACC family (7,8). However, Y867 is a conserved tyrosine residue in the TACC
family and our data has identified it as a novel phosphorylation site for the
FGFR3(K650E)-TACCS fusion protein.

As mentioned above, mass spectroscopy of HEK293T cells expressing
FGFR3(K508R)-TACC3 (kinase dead mutation) revealed no phosphorylated peptides
within the FGFR3 or TACC3 domains. This indicates that receptor activation is
required for tyrosine phosphorylation of the fusion proteins, and the TACC domain is

most likely phosphorylated by the FGFR3 kinase domain, not another tyrosine kinase.
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Cell transforming ability of FGFR3-TACC3 by focus assay

To examine the transforming activity of FGFR3-TACC3 and subsequent
mutants, focus-forming assays with NIH3T3 cells were performed. FGFR3-TACC3 and
FGFR3(K650E)-TACCS3 produced extremely high foci formation and cell
transformation compared to FGFR3 WT or FGFR3(K650E) (figure 8). Expression of
PR/neu*, a focus assay positive control, displayed less transformation than FGFR3-
TACCS3, the latter of which also consistently produced much larger foci. PR/neu* is a
Platelet-Derived Growth Factor Receptor, Beta (PDGFR-f3) with a Neu receptor
transmembrane domain with the activating V664E mutation (p185™"") (9). Despite the
previously demonstrated elevated activation of PR/neu*, its transforming ability was
dwarfed by the foci formation seen by FGFR3(K650E)-TACC3. As a result, samples
were normalized to FGFR3(K650E)-TACC3 (figure 8). Expression of FGFR3(K508R)-
TACC3 (kinase-dead mutation) and TACC3 WT in NIH3T3 cells did not produce
significant foci formation, indicating that an active FGFR3 kinase domain is essential
for cell transforming ability of FGFR3-TACC3.

Within the coiled-coil domain in FGFR3-TACCS3, there are four tyrosine
residues. Three of these residues were found to be phosphorylated by MS analysis, as
discussed above, and the fourth tyrosine, Y878, undetectable by trypic digest, is
believed to be phosphorylated as well (10). In order to assess the importance of these
FGFR3-TACC3 phosphorylation sites, all four TACC3 tyrosine residues were mutated
to phenylalanine (Y798F, Y853F, Y867F, Y878F) with and without the activating
FGFR3 K650E mutation by site-directed mutagenesis and analyzed for focus forming

ability. NIH3T3 cells expressing the fusion constructs with all four tyrosine mutations,
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FGFR3-TACC3 4xYF and FGFR3(K650E)-TACC3 4xYF, displayed high foci
formation when compared to FGFR3-TACC3 or FGFR3(K650E)-TACC3 with no

additional mutations (figure 8).
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Figure 8. Transformation of NIH3T3 cells by FGFR3 and FGFR3-TACC3 derivatives.
Representative plates from a focus assay are shown, with transfected constructs
indicated. Number of foci were scored, normalized by transfection efficiency, and
quantitated relative to FGFR3(K650E)-TACC3 +/- standard error of the mean. PR/neu*
is a positive control. Assays were performed a minimum of three times per DNA
construct.

To assess the effects of each individual phosphorylation site, single Y to F
mutants were made in combination with activating mutation K650E. As shown in figure

8, three of the mutations (Y853F, Y867F, Y878F) increased foci formation at an even

higher rate than K650E mutation alone, indicating an inhibitory role on cell growth
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when phosphorylated in the FGFR3-TACC3 fusion. An exception may be
FGFR3(K650E)-TACC3(Y798F), which displayed a slightly lower transformation
ability than FGFR3(K650E)-TACCS3, indicating this phosphorylation site may be

important to cell proliferation.

FGFR3-TACC3 promotes IL-3 independent cell growth

The transforming potential of select fusion proteins was also examined in the
murine myeloid cell line 32D which is dependent on Interluekin-3 (1L-3) for growth
(11-13). FGFR3 WT, FGFR3-TACC3, FGFR3(K650E), FGFR3(K650E)-TACC3,
FGFR3-TACC3(4xYF) and PR/neu* were electroporated into the 32D cell line and
selected as described in the Materials and Methods. As seen in figure 9A, in the absence
of I1L-3 all the clones expressed were able to lead to IL-3 independent growth indicating
their transforming potential. Interestingly, the FGFR3-TACC3(4xYF) clone had the
highest proliferation even without the activating K650E mutation. This could support
the suggestion of the TACC3 tyrosine residues as being inhibitory. In addition, even in
the presence of IL-3 (figure 9B) the expression some of the clones enhanced the
proliferation of the 32D cells compared to nonexpressing cells. The viability assays
performed on days 3 and 7 shown in figure 9C support the cell population assay results.
All transfected constructs display cell viability, whereas 32D control cells do not,

indicating that FGFR3-TACC3 and other constructs promote cell proliferation.



A.
25
2 20 —
g 15 - FGFR3(K650E)-TACC3
3 ///
S 10
g ) //
0
0 4 7
Days (minus IL-3)
B.
200 N—
FGFR3(K650E)-TACC3
2
>
%
é 100
=
z
= 5
3
0 = }
0 4 6 7
Days (plus IL-3)
) 10
8 Day 3 D Day 7 D
$ o8
£
-l
2 : 08
LX)
> I 04
£
& o2}
E

Figure 9. IL-3 independent growth and MTT viability assay in 32D cells expressing
FGFR3 or FGFR3-TACCS3 derivatives. PR/neu* is a positive control. (A) 32D cells
selectively expressing FGFR3, FGFR3-TACC3, FGFR3(K650E), FGFR3(K650E)-
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TACC3, FGFR3-TACC3(4xYF), or PR/neu* were cultered in the absence of IL-3. The

total number of viable cells were determined by trypan blue exclusion. Experiments

were performed in triplicate, standard deviation is shown. (B) Cell counts of cultures in

(A) in the presence of IL-3. Experiments were performed in triplicate, standard

deviation is shown. Inset of growth from (A) without IL-3 is shown for comparison. (C)

Cell viability as determined by MTT assay by 3 independent repeats on days 3 and 7.
Relative absorbance was obtained by ratio of —IL-3 to +1L-3 absorbances read at 570

nm. Standard deviation is shown.

FGFR3-TACCS3 displays nuclear localization

The presence of TACC3, a nuclear localizing protein (4), led to the question of

whether a delocalization of the over activated FGFR3 kinase to the nucleus was
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occurring. Indeed, fractionation of MCF7 cells expressing FGFR3 WT,
FGFR3(K650E), FGFR3(K508R), and their fusion counterparts displayed a clear
difference in localization (figure 10A). All three fusions, FGFR3-TACC3,
FGFR3(K650E)-TACC3, FGFR3(K508R)-TACC3 (nuclear fraction, lanes 5, 6 & 7)
displayed strong nuclear localization. The non-fused tyrosine kinase domains (lanes 2, 3
& 4) were present mainly in the cytoplasmic fraction. Perinuclear localization of
FGFR3(K650E) has been demonstrated previously (14), but fusion of FGFR3(K650E)
to TACC3 dramatically increased nuclear localization. These results indicate the
presence of the TACC3 coiled coil domain is responsible for nuclear localization of the
FGFR3 kinase, regardless of receptor activation. Immunoblotting for nuclear localizing
mSin3A and cytoplasmic B-tubulin confirmed separation of nuclear and cytoplasmic

fractions.

Downstream signaling activation by FGFR3-TACC3

It has been shown previously that FGFR3 WT and FGFR3(K650E) activate the
signal transducer and activator of transcription (STAT) pathway and mitogen activated
protein kinase (MAPK) pathway, but it is not clear how this activation compares to our
constructed FGFR3-TACC3 or FGFR3(K650E)-TACC3 fusions. HEK293 cells
expressing these fusions and their non-fused counterparts were analyzed for STAT1 and
STATS3 activation. Both FGFR3(K650E) and FGFR3(K650E)-TACC3 led to
phosphorylation of STAT1 and STATS3, but a significant increase in phosphorylation
was not seen for the fusion constructs (figure 10B). However, MAPK phosphorylation

was strongly elevated by FGFR3-TACC3 and FGFR3(K650E)-TACCS3 (figure 10C,
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lanes 6 & 7), compared to non-fused FGFR3 WT and FGFR3(K650E) (lanes 2 & 3),
indicating that FGFR3-TACC3 induces MAPK pathway activation. The kinase-dead
FGFR3(K508R)-TACC3 did not display this activation (lane 8), indicating that FGFR3

kinase activity in the fusion protein is essential to downstream signaling activation.
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Figure 10. Localization and signaling of FGFR3-TACC3 fusions. (A) Fractionation of
MCFT7 cells expressing FGFR3 or FGFR3-TACC3 derivatives. Cells were separated
into cytoplasmic (left) and nuclear (right) fractions. Immunoblotting with FGFR3
antibody shows nuclear localization of FGFR3-TACC3 fusions (top panels).
Immunoblotting for mSin3A and B-Tubulin confirm fractionation (2nd and 3rd panels).
(B) Lysates of HEK293 cells expressing FGFR3 or FGFR3-TACCS3 derivatives were
immunoblotted for Phospho-STATL1 (Y701) (top), STATL (2nd panel), Phospho-
STAT3 (Y705) (3rd panel), STAT3 (4th panel), and FGFR3 (bottom). (C) HEK293 cell
lysates expressing FGFR3 or FGFR3-TACC3 derivatives were immunoblotted for
Phospho-MAPK (T202/Y204) (top), MAPK (2nd panel), and FGFR3 (bottom).
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DISCUSSION

We extensively analyzed the FGFR3-TACC3 fusion protein by tyrosine residue
phosphorylation changes and the impacts on cancer progression. We demonstrate that
introduction of a 3> TACC3 coiled-coil domain results in constitutive activation and
phosphorylation of key residues in FGFR3. Clearly the TACC domain over-stimulates
kinase activity, as shown by the additional phosphorylation sites detected by LC-
MS/MS. Activation by this coiled coil domain has a more severe impact on cell
transformation and downstream signaling than the activating K650E mutation alone,
which causes the lethal syndrome Thanatophoric Dysplasia type 1l. By focus,
proliferation, and viability assay, the high cell transformation, proliferation, and
oncogenic potential of the fusion protein was demonstrated. The absence of activity
shown by FGFR3(K508R)-TACC3 kinase dead mutant indicates that kinase activity is
required for gain of function and cancer progression, but not required for nuclear
localization of the fusion protein, as shown by cellular fractionation.

The analysis by LC-MS/MS indicates key FGFR3 residues are being
phosphorylated, such as Y647, Y648, and Y724. Residues Y647 and Y648 are part of
the YYKK activation loop motif that has been proven essential to FGFR kinase activity
(15). Interestingly, the intensity of the activation loop phosphorylation varies greatly
between samples, with double phosphorylation of Y647 and Y648 becoming less
common in the fusion protein constructs, indicating that presence of the TACC domain
alters the mechanism of receptor activation. Residue Y724 has been shown to be critical
for activation of downstream signaling pathways, such as MAPK, STAT, and PI3

Kinase, and cell transformation (16).
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Although the function has not been thoroughly explored for all the
phosphotyrosine sites detected by MS analysis (figure 6C), all sites are highly
conserved in the four FGFRs, with the exception of Y577 which is not conserved in
FGFRA4. Interestingly, it has been suggested that Y577 is a key residue for the activation
of FGFR3(K650E). Upon phosphorylation at Y577 the active state confirmation of the
receptor is stabilized, independent of activation loop phosphorylation. Contrastingly,
FGFR3 WT activation is dependent on ligand binding and activation loop auto-
phosphorylation (17). The strong peak intensity seen for Y577 in FGFR3-TACC3 could
indicate a change in the mechanism of activation in a ligand independent manner due to
the TACC domain (figure 6B).

The fusion breakpoint of exon 18 in FGFR3 excludes the binding site for PLCy
(Y760), thus PLCy is no longer recruited by FGFR3-TACCS3, as previously shown (5).
Additionally, Y760 may contribute to maximal STAT activation (16). The removal of
this site from FGFR3-TACC3 may be contributing to the absence of STAT pathway
overactivation. However, significant increase of downstream signaling activation was
seen in the MAPK pathway independent of FGF ligand stimulation, which correlates
with previous findings and further indicates ligand-independent activation and cell
growth (3,5,18).

Overexpression of TACC3 WT has been shown to increase activation of MAPK
signaling pathway and contribute to the epithelial-mesenchymal transition (EMT) (19).
However, we found that overexpression of TACC3 alone does not lead to increased
MAPK activity (HEK293) or cell transformation (NIH3T3). Our results indicate that

the fusion of FGFR3 and TACC3 is required for gain of oncogenic function.



47

Also missing from this fusion breakpoint is the Aurora-A phosphorylation sites
on TACC3. Aurora-A has been shown to phosphorylate TACC3 WT at S552 and S558
which is required for the localization of a TACC3-chTOG-clathrin complex to mitotic
spindle microtubules and spindle poles (6,20,21). Localization of TACC3 to
kinetochore fibers in complex with chTOG and clathrin is believed to assist with
stabilization and formation of the mitotic spindle (21). However, previous studies have
found the FGFR3-TACC3 fusion protein localized only to the mitotic spindle poles
during mitosis, and relocated during late stage mitosis to the midbody. A mechanism
for this change in recruitment and the role of FGFR3-TACC3 during interphase remains
unclear (22).

Although not analyzed in regards to the cell cycle, we show a strong indication
of nuclear localization for the fusion protein. Additionally, localization of FGFR3-
TACCS3 to the nucleus is not dependent on kinase activity as shown by K508R
mutation, indicating that this localization is solely due to the fused TACC domain.
Since the Aurora A phosphorylation sites are no longer present in the fusion protein,
there must be another nuclear recruitment mechanism occurring. This delocalized
kinase could be recruiting unknown proteins that lead to cancer progression, a topic for
further study.

The detection of phosphorylated TACC3 residues Y798, Y853, and Y867 could
indicate the ability of a highly activated kinase to self-phosphorylate the TACC domain
and potentially lead to increased downstream signaling. Phosphorylation of Y878 was
unable to be recovered by MS, but is presumably phosphorylated as it is located in a

conserved 9 amino acid tyrosine phosphorylation motif within the TACC family (10).
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Recently, it has been shown that chTOG (colonic and hepatic tumor
overexpressed gene), a centrosomal localizing protein, recruits TACC3 to microtubule
plus-ends during interphase. This localization is dependent on chTOG, not TACC3, and
is independent of Aurora A phosphorylation (21). TACCS3 residues 672-688 contain the
binding site of ch-TOG and are present in the FGFR3-TACCS3 fusion protein (at
residues 786-802). Within this region is Y798, which we have found to be highly
phosphorylated in the FGFR3-TACC3 and FGFR3(K650E)-TACC3 fusion proteins by
LC-MS/MS. In the K650E background, when the phosphorylation site is removed by
mutation Y798F, foci formation decreases compared to FGFR3(K650E)-TACC3
activity, indicating this region may be assisting fusion protein function, cell growth, and
cancer progression.

Introduction of single mutations Y853F, Y867F, or Y878F lead to a slight
increase in foci formation, indicating that phosphorylation at these three sites may have
a negative impact on the oncogenic function of FGFR3-TACCS3. An inhibitory
phosphorylation site has been shown to occur in FGFR3 WT at Y770 which, upon
phosphorylation, inhibits cell transformation (16). Residue Y770 has been removed
from the FGFR3-TACC3 fusion, but the presence of C-terminal phosphorylation sites
in the TACC domain may have a similar role.

We have presented overwhelming evidence of the high oncogenicity of the
FGFR3-TACC3 fusion protein. The presence of the TACC coiled-coil domain leads to
increased and altered levels of FGFR3 activation, fusion protein phosphorylation,
downstream signaling, and cellular transformation, proliferation, and viability. This

brings up the question of what causes the fusion protein to be oncogenic. Further study
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of possible novel pathways becoming activated by the FGFR3-TACCS3 fusion protein
could lead to potential drug treatments which would prove beneficial. We hope the

information presented here will be useful in interpreting future research in this field.

MATERIALS AND METHODS
DNA constructs

The TACC3 gene was purchased from Sino Biological Inc (p(MD-TACC3) and
was subcloned into pcDNA3. FGFR3, FGFR3(K650E), and FGFR3(K508R) were
developed as previously described (23). To construct FGFR3-TACCS3 fusion gene a
unique Clal site was introduced by PCR based site directed mutagenesis after residue
758 in FGFR3 and before residue 648 in TACCS3. This unique site was used to subclone
TACC3 3’ of FGFR3 in pcDNA3, creating a fusion breakpoint of FGFR3 exon 18 to
TACC3 exon 11 with a 3 amino acid linker of residues ASM containing the Clal site.

Fragments containing K650E or K508R mutations were subcloned into the
FGFR3-TACCS3 fusion gene. Single and multiple tyrosine mutations in the TACC3
region (Y798F, Y853F, Y867F, Y878F) were introduced by PCR based site directed
mutagenesis. DNA constructs were then subcloned into pLXSN vector (24) for focus,

proliferation, and MTT assays. All clones were confirmed by DNA sequencing.

Cell culture
HEK?293, HEK293T, and NIH3T3 cells were maintained in DMEM plus 10%
fetal bovine serum (FBS) and 1% penicillin/streptomycin in 10% CO,, 37°C. MCF7

cells were maintained at 5% CO2 in DMEM plus 10% FBS and 1%
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penicillin/streptomycin in 37°C. 32D clone 3 (ATCC CRL-11346) cells were
maintained in RPMI 1640 medium with 10% FBS, 1% penicillin/streptomycin, and 5

ng/mL mouse IL-3 in 5% CO, 37°C.

Mass Spectrometry Sample Preparation

HEK?293T cells were plated one day prior to transfection at 3.0 x 10° cells per
15-cm tissue culture plate. 10 plates per sample were transfected by calcium phosphate
precipitation with 9ug of FGFR3 or FGFR3-TACCS3 derivatives. After 18-20 hr, cells
were treated with 10 uM MG132 for 4-6 hr, washed once in 1xPBS + 1mM
NazVO, before being lysed in RIPA. Clarified lysates were immunoprecipitated with
FGFR3 antisera overnight at 4°C with rocking. Immune complexes were collected with
Pierce protein A/G magnetic beads as per manufactures directions. Samples were taken
to The Sanford Burnham Prebys Medical Discovery Institute mass spectrometry facility
for proteasome on bead digestion and liquid chromatography (LC)-high mass accuracy
tandem mass spectrometry (MS/MS) analysis.

Following immunoprecipitation, proteins were digested directly on-beads using
Trypsin/Lys-C mix. Briefly, the samples (IP’s and controls) were washed with 50 mM
ammonium bicarbonate, and then resuspended with 8M urea, 50 mM ammonium
bicarbonate, and cysteine disulfide bonds were reduced with 10 mM tris(2-
carboxyethyl)phosphine (TCEP) at 30°C for 60 min followed by cysteine alkylation
with 30 mM iodoacetamide (IAA) in the dark at room temperature for 30 min.
Following alkylation, urea was diluted to 1 M urea using 50 mM ammonium

bicarbonate. The samples were finally subjected to overnight digestion with mass spec
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grade Trypsin/Lys-C mix (Promega, Madison, WI). Finally, peptides were collected
into a new tube, and the magnetic beads were washed once with 50mM ammonium
bicarbonate to increase peptide recovery. The digested samples were partially dried to
approximately 50% of the total volume, and desalted using a C;s TopTip (PolyLC)
according to the manufacturer’s recommendations. The desalted peptide sample was
split into 2 aliquots, ‘Total’ and ‘Phospho’ containing 10% and 90% of the sample,
respectively. Both aliquots were then dried using a SpeedVac system.

The ‘Phospho’ aliquot was resuspended in 80% acetonitrile, 5% trifluoroacetic
acid in 1M glycolic acid and incubated with TiO, magnetic beads (GE) for 30 min in a
Thermomix at room temperature and 900 rpm. The unbound peptides were removed
and the magnetic beads were washed twice with 80% acetonitrile, 5% trifluoroacetic
acid to remove non-phosphorylated peptides. Finally, phosphopeptides were eluted with

5% ammonium hydroxide and dried down using a SpeedVac system.

LC-MS/MS Analysis

Both the ‘Total’ and ‘Phospho’ were analyzed by LC-MS/MS. Fifty percent of
each sample was used for LC-MS/MS, a 0.180 x 20 mm C,g trap Symmetry column
(Waters corp., Milford, MA) connected to an analytical C;3 BEH130 PicoChip column
0.075 x 100 mm, 1.7um particles (NewObjective, MA) mounted on a nanoACQUITY
Ultra Performance Liquid Chromatography system (Waters corp., Milford, MA),
directly coupled to an Orbitrap Velos Pro mass spectrometer (Thermo Fisher
Scientific). The peptides were separated with a 90-min non-linear gradient of 2-35%

solvent B at a flow rate of 400nL/min. The mass spectrometer was operated in positive
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data-dependent acquisition mode. MS1 spectra were measured with a resolution of
60,000, an AGC target of 10° and a mass range from 350 to 1400 m/z. Up to 5 MS2
spectra per duty cycle were triggered, and each precursor was fragmented twice by
collisium-induced dissociation (with multiple stage activation enabled) and electron
transfer dissociation (ETD), and acquired in the ion trap with an AGC target of 10%, an
isolation window of 2.0 m/z and a normalized collision energy of 35. Dynamic

exclusion was set to 5 seconds to allow multiple fragmentation of phosphopeptides.

Proteomics data analysis

All mass spectra from were analyzed with MaxQuant software version 1.5.2.8
(Cox et al). Briefly, MS/MS spectra were searched against the cRAP protein sequence
database (http://www.thegpm.org/crap/) indexed with corresponding FGFR3 or
FGFR3-TACC3 derivative sequences. Precursor mass tolerance was set to 20ppm and
4.5ppm for the first search where initial mass recalibration was completed and for the
main search, respectively. Product ions were searched with a mass tolerance 0.5 Da.
The maximum precursor ion charge state used for searching was 7.
Carbamidomethylation of cysteines was searched as a fixed modification, while
phosphorylation of serines, threonines and tyrosines, and oxidation of methionines was
searched as variable modifications. Enzyme was set to trypsin in specific mode and a
maximum of two missed cleavages was allowed for searching. The target-decoy-based
false discovery rate (FDR) filter for spectrum and protein identification was set to 1%.

Second peptide mode of MaxQuant software was also enabled.



53

Antibodies and Reagents

Antibodies were obtained from the following sources: FGFR3 (B-9), mSin3A
(K-20), B-tubulin (H-235), STAT1 (E-23), STAT3 (C-20) from Santa Cruz
Biotechnology; phosphotyrosine (4G10) from Millipore; TACC3 C-terminal
(SAB4500103) from Sigma; Phospho-STAT1 (Tyr701) (9171), Phospho-STAT3
(Tyr705) (D3A7), Phospho-p44/42 MAPK (Erk1/2) (T202/Y204) (E10), p44/42 MAPK
(Erk1/2) (9102) from Cell Signaling Technology; horseradish peroxidase (HRP) anti-
mouse, HPR anti-rabbit from GE Healthcare. Enhanced chemiluminence (ECL and
Prime-ECL) reagents were from GE Healthcare. MG132, aFGF, and recombinant
mouse Interleukin-3 (I1L-3) were obtained from R&D systems; Heparin was from
Sigma; Geneticin (G418) was from Gibco. Lipofectamine 2000 Reagent was from

Invitrogen.

Transfection, Immunoprecipitation, Immunoblot

HEK?293 were plated at a density of 1 x 10° cells/100-mm plate and transfected
with 3 pg plasmid DNA using calcium phosphate transfection in 3% CO, as previously
described (25). 20 to 24 hr after transfection, media was changed to DMEM with 0%
FBS. Cells were starved for 20 hr before collecting and lysis.

Transfected HEK?293 cells were collected, washed once in PBS, and lysed in 1%
NP40 Lysis Buffer [20 mmol/L Tris-HCI (pH 7.5), 137 mmol/L NaCl, 1% Nonidet P-
40, 5 mmol/L EDTA, 50 mmol/L NaF, 1 mmol/L sodium orthovanadate, 1 mmol/L
phenylmethylsulfonyl fluoride (PMSF), and 10 pg/mL aprotinin] or

radioimmunoprecipitation assay buffer [RIPA; 50 mmol/L Tris-HCI (pH 8.0), 150
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mmol/L NaCl, 1% TritionX-100, 0.5% sodium deoxycholate, 0.1% SDS, 50 mmol/L
NaF, 1 mmol/L sodium orthovanadate, 1 mmol/L PMSF, and 10 pg/mL aprotinin].
Bradford assay or Lowry assay was used to measure total protein concentration.
Antibodies were added to lysates for overnight incubation at 4°C with rocking,
followed by immunoprecipitation, as described previously (24). Samples were
separated by 10% or 12.5% SDS-PAGE and transferred to Immobilon-P membranes
(Millipore). Membranes were blocked in 3% milk/TBS/0.05% Tween 20 or 3% bovine
serum albumin (BSA)/TBS/0.05% Tween 20 (for anti-phosphotyrosine, anti—phospho-
STAT1, and anti—phospho-STAT3 blots). Immunoblotting was performed as previously

described (26).

Focus Assay

Focus assays were performed using NIH3T3 cells plated at a density of 2 x 10°
cells/60-mm plates in DMEM with 10% FBS 24 hr before transfection. Cells were
transfected by Lipofectamine 2000 Reagent per manufacturer directions with 10 ug
plasmid DNA. Between 22 and 24 hr after transfection cells were re-fed with DMEM
10% FBS. Cells were split 1:12 onto 100-mm plates between 22 and 24 hr later. Foci
were scored at 12-14 days, fixed in methanol, stained with Geimsa stain, and
photographed. Efficiency of transfection was determined by Geneticin (G418, 0.5

mg/ml)-resistant colonies plated at a dilution of 1:240.



55

Fractionation

MCF7 cells were plated at a density of 1.5 x 10° cells/100-mm plates 24 hr
before transfection. Immediately prior to transfection, media was changed to DMEM
0% FBS with no antibiotic. Cells were transfected with 8 pg of plasmid DNA using
Lipofectamine 2000 Reagent, per manufacturer’s directions. 23 hr after transfection
cells were collected in PBS and 1 mM EDTA for fractionation as described previously
(27). Separated fractions were analyzed for protein content by Bradford assay,
separated by 10% SDS-PAGE, and transferred to Immobilon-P membrane for Western

Blot analysis.

IL-3 independent growth in 32D cells

1x10° exponentially growing 32D cells were electroporated (1500 V, 10 ms, 3
pulse) by the Neon Transfection System (Invitrogen) using 30 pug of FGFR3, FGFR3-
TACC3 or PR/neu* derivatives in pLXSN in triplicate. Twenty-four hours after
transfection cells were selected with 1.5 mg/ml Geneticin (G418) sulfate for 10 days to
generate stable cell lines. For I1L-3 independent proliferation assays, 2x10° cells were
seeded in 12 well plates in the absence of IL-3 or 6 well plates in the presence of IL-3.
The media also contained 1 nM aFGF and 30 pg/ml heparin (28). Cell numbers were
determined in triplicate, with a hemocytometer and trypan blue exclusion on days 2, 4,
6 and 7. Media was added to cultures when cell numbers reached ~1x10° cells/mL
during the assays to maintain at viable concentrations. To measure cell viability MTT
assays were performed. A stock solution of 5mg/ml in PBS of MTT 3-(4, 5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (Sigma) was added at 1:10 to
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the cultures. After incubation at 37°C, 5% CO, for approximately 4 hrs equal volume of
0.04 M HCI in isopropanol was added and mixed well and incubated again for at least
30 min (29). Cultures were transferred to microfuge tubes, spun for 30 sec at room
temperature and supernatant absorbance was measured in a Beckman DU 350 UV/Vis
spectrophotometer at 570 nm. 5x10° cells per well were plated in triplicate in 24-well
plates in the presence or absence of IL-3 and 1nM aFGF and 30ug/ml heparin and
assayed 3 days later. The cell viability at day 7 was measured using the cultures from
the proliferation assay. In triplicate, 0.5 ml of the cultures were transferred to 24 well

plates and treated with the MTT reagent.
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