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Pre-print of an article to appear in Advances in Methods and Practices in Psychological Science.

Introduction to the concept of likelihood and its applications

Alexander Etz
University of California, Irvine

Abstract
We introduce the statistical concept known as likelihood and discuss how
it underlies common Frequentist and Bayesian statistical methods. This
article is suitable for researchers interested in understanding the basis of
their statistical tools, and is also ideal for teachers to use in their classrooms
to introduce the topic to students at a conceptual level.

Introduction

Likelihood is a concept that underlies most common statistical methods used in psy-
chology. It is the basis of classical maximum likelihood estimation methods, and it plays
a key role in Bayesian inference. Despite the ubiquity of likelihood in modern statistical
methods, few basic introductions are available to the practicing psychological researcher.
This tutorial aims to explain the concept of likelihood and illustrate in an accessible way
how it enables some of the most used classical and Bayesian statistical analyses; in doing
so many finer details are skipped over, but interested readers can consult Pawitan (2001)
for a complete mathematical treatment of the topic (Edwards, 1974, provides a historical
review). This article is aimed at applied researchers interested in understanding the basis
of their statistical tools, and is also ideal for research methods instructors who want to
introduce the topic to students at a conceptual level.

Likelihood is a strange concept, in that it is not a probability, but it is proportional to
a probability. The likelihood of a hypothesis (H) given some data (D) is proportional to the
probability of obtaining D given that H is true, multiplied by an arbitrary positive constant
K. In other words, L(H) = K × P (D|H). In most cases hypotheses represent different
values of a parameter in a statistical model, such as the mean of a normal distribution.
Since a likelihood is not actually a probability it doesn’t obey various rules of probability;
for example, likelihoods need not sum to 1.

A critical difference between probability and likelihood is in the interpretation of what
is fixed and what can vary. In the case of a conditional probability, P (D|H), the hypothesis
is fixed and the data are free to vary. Likelihood, however, is the opposite. The likelihood of

The author was supported by grant #1534472 from the National Science Foundation’s Methods, Mea-
surements, and Statistics panel, as well as the National Science Foundation Graduate Research Fellowship
Program #DGE1321846. A portion of this material previously appeared on the author’s personal blog. The
author is very grateful to Quentin Gronau and J. P. de Ruiter for helpful comments.
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a hypothesis, L(H), conditions on the data as if they are fixed while allowing the hypotheses
to vary. The distinction is subtle, so it is worth repeating: For conditional probability, the
hypothesis is treated as a given and the data are free to vary. For likelihood, the data are
treated as a given and the hypotheses vary.

The Likelihood Axiom

Edwards (1992, p. 30) defines the Likelihood Axiom as a natural combination of
the Law of Likelihood and the Likelihood Principle. The Law of Likelihood states that
“within the framework of a statistical model, a particular set of data supports one statistical
hypothesis better than another if the likelihood of the first hypothesis, on the data, exceeds
the likelihood of the second hypothesis” (Edwards, 1992, p. 30). In other words, there is
evidence for H1 over H2 if and only if the probability of the data under H1 is greater than
the probability of the data under H2. That is, D is evidence for H1 over H2 if P (D|H1)
> P (D|H2). If these two probabilities are equivalent, then there is no evidence for either
hypothesis over the other. Furthermore, the strength of the statistical evidence for H1
over H2 is quantified by the ratio of their likelihoods. We write the likelihood ratio as
LR(H1, H2) = L(H1)/L(H2) — which is equal to P (D|H1)/P (D|H2) since the arbitrary
constants cancel out of the fraction.

The following brief example will help illustrate the main idea underlying the Law
of Likelihood.1 Consider the case of Earl, who is visiting a foreign country that has a
mix of women-only and mixed-gender saunas (known to be visited equally often by both
genders). After a leisurely jog through the city he decides to stop by a nearby sauna to
try to relax. Unfortunately, Earl does not know the local language so he cannot determine
from the posted signs whether this sauna is women-only or mixed-gender. While Earl is
attempting to decipher the signs he observes three women independently exit the sauna.
If the sauna is women-only, the probability that all three exiting patrons would be women
is 1.0; if the sauna is mixed-gender, this probability is .53 = .125. With this information
Earl can compute the likelihood ratio between the women-only hypothesis and the mixed-
gender hypothesis to be 1.0/.125 = 8, or eight-to-one evidence in favor of the sauna being
women-only.

The Likelihood Principle states that the likelihood function contains all of the infor-
mation relevant to the evaluation of statistical evidence. Other facets of the data that do
not factor into the likelihood function (e.g., the cost of collecting each observation or the
stopping rule used when collecting the data) are irrelevant to the evaluation of the strength
of the statistical evidence (Edwards, 1992, p. 30; Royall, 1997, p. 22). They can be mean-
ingful for planning studies or for decision analysis, but they are separate from the strength
of the statistical evidence.

Likelihoods are inherently comparative

Unlike a probability, a likelihood has no real meaning per se due to the arbitrary
constant K. Only by comparing likelihoods do they become interpretable, because the

1This light-hearted example was first suggested to the author by J. P. de Ruiter, who graciously permitted
its inclusion in this manuscript.
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constant in each likelihood cancels the other one out. A simple way to explain this aspect
of likelihood is to give an example using the Binomial distribution.

Suppose a coin is flipped n times and we observe x heads and n − x tails. The
probability of getting x heads in n flips is defined by the Binomial distribution,

P
(
X = x | p

)
=
(
n

x

)
px
(
1− p

)n−x
, (1)

where p is the probability of heads, and(
n

x

)
= n!
x!(n− x!)

is the number of ways to get x heads in n flips. For example, if x = 2 and n = 3, this value
is 3!/(2! × 1!) = 6/2 = 3, since there are three ways to get two heads in three flips (i.e.,
Head-Head-Tail, Head-Tail-Head, Tail-Head-Head). Thus, the probability of getting two
heads in three flips if p is .50 would be 3× .502 × (1− .50)1 = .375, or three out of eight.

If the coin were fair, so that p = .50, and we flip it ten times, the probability it comes
up six heads and four tails is

P
(
X = 6 | p = .50

)
= 10!

6!× 4!
(
.50
)6(1− .50

)4 ≈ .21.

If the coin were a trick coin, so that p = .75, the probability of six heads in ten tosses is

P
(
X = 6 | p = .75

)
= 10!

6!× 4!
(
.75
)6(1− .75

)4 ≈ .15.

To quantify the statistical evidence for the first hypothesis against the second, we simply
divide one probability by the other. This ratio tells us everything we need to know about
the support the data lends to one hypothesis vis-a-vis the other. In the case of 6 heads in
10 tosses, the likelihood ratio for a fair coin versus our trick coin, denoted LR(.50, .75), is:

LR(.50, .75) =
(

10!
6!× 4!

(
.50
)6(1− .50

)4)÷ ( 10!
6!× 4!

(
.75
)6(1− .75

)4) ≈ .21/.15 = 1.4.

In other words, the data are 1.4 times more probable under a fair coin hypothesis than
under the trick coin hypothesis. Notice how the first terms in each of the equations above,
10!/(6!× 4!), are equivalent and completely cancel each other out in the likelihood ratio.

Same data. Same constant. Cancel out.

The first term in the equations above, 10!/(6!× 4!), details our journey to obtaining
six heads out of ten flips. If we change our journey (i.e., different sampling plan) then this
changes the term’s value, but crucially, since it is the same term in both the numerator and
denominator it always cancels itself out. For example, if we were to change our sampling
scheme from flipping the coin ten times and counting the number of heads, to one where
we flip our coin until six heads arise, this first term changes to 9!/(5!× 4!) (Lindley, 1993).
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But, crucially, since this term is in both the numerator and denominator the information
contained in the way the data are obtained disappears from the likelihood ratio. This
result leads to the conclusion that the sampling plan should be irrelevant to the evaluation
of statistical evidence, which is something that makes likelihood and Bayesian methods
particularly flexible (Gronau & Wagenmakers, in press; Rouder, 2014).

Consider if we had left out the first term in the above calculations, so that our
numerator is P (X = 6 | p = .50) = (.50)6(1 − .50)4 = 0.000976 and our denominator is
P (X = 6 | p = .75) = (.75)6(1− .75)4 = 0.000695. Using these values to form the likelihood
ratio we get LR(.50, .75) = 0.000976/0.000695 = 1.4, confirming our initial result since the
other terms simply canceled out before. Again it is worth repeating that the value of a single
likelihood is meaningless in isolation; only in comparing likelihoods do we find meaning.

Inference using the likelihood function

Visual inspection

So far, likelihoods may seem overly restrictive because we have only compared two
simple statistical hypotheses in a single likelihood ratio. But what if we are interested
in comparing all possible hypotheses at once? By plotting the entire likelihood function
we compare all possible hypotheses simultaneously, and this lets us ‘see’ the evidence the
data provide in its entirety. Birnbaum (1962) remarked that “the ‘evidential meaning’ of
experimental results is characterized fully by the likelihood function” (p. 269), so now we
will look at some examples of likelihood functions and see what insights we can glean from
them.2

The top panel of Figure 1 shows the likelihood function for six heads in ten flips. The
fair coin and trick coin hypotheses are marked on the likelihood curve with dots. Since the
likelihood function is meaningful only up to an arbitrary constant, the graph is scaled by
convention so that the best supported value (i.e., the maximum) corresponds to a likelihood
of 1. The likelihood ratio of any two hypotheses is simply the ratio of their heights on this
curve. We can see from the plot that the fair coin has a higher likelihood than our trick
coin, which we saw previously to be roughly a factor of 1.4.

The middle panel of Figure 1 shows how the likelihood function changes if instead
of 6 heads out of 10 tosses, we tossed 100 times and obtained 60 heads: the curve gets
much narrower. The strength of evidence favoring the fair coin over the trick coin has
also changed, with the new likelihood ratio being 29.9. This is much stronger evidence,
but due to the narrowing of the likelihood function neither of these hypothesized values
are very high up on the curve anymore. It might be more informative to compare each of
our hypotheses against the best supported hypothesis. This gives us two likelihood ratios:
LR(.60, .50) = 7.5 and LR(.60, .75) = 224.

The bottom panel in Figure 1 shows the likelihood function for the case of 300 heads
in 500 coin flips. Notice that both the fair coin and trick coin hypotheses appear to be very
near the minimum of the graph; yet their likelihood ratio is much stronger than before. For
this data the likelihood ratio is LR(.50, .75) = 23912304, or nearly twenty-four million. The
inherent relativity of evidence is made clear here: The fair coin was supported when com-
pared to one particular trick coin. But this should not be interpreted as absolute evidence

2An R script is available to reproduce these plots (https://osf.io/t2ukm/).
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Figure 1 . Top. The likelihood function for the case of 6 heads in 10 flips. Middle. The
likelihood function for 60 heads in 100 flips. Bottom. The likelihood function for 300
heads in 500 flips.
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for the fair coin, because the likelihood ratio for the maximally supported hypothesis vs the
fair coin, LR(.60, .50), is nearly twenty-four thousand.

We need to be careful not to make blanket statements about absolute support, such
as claiming that the maximum is “strongly supported by the data”. Always ask, “Compared
to what?” The best supported hypothesis will usually only be weakly supported against
any hypothesis a little smaller or a little larger.3 For example, in the case of 60 heads in 100
flips the likelihood ratio between p = .60 and p = .75 is very large at LR(.60, .75) = 224,
whereas the likelihood ratio between p = .60 and p = .65 is only LR(.60, .65) = 1.7, which
is barely any support one way or the other. Consider the following common real-world
research setting: We have run a study with a relatively small sample size, and the estimate
of the effect of primary scientific interest is considered “large” by some criteria (e.g., Cohen’s
d > .75). We may find that the estimated effect size from the sample has a relatively large
likelihood ratio compared to a hypothetical null value (large enough to “reject the null
hypothesis”, see below), while at the same time it has a much less forceful likelihood ratio
compared to a “medium” or even “small” effect size. Without relatively large sample sizes
we are often precluded from saying anything precise about the size of the effect because the
likelihood function is not very peaked in small samples.

Maximum likelihood estimation

A natural question for a researcher to ask is, what is the hypothesis that is most
supported by the data? This question is answered by using a method called maximum
likelihood estimation (Myung, 2003). Looking again at the plots in Figure 1, the vertical
dotted lines mark the value of p that is has the highest likelihood, known as the maximum
likelihood estimate. We interpret this value of p as being the hypothesis that makes the
observed data the most probable. Since the likelihood is proportional to the probability of
the data given the hypothesis, the hypothesis that maximizes P (D | H) will also maximize
L(H) = K × P (D | H). In simple problems, plotting the likelihood function will reveal an
obvious maximum. For example, the maximum of the Binomial likelihood function will be
located at the sample proportion of successes. In Box 1 we show this to be true using a
little bit of elementary calculus.4

With the maximum likelihood estimate in hand there are a few possible ways to
proceed with classical inference. First, one can perform a likelihood ratio test comparing two
versions of the proposed statistical model: One where we set a parameter to a hypothesized
null value, and one where we estimate the parameter from the data (these are called nested
models). In practice this amounts to a comparison between the value of the likelihood at
the maximum likelihood estimate against the value of the likelihood at the proposed null

3The amount that the likelihood ratio changes with small deviations from the maximum is fundamentally
captured by its peakedness. Formally, the peakedness (or curvature) of a function at a given point is found
by taking the second derivative at that point. If that function happens to be the logarithm of the likelihood
function for some parameter θ (theta), and the point of interest is its maximum point, the negative of the
second derivative is called the observed Fisher Information, or sometimes simply the observed Information,
written as I(θ) (taking the negative is a convention to make the Information a positive quantity, since the
second derivative of a function at its maximum will be negative). See Ly, Marsman, Verhagen, Grasman,
and Wagenmakers (in press) for more technical details.

4In more complicated scenarios with many parameters there are usually not simple equations one can
directly solve to find the maximum, so we must turn to numerical approximation methods.
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value. Likelihood ratio tests are commonly used when drawing inferences with structural
equation models. In the Binomial example from earlier, this would mean comparing the
probability of the data if p were set to .50 (the fair coin hypothesis) to the probability of
the data x given the value of p estimated from the data (the maximum likelihood estimate).
In general we call the parameter of interest θ (theta), and it can be shown that when
the null hypothesis is true, and as the sample size gets large, twice the logarithm of this
likelihood ratio approximately follows a chi-squared distribution with a single degree of
freedom (Casella & Berger, 2002, p.489; Wilks, 1938),

2 log
[
P (X | θmax)
P (X | θnull)

]
∼̇ χ2(1), (2)

where ∼̇ means “is approximately distributed as”. If the value of the quantity on the left-
hand side of Equation 2 lies far enough out in the tail of the chi-squared distribution, such
that the p-value is lower than a prespecified cutoff α (alpha, often chosen to be .05), then
one would make the decision to reject the hypothesized null value.5

Secondly, one can perform a Wald test, where the maximum likelihood estimate is
compared to a hypothesized null value and this difference is divided by the estimated stan-
dard error. Essentially, we are determining how many standard errors separate the null
value and the maximum likelihood estimate. The t-test and Z-test are arguably the most
common examples of the Wald test, which are used for inference about parameters rang-
ing from simple comparisons of means to complex multilevel regression models. For many
common statistical models it can be shown (e.g., Casella & Berger, 2002, p. 493) that if the
null hypothesis is true, and as the sample size gets large, this ratio approximately follows a
normal distribution with a mean of zero and standard deviation of one,

θmax − θnull
se(θmax) ∼̇ N(0, 1). (3)

Analogously to the likelihood ratio test, if the value of this ratio falls far out in the tails of the
normal distribution, such that the p-value is less than the prespecified α, then one would
make the decision to reject the hypothesized null value. This result also allows for easy
construction of 95% confidence interval bounds by computing θmax ± 1.96× se(θmax). It is
important to note that these confidence intervals are based on large-sample approximations,
whose performance can be suboptimal in relatively small samples (Ghosh, 1979).

Figure 2 depicts the relationship between the two types of tests by showing the log
of the likelihood function for 60 heads in 100 flips. The likelihood ratio test looks at the
difference in the height of the likelihood at its maximum compared to the height at the
null, and rejects the null if the difference is large enough. In contrast, the Wald test looks
at how many standard errors the maximum is from the null value and rejects the null if
the estimate is sufficiently far away. In other words, the likelihood ratio test evaluates

5We saw in the previous section that the value of the likelihood ratio itself does not depend on the
sampling plan, but now we see that the likelihood ratio test does depend on the sampling plan since it
requires the sampling distribution of twice the logarithm of the likelihood ratio to be chi-squared. Royall
(1997) resolves this potential inconsistency by pointing out that the likelihood ratio and its test answer
different questions: The former answers the question, “How should I interpret the data as evidence?” The
latter answers the question, “What should I do with this evidence?”
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Figure 2 . The logarithm of the Binomial likelihood function for 60 heads in 100 flips. The x-
axis is restricted to the values of p that have appreciable log-likelihood values. The likelihood
ratio test evaluates the points’ vertical discrepancy, whereas the Wald test evaluates their
horizontal discrepancy.

the vertical discrepancy of two values on the likelihood function (y-axis) and the Wald
test evaluates the horizontal discrepancy between two values of the parameter (x-axis). As
sample size grows very large the results from these methods converge (Engle, 1984), but
in practice each has its advantages. An advantage of the Wald test is its simplicity when
testing a single parameter at a time; all one needs is a point estimate and its standard
error to easily perform hypothesis tests and compute confidence intervals. An advantage
of the likelihood ratio test is that it is easily extended to a simultaneous test of multiple
parameters by increasing the degrees of freedom of the chi-squared distribution in Equation 2
to be equal to the number of parameters being tested (Wald tests can be extended to the
multiparameter case but they are not as elegant as the likelihood ratio test).

Bayesian updating via the likelihood

As we have seen, likelihoods form the basis for much of classical statistics in the
form of maximum likelihood estimation. Likelihoods are also a key component of Bayesian
inference. The Bayesian approach to statistics is fundamentally about making use of all
available information when drawing inferences in the face of uncertainty. This information
may come in the form of results from previous studies, or it may come in the form of
newly collected data, or, as is usually the case, from both. Bayesian inference allows us to
synthesize these two forms of information to make the best possible inference.

We quantify our previous information using what is known as a prior distribution.
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We write the prior distribution of θ, our parameter of interest, as P (θ); this is a function
that specifies which values of θ are more or less likely, based on our interpretation of our
previous relevant information. The information gained from our new data is represented
by the likelihood function, P (D | θ), which is then multiplied by the prior distribution
(and rescaled) to yield the posterior distribution, P (θ | D), with which we can perform
our desired inference. Thus, we can say that the likelihood function acts to update our
prior distribution to a posterior distribution. A detailed technical introduction to Bayesian
inference can be found in Etz and Vandekerckhove (in press), and interested readers can find
an annotated list of useful Bayesian references in Etz, Gronau, Dablander, Edelsbrunner,
and Baribault (in press).

Mathematically, we use Bayes’ rule to obtain the posterior distribution of our param-
eter of interest θ,

P (θ | D) = K × P (θ)× P (D | θ),

where in this context K = 1/P (D) is merely a rescaling constant. We often write this more
simply as

P (θ | D) ∝ P (θ)× P (D | θ),

where ∝ means “is proportional to”. In words, we say the posterior distribution is propor-
tional to the prior distribution multiplied by the likelihood function.

In the example below we will see how to use the likelihood to update a prior into a
posterior. The simplest way to illustrate how likelihoods act as an updating factor is to use
conjugate distribution families (Raiffa & Schlaifer, 1961). A prior and likelihood are said to
be conjugate when the resulting posterior distribution is the same type of distribution as the
prior. For example, if we have Binomial data we can use a Beta prior to obtain a Beta pos-
terior (see Box 2). Conjugate priors are by no means required for doing Bayesian updating,
but they reduce the mathematics involved and so are ideal for illustrative purposes.

Consider the coin example from before, where we had 60 heads in 100 flips. Imagine
that going in to this experiment we had some reason to believe the coin’s bias was within
.2 of being fair in either direction, so that it is likely p is within the range of .30 to .70.
We could choose to represent this information using the Beta(25,25) distribution6 shown
as the dotted line in Figure 3. The likelihood function for the 60 flips is shown as the
dot-and-dashed line in Figure 3, and is identical to that shown in the middle panel from
Figure 1. Using the result from Box 2, we know that the outcome of this experiment will
be the Beta(85,65) posterior distribution shown as the solid line in Figure 3.

The entire posterior distribution represents the solution to our Bayesian estimation
problem, but often we report summary measures to simplify the communication of the
results. For instance, we could point to the maximum of the posterior distribution – known
as the maximum a posteriori (MAP) estimate – as our best guess for the value of p, which
in this case is pmap = .568. Notice that this is slightly different from the estimate we would
obtain if we computed the maximum likelihood estimate, pmle = .60. This discrepancy is due

6The Beta(a, b) distribution spans from 0 to 1, and its two arguments a and b determine its form: when
a = b the distribution is symmetric around .50; as a special case, when a = b = 1 the distribution is uniform
(flat) between 0 and 1; when a > b the distribution puts more mass on values above .50, and vice-versa.
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Figure 3 . Bayesian updating of the prior distribution to posterior distribution. The Pos-
terior distribution is a compromise between the information brought by the prior and the
information brought by the likelihood.

to the extra information about p provided by the prior distribution; as shown in Box 2, the
prior distribution effectively adds a number of previous successes and failures to our sample
data. Thus, the posterior distribution represents a compromise between the information
we had regarding p before the experiment and the information gained about p by doing
the experiment. Since we had previous information suggesting p is probably close to .50,
our posterior estimate is said to be “shrunk” towards .50. This and other regularization
methods tend to lead to more accurate estimates and better empirical predictions (Efron
& Morris, 1977), especially when we have a relatively small sample size.

The likelihood also forms the basis of the Bayes factor, a tool for conducting Bayesian
hypothesis tests first proposed by Dorothy Wrinch and Harold Jeffreys (Jeffreys, 1935;
Wrinch & Jeffreys, 1921), and independently developed by J. B. S. Haldane (Haldane, 1932;
although see Etz &Wagenmakers, 2017). An important advantage of the Bayes factor is that
it can be used to compare any two models regardless of their form, whereas the frequentist
likelihood ratio test can only compare two hypotheses that are nested. Nevertheless, when
comparing nested hypotheses Bayes factors can be seen as simple extensions of likelihood
ratios. In contrast to the frequentist likelihood ratio test outlined above, which evaluates
the size of the likelihood ratio comparing θnull to θmax, the Bayes factor takes a weighted
average of the likelihood ratio across all possible values of θ; the likelihood ratio is evaluated
at each value of θ and weighted by the prior probability density we assign that value, and
then these products are added up to obtain the Bayes factor (mathematically, this is done
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by integrating the likelihood ratio with respect to the prior distribution; see the Appendix).

Conclusion

The aim of this tutorial has been to provide an accessible introduction to the concept
of likelihood. We have seen how the likelihood is defined, what a likelihood function looks
like, and how this function forms the basis of two common inferential procedures: maximum
likelihood estimation and Bayesian inference. The examples used were intentionally simple
and artificial to keep the mathematical burden light, but hopefully they can give some
insight into the fundamental statistical concept known as likelihood.

Author contributions

All aspects regarding this manuscript are the work of AE.

Box 1. The Binomial likelihood function is given in Equation 1 above, and our goal is
to find the value of p that makes the probability of the outcome x the largest. Recall
that to find possible maximums or minimums of a function, we take the derivative of
the function, set it equal to zero, and solve. We can find the maximum of the likelihood
function by first taking the logarithm of the function and then taking the derivative,
since maximizing log[f(x)] will also maximize f(x). This will make our life easier, since
taking the logarithm changes multiplication to addition and the derivative of log[x] is
simply 1/x. Moreover, since log-likelihood functions are generally unimodal concave
functions (they have a single peak and open downward), if we can do this calculus and
solve our equation then we will have found our desired maximum.

We begin by taking the logarithm of Equation 1,

log
[
P
(
X = x | p

)]
= log

[(
n

x

)]
+ log

[
px
]

+ log
[
(1− p)n−x

]
. (4)

Remembering the rules of logarithms and exponents, we can rewrite this as

log
[
P
(
X = x | p

)]
= log

[(
n

x

)]
+ x log

[
p
]

+ (n− x) log
[
1− p

]
. (5)

Now we can take the derivative of Equation 5 as follows:

d

dp

(
log

[
P
(
X = x | p

)])
= d

dp

(
log

[(
n

x

)]
+ x log

[
p
]

+ (n− x) log
[
1− p

])

= 0 + x

(1
p

)
+ (n− x)(−1)

( 1
1− p

)
= x

p
− n− x

1− p ,

(where the −1 in the last term of the second line comes from using the chain rule of
derivatives on log[1− p]). Now we can set the above equal to zero and a few algebraic
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steps will lead us to the solution for p,

0 = x

p
− n− x

1− p
n− x
1− p = x

p
np− xp = x− xp

np = x

p = x

n
.

In other words, the maximum of the Binomial likelihood function is found at the sample
proportion, namely, the number of successes x divided by the total number of trials n.

Box 2. Conjugate distributions are convenient in that they reduce Bayesian updating
to some simple algebra. We take the formula for the Binomial likelihood function,

Likelihood ∝ px(1− p)n−x, (6)

(notice we dropped the leading term from before) and then multiply it by the formula
for the Beta prior with a and b shape parameters,

Prior ∝ pa−1(1− p)b−1, (7)

to obtain the following formula for the posterior:

Posterior ∝ pa−1(1− p)b−1︸ ︷︷ ︸
Prior

× px(1− p)n−x︸ ︷︷ ︸
Likelihood

. (8)

The terms in Equation 8 can be regrouped as follows:

Posterior ∝ pa−1px︸ ︷︷ ︸
Successes

× (1− p)b−1(1− p)n−x︸ ︷︷ ︸
Failures

. (9)

which suggests that we can interpret the information contained in the prior as adding
a certain amount of previous data (i.e., a− 1 past successes and b− 1 past failures) to
the data from our current experiment. Since we are multiplying together terms with
the same base, the exponents can be added together in a final simplification step,

Posterior ∝ px+a−1(1− p)n−x+b−1.

This final formula looks like our original Beta distribution but with new shape parame-
ters equal to x+a and n−x+ b. In other words, we start with the prior, Beta(a,b), and
add the successes from the data, x, to a and the failures, n− x, to b, and our posterior
is a Beta(x+ a, n− x+ b) distribution.
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Appendix

Note that for a generic random variable ω (omega), the expected value (i.e., average)
of the function g(ω) with respect to a probability distribution P (ω) can be written as

Eω [g(ω)] =
∫

Ω
g(ω)P (ω)dω. (10)

We will use this result below to show that the Bayes factor between nested models can
be written as the expected value of the likelihood ratio with respect to the specified prior
distribution.

The Bayes factor comparing H1 to H0 is written similarly to the likelihood ratio,

BF10 = P (D | H1)
P (D | H0) . (11)

In the context of comparing nested models,H0 specifies that θ = θnull, so P (D | H0) = P (D |
θnull); H1 assigns θ a prior distribution, θ ∼ P (θ), so that P (D|H1) =

∫
Θ P (D | θ)P (θ)dθ.

Thus, we can rewrite Equation 11 as

BF10 =
∫

Θ P (D | θ)P (θ)dθ
P (D | θnull)

. (12)

Since the denominator of Equation 12 is a fixed number we can bring it inside the integral,
and we can see this has the form of the expected value of the likelihood ratio between θ
and θnull with respect to the prior distribution of θ,

BF10 =
∫

Θ

LR(θ,θnull)︷ ︸︸ ︷
P (D|θ)

P (D | θnull)
P (θ)dθ

= Eθ [LR(θ, θnull)] .
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