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Today’s largest data centers contain tens of thousands of servers, and they will

encompass hundreds of thousands in the very near future. �ese machines are designed

to serve a rich mix of applications and clients with signi�cant aggregate bandwidth re-

quirements; distributed computing frameworks like MapReduce/Hadoop signi�cantly

stress the network interconnect, which when compounded with progressively oversub-

scribed topologies and ine�cientmultipath forwarding, can cause amajor bottleneck for

large computations spanning hundreds of racks. Non-uniform bandwidth among data

center nodes also complicates application design and limits overall system performance.

Furthermore, using the highest-end, high port-density commercial switches at the core

and aggregation layers incurs tremendous cost.
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To overcome this limitation, this dissertation advocates three major goals: First,

the horizontal, rather than vertical, expansion of data center networks, using commodity

o�-the-shelf switch components, and rearrangeably non-blocking topologies such as fat-

trees. We show that these topologies have several advantages in overall equipment and

operational cost and power compared to traditional hierarchical trees. However, the

corresponding increase in the degree ofmultipathingmakes tra�c forwardingmore chal-

lenging. Traditionalmultipath techniques like static hashing (ECMP) canwaste bisection

bandwidth due to local and downstream hash collisions. To overcome this ine�ciency,

we next describe the architecture, implementation, and evaluation of Hedera: a central-

ized �ow scheduling system for data center networks with global knowledge of tra�c

patterns and link utilization. Hedera computes max-min fair �ow-bandwidth demands

and uses one of several online placement heuristics to �nd �ow paths that maximize the

achievable network bisection bandwidth.

Finally, to enable rapid network extensibility, we describe the system architec-

ture and implementation of NetBump: a platform for data-plane modi�cations “on the

wire.” By using low-latency kernel bypass and user-level application development, Net-

Bump allows examining, marking, and forwarding packets at line-rate, and enables a

host of active queue management disciplines and congestion control mechanisms. �is

allows the prototyping and adoption of innovative functionality such as DCTCP and

802.1Qau quantized congestion noti�cation (QCN). We show that augmenting top-of-

rack switches with NetBumps e�ectively enables bypassing the slow adoption of data

center protocols by commercial switch vendors.
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Chapter 1

Introduction

At a rate and scale unforeseen just a few years ago, large organizations, from

universities and research labs to large companies, are building progressively more enor-

mous data centers that support tens and hundreds of thousands of machines, and span

over 1 million square feet [136]. Imagine an area of over 24 acres, �lled with nothing

but server racks, networking equipment, HVAC systems, and backup power generators.

Other organizations are moving their computation, storage, and operations to cloud-

computing hosting providers. One such cloud-computing provider, Amazon’s EC2 plat-

form [6], has grown so large that it has become a so-called “accidental” and distributed

supercomputer.1 Important classes of applications being run on thismassive scale include

scienti�c computing, �nancial analysis, data analysis and warehousing, and large-scale

network services. Many of these applications—from commodity application hosting to

scienti�c computing to web search and MapReduce—require substantial intra-cluster

bandwidth. As data centers and their applications continue to scale, scaling the capac-

ity of the network fabric for potential all-to-all communication becomes a compelling

engineering challenge.

From a networking research perspective, however, this exciting environment also

presents powerful opportunities and advantages not seen before on the open internet. A

data center exists under a single administrative domain; the data center operator has

full control of all networking infrastructure, all end-host hardware, operating systems,

1As of Nov. 2011, EC2 is ranked 42nd in the TOP500 list of the largest supercomputer sites, and the top
such site employing a 10G Ethernet interconnect [125].
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installed packages, and custom networking settings. �is complete control is an un-

precedented advantage in large computing clusters, and not previously encountered at

this scale outside of dedicated supercomputers.

One interesting complication to the growth story of data centers is the adop-

tion of existing, “road-tested” networking technologies and protocols designed for the

internet at large. In particular, the phenomenal and tenacious success of Ethernet in

the face of competing interconnect technologies has made it the de facto standard in

commercial data centers (and still the leading interconnect in use at 45% of the top

500 supercomputing sites [125]). �is historic longevity and almost universal adoption

have commoditized Ethernet components and made it the most cost-e�ective choice

in terms of performance and compatibility. In addition, data center applications and

services are typically developed and deployed on top of existing internet protocols (i.e.

TCP/IP); protocols originally designed for wide-area networks and not optimized for an

environment with such stringent requirements for ultra-low latency and high bandwidth

communication.

�is adoption can create, or exacerbate, new classes of performance problems.

Incast is an example [22], where a server’s multiple and simultaneous outgoing requests

can create synchronized responses that can overwhelm small switch bu�ers, causing

drops and TCP timeouts. Another important example is the e�cient utilization of

multiple paths; an aspect that TCP/IP/Ethernetwere not designedwith inmind. Standard

Ethernet requires spanning trees that disallow loops, IP’s multipathing support using

static hashing is ine�cient, and TCP’s performance degrades drastically with out-of-

order packet arrival when multiple paths are used (an issue we discuss in detail in

chapter 4).

1.1 �e Evolution of Networking

It is a very exciting time for networking research. Besides the sheer magnitude

and scale of the incoming crop of data centers in the next few years, there is a di�erent

reason: We are on the cusp of a major shi� in how data center and campus networks are
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engineered and used, and this relates to how the networking industry itself is evolving

toward open standards of control.

�roughout the internet boom in the 90’s, 2000’s, and still today to a large extent,

the networking industry has been severely vertically integrated. Everything on high-end

switches and routers, all the way from the implementation of supported features and

protocols, the switch operating system, and down to the underlying hardware chips, has

been developed by its manufacturer, and sold in a proprietary bundle (o�en at exorbitant

margins and with expensive service contracts). One unfortunate consequence of this was

that this monolithic and deeply integrated model, combined with a virtual monopoly in

the industry, le� little room for networking innovation by academia and small startups.2

�is structure is slowly changing. And this transformation is closely analogous to

the computing industry’smove from largemainframes of the 70’s, with their integrated set

of specialized applications, operating systems and hardware, to the personal computers

and servers of the 80’s and 90’s, running a myriad of applications on top of a large set of

operating systems on general-purpose, commodity processors. It is argued that the clear

separation and open interfaces between the applications andOS, and between theOS and

the underlying hardware was a major factor in the rapid innovation and growth in that

industry. Frustrated by the di�culty the research community faces in experimentation

with large-scale networks (without resorting to small-scale experiments or simulations),

networking researchers are calling for the same thing: decoupling network services and

control from the underlying physical devices.

�is is at the heart of what is termed So�ware-De�ned Networking (SDN) [101,

126], which has two basic principles:

1. So�ware-De�ned Forwarding: Switches are abstracted as simple forwarding en-

gines, and they export an open forwarding interface that de�nes a set of actions

(e.g. forward to a given port, drop) to perform on incoming packets.

2. GlobalManagementAbstractions: A networkOSwould collect the network “view”

(the abstract network graph, so that this task would not have to be replicated across

2Additionally, incorporation of new functionality was notoriously di�cult. �e best-case scenario
when big customers request new features is a very long lead-time, if considered at all.
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applications), and would present possible event triggers (e.g. link failures, addition

of a new link/switch, etc.) to running management applications.

�e SDN philosophy is gaining signi�cant traction and momentum in the net-

working community in recent years, both in academia and industry. And while SDN has

been a hot area of networking research for some time (e.g. RCP [17] and 4D [50]), perhaps

a key turning point was the Ethane [18] project, which is a centralized networking control

architecture that allows the application of �ne-grained admission and routing policies in

enterprise networks. �is work eventually led to the formalization of the control protocol

in the groundbreaking OpenFlow project [91], which codi�es the management API that

the physical switches export to the control engine. OpenFlow is quickly becoming an

industry-wide standard with support being incorporated into switches made by virtually

all major vendors like Juniper, HP ProCurve, IBM Blade, Brocade, Extreme Networks

and others.3 In parallel, research into an OpenFlow-based network OS is becoming

moremature with projects like NOX [53], arguably the �rst such platformwith a general-

purpose application API, and Onix [78], which aims to be a far more general and robust

production-quality system. On the whole, OpenFlow and the SDN paradigm have un-

deniably sparked a new wave of networking innovation and research, enabling exciting

projects like PortLand [97], Hedera [3], Helios [39], ElasticTree [57], DIFANE [140],

FlowVisor [115], MiniNet [81], among others too numerous to list. �is dissertation

certainly would not have been possible without it.

1.2 Data Center Design Challenges

While the emerging area of data center network design and architecture is

teeming with exciting unsolved problems and research opportunities, this dissertation

attempts to tackle three speci�c challenges that arise from their exponential growth;

namely, 1) Topological Scalability, 2) Forwarding Adaptability, and 3) Rapid Networking

Extensibility. We discuss each of these challenges in turn.

3Perhaps surprising, but de�nitely welcome, is switching giant Cisco’s plan to support OpenFlow on
the Nexus switch series [25].
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1.2.1 Topological Scalability

Today, the principal bottleneck in large-scale clusters is o�en inter-node commu-

nication bandwidth. Many applications must exchange information with remote nodes

to proceed with their local computation. For example, MapReduce [29] must perform

signi�cant data shu�ing to transport the output of its map phase before proceeding

with its reduce phase. Applications running on cluster-based �le systems [30,47, 111, 138]

o�en require remote-node access before proceeding with their I/O operations. A query

to a web search engine o�en requires parallel communication with every node in the

cluster hosting the inverted index to return the most relevant results [15]. Even between

logically distinct clusters, there are o�en signi�cant communication requirements, e.g.,

when updating the inverted index for individual clusters performing search from the site

responsible for building the index. Internet services increasingly employ service oriented

architectures [30], where the retrieval of a single web page can require coordination and

communication with literally hundreds of individual sub-services running on remote

nodes. Finally, the signi�cant communication requirements of parallel scienti�c applica-

tions are well known [23, 112].

�ere are two high-level choices for building the communication fabric for large-

scale clusters. One option leverages specialized hardware and communication protocols,

such as In�niBand [64] or Myrinet [14]. While these solutions can scale to clusters of

thousands of nodes with high bandwidth, they do not leverage commodity parts (and

are hence more expensive) and are not natively compatible with TCP/IP applications.

�e second choice leverages commodity Ethernet switches and routers to interconnect

cluster machines. �is approach supports a familiar management infrastructure along

with unmodi�ed applications, operating systems, and hardware. Unfortunately, aggre-

gate cluster bandwidth scales poorly with cluster size, and achieving the highest levels of

bandwidth incurs non-linear cost increases with cluster size.

Historically, for compatibility and cost reasons, most cluster communication sys-

tems follow the second approach. However, communication bandwidth in large clusters

may become oversubscribed by a signi�cant factor depending on the communication

patterns. �at is, two nodes connected to the same physical switch may be able to com-

municate at full bandwidth (e.g., 1Gbps) but moving between switches, potentially across
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multiple levels in a hierarchy, may limit available bandwidth severely. Addressing these

bottlenecks requires non-commodity solutions, e.g., large 10Gbps switches and routers.

Further, typical single path routing along trees of interconnected switches means that

overall cluster bandwidth is limited by the bandwidth available at the root of the com-

munication hierarchy. Even as we are at a transition point where 10Gbps technology is

becoming cost-competitive, the highest port-density 10Gbps switches still incur signi�-

cant cost and still limit overall available bandwidth for the largest clusters.

In this context, the �rst goal of this dissertation is to design a data center com-

munication architecture that meets the following goals:

● Scalable interconnection bandwidth: it should be possible for an arbitrary host

in the data center to communicate with any other host in the network at the full

bandwidth of its local network interface.

● Economies of scale: just as commodity personal computers became the basis for

large-scale computing environments, we hope to leverage the same economies of

scale to make cheap o�-the-shelf Ethernet switches the basis for large-scale data

center networks.

● Backward compatibility: the entire system should be backward compatible with

hosts running Ethernet and IP. �at is, existing data centers, which almost univer-

sally leverage commodity Ethernet and run IP, should be able to take advantage of

the new interconnect architecture with no modi�cations.

1.2.2 Forwarding Adaptability

However, scaling out the underlying topology is not the only challenge; there

are several other properties of cloud-based applications that make the problem of data

center network design di�cult. First, data center workloads are a priori unknown to

the network designer and will likely be variable over both time and space. As a result,

static resource allocation is insu�cient. Second, customers wish to run their so�ware on

commodity operating systems; therefore, the networkmust deliver high bandwidthwith-

out requiring so�ware or protocol changes. �ird, virtualization technology—commonly
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used by cloud-based hosting providers to e�ciently multiplex customers across physical

machines—makes it di�cult for customers to have guarantees that virtualized instances

of applications run on the same physical rack. Without this physical locality, applications

face inter-rack network bottlenecks in traditional data center topologies [26].

Applications alone are not to blame. �e routing and forwarding protocols used

in data centers were designed for very speci�c deployment settings. Traditionally, in

ordinary enterprise/intranet environments, communication patterns are relatively pre-

dictable with a modest number of popular communication targets. �ere are typically

only a handful of paths between hosts and secondary paths are used primarily for fault

tolerance. In contrast, recent data center designs rely on the path multiplicity to achieve

horizontal scaling of hosts [2, 51, 52, 54, 55]. For these reasons, data center topologies are

very di�erent from typical enterprise networks.

Some data center applications o�en initiate connections between a diverse range

of hosts and require signi�cant aggregate bandwidth. Because of limited port densities

in the highest-end commercial switches, data center topologies o�en take the form of a

multi-rooted treewith higher-speed links but decreasing aggregate bandwidthmoving up

the hierarchy [26]. �ese multi-rooted trees have many paths between all pairs of hosts.

A key challenge is to simultaneously and dynamically forward �ows along these paths to

minimize/reduce link oversubscription and to deliver acceptable aggregate bandwidth.

Unfortunately, existing network forwarding protocols are optimized to select a

single path for each source/destination pair in the absence of failures. Such static single-

path forwarding can signi�cantly underutilize multi-rooted trees with any fanout. State

of the art forwarding in enterprise and data center environments uses ECMP [62] (Equal

Cost Multipath) to statically stripe �ows across available paths using �ow hashing. �is

static mapping of �ows to paths does not account for either current network utilization

or �ow size, with resulting collisions overwhelming switch bu�ers and degrading overall

switch utilization.

1.2.3 Rapid Networking Extensibility

One of the ultimate goals in datacenter networking is predictable, congestion-

responsive, low-latency communication. �is is a challenging problem and one that
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requires tight cooperation between end-host protocol stacks, network interface cards,

and the switching infrastructure. While there have been a range of interesting ideas in this

space, their evaluation and deployment have been hamstrung by the need to develop new

hardware to support functionality such as Active Queue Management (AQM) [48, 79],

QoS [133], tra�c shaping [71], and congestion control [4,5,72,88]. While simulation can

show the merits of an idea and support publication, convincing hardware manufacturers

to actually support new features requires real-world evidence that a particular technique

will actually deliver promised bene�ts for a range of application and communication

scenarios.

Given the signi�cant investment in the data center’s networking infrastructure,

and the strong disconnect between the need to support rapidly evolving networking

requirements and the di�culty of patching in this functionality and protocol support to

existing switches and routers, we believe that an experimental platform to support such

rapid networking extensibility is absolutely essential to keep up with data center network

evolution.

�emain requirements for this experimental systemwould be: rapid prototyping

and evaluation, ease of deployment, support for line rate data processing, low latency

(i.e., tens of µs), packet marking/transformation for a range of AQM and congestion

control policies, and support for distributed deployment to support datacenter multipath

topologies. We require low latency sincewe target LAN switches, rather thanWANrouter

deployments. We expect these bumps on the wire to be part of the production network

that will form a proving ground to inform eventual hardware development.

�ere are several implementation choices for building such a system. While it is

possible to develop custom silicon for such functionality, the time to market is long (2-

3 years) and the non-recurring engineering costs are o�en prohibitive for functionality

that does not have a pre-existing market. Programmable network processors have been

a hot topic for number of years [113]; however, their utility has been hampered by a

di�cult programming model, which is also the case for FPGA-based designs that are

programmed in Verilog or VHDL. �e complexity and lead time of these approaches

prevent experimenting with novel network programming ideas.

On the other hand, so�ware programmable routers like Click [77] and Route-
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Bricks [32] provide a powerful and easy-to-program language for implementing in-

network datapath extensions. However, we found that RouteBricks sacri�ces latency for

higher aggregate throughput (its underlying NIC device driver batches packets). And

Click, on the other hand, was designed as a general-purpose so�ware router from the

beginning and hasn’t been optimized for performance for years [76]. As we are targeting

a simpler pass-through AQM system that augments existing hardware switches, repro-

ducing the switching functionality is unnecessary and comes at a signi�cant performance

cost.

1.3 Hypothesis

We are reaching an in�ection point in the design of large computing clusters;

the combination of exponential data center growth and the stringent requirements of

high bisection-bandwidth, ultra low-latency, and evolving extensibility are pushing the

boundaries of the networking community’s existing expertise with enterprise and wide-

area networks.

Towards achieving these goals, this dissertation aims to prove the following hy-

pothesis: �at by combining commodity, o�-the-shelf networking equipment with the

power of network programmability using open standards, it is possible to overcome all

of the following three challenges:

1. Building scalable data center topologies. Speci�cally, those that can accomodate

tens of thousands of servers, and support all-to-all communication at the full speed

of the edge.

2. Overcoming forwarding scalability limitations. Namely, the ability to actually

achieve the full bisection bandwidth possible for multipath topologies.

3. Support continually and rapidly extensible networking functionality.

In the next section, we describe how we tackle each of these challenges in turn.
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1.4 Contributions

1.4.1 A Scalable, Commodity Data Center Architecture

To address the �rst challenge, we show in chapter 3 that by interconnecting com-

modity switches in a fat-tree architecture, we can achieve the full bisection bandwidth

of clusters consisting of tens of thousands of nodes. Speci�cally, one instance of our

architecture employs 48-port Ethernet switches capable of providing full bandwidth to

up 27,648 hosts. By leveraging strictly commodity switches, we achieve lower cost than

existing solutions while simultaneously delivering more bandwidth. Our solution re-

quires no changes to end-hosts, is fully TCP/IP compatible, and imposes only modest

modi�cations to the forwarding functions of the switches themselves.

We also show that this approach is the only reasonable and cost-e�ective way to

deliver full bandwidth for large clusters now that 10GigE switches have become commod-

ity at the edge, given the recent rati�cation of the 40/100 Gigabit Ethernet standards, and

the high-cost and limited port-density of these newly available modules.

1.4.2 Dynamic Flow Scheduling

Next, to address the problem of forwarding adaptability, we present Hedera, a

dynamic �ow scheduling system for multi-stage switch topologies found in data centers.

Hedera collects �ow information from constituent switches, computes non-con�icting

paths for �ows, and instructs switches to re-route tra�c accordingly. Our goal is to max-

imize aggregate network utilization—bisection bandwidth—and to do so with minimal

scheduler overhead or impact on active �ows. By taking a global view of routing and

tra�c demands, we enable the scheduling system to see bottlenecks that switch-local

schedulers cannot.

We completed a full implementation of Hedera on the PortLand testbed [97].

For both our implementation and large-scale simulations, our algorithms deliver perfor-

mance that is within a few percent of optimal—a hypothetical non-blocking switch—for

numerous interesting and realistic communication patterns, and deliver in our testbed

up to four times more bandwidth than state of the art ECMP techniques. Hedera delivers

these bandwidth improvements with modest control and computation overhead.
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One requirement for our placement algorithms is an accurate view of the demand

of individual �ows under ideal conditions. Unfortunately, due to constraints at the end-

host or elsewhere in the network, measuring current TCP �ow bandwidth may have no

relation to the bandwidth the �ow could achieve with appropriate scheduling. �us, we

also present an e�cient algorithm to estimate idealized bandwidth share that each �ow

would achieve under max-min fair resource allocation, and describe how this algorithm

assists in the design of our scheduling techniques.

1.4.3 User-extensible Active Queue Management

Finally, in chapter 5, we consider a model where new AQM disciplines can be

deployed and evaluated directly in production datacenter networks without modifying

existing switches or end-hosts. Instead of adding programmability to existing switches

themselves, we instead deploy “bumps on the wire,” called NetBumps, to augment the

existing switching infrastructure. Each NetBump exports a virtual, or phantom, queue

primitive that emulates a range of AQM mechanisms [48, 49] at line rate that would

normally have to be implemented in the switches themselves.

A contribution of NetBump is providing an e�cient and easy way to deploy and

manage active queue management separate from switches and end-hosts. NetBump en-

ables AQM functions to be incrementally deployed and evaluated by placement at key

points in the network. �is makes implementing new functions straightforward. In

our experience, new queuing disciplines, congestion control strategies, protocol-speci�c

packet headers (e.g., for XCP [72]), and new packets (for a new congestion control pro-

tocol we implement in this work) can be built and deployed at line rate into existing

networks. Developers can experiment with protocol speci�cs by simply modifying so�-

ware within the bump. Furthermore, we greatly reduce the latency imposed by NetBump

because our functionality is limited to modi�cations of packets in �ight, using a user-

level, zero-copy, kernel-bypass network API, with no actual queuing or bu�ering done

within NetBump.

Speci�cally, the primary contributions of chapter 5 are:

● �edesign of a “bump on the wire,” speci�cally focusing on evaluating and deploy-

ing new bu�er management packet processing functions.
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● A simple virtual Active QueueManagement (vAQM) implementation to indirectly

manage the bu�ers of neighboring, unmodi�ed switches.

● Several new programs implemented on top of NetBump, including an implemen-

tation of IEEE 802.1Qau-QCN L2 congestion control.

● And �nally, an extensible and distributed tra�c update and management platform

for remote physical switch queues.

1.5 Organization

Chapter 2 lays out the required background for the three aforementioned com-

ponents of this dissertation and their related work.

In chapter 3, we introduce and discuss the fat-tree architecture as it applies to

data center networks, as well as the scalability issues and real-world implementation

consequences of building data centers based on these designs using commodity o�-the-

shelf switches.

Next, in chapter 4 we present the idea of dynamic �ow scheduling for data cen-

ter networks. We describe the concept, motivation behind it, and describe the design,

implementation and evaluation of Hedera.

In chapter 5, we describe the motivation for and the design, implementation,

and evaluation of NetBump, an in-line forwarding framework that enables the rapid

development, evaluation and deployment of new network protocols in the data center

environment.

And �nally, chapter 6 presents avenues of future research as it relates to the afore-

mentioned systems and gives the summary and conclusions of the dissertation.
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Chapter 2

Background and RelatedWork

In this chapter, we give some background and historical perspective about current

data center networking practices, as well as explore some of the issues that arise from

data center multipath forwarding. We �nally discuss in § 2.3 some of the related research

regarding topological scalability, multipath forwarding, and user-extensible active queue

management.

2.1 Current Data Center Practices

We conducted a study to determine the current best practices for data center

communication networks. We focus here on commodity designs leveraging Ethernet

and IP; we discuss the relationship of our work to alternative technologies in § 2.3.1.

2.1.1 Topology

Typical architectures today consist of either two- or three-level trees of switches or

routers. A three-tiered design (Fig. 2.1) has a core tier in the root of the tree, an aggregation

tier in themiddle and an edge tier at the leaves of the tree. A two-tiered design has only the

core and the edge tiers. Typically, a two-tiered design can support between 5K to 8Khosts.

Since we target approximately 25,000 hosts, we restrict our attention to the three-tier

design, and consider designs that deliver di�erent levels of bandwidth oversubscription.
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Figure 2.1: A common multi-rooted hierarchical tree. Host to top-of-rack switch links

are 1GigE and links between switches are 10GigE.

Switches1 at the leaves of the tree have some number of GigE ports (48–288) as

well as some number of 10GigE uplinks to one or more layers of network elements that

aggregate and transfer packets between the leaf switches. In the higher levels of the hi-

erarchy there are switches with 10GigE ports (typically 32–128) and signi�cant switching

capacity to aggregate tra�c between the edges.

We assume the use of two types of switches, which represent the high-end in

both port density and bandwidth. �e �rst, used at the edge of the tree, is a 48-port GigE

switch, with four 10GigE uplinks. For higher levels of a communication hierarchy, we

consider 10GigE switches with 128-ports ormore. Both types of switches allow all directly

connected hosts to communicate with one another at the full speed of their network

interface.

2.1.2 Oversubscription

Many data center designs introduce oversubscription as ameans to lower the total

cost of the design. We de�ne the term oversubscription to be the ratio of the worst-case

achievable aggregate bandwidth among the end-hosts to the total bisection bandwidth of

1We use the term switch throughout the rest of the chapter to refer to devices that perform both layer 2
switching and layer 3 routing.
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a particular communication topology. An oversubscription of 1:1 indicates that all hosts

may potentially communicatewith arbitrary other hosts at the full bandwidth of their net-

work interface (e.g. 1Gbps for commodity Ethernet designs). An oversubscription value

of 5:1 means that only 20% of available host bandwidth is available for some communi-

cation patterns. Typical designs are oversubscribed by factors from 2.5:1 (400Mbps) and

8:1 (125Mbps) [26], all the way up to 80:1 (12.5Mbps) and 240:1 (4.2Mbps) [51]. Although

data centers with oversubscription of 1:1 are possible for 1Gbps Ethernet, as we discuss in

§ 2.1.3, the cost for such designs is typically prohibitive, even formodest-size data centers.

2.1.3 Network Interconnect Cost Trends

�e cost for building a network interconnect for a large cluster greatly a�ects

design decisions. As we discussed above, oversubscription is typically introduced to

lower the total cost. Here we give the rough cost of various con�gurations for di�erent

number of hosts and oversubscription using current best practices. We do not consider

cabling costs in these calculations.

Fig. 2.2 plots the cost in millions of US dollars as a function of the total number

of end-hosts on the x-axis, both for 2008 and 2012. Each curve represents a target over-

subscription ratio. For instance, in 2008 the switching hardware to interconnect 20,000

hosts, using a traditional hierarchical tree and full bandwidth among all hosts, came to

approximately $34M, and came down to $3.2M in 2012. �e curve corresponding to

an oversubscription of 3:1 plots the cost to interconnect end-hosts where the maximum

available bandwidth for arbitrary end-host communication would be limited to approxi-

mately 330Mbps. We also include the cost to deliver an oversubscription of 1:1 using our

fat-tree architecture we propose in chapter 3 for comparison.
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Figure 2.2: Cost estimate vs. number of hosts for di�erent oversubscription ratios in

2008 and 2012. Note the dramatic drop in the y-axis.
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Overall, we �nd that existing techniques for delivering high levels of bandwidth

in large clusters incur signi�cant cost and that fat-tree based cluster interconnects hold

signi�cant promise for delivering scalable bandwidth at moderate cost. However, in

some sense, Fig. 2.2 understates the di�culty and expense of employing the highest-

end components in building data center architectures. In 2008, 10GigE switches were

on the verge of becoming commodity parts; there was roughly a factor of 5 di�erential in

price per port per bit/sec when comparing GigE to 10GigE switches, and this di�erential

continues to shrink. To explore the historical trend, we show in Table 2.1 the cost of

the largest cluster con�guration that could be supported using the highest-end switches

available in a particular year. We based these values on a historical study of product

announcements from various vendors of high-end 10GigE switches from 2002-2012.

We use our �ndings to build the largest cluster con�guration that technology in

that year could support while maintaining an oversubscription of 1:1. Table 2.1 shows

the largest 10GigE switch available in a particular year; we employ these switches in the

core and aggregation layers for the hierarchical design. Table 2.1 also shows the largest

commodityGigE switch available in that year; we employ these switches at all layers of the

fat-tree and at the edge layer for the hierarchical design. For comparison, since 10GigE is

virtually commodity now and being pushed into the end-hosts, we also show in Table 2.2

the size and cost-per-port of the largest networks required to deliver 1:1 oversubscription

to 10GigE end-hosts in 2012.

�e maximum cluster size supported by traditional techniques employing high-

end switches has been limited by available port density until recently. Further, the high-

end switches incurred prohibitive costs when 10GigE switches were �rst introduced. Note

that we are being somewhat generous with our calculations for traditional hierarchies

since commodity 10GigE switches at the aggregation layer did not have the necessary

40GigE uplinks until quite recently. Clusters based on fat-tree topologies on the other

hand scale well, with the total cost dropping more rapidly and earlier (as a result of

following commodity pricing trends earlier). Also, there is no requirement for higher-

speed uplinks in the fat-tree topology.

It is interesting to note that, back in 2008, it was technically infeasible to build a

27,648-node cluster with 10Gbps bandwidth potentially available among all nodes using
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Table 2.1: �e maximum possible cluster size, for 1GigE hosts and an oversubscription

ratio of 1:1 for di�erent years. Note the 100-fold decrease in per-port cost for 1GigE from

2002 to 2012.

Hierarchical design Fat-tree

Year 10GigE Hosts
Cost/

GigE Hosts
Cost/

GigE GigE

4,480 $25.3K 28-port 5,488 $4.5K
7,680 $4.4K 48-port 27,648 $1.6K
10,240 $2.1K 48-port 27,648 $1.2K

128-port 20,480 $1.8K 48-port 27,648 $417
140-port 98,000 $1.0K 48-port 27,648 $312
768-port 2,949,120 $435 48-port 27,648 $47

- - 96-port 221,184 $302

Table 2.2: �emaximum possible cluster size, for 10GigE hosts and an oversubscription

ratio of 1:1.

Hierarchical design Fat-tree

Year 40GigE Hosts
Cost/

10GigE Hosts
Cost/

10GigE 10GigE

96-port 46,080 $2,094 48-port 27,648 $520

aggregation. �is was because Ethernet standards faster than 10GigE were not yet com-

plete at that time. However, the 802.3ba standard that de�nes 40GigE and 100GigE speeds

was rati�ed in June 2010 [63], and vendors �nally began shipping 40/100GigE modules

to their high-end core switch o�erings in 2011.

Furthermore, as 10GigE NICs are now being considered for the end servers,

providing non-blocking bandwidth capacity using traditional hierarchical designs using

40GigE switches for aggregation and core layers is still prohibitively expensive and carries

a four-fold per-port cost premium over the proposed fat-tree designs (Table 2.2). A

fat-tree switch architecture for 27,648 hosts with 10GigE NICs would leverage now-

commodity 48-port 10GigE switches and incur a cost of $14.4M (or about $690M back

in 2008).
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Perhaps the most important point we would like to make in this section is that

network designs that depend on aggregation with just-introduced technology would be

cost-prohibitive and not economically sound for large deployments, as it takes a few

years for these components’ prices to come down. When the aggregation technology

�nally becomes commodity too, we can see a signi�cant drop in the price di�erence—in

absolute terms—compared to fat-trees. However, by that time this “previous-generation”

technology migrates to the end servers, thereby repeating the cycle, as the proposal and

approval process for new standards seems to be slower than this technology migration

from the core to the edge.

2.2 Adaptive Forwarding

�e recent development of powerful distributed computing frameworks such as

MapReduce [29], Hadoop [10] and Dryad2 [65] as well as web services such as search,

e-commerce, and social networking have led to the construction of massive computing

clusters composed of commodity-class servers. Simultaneously, we have witnessed un-

precedented growth in the size and complexity of datasets, up to several petabytes, stored

on tens of thousands of machines [47].

�ese cluster applications can o�en be bottlenecked on the network, not by local

resources [12, 20, 30, 47, 51]. Hence, improving application performance may hinge on

improving network performance. With the push to build larger data centers encom-

passing tens of thousands of machines, recent research advocates the horizontal—rather

than vertical—expansion of data center networks [51,52]; instead of using expensive core

routers with higher speeds and port-densities, networks will leverage a larger number of

parallel paths between any given source and destination edge switches.

�us we �nd ourselves at an impasse—with network designs using multi-rooted

topologies that have the potential to deliver full bisection bandwidth among all commu-

nicating hosts, but without an e�cient protocol to forward data within the network or a

scheduler to appropriately allocate �ows to paths to take advantage of this high degree of

parallelism.

2�eworld of big-data processing systems seems to be consolidating; Microso� announced inNov. 2011
itsmove to discontinue development ofDryad in favor of aWindowsAzure implementation ofHadoop [8].
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Figure 2.3: An example of a Valiant Load Balancing mesh. Tra�c is �rst forwarded to

random intermediate switches, and from there to its destination switch.

2.2.1 Current Data Center Multipathing

To take advantage of multiple paths in data center topologies, the current state

of the art is to use Equal-Cost Multi-Path forwarding (ECMP) [26]. ECMP-enabled

switches are con�guredwith several possible forwarding paths for a given subnet. When a

packet with multiple candidate paths arrives, it is forwarded on the one that corresponds

to a hash of selected �elds of that packet’s headers modulo the number of paths [62],

splitting load to each subnet across multiple paths. �is way, a �ow’s packets all take

the same path, and their arrival order is maintained (TCP’s performance is signi�cantly

reduced when packet reordering occurs because it interprets that as a sign of packet loss

due to network congestion).

A closely-related method is Valiant Load Balancing (VLB) [51, 52, 130], shown in

Fig. 2.3. VLB essentially guarantees equal-spread load-balancing in a mesh network by

bouncing individual packets from a source switch in the mesh o� of randomly chosen

intermediate switch, which �nally forwards those packets to their destination switch. In

the data center context, the intermediate switches would be the core switches. Recent

realizations of VLB [51] perform randomized forwarding on a per-�ow rather than on a

per-packet basis to preserve packet ordering. Note that per-�owVLB becomes e�ectively

equivalent to ECMP.
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Local 
Collision

Flow A Flow B Flow C Flow D

Agg 0 Agg 1 Agg 2

Downstream
Collision

Core 0 Core 1 Core 2 Core 3

(a) ECMP forwarding.

Agg 0 Agg 1 Agg 2

Core 0 Core 1 Core 2 Core 3

(b) With scheduled �ows.

Figure 2.4: Example of the e�ect of ECMP local and downstream collisions on bisection

bandwidth. Unused links omitted for clarity.

A key limitation of ECMP is that two or more large, long-lived �ows can collide

on their hash and end up on the same output port, creating an avoidable bottleneck as

illustrated in Fig. 2.4(a). Here, we consider a sample communication pattern among a

subset of hosts in a multi-rooted, 1Gbps network topology. We identify two types of

collisions caused by hashing. First, TCP �ows A and B interfere locally at switch Agg0

due to a hash collision and are capped by the outgoing link’s 1Gbps capacity to Core0.

Second, with downstream interference, Agg1 and Agg2 forward packets independently

and cannot foresee the collision at Core2 for �ows C and D.

In this example, all four TCP �ows could have reached capacities of 1Gbps with

improved forwarding; �ow A could have been forwarded to Core1, and �ow D could

have been forwarded to Core3 (Fig. 2.4(b)). But due to these collisions, all four �ows are
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Figure 2.5: Example of ECMP bisection bandwidth losses vs. number of TCP �ows per

host for a k=48 fat-tree.

bottlenecked at a rate of 500Mbps each, a 50% bisection bandwidth loss.

Note that the performance of ECMP and �ow-based VLB intrinsically depends

on �ow size and the number of �ows per host. Hash-based forwarding performs well

in cases where hosts in the network perform all-to-all communication with one another

simultaneously, or with individual �ows that last only a few RTTs. Non-uniform com-

munication patterns, especially those involving transfers of large blocks of data, require

more careful scheduling of �ows to avoid network bottlenecks.

We defer a full evaluation of these trade-o�s to chapter 4, however we can cap-

ture the intuition behind performance reduction of hashing with a simple Monte Carlo

simulation. Consider a 3-stage fat-tree composed of 1GigE 48-port switches, with 27k

hosts performing a data shu�e. Flows are hashed onto paths and each link is capped at

1GigE. If each host transfers an equal amount of data to all remote hosts one at a time, hash

collisions will reduce the network’s bisection bandwidth by an average of 60.8% (Fig. 2.5).

However, if each host communicates to remote hosts in parallel across 1,000 simultaneous

�ows, hash collisions will only reduce total bisection bandwidth by 2.5%. �e intuition

here is that if there are many simultaneous �ows from each host, their individual rates

will be small and collisions will not be signi�cantly costly: each link has 1,000 slots to

�ll and performance will only degrade if substantially more than 1,000 �ows hash to the
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same link. Overall, Hedera complements ECMP, supplementing default ECMP behavior

for communication patterns that cause ECMP problems.

2.2.2 Data Center Tra�c Patterns

Currently, since no data center tra�c traces are publicly available due to privacy

and security concerns, we generate patterns along the lines of tra�c distributions in pub-

lished work to emulate typical data center workloads for evaluating our techniques. We

also create synthetic communication patterns likely to stress data center networks. Recent

data center tra�c studies [12, 51, 70] show tremendous variation in the communication

matrix over space and time; a typical server exhibits many small, transactional-type RPC

�ows (e.g. search results), as well as few large transfers (e.g. backups, backend operations

such as MapReduce jobs). We believe that the network fabric should be robust to a range

of communication patterns and that application developers should not be forced tomatch

their communication patterns to what may achieve good performance in a particular

network setting, both to minimize development and debugging time and to enable easy

porting from one network environment to another.

�erefore we focus in chapter 4 on generating tra�c patterns that stress and sat-

urate the network, and comparing the performance of Hedera to current hash-based

multipath forwarding schemes.

2.2.3 Dynamic Flow Demand Estimation

Fig. 2.4 illustrates another important requirement for any dynamic network

scheduling mechanism. �e straightforward approach to �nd a good network-wide

schedule is to measure the utilization of all links in the network and move �ows from

highly-utilized links to less utilized links. �e key question becomes which �ows to

move. Again, the straightforward approach is to measure the bandwidth consumed

by each �ow on constrained links and move a �ow to an alternate path with su�cient

capacity for that �ow. Unfortunately, a �ow’s current bandwidth may not re�ect actual

demand. We de�ne a TCP �ow’s natural demand to mean the rate it would grow to in a

fully non-blocking network, such that eventually it becomes limited by either the sender
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or receiver NIC speed. For example, in Fig. 2.4(a), all �ows communicate at 500Mbps,

though all could communicate at 1Gbps with better forwarding, as shown in Fig. 2.4(b).

In chapter 4, we show how to e�ciently estimate the natural demands of �ows to better

inform Hedera’s placement algorithms.

2.3 RelatedWork

2.3.1 Topological Scalability

Our work in data center network architecture necessarily builds upon work in a

number of related areas. Perhaps most closely related to our e�orts are various e�orts in

building scalable interconnects, largely coming out of the supercomputer and massively

parallel processing (MPP) communities. Many MPP interconnects have been organized

as fat-trees, including systems from�inkingMachines [82,127] and SGI [135]. �inking

Machines employed pseudo-random forwarding decisions to perform load balancing

among fat-tree links. While this approach achieves good load balancing, it is prone

to packet reordering. Myrinet switches [14] also employ fat-tree topologies and have

been popular for cluster-based supercomputers. Myrinet employs source routing based

on predetermined topology knowledge, enabling cut-through low latency switch imple-

mentations. Hosts are also responsible for load balancing among available routes by

measuring round-trip latencies. Relative to all of these e�orts, we focus on leveraging

commodity Ethernet switches to interconnect large-scale clusters, showing techniques

for appropriate routing and packaging.

In�niBand [64] is a popular interconnect for high-performance computing en-

vironments and is currently migrating to data center environments. In�niBand also

achieves scalable bandwidth using variants of Clos topologies. For instance, Sun recently

announced a 3,456-port In�niBand switch built from 720 24-port In�niBand switches

arranged in a 5-stage fat-tree [123]. However, In�niBand imposes its own layer 1-4 proto-

cols, making Ethernet/IP/TCP more attractive in certain settings especially as the price

of 10Gbps Ethernet continues to drop.

Another popular MPP interconnect topology is a Torus, for instance in the Blue-

Gene/L [13] and the Cray XT3 [131]. A torus directly interconnects a processor to some
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number of its neighbors in a k-dimensional lattice. �e number of dimensions deter-

mines the expected number of hops between source and destination. In an MPP envi-

ronment, a torus has the bene�t of not having any dedicated switching elements along

with electrically simpler point-to-point links. In a cluster environment, the wiring com-

plexity of a torus quickly becomes prohibitive and o�oading all routing and forwarding

functions to commodity hosts/operating systems is typically impractical.

Our proposed forwarding techniques are related to existing routing techniques

such as OSPF2 and Equal-Cost Multipath (ECMP) [62,94, 124]. Our proposal for multi-

path leverages particular properties of a fat-tree topology to achieve good performance.

Relative to our work, ECMP proposes three classes of stateless forwarding algorithms: (i)

Round-robin and randomization; (ii) Region splitting where a particular pre�x is split

into two with a larger mask length; and (iii) A hashing technique that splits �ows among

a set of output ports based on the source and destination addresses. �e �rst approach

su�ers from potential packet reordering issues, especially problematic for TCP. �e sec-

ond approach can lead to a blowup in the number of routing pre�xes. In a network with

25,000 hosts, this will require approximately 600,000 routing table entries. In addition

to increasing cost, the table lookups at this scale will incur signi�cant latency. For this

reason, current enterprise-scale routers allow for a maximum of 16-way ECMP routing.

�e �nal approach does not account for �ow bandwidth in making allocation decisions,

which can quickly lead to oversubscription even for simple communication patterns.

2.3.2 Data Center Multipath Forwarding

�ere has been a recent �ood of new research proposals for data center net-

works; however, none satisfyingly addresses the issue of the network’s bisection band-

width. VL2 [51] andMonsoon [52] propose using per-�owValiant LoadBalancing, which

can cause bandwidth losses due to long-term collisions as demonstrated in this work.

SEATTLE [75] proposes a single Layer 2 domain with a one-hop switch DHT for MAC

address resolution, but does not addressmultipathing. DCell [55] andBCube [54] suggest

using recursively-de�ned topologies for data center networks, which involves multi-NIC

servers and can lead to oversubscribed links with deeper levels. Once again, multipathing

is not explicitly addressed.
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Researchers have also explored scheduling �ows in a multi-path environment

from a wide-area context. TeXCP [69] and MATE [36] perform dynamic tra�c engi-

neering across multiple paths in the wide-area by using explicit congestion noti�cation

packets, which require as yet unavailable switch support. �ey employ distributed tra�c

engineering, whereas we leverage the data center environment using a tightly-coupled

central scheduler. FLARE [117] proposes multipath forwarding in the wide-area on the

granularity of �owlets (TCP packet bursts); however, it is unclear whether the low intra-

data center latencies meet the timing requirements of �owlet bursts to prevent packet

reordering and still achieve good performance. Recent e�orts towardsmaking TCPmore

suitable for multi-path environments and resistent to packet reordering are indeed very

promising; especially the ongoing research and standardization e�ort onMulti-path TCP

(MPTCP) [105]. When used in conjunction with per-packet Valiant Load Balancing,

multipath TCP has the potential to dramatically increase the utilization e�ciency of

multipath data center topologies.

Miura et al. exploit fat-tree networks by multipathing using tagged-VLANs

and commodity PCs [93], similar to Ethernet multipathing e�orts like SPAIN [95] and

VIKING [114]. Centralized router control to enforce routing or access control policy

has been proposed before by the 4D architecture [50], and projects like Tesseract [139],

Ethane [18], and RCP [17], similar in spirit to Hedera’s approach to centralized �ow

scheduling.

Much work has focused on virtual switching fabrics and on individual Clos net-

works in the abstract, but do not address building an operational multi-level switch ar-

chitecture using existing commodity components. Turner proposed an optimal non-

blocking virtual circuit switch [129], and Smiljanić improved Turner’s load balancer and

focused on the guarantees the algorithm could provide in a generalized Clos packet-

switched network [119]. Oki et al. design improved algorithms for scheduling in indi-

vidual 3-stage Clos switches [99], and Holmburg provides models for simultaneous and

incremental scheduling ofmulti-stage Clos networks [60]. Geo�ray andHoe�er describe

a number of strategies to increase bisection bandwidth in multistage interconnection

networks, speci�cally focusing on source-routed, per-packet dispersive approaches that

break the ordering requirement of TCP/IP over Ethernet [46].
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2.3.3 User-extensible Active Queue Management

�is section describes previous work that we build upon to design and implement

NetBump.

Virtual Queuing and AQM:

In virtual queuing (VQ), metadata about an incoming packet stream is main-

tained to simulate the behavior of those packets in a hypothetical physical queue. We

di�er from previous work in that we maintain VQs outside of the switch itself. VQ

provides a basis for a variety of active queue management (AQM) techniques. AQM

manipulates packets in bu�ers in the network to enact changes in the control loop of that

tra�c, typically to anticipate and reduce packet drops and queue over�ows, or reduce

bu�er sizes. A large amount of work examined AQM in a variety of settings [59,92]. One

proposal, ActiveVirtual Queue [79], reduces queue sizes in tra�cwith small �ows, which

typically pose challenges for the TCP control loop. Random early detection (RED) [58]

signals congestion by dropping packets with a particular probability as congestion builds,

and unconditionally dropping packets a�er a certain threshold. Due to the ine�ciency

of dropping packets to signal congestion, the early congestion noti�cation ECN [80] �eld

was developed to decouple packet drops from congestion indicators. Several proposals

for improving on RED have been made [11], including Data Center TCP (DCTCP) [5].

Quantized congestion noti�cation [4,88] was proposed as an L2 congestion con-

trol mechanism. QCN tries to ensure that a switch bu�er stays below a con�gurable

maximum size. QCN provides congestion control for non-TCP tra�c, and can respond

faster than the round-trip time. Implementations of QCNhave been developed on 1Gbps

networks [87], as well as emulated within FPGAs at 10Gbps networks [1,98]. Our deploy-

ment is done at 10Gbps and distributed across multiple network hops. Approximate-

Fairness QCN (AF-QCN) [68] is an extension that modi�es noti�cations to input links

weighted by the ratio of their queue occupancy.

Datapath Programming in So�ware:

So�ware-based packet switches and routers have a long history as a platform

for rapidly developing new functionality. �e Click Modular Router [77] is a pipeline-
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oriented, modular so�ware router consisting of a large number of building blocks, each

performing a simple packet-handling task. Click’s library of modules can be extended

by writing code in C++ designed to work in the Linux kernel or userspace. �e Route-

Bricks [32] project has focused on scaling out a Click runtime to support forwarding

rates in excess of tens of Gbps by relying on distribution of packet processing across

cores, as well as across a small cluster of servers. ServerSwitch [87], is another recent

so�ware router design that allows programming commodity Ethernet switching chips

(withmatching/modi�cation of standard header �elds), but delegates general packet pro-

cessing to the CPU (e.g. for XCP). Besides avoiding the associated latency of crossing the

kernel/user-space boundary, NetBump leverages kernel-bypass to allow arbitrary packet

modi�cation to support new protocol headers at line rate. A key distinction from these

projects is that Click, RouteBricks and ServerSwitch are all multi-port so�ware switches

focused on packet routing, while NetBump focuses on pass-through virtual queuing

within a pre-existing switching layer.

SideCar [116], on the other hand, is a recent proposal to delegate a small fraction

of tra�c requiring special processing from the ToR switch to a companion server. While

super�cially similar, the redirection and tra�c sampling are not applicable for NetBump’s

vAQM use-case, where low-latency is a key design requirement. For these reasons, we

consider these e�orts to be orthogonal to this work.

Several e�orts have looked at ways of mapping packet handling tasks necessary

to support so�ware routers to multi-core, multi-NIC queue commodity servers. Egi

et al. [35], and Dobrescu et al. [31] investigate the e�ects of casting forwarding paths

across multiple cores, and �nd that minimizing core transitions is necessary for high

performance. NetBump takes a similar approach to the “split tra�c” and “cloning” func-

tionality described, in which an entire forwarding path resides on a single core and cache

hierarchy. Manesh et al. [90] study the performance of multi-queue NICs as applied to

packet forwarding workloads.

Typically the OS kernel translates streams of raw packets to and from a higher-

level interface such as a socket. While a useful primitive, the involvement of the kernel

can become a bottleneck and an alternative set of user-level networking techniques have

been developed [16, 37, 132, 134]. Here, user-space programs are responsible for TCP
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sequence reassembly, retransmission, etc. User-level networking is typically coupledwith

zero-copy bu�ering, in which the memory that a packet is initially stored in is shared

with target applications. Kernel-bypass drivers also enable applications to directly access

packets fromNICmemory, avoiding kernel involvement on the datapath. Commercially-

available NICs already support these mechanisms [21, 96, 104, 118, 121].

Datapath Programming in Hardware:

One drawback of so�ware-based packet forwarding is that it historically suf-

fered from low performance, and alternative hardware architectures have been pro-

posed. Perhaps the best-known and widely-used hardware forwarding platform is the

NetFPGA [86], a powerful development tool for FPGA devices. However, the complexity

of FPGA programming remains a challenge. Two recent projects sought to address this:

Switchblade [9] provides modular building blocks that can support a wide variety of

datapaths, and Chimpp [109] converts datapaths speci�ed in the Click language into

Verilog code suitable for an FPGA.

In addition, network processors (NPs) [113] have been used to prototype and

deploy new network functionality. �ey have the disadvantage of a di�cult-to-use pro-

grammingmodel and limited production runs.�eir primary advantage is their multiple

functional units, providing signi�cant parallelism to support faster data rates. Com-

modity CPUs have since greatly increased their number of cores, and can also provide

signi�cant per-packet processing at high line rates.
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Chapter 3

A Scalable, Commodity Data Center

Network Architecture

Today’s data centers may contain tens of thousands of computers with signi�cant

aggregate bandwidth requirements. As discussed in chapter 2, the network architecture

typically consists of a tree of routing and switching elements with progressively more

specialized and expensive equipment moving up the network hierarchy. Unfortunately,

even when deploying the highest-end IP switches/routers, resulting topologies may only

support a fraction of the aggregate bandwidth available at the edge of the network, due

to oversubscription, while still incurring tremendous cost.

Today, the price di�erential between commodity and non-commodity switches

provides a strong incentive to build large-scale communication networks from many

small commodity switches rather than fewer larger and more expensive ones. More than

��y years ago, similar trends in telephone switches led Charles Clos to design a network

topology that delivers high levels of bandwidth for many end devices by appropriately

interconnecting smaller commodity switches [28].

In this chapter, we propose a special instance of a Clos topology called a fat-

tree [83] to interconnect commodity Ethernet switches. We organize a k-ary fat-tree as

shown in Fig. 3.1. �ere are k pods, each containing two layers of k/2 switches. Each

k-port switch in the lower layer is directly connected to k/2 hosts. Each of the remaining

k/2 ports is connected to k/2 of the k ports in the aggregation layer of the hierarchy.

�ere are (k/2)2 k-port core switches, and each core switch has one port con-

32
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Pod 0

10.0.2.1

10.0.1.1

Pod 1 Pod 3Pod 2

10.2.0.2 10.2.0.3

10.2.0.1

10.4.1.1 10.4.1.2 10.4.2.1 10.4.2.2

10.2.2.1

10.0.1.2

A

Figure 3.1: Proposed fat-tree topology. Using the two-level routing tables described in

§ 3.1.3, packets from source 10.0.1.2 to destination 10.2.0.3 would take the dashed path.

nected to each of k pods. �e ith port of any core switch is connected to pod i such

that consecutive ports in the aggregation layer of each pod switch are connected to core

switches on (k/2) strides. In general, a fat-tree built with k-port switches supports k3/4

hosts. In this chapter, we focus on designs up to k = 48. Our approach generalizes to

arbitrary values for k.

To clarify the terminology used here, the classical Leiserson “fat-tree” [83] was

proposed as a routing network for parallel processors in a supercomputer context, and

was strictly de�ned as a simple tree whose communication channels were progressively

thicker towards the root (Fig. 3.2(a)). We borrow this terminology for our data center

architecture by using the analogy of “logical switches.” In this sense, all the core switches

should act as a single non-blocking core switch, and similarly for the aggregation switches

in each pod (Fig. 3.2(b)). In reality, since this fat-tree and all multi-rooted trees contain

cycles, they are not trees in the graph theory sense. Indeed, the topology proposed in this

work is a special instance of a 5-stage folded Clos network. However, whereas all tra�c

traverses the spine (i.e. core) of a Clos network, intra-pod tra�c can short-circuit this

step in the fat-tree.

An advantage of the fat-tree topology is that all switching elements are identical,

enabling us to leverage cheap commodity parts for all of the switches in the communi-
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(a) Leiserson’s original fat-tree topology.

Logical

Core

Switch

Logical

Aggregation

Switch

Logical 

Edge 

Switch

Physical 

Switch

Host

(b) Fat-tree topology of Fig. 3.1, rearranged with logical, non-blocking core and aggregation switches.

Figure 3.2: Original Leiserson fat-tree vs. proposed topology with logical switches.

cation architecture.1 Further, fat-trees are rearrangeably non-blocking, meaning that for

arbitrary communication patterns, there is some set of paths that will saturate all the

bandwidth available to the end-hosts in the topology. Achieving an oversubscription

ratio of 1:1 in practice may be di�cult because of the need to prevent packet reordering

for TCP �ows.

Fig. 3.1 shows the simplest non-trivial instance of the fat-tree with k = 4. All hosts

connected to the same edge switch form their own subnet. �erefore, all tra�c to a host

1Note that switch homogeneity is not required, as bigger switches could be used at the core (e.g. for
multiplexing). While these likely have a longer mean time to failure (MTTF), this defeats the cost bene�ts,
and maintains the same cabling overhead.
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connected to the same lower-layer switch is switched, whereas all other tra�c is routed.

As an example instance of this topology, a fat-tree built from 48-port GigE

switches would consist of 48 pods, each containing an edge layer and an aggregation

layer with 24 switches each. �e edge switches in every pod are assigned 24 hosts each.

�e network supports 27,648 hosts, made up of 1,152 subnets with 24 hosts each. �ere

are 576 equal-cost paths between any given pair of hosts in di�erent pods. �e cost of

deploying such a network architecture would be $8.64M, compared to $37M for the

traditional techniques described earlier.

Given our target network architecture, in the rest of this chapter we address two

principal issues with adopting this topology in Ethernet deployments. First, IP/Ethernet

networks typically build a single routing path between each source and destination. For

even simple communication patterns, such single-path routingwill quickly lead to bottle-

necks up and down the fat-tree, signi�cantly limiting overall performance. We describe

simple extensions to IP forwarding to e�ectively utilize the high fan-out available from

fat-trees. Second, fat-tree topologies can impose signi�cant wiring complexity in large

networks. To some extent, this overhead is inherent in fat-tree topologies, but in § 3.3

we present packaging and placement techniques to ameliorate this overhead. Finally, we

have built a prototype of our architecture in Click [77] as described in § 3.1. An initial

performance evaluation presented in § 3.5 con�rms the potential performance bene�ts

of our approach in a small-scale deployment.

3.1 Architecture

In this section, we describe an architecture to interconnect commodity switches

in a fat-tree topology. We �rst motivate the need for a slight modi�cation in the routing

table structure. We then describe howwe assign IP addresses to hosts in the cluster. Next,

we introduce the concept of two-level route lookups to assist with multi-path routing

across the fat-tree. We then present the algorithms we employ to populate the forwarding

table in each switch. We also describe �ow classi�cation and �ow scheduling techniques

as alternate multi-path routing methods. And �nally, we present a simple fault-tolerance

scheme, as well as describe the heat and power characteristics of our approach.
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3.1.1 Motivation

Achieving maximum bisection bandwidth in this network requires spreading

outgoing tra�c from any given pod as evenly as possible among the core switches.

Routing protocols such as OSPF2 [94] usually take the hop-count as their metric of

“shortest-path,” and in the k-ary fat-tree topology, there are (k/2)2 such shortest-paths

between any two hosts on di�erent pods, but only one is chosen. Switches, therefore,

concentrate tra�c going to a given subnet to a single port even though other choices exist

that give the same cost. Furthermore, depending on the interleaving of the arrival times

of OSPF messages, it is possible for a small subset of core switches, perhaps only one, to

be chosen as the intermediate links between pods. �is will cause severe congestion at

those points and does not take advantage of path redundancy in the fat-tree.

Extensions such asOSPF-ECMP [124], support for which has recently been added

in the class of switches under consideration, cause an explosion in the number of required

pre�xes. �ese commercial ECMP implementations also restrict the number of possible

paths, up to 4 paths in most cases, which is fewer than the fanout required for these

topologies.2 A lower-level pod switch would need (k/2) pre�xes for every other subnet;

a total of k ∗ (k/2)2 pre�xes.

We therefore need a simple, �ne-grained method of tra�c di�usion between

pods that takes advantage of the structure of the topology. �e switches must be able

to recognize, and give special treatment to, the class of tra�c that needs to be evenly

spread. To achieve this, we propose using two-level routing tables that spread outgoing

tra�c based on the low-order bits of the destination IP address (see § 3.1.3).

3.1.2 Addressing

Weallocate all the IP addresses in the networkwithin the private 10.0.0.0/8 block.

We follow the familiar quad-dotted formwith the following conditions:�e pod switches

are given addresses of the form 10.pod.switch.1, where pod denotes the pod number (in

[0, k − 1]), and switch denotes the position of that switch in the pod (in [0, k − 1], starting

from le� to right, bottom to top). We give core switches addresses of the form 10.k. j.i,

2At the time of this work’s publication [2], this support was not yet available.
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Prefix

10.2.0.0/24

10.2.1.0/24

0.0.0.0/0

Output port

0

1

Suffix

0.0.0.2/8

0.0.0.3/8

Output port

2

3

Figure 3.3: Two-level table example. �is is the table at switch 10.2.2.1. An incoming

packet with destination IP address 10.2.1.2 is forwarded on port 1, whereas a packet with

destination IP address 10.3.0.3 is forwarded on port 3.

where j and i denote that switch’s coordinates in the (k/2)2 core switch grid (each in

[1, (k/2)], starting from top-le�).

�e address of a host follows from the pod switch it is connected to; hosts have

addresses of the form: 10.pod.switch.ID, where ID is the host’s position in that subnet (in

[2, k/2 + 1], starting from le� to right). �erefore, each lower-level switch is responsible

for a /24 subnet of k/2 hosts (for k < 256). Fig. 3.1 shows examples of this addressing

scheme for a fat-tree corresponding to k = 4. Even though this is relatively wasteful

use of the available address space, it simpli�es building the routing tables, as seen below.

Nonetheless, this scheme scales up to 4.2M hosts.

3.1.3 Two-Level Routing Table

To provide the even-distributionmechanismmotivated in § 3.1.1, wemodify rout-

ing tables to allow two-level pre�x lookup. Each entry in the main routing table will

potentially have an additional pointer to a small secondary table of (su�x, port) entries.

A �rst-level pre�x is terminating if it does not contain any second-level su�xes, and a

secondary table may be pointed to by more than one �rst-level pre�x. Whereas entries

in the primary table are le�-handed (i.e., /m pre�x masks of the form 1m032−m), entries

in the secondary tables are right-handed (i.e. /m su�x masks of the form 032−m1m). If

the longest-matching pre�x search yields a non-terminating pre�x, then the longest-

matching su�x in the secondary table is found and used.

�is two-level structure will slightly increase the routing table lookup latency, but

the parallel nature of pre�x search in hardware should ensure only amarginal penalty (see
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X.X.X.3

TCAM

Figure 3.4: TCAM two-level routing table implementation.

below). �is is helped by the fact that these tables are meant to be very small. As shown

below, the routing table of any pod switch will contain nomore than k/2 pre�xes and k/2

su�xes.

3.1.4 Two-Level Lookup Implementation

We now describe how the two-level lookup can be implemented in hardware

using Content-Addressable Memory (CAM) [24]. CAMs are used in search-intensive

applications and are faster than algorithmic approaches [34, 122] for �nding a match

against a bit pattern. A CAM can perform parallel searches among all its entries in a

single clock cycle. Lookup engines use a special kind of CAM, called Ternary CAM

(TCAM).ATCAMcan store don’t care bits in addition tomatching 0’s and 1’s in particular

positions, making it suitable for storing variable length pre�xes, such as the ones found

in routing tables. On the downside, CAMs have rather low storage density, they are very

power hungry, and expensive per bit. However, in our architecture, routing tables can be

implemented in a TCAM of a relatively modest size (k entries each 32 bits wide).

Fig. 3.4 shows our proposed implementation of the two-level lookup engine. A

TCAM stores address pre�xes and su�xes, which in turn indexes a RAM that stores the

IP address of the next hop and the output port. We store le�-handed (pre�x) entries in

numerically smaller addresses and right-handed (su�x) entries in larger addresses. We

encode the output of the CAM so that the entry with the numerically smallest matching

address is output. �is satis�es the semantics of our speci�c application of two-level

lookup: when the destination IP address of a packet matches both a le�-handed and a

right-handed entry, then the le�-handed entry is chosen. For example, using the routing

table in Fig. 3.4, a packet with destination IP address 10.2.0.3 matches the le�-handed
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entry 10.2.0.X and the right-handed entry X .X .X .3. �e packet is correctly forwarded

on port 0. However, a packet with destination IP address 10.3.1.2 matches only the right-

handed entry X .X .X .2 and is forwarded on port 2.

3.1.5 Routing Algorithm

�e �rst two levels of switches in a fat-tree act as �ltering tra�c di�users; the

lower- and upper-layer switches in any given pod have terminating pre�xes to the subnets

in that pod. Hence, if a host sends a packet to another host in the same pod but on a

di�erent subnet, then all upper-level switches in that pod will have a terminating pre�x

pointing to the destination subnet’s switch.

For all other outgoing inter-pod tra�c, the pod switches have a default /0 pre�x

with a secondary table matching host IDs (the least-signi�cant byte of the destination IP

address). We employ the host IDs as a source of deterministic entropy; they will cause

tra�c to be evenly spread upward among the outgoing links to the core switches.3 �is

will also cause subsequent packets to the same host to follow the same path, and therefore

avoid packet reordering.

In the core switches, we assign terminating �rst-level pre�xes for all network IDs,

each pointing to the appropriate pod containing that network. Once a packet reaches

a core switch, there is exactly one link to its destination pod, and that switch will in-

clude a terminating /16 pre�x for the pod of that packet (10.pod.0.0/16, port). Once a

packet reaches its destination pod, the receiving upper-level pod switch will also include

a (10.pod.switch.0/24, port) pre�x to direct that packet to its destination subnet switch,

where it is �nally switched to its destination host. Hence, tra�c di�usion occurs only in

the �rst half of a packet’s journey.

It is possible to design distributed protocols to build the necessary forwarding

state incrementally in each switch. For simplicity however, we assume a central entity

with full knowledge of cluster interconnect topology.�is central route control is respon-

sible for statically generating all routing tables and loading the tables into the switches

at the network setup phase. Dynamic routing protocols would also be responsible for

3Since the tables are static, it is possible to fall short of perfect distribution. We examine worst-case
communication patterns in § 3.5
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detecting failures of individual switches and performing path fail-over (see § 3.1.8). Be-

low, we summarize the steps for generating forwarding tables at both the pods and core

switches.

Pod Switches: In each pod switch, we assign terminating pre�xes for subnets contained

in the same pod. For inter-pod tra�c, we add a /0 pre�x with a secondary table matching

host IDs. Fig. 3.5 shows the pseudo-code for generating the routing tables for the upper

pod switches.�e reason for themodulo shi� in the outgoing port is to avoid tra�c from

di�erent lower-layer switches addressed to a host with the same host ID going to the same

upper-layer switch.

For the lower pod switches, we simply omit the /24 subnet pre�x step, in line

3, since that subnet’s own tra�c is switched, and intra- and inter-pod tra�c should be

evenly split among the upper switches.

Core Switches: Since each core switch is connected to every pod (port i is connected to

pod i), the core switches contains only terminating /16 pre�xes pointing to their desti-

nation pods, as shown in Fig. 3.7. �is algorithm generates tables whose size is linear in

k. No switch in the network contains a table with more than k �rst-level pre�xes or k/2

second-level su�xes.

Routing Example: To illustrate network operation using the two-level tables, we give an

example for the routing decisions taken for a packet from source 10.0.1.2 to destination

10.2.0.3, as shown in Fig. 3.1. First, the gateway switch of the source host (10.0.1.1) will

only match the packet with the /0 �rst-level pre�x, and therefore will forward the packet

based on the host ID byte according to the secondary table for that pre�x. In that table,

the packet matches the 0.0.0.3/8 su�x, which points to port 2 and switch 10.0.2.1. Switch

10.0.2.1 also follows the same steps and forwards on port 3, connected to core switch

10.4.1.1. �e core switch matches the packet to a terminating 10.2.0.0/16 pre�x, which

points to the destination pod 2 on port 2, and switch 10.2.2.1. �is switch belongs to the

same pod as the destination subnet, and therefore has a terminating pre�x, 10.2.0.0/24,

which points to the switch responsible for that subnet, 10.2.0.1 on port 0. From there,

standard switching techniques deliver the packet to the destination host 10.2.0.3.

Note that for simultaneous communication from 10.0.1.3 to another host 10.2.0.2,
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1 foreach pod x in [0, k − 1] do

2 foreach switch z in [(k/2), k − 1] do

3 foreach subnet i in [0, (k/2) − 1] do

4 addPre�x(10.x.z.1, 10.x.i.0/24, i);

5 end

6 addPre�x(10.x.z.1, 0.0.0.0/0, 0);

7 foreach host ID i in [2, (k/2) + 1] do

8 addSu�x(10.x.z.1, 0.0.0.i/8, (i − 2 + z)mod(k/2) + (k/2));

9 end

10 end

11 end

Figure 3.5: Generating aggregation switch routing tables. Assume function signatures

addPre�x(switch, pre�x, port), addSu�x(switch, su�x, port) and that addSu�x adds a

second-level su�x to the last-added �rst-level pre�x.

traditional single-path IP routing would follow the same path as the �ow above because

both destinations are on the same subnet. Unfortunately, this would eliminate all of the

fan-out bene�ts of the fat-tree topology. Instead, our two-level table lookup allows switch

10.0.1.1 to forward the second �ow to 10.0.3.1 based on right-handedmatching in the two-

level table.

3.1.6 Flow Classi�cation

In addition to the two-level routing technique described above, we also consider

two optional dynamic routing techniques, as they are currently available in several com-

mercial routers [27,66]. Our goal is to quantify the potential bene�ts of these techniques

but acknowledge that they will incur additional per-packet overhead. Importantly, any

maintained state in these schemes is so� and individual switches can fall back to two-level

routing in case the state is lost.

As an alternate method of tra�c di�usion to the core switches, we perform �ow

classi�cation with dynamic port-reassignment in pod switches to overcome cases of
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1 foreach pod x in [0, k − 1] do

2 foreach switch z in [0, (k/2) − 1] do

4 addPre�x(10.x.z.1, 0.0.0.0/0, 0);

5 foreach host ID i in [2, (k/2) + 1] do

6 addSu�x(10.x.z.1, 0.0.0.i/8, (i − 2 + z)mod(k/2) + (k/2));

7 end

8 end

9 end

Figure 3.6: Generating the routing tables of the edge-level pod switches.

1 foreach j in [1, (k/2)] do

2 foreach i in [1, (k/2) do

3 foreach destination pod x in [0, k − 1] do

4 addPre�x(10.k. j.i, 10.x.0.0/16, x);

5 end

6 end

7 end

Figure 3.7: Generating core switch routing tables.

avoidable local congestion (e.g. when two �ows compete for the same output port, even

though another port that has the same cost to the destination is underused). We de�ne

a �ow as a sequence of packets with the same entries for a subset of �elds of the packet

headers (typically source and destination IP addresses, destination transport port). In

particular, pod switches:

1. Recognize subsequent packets of the same �ow, and forward them on the same

outgoing port.

2. Periodically reassign a minimal number of �ow output ports to minimize any dis-

parity between the aggregate �ow capacity of di�erent ports.
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Step 1 is a measure against packet reordering, while step 2 aims to ensure fair

distribution on �ows on upward-pointing ports in the face of dynamically changing �ow

sizes. § 3.4.2 describes our implementation and �ow distribution heuristic of the �ow

classi�er in more detail.

3.1.7 Flow Scheduling

Several studies have indicated that the distribution of transfer times and burst

lengths of Internet tra�c is long-tailed [33], and characterized by few large long-lived

�ows (responsible for most of the bandwidth) and many small short-lived ones [44]. We

argue that routing large �ows plays themost important role in determining the achievable

bisection bandwidth of a network and therefore merits special handling. In this alterna-

tive approach to �owmanagement, we schedule large �ows tominimize overlap with one

another. A central scheduler makes this choice, with global knowledge of all active large

�ows in the network. In this initial design, we only consider the case of a single large �ow

originating from each host at a time.

Edge Switches

As before, edge switches locally assign a new �ow to the least-loaded port initially.

However, edge switches additionally detect any outgoing �ow whose size grows above a

prede�ned threshold, and periodically sendnoti�cations to a central scheduler specifying

the source and destination for all active large �ows. �is represents a request by the edge

switch for placement of that �ow in an uncontended path.

Note that unlike § 3.1.6, this scheme does not allow edge switches to indepen-

dently reassign a �ow’s port, regardless of size. �e central scheduler is the only entity

with the authority to order a re-assignment.

Central Scheduler

A central scheduler, possibly replicated, tracks all active large �ows and tries to

assign them non-con�icting paths if possible. �e scheduler maintains boolean state for

all links in the network signifying their availability to carry large �ows.
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For inter-pod tra�c, recall that there are (k/2)2 possible paths between any given

pair of hosts in the network, and each of these paths corresponds to a core switch. When

the scheduler receives a noti�cation of a new �ow, it linearly searches through the core

switches to �nd one whose corresponding path components do not include a reserved

link.4 Upon �nding such a path, the scheduler marks those links as reserved, and noti�es

the relevant lower- and upper-layer switches in the source pod with the correct outgoing

port that corresponds to that �ow’s chosen path. A similar search is performed for intra-

pod large �ows; this time for an uncontended path through an upper-layer pod switch.

�e scheduler garbage collects �ows whose last update is older than a given time, clearing

their reservations. Note that the edge switches do not block and wait for the scheduler to

perform this computation, but initially treat a large �ow like any other.

3.1.8 Fault-Tolerance

�e redundancy of available paths between any pair of hosts makes the fat-tree

topology attractive for fault-tolerance. We propose a simple failure broadcast protocol

that allows switches to route around link- or switch-failures one or two hops downstream.

In this scheme, each switch in the network maintains a Bidirectional Forwarding

Detection session (BFD [73]) with each of its neighbors to determine when a link or

neighboring switch fails. From a fault-tolerance perspective, two classes of failure can be

weathered: (a) between lower- and upper-layer switches inside a pod, and (b) between

core and a upper-level switches. Clearly, the failure of a lower-level switch will cause

disconnection for the directly connected hosts; redundant switch elements at the leaves

are the only way to tolerate such failures. We describe link failures here because switch

failures trigger the same BFD alerts and elicit the same responses.

Lower- to Upper-layer Switches

Link failure between lower- andupper-level switches a�ects three classes of tra�c:

4Finding the optimal placement for all large �ows requires either knowing the source and destination
of all �ows ahead of time or path reassignment of existing �ows; however, this greedy heuristic gives a good
approximation and achieves in simulations 94% e�ciency for randomly destined �ows among 27k hosts.
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1. Outgoing inter- and intra-pod tra�c originating from the lower-layer switch. In

this case the local �ow classi�er sets the ’cost’ of that link to in�nity and does not

assign it any new �ows, and chooses another available upper-layer switch.

2. Intra-pod tra�c using the upper-layer switch as an intermediary. In response, this

switch broadcasts a tag notifying all other lower-layer switches in the same pod of

the link failure.�ese switches would check when assigning new �ows whether the

intended output port corresponds to one of those tags and avoid it if possible.5

3. Inter-pod tra�c coming into the upper-layer switch. �e core switch connected

to the upper-layer switch has it as its only access to that pod, therefore the upper-

layer switch broadcasts this tag to all its core switches signifying its inability to

carry tra�c to the lower-layer switch’s subnet. �ese core switches in turn mirror

this tag to all upper-layer switches they are connected to in other pods. Finally,

the upper-layer switches avoid the single a�ected core switch when assigning new

�ows to that subnet.

Upper-layer to Core Switches

A failure of a link from an upper-layer switch to a core a�ects two classes of tra�c:

1. Outgoing inter-pod tra�c, in which case the local routing table marks the a�ected

link as unavailable and locally chooses another core switch.

2. Incoming inter-pod tra�c. In this case the core switch broadcasts a tag to all other

upper-layer switches it is directly connected to signifying its inability to carry tra�c

to that entire pod. As before, these upper-layer switches would avoid that core

switch when assigning �ows destined to that pod.

Naturally, when failed links and switches come back up and re-establish their BFD

sessions, the previous steps are reversed to cancel their e�ect. In addition, adapting the

schemeof § 3.1.7 to accommodate link- and switch-failures is relatively simple.�e sched-

ulermarks any link reported to be down as busy or unavailable, thereby disqualifying any

path that includes it from consideration, in e�ect routing large �ows around the fault.

5We rely on end-to-end mechanisms to restart interrupted �ows
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Figure 3.8: Comparison of power and heat dissipation.

3.2 Power and Heat Issues

Besides performance and cost, another major issue that arises in data center de-

sign is power consumption.�e switches thatmake up the higher tiers of the interconnect

in data centers typically consume thousands ofWatts, and in a large-scale data center the

power requirements of the interconnect can be hundreds of kilowatts. Almost equally

important is the issue of heat dissipation from the switches. Enterprise-grade switches

generate considerable amounts of heat and thus require dedicated cooling systems.

In this section we analyze the power requirements and heat dissipation in our

architecture and compare it with other typical approaches. We base our analysis on

numbers reported in the switch data sheets, though we acknowledge that these reported

values are measured in di�erent ways by di�erent vendors and hence may not always

re�ect system characteristics in deployment.

To compare the power requirement for each class of switch, we normalize the total

power consumption and heat dissipation by the switch over the total aggregate bandwidth

that a switch can support in Gbps. Fig. 3.8 plots the average over three di�erent switch

models. As we can see, 10GigE switches (the last three on the x-axis) consume roughly

double theWatts per Gbps and dissipate roughly three times the heat of commodity GigE

switches when normalized for bandwidth.

Finally, we also calculated the estimated total power consumption and heat dis-

sipation for an interconnect that can support roughly 27k hosts. For the hierarchical
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Figure 3.9: Comparison of total power consumption and heat dissipation.

design, we employ 576 ProCurve 2900 edge switches and 54 BigIron RX-32 switches

(36 in the aggregation and 18 in the core layer). �e fat-tree architecture employs 2,880

Netgear GSM 7252S switches. We are able to use the cheaper NetGear switch because

we do not require 10GigE uplinks (present in the ProCurve) in the fat-tree interconnect.

Fig. 3.9 shows that while our architecture employs more individual switches, the power

consumption and heat dissipation is superior to those incurred by current data center

designs, with 56.6% less power consumption and 56.5% less heat dissipation. Of course,

the actual power consumption and heat dissipationmust bemeasured in deployment; we

refer the reader to a comprehensive and in-depth data center energy analysis in [61].

3.3 Packaging

One drawback of the fat-tree topology for cluster interconnects is the number

of cables needed to interconnect all the machines. One trivial bene�t of performing

aggregation with 10GigE switches is the factor of 10 reduction in the number of cables

required to transfer the same amount of bandwidth up the hierarchy. In our proposed fat-

tree topology, we do not leverage 10GigE links or switches both because non-commodity

pieces would in�ate cost and, more importantly, because the fat-tree topology critically

depends upon a large fan-out tomultiple switches at each layer in the hierarchy to achieve

its scaling properties.
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Figure 3.10: Proposed packaging solution. �e only external cables are between the pods

and the core nodes.

Acknowledging that increased wiring overhead is inherent to the fat-tree topol-

ogy, in this section we consider some packaging techniques to mitigate this overhead. In

sum, our proposed packaging technique eliminates most of the required external wiring

and reduces the overall length of required cabling, which in turn simpli�es cluster man-

agement and reduces total cost. Moreover, this method allows for incremental deploy-

ment of the network.

Wepresent our approach in the context of amaximum-capacity 27,648-node clus-

ter leveraging 48-port Ethernet switches as the building block of the fat-tree. �is design

generalizes to clusters of di�erent sizes. We begin with the design of individual pods that

make up the replication unit for the larger cluster, see Fig. 3.10. Each pod consists of

576 machines and 48 individual 48-port GigE switches. For simplicity, we assume each

end-host takes up one rack unit (1RU) and that individual racks can accommodate 48

machines. �us, each pod consists of 12 racks with 48 machines each.

We place the 48 switches that make up the �rst two layers of the fat-tree in each

pod in a centralized rack. However, we assume the ability to package the 48 switches into
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a single monolithic unit with 1,152 user-facing ports. We call this the pod switch. Of these

ports, 576 connect directly to the machines in the pod, corresponding to connectivity at

the edge. Another 576 ports fan out to one port on each of the 576 switches that make up

the core layer in the fat-tree. Note that the 48 switches packaged in this manner actually

have 2,304 total ports (48 ∗ 48). �e other 1,152 ports are wired internally in the pod

switch to account for the required interconnect between the edge and aggregation layers

of the pod (see Fig. 3.1).

We further spread the 576 required core switches that form the top of the fat-

tree across the individual pods. Assuming a total of 48 pods, each will house 12 of the

required core switches. Of the 576 cables fanning out from each pod switch to the core,

12 will connect directly to core switches placed nearby in the same pod. �e remaining

cables would fan out, in sets of 12, to core switches housed in remote pods. Note that

the fact that cables move in sets of 12 from pod to pod and in sets of 48 from racks to

pod switches opens additional opportunities for appropriate “cable packaging” to reduce

wiring complexity.

Finally, minimizing total cable length is another important consideration. To do

so, we place racks around the pod switch in two dimensions, as shown in Fig. 3.10 (we do

not consider three dimensional data center layouts). Doing so will reduce cable lengths

relative to more “horizontal” layouts of individual racks in a pod. Similarly, we lay pods

out in a 7 × 7 grid (with one missing spot) to accommodate all 48 pods. Once again,

this grid layout will reduce inter-pod cabling distance to appropriate core switches and

will support some standardization of cable lengths and packaging to support inter-pod

connectivity.

We also considered an alternate design that did not collect the switches into a

central rack. In this approach, two 48-port switches would be distributed to each rack.

Hosts would interconnect to the switches in sets of 24. �is approach has the advan-

tage of requiring much shorter cables to connect hosts to their �rst hop switch and for

eliminating these cables all together if the racks were appropriately internally packaged.

We discarded this approach because we would lose the opportunity to eliminate the 576

cables within each pod that interconnect the edge and aggregation layers. �ese cables

would need to crisscross the 12 racks in each pod, adding signi�cant complexity.
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3.4 Implementation

To validate the communication architecture described in this chapter, we built

a simple prototype of the forwarding algorithms described in the previous section. We

have completed a prototype usingNetFPGAs [86].�eNetFPGA contains an IPv4 router

implementation that leverages TCAMs. We appropriately modi�ed the routing table

lookup routine, as described in § 3.1.4. Our modi�cations totalled less than 100 lines

of additional code and introduced no measurable additional lookup latency, supporting

our belief that our proposed modi�cations can be incorporated into existing switches.

To carry out larger-scale evaluations, we also built a prototype using Click, the

focus of our evaluation in the next section. Click [77] is a modular so�ware router

architecture that supports implementation of experimental router designs. AClick router

is a graph of packet processingmodules called elements that perform tasks such as routing

table lookup or decrementing a packet’s TTL.When chained together, Click elements can

carry out complex router functionality and protocols in so�ware.

3.4.1 TwoLevelTable

We build a new Click element, TwoLevelTable, which implements the idea of a

two-level routing table described in § 3.1.3. �is element has one input, and two or more

outputs. �e routing table’s contents are initialized using an input �le that gives all the

pre�xes and su�xes. For every packet, the TwoLevelTable element looks up the longest-

matching �rst-level pre�x. If that pre�x is terminating, it will immediately forward the

packet on that pre�x’s port. Otherwise, it will perform a right-handed longest-matching

su�x search on the secondary table and forward on the corresponding port.

�is element can replace the central routing table element of the standards-

compliant IP router con�guration example provided in [77]. We generate an analogous 4-

port version of the IP router with the addedmodi�cation of bandwidth-limiting elements

on all ports to emulate link saturation capacity.
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3.4.2 FlowClassi�er

To provide the �ow classi�cation functionality described in § 3.1.6, we describe

our implementation of the Click element FlowClassi�er that has one input and two or

more outputs. It performs simple �ow classi�cation based on the source and destina-

tion IP addresses of the incoming packets, such that subsequent packets with the same

source and destination exit the same port (to avoid packet reordering). �e element has

the added goal of minimizing the di�erence between the aggregate �ow capacity of its

highest- and lowest-loaded output ports.

Even if the individual �ow sizes are known in advance, this problem is a variant of

the NP-hard Bin Packing optimization problem [45]. However, the �ow sizes are in fact

not known a priori, making the problem more di�cult. We follow the greedy heuristic

outlined in Fig. 3.11. Every few seconds, the heuristic attempts to switch, if needed, the

output port of at most three �ows to minimize the di�erence between the aggregate �ow

capacity of its output ports.

Recall that the FlowClassi�er element is an alternative to the two-level table for

tra�c di�usion. Networks using these elements would employ ordinary routing tables.

For example, the routing table of an upper pod switch contains all the subnet pre�xes

assigned to that pod like before. However, in addition, we add a /0 pre�x to match all

remaining inter-pod tra�c that needs to be evenly spread upwards to the core layer. All

packets that match only that pre�x are directed to the input of the FlowClassi�er. �e

classi�er tries to evenly distribute outgoing inter-pod �ows among its outputs according

to the described heuristic, and its outputs are connected directly to the core switches.�e

core switches do not need a classi�er, and their routing tables are unchanged.

Note that this solution has so� state that is not needed for correctness, but only

used as a performance optimization. �is classi�er is occasionally disruptive, as a min-

imal number of �ows may be re-arranged periodically, potentially resulting in packet

reordering. However, it is also adaptive to dynamically changing �ow sizes and ‘fair’ in

the long-term.6

6Fair in the sense that initial placement decisions are constantly being corrected since all �ows’ sizes
are continually tracked to approximate the optimal distribution of �ows to ports.
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1 // Call on every incoming packet

2 IncomingPacket(packet)

3 begin

4 Hash source and destination IP �elds of packet;

5 // Have we seen this flow before?

6 if seen(hash) then

7 Lookup previously assigned port x;

8 Send packet on port x;

9 else

10 Record the new �ow f ;

11 Assign f to the least-loaded upward port x;

12 Send the packet on port x;

13 end

14 end

15 // Call every t seconds

16 RearrangeFlows()

17 begin

18 for i = 0 to 2 do

19 Find upward ports pmax and pmin with the largest and smallest aggregate

20 outgoing utilization, respectively;

21 Calculate D, the utilization di�erence betweenpmax and pmin;

22 Find the largest �ow f assigned to port pmax whose size is smaller than D;

23 if �ow f exists then

24 Switch the output port of �ow f to pmin;

25 end

26 end

27 end

Figure 3.11: �e �ow classi�er heuristic. For the experiments in § 3.5, t is 1 second.
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3.4.3 FlowScheduler

As described in § 3.1.7, we implemented the element FlowReporter, which resides

in all edge switches, and detects outgoing �owswhose size is larger than a given threshold.

It sends regular noti�cations to the central scheduler about these active large �ows.

�e FlowScheduler element receives noti�cations regarding active large �ows

from edge switches and tries to �nd uncontended paths for them. To this end, it keeps

the binary status of all the links in the network, as well as a list of previously placed �ows.

For any new large �ow, the scheduler performs a linear search among all equal-cost

paths between the source and destination hosts to �nd one whose path components are

all unreserved. Upon �nding such a path, the �ow scheduler marks all the component

links as reserved and sends noti�cations regarding this �ow’s path to the concerned pod

switches. We also modify the pod switches to process these port re-assignment messages

from the scheduler.

�e scheduler maintains two main data structures: a binary array of all unidirec-

tional links in the network (a total of 4 ∗ k ∗ (k/2)2 links), and a hashtable of previously

placed �ows and their assigned paths. �e linear search for new �ow placement requires

on average 2 ∗ (k/2)2 memory accesses, making the computational complexity of the

scheduler to be O(k3) for space and O(k2) for time. A typical value for k (the number

of ports per switch) is 48, making both these values manageable, as quanti�ed in § 3.5.3.

3.5 Evaluation

Tomeasure the total bisection bandwidth of our design, we generate a benchmark

suite of communicationmappings to evaluate the performance of the 4-port fat-tree using

the TwoLevelTable switches, the FlowClassi�er and the FlowScheduler. We compare

these methods to a standard hierarchical tree with a 3.6 ∶ 1 oversubscription ratio, similar

to ones found in current data center designs.
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3.5.1 Experiment Description

In the 4-port fat-tree, there are 16 hosts, four pods (each with four switches),

and four core switches. �us, there is a total of 20 switches and 16 end-hosts (for larger

clusters, the number of switches will be smaller than the number of hosts). We multiplex

these 36 elements onto ten physical machines, interconnected by a 48-port ProCurve

2900 switch with 1 Gigabit Ethernet links. �ese machines have dual-core Intel Xeon

CPUs at 2.33GHz, with 4096KB cache and 4GB of RAM, running Debian GNU/Linux

2.6.17.3. Each pod of switches is hosted on one machine; each pod’s hosts are hosted on

one machine; and the two remaining machines run two core switches each. Both the

switches and the hosts are Click con�gurations, running in user level. All virtual links

between the Click elements in the network are bandwidth-limited to 96Mbit/s to ensure

that the con�guration is not CPU limited.

For the comparison case of the hierarchical tree network, we have four machines

running four hosts each, and four machines each running four pod switches with one

additional uplink. �e four pod switches are connected to a 4-port core switch running

on a dedicated machine. To enforce the 3.6:1 oversubscription on the uplinks from the

pod switches to the core switch, these links are bandwidth-limited to 106.67Mbit/s, and

all other links are limited to 96Mbit/s.

Each host generates a constant 96Mbit/s of outgoing tra�c. We measure the rate

of its incoming tra�c. �e minimum aggregate incoming tra�c of all the hosts for all

bijective communication mappings is the e�ective bisection bandwidth of the network.

3.5.2 Benchmark Suite

We generate the communicating pairs according to the following strategies, with

the added restriction that any host receives tra�c from exactly one host (i.e. the mapping

is 1-to-1):

● Random: A host sends to any other host in the network with uniform probability.

● Stride(i): A host with index x will send to the host with index (x + i)mod 16.
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● StaggeredProb (SubnetP, PodP):Where a hostwill send to another host in its subnet

with probability SubnetP, and to its pod with probability PodP, and to anyone else

with probability 1 − SubnetP − PodP.

● Inter-pod Incoming: Multiple pods send to di�erent hosts in the same pod, and all

happen to choose the same core switch. �at core switch’s link to the destination

pod will be oversubscribed. �e worst-case local oversubscription ratio for this

case is (k − 1) ∶ 1.

● Same-ID Outgoing: Hosts in the same subnet send to di�erent hosts elsewhere

in the network such that the destination hosts have the same host ID byte. Static

routing techniques force them to take the same outgoing upward port. �e worst-

case ratio for this case is (k/2) ∶ 1. �is is the case where the FlowClassi�er is

expected to improve performance the most.

3.5.3 Results

Table 3.1 shows the results of the above described experiments. �ese results are

averages across 5 runs/permutations of the benchmark tests, over 1 minute each. As

expected, for any all-inter-pod communication pattern, the traditional tree saturates the

links to the core switch, and thus achieves around 28% of the ideal bandwidth for all hosts

in that case.�e tree performs signi�cantly better the closer the communicating pairs are

to each other.

�e two-level table switches achieve approximately 75% of the ideal bisection

bandwidth for random communication patterns. �is can be explained by the static

nature of the tables; two hosts on any given subnet have a 50% chance of sending to hosts

with the same host ID, in which case their combined throughput is halved since they are

forwarded on the same output port. �is makes the expectation of both to be 75%. We

expect the performance for the two-level table to improve for random communication

with increasing k as there will be less likelihood ofmultiple �ows colliding on a single link

with higher k. �e inter-pod incoming case for the two-level table gives a 50% bisection

bandwidth; however, the same-ID outgoing e�ect is compounded further by congestion

in the core router.
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Table 3.1: Aggregate Bandwidth of the network, as a percentage of ideal bisection

bandwidth for the Tree, Two-Level Table, Flow Classi�cation, and Flow Scheduling

methods. �e ideal bisection bandwidth for the fat-tree network is 1.536Gbps.

Two-Level Flow Flow

Tra�c Pattern Tree Table Classi�cation Scheduling

Random 53.4% 75.0% 76.3% 93.5%
Stride (1) 100.0% 100.0% 100.0% 100.0%
Stride (2) 78.1% 100.0% 100.0% 99.5%
Stride (4) 27.9% 100.0% 100.0% 100.0%
Stride (8) 28.0% 100.0% 100.0% 99.9%
Staggered Prob (1.0, 0.0) 100.0% 100.0% 100.0% 100.0%
Staggered Prob (0.5, 0.3) 83.6% 82.0% 86.2% 93.4%
Staggered Prob (0.2, 0.3) 64.9% 75.6% 80.2% 88.5%
Worst-cases:

Inter-pod Incoming 28.0% 50.6% 75.1% 99.9%
Same-ID Outgoing 27.8% 38.5% 75.4% 87.4%

Table 3.2: �e �ow scheduler’s time and memory requirements.

k Hosts
Avg Time/ Link-state Flow-state

Req (µs) Memory Memory

4 16 50.9 64 B 4 KB
16 1,024 55.3 4 KB 205 KB
24 3,456 116.8 14 KB 691 KB
32 8,192 237.6 33 KB 1.64 MB
48 27,648 754.4 111 KB 5.53 MB

Because of its dynamic �ow assignment and re-allocation, the �ow classi�er out-

performs both the traditional tree and the two-level table in all cases, with a worst-case

bisection bandwidth of approximately 75%. However, it remains imperfect because the

type of congestion it avoids is entirely local; it is possible to cause congestion at a core

switch because of routing decisions made one or two hops upstream. �is type of sub-

optimal routing occurs because the switches only have local knowledge available.

�e FlowScheduler, on the other hand, acts on global knowledge and tries to as-

sign large �ows to disjoint paths, thereby achieving 93% of the ideal bisection bandwidth

for random communication mappings, and outperforming all other methods in all the
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benchmark tests. �e use of a centralized scheduler with knowledge of all active large

�ows and the status of all links may be infeasible for large arbitrary networks, but the

regularity of the fat-tree topology greatly simpli�es the search for uncontended paths.

In a separate test, Table 3.2 shows the time and space requirements for the central

scheduler when run on a modestly-provisioned 2.33GHz commodity PC. For varying

k, we generated fake placement requests (one per host) to measure the average time to

process a placement request, and the total memory required for the maintained link-

state and �ow-state data structures. For a network of 27k hosts, the scheduler requires a

modest 5.6MB of memory and could place a �ow in under 0.8ms.
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Chapter 4

Dynamic Flow Scheduling for Data

Center Networks

In this chapter, we aim to address the problem of limited forwarding adaptability.

�at is, the inability of currentmultipathing techniques to take full advantage of the avail-

able bisection bandwidth of large-scale multipath topologies. As we show in chapter 2,

this is mainly due to (1) progressive hierarchical oversubscription and (2) poor multipath

forwarding. While the previous chapter deals with the �rst problem, we here tackle the

second: the e�cient network utilization of multi-rooted tree topologies.

To this end, we present Hedera, a dynamic �ow scheduling system formulti-stage

data centers topologies. Hedera collects tra�c information from the network switches,

tries to compute non-con�icting paths for �ows, and �nally instructs switches to re-

route tra�c accordingly.1 �is is done with the goal of maximizing aggregate network

utilization—bisection bandwidth—and to do so with minimal scheduler overhead or

impact on active tra�c. By taking a global view of routing and tra�c demands, we enable

the scheduling system to see bottlenecks that switch-local schedulers cannot.

For both our implementation and large-scale simulations, as we show in § 4.4, our

algorithms deliver performance that is within a few percent of optimal—a hypothetical

non-blocking switch—for a variety of communication patterns, and deliver in our testbed

up to four times more bandwidth than currently deployed ECMP techniques. Hedera

delivers these bandwidth improvements withmodest control and computation overhead.

1In this work, we expand, implement, and evaluate the �ow scheduling ideas introduced in chapter 3.
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One requirement for our placement algorithms is an accurate view of the demand

of individual �ows under ideal conditions. Unfortunately, due to constraints at the end-

host or elsewhere in the network, measuring current TCP �ow bandwidth may have no

relation to the bandwidth the �ow could achieve with appropriate scheduling. �us, we

also present an e�cient algorithm to estimate idealized bandwidth share that each �ow

would achieve under max-min fair resource allocation, and describe how this algorithm

assists in the design of our scheduling techniques.

We �rst describe the architecture of Hedera in § 4.1, and detail its constituent

scheduling and demand estimation algorithms in § 4.2. We next describe our implemen-

tation of Hedera on the PortLand testbed [97] in § 4.3, and �nally evaluate the system

both in simulations and on the testbed for a variety of tra�c patterns in § 4.4.

4.1 Architecture

Described at a high-level, Hedera has a control loop of three basic steps. First, it

detects large �ows at the edge switches. Next, it estimates the natural demand of large

�ows and uses placement algorithms to compute good paths for them. And �nally, these

paths are installed on the switches. Our physical implementationwas built on top of a fat-

tree topology (shown in Fig. 4.5); however, we designed Hedera to support any general

multi-rooted tree topology.

4.1.1 Switch Initialization

To take advantage of the path diversity in multi-rooted trees, we must spread

outgoing tra�c to or from any host as evenly as possible among all the core switches.

�erefore, in our system, a packet’s path is non-deterministic and chosen on its way up

to the core, and is deterministic returning from the core switches to its destination edge

switch. Speci�cally, for multi-rooted topologies, there is exactly one active minimum-

cost path from any given core switch to any destination host.

To enforce this determinism on the downward path, we initialize core switches

with the pre�xes for the IP address ranges of destination pods. A pod is any sub-grouping

down from the core switches (in our fat-tree testbed, it is a complete bipartite graph of
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aggregation and edge switches, see Fig. 4.5). Similarly, we initialize aggregation switches

with pre�xes for downward ports of the edge switches in that pod. Finally, edge switches

forward packets directly to their connected hosts.

When a new �ow starts, the default switch behavior is to forward it based on a

hash on the �ow’s 10-tuple along one of its equal-cost paths (similar to ECMP).�is path

is used until the �ow grows past a threshold rate, at which point Hedera dynamically

calculates an appropriate placement for it. �erefore, all �ows are assumed to be small

until they grow beyond a threshold, 100Mbps in our implementation (10% of each host’s

1GigE link). Flows are packet streams with the same 10-tuple of <src MAC, dst MAC, src

IP, dst IP, EtherType, IP protocol, TCP src port, dst port, VLAN tag, input port>.

4.1.2 Scheduler Design

A central scheduler, possibly replicated for fail-over and scalability, manipulates

the forwarding tables of the edge and aggregation switches dynamically, based on regular

updates of current network-wide communication demands.�e scheduler aims to assign

�ows to non-con�icting paths; more speci�cally, it tries to not place multiple �ows on a

link that cannot accommodate their combined natural bandwidth demands.

In this model, whenever a �ow persists for some time and its bandwidth demand

grows beyond a de�ned limit, we assign it a path using one of the scheduling algorithms

described in § 4.2. Depending on this chosen path, the scheduler inserts �ow entries into

the edge and aggregation switches of the source pod for that �ow; these entries redirect

the �ow on its newly chosen path. �e �ow entries expire a�er a timeout once the �ow

terminates. Note that the state maintained by the scheduler is only so�-state and does

not have to be synchronized with any replicas to handle failures. Scheduler state is not

required for correctness (connectivity); rather it aids as a performance optimization.

Of course, the choice of the speci�c scheduling algorithm is open. In this chapter,

we compare two algorithms,Global First Fit andSimulated Annealing, to ECMP. Both al-

gorithms search for �ow-to-core mappings with the objective of increasing the aggregate

bisection bandwidth for current communication patterns, supplementing default ECMP

forwarding for large �ows.
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4.2 Estimation and Scheduling

Finding �ow routes in a general network while not exceeding the capacity of any

link is called the Multi-Commodity Flow problem, which is NP-complete for integer

�ows [38]. And while simultaneous �ow routing is solvable in polynomial time for 3-

stage Clos networks, no polynomial time algorithm is known for 5-stage Clos networks

(i.e. 3-tier fat-trees) [60]. Since we do not aim to optimize Hedera for a speci�c topology,

this chapter presents practical heuristics that can be applied to a range of realistic data

center topologies.

4.2.1 Host- vs. Network-Limited Flows

A �ow can be classi�ed into two categories: network-limited (e.g. data trans-

fer from RAM) and host-limited (e.g. limited by host disk access, processing, etc.). A

network-limited �ow will use all bandwidth available to it along its assigned path. Such

a �ow is limited by congestion in the network, not at the host NIC. A host-limited �ow

can theoretically achieve a maximum throughput limited by the “slower” of the source

and destination hosts. In the case of non-optimal scheduling, a network-limited �ow

might achieve a bandwidth less than the maximum possible bandwidth available from

the underlying topology. In this project, we focus on network-limited �ows, since host-

limited �ows are a symptom of intra-machine bottlenecks, which are beyond the scope

of this project.

4.2.2 Demand Estimation

A TCP �ow’s current sending rate says little about its natural bandwidth demand

in an ideal non-blocking network (§ 2.2.3). �erefore, to make intelligent �ow placement

decisions, we need to know the �ows’ max-min fair bandwidth allocation as if they are

limited only by the sender or receiver NIC. When network limited, a sender will try

to distribute its available bandwidth fairly among all its outgoing �ows. TCP’s AIMD

behavior combined with fair queueing in the network tries to achieve max-min fairness.

Note that when there aremultiple �ows from a host A to another host B, each of the �ows
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Figure 4.1: Demand Estimation example. Matrix elements denote demand per �ow as

a fraction of the NIC bandwidth. Subscripts denote the number of �ows from source

(rows) to destination (columns). Entries in parentheses have yet to converge, and grayed

entries have converged.

will have the same steady state demand. We now describe how to �nd TCP demands in

a hypothetical equilibrium state.

�e input to the demand estimator is the set F of source and destination pairs for

all active large �ows. �e estimator maintains an N × N matrix M; N is the number of

hosts. �e element in the i th row, jth column contains 3 values: (1) the number of �ows

from host i to host j, (2) the estimated demand of each of the �ows from host i to host j,

and (3) a “converged” �ag that marks �ows whose demands have converged.

�e demand estimator performs repeated iterations of increasing the �ow capac-

ities from the sources and decreasing exceeded capacity at the receivers until the �ow

capacities converge; Fig. 4.4 presents the pseudocode. Note that in each iteration of

decreasing �ow capacities at the receivers, one or more �ows converge until eventually

all �ows converge to the natural demands. �e estimation time complexity is O(∣F ∣).

Fig. 4.1 illustrates the process of estimating �ow demands with a simple example.

Consider 4 hosts (H0, H1, H2 and H3) connected by a non-blocking topology. Suppose

H0 sends 1 �ow each to H1, H2 and H3; H1 sends 2 �ows to H0 and 1 �ow to H2; H2 sends

1 �ow each to H0 and H3; and H3 sends 2 �ows to H1. �e �gure shows the iterations of

the demand estimator. �e matrices indicate the �ow demands during successive stages
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Global-First-Fit( f : �ow)

1 if f .assigned then

2 return old path assignment for f

3 foreach p ∈ Psrc→dst do

4 if p.used + f .rate < p.capacity then

5 p.used← p.used + f .rate

6 return p

7 h =Hash( f )

8 return p = Psrc→dst(h)

Figure 4.2: Pseudocode for Global First Fit. Called for each �ow in the system.

of the algorithm starting with an increase in �ow capacity from the sender followed by

a decrease in �ow capacity at the receiver and so on. �e last matrix indicates the �nal

estimated natural demands of the �ows.

For real communication patterns, the demand matrix for currently active �ows

is a sparse matrix since most hosts will be communicating with a small subset of remote

hosts at a time. �e demand estimator is also largely parallelizable, facilitating scalability.

In fact, our implementation uses both parallelism and sparse matrix data structures to

improve the performance and memory footprint of the algorithm.

4.2.3 Global First Fit

In a multi-rooted tree topology, there are several possible equal-cost paths be-

tween any pair of source and destination hosts. When a new large �ow is detected, (e.g.

10% of the host’s link capacity), the scheduler linearly searches all possible paths to �nd

one whose link components can all accommodate that �ow. If such a path is found, then

that �ow is “placed” on that path: First, a capacity reservation is made for that �ow on

the links corresponding to the path. Second, the scheduler creates forwarding entries in

the corresponding edge and aggregation switches. To do so, the scheduler maintains the

reserved capacity on every link in the network and uses that to determine which paths

are available to carry new �ows. Reservations are cleared when �ows expire.
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Simulated-Annealing(n ∶ iteration count)

1 s ← Init-State()

2 e ← E(s)

3 sB ← s, eB ← e

4 T0 ← n

5 for T ← T0 . . . 0 do

6 sN ← Neighbor(s)

7 eN ← E(sN)

8 if eN < eB then

9 sB ← sN , eB ← eN

10 if P(e , eN , T) > Rand() then

11 s ← sN , e ← eN

12 return sB

Figure 4.3: Pseudocode for Simulated Annealing. s denotes the current state with energy

E(s) = e. eB denotes the best energy seen so far in state sB. T denotes the temperature.

eN is the energy of a neighboring state sN .

Note that this corresponds to a �rst �t algorithm; a �ow is greedily assigned the

�rst path that can accommodate it. When the network is lightly loaded, �nding such a

path among the many possible paths is likely to be easy; however, as the network load

increases and links become saturated, this choice becomes more di�cult. Global First

Fit does not guarantee that all �ows will be accommodated, but this algorithm performs

relatively well in practice as shown in § 4.4. We show the pseudocode for Global First Fit

in Fig. 4.2.

4.2.4 Simulated Annealing

Next we describe the Simulated Annealing scheduler, which performs a proba-

bilistic search to e�ciently compute paths for �ows. �e key insight of our approach is

to assign a single core switch for each destination host rather than a core switch for each
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�ow. �is reduces the search space signi�cantly. Simulated Annealing forwards all �ows

destined to a particular host A through the designated core switch for host A.

�e input to the algorithm is the set of all large �ows to be placed, and their �ow

demands as estimated by the demand estimator. Simulated Annealing searches through

a solution state space to �nd a near-optimal solution (Fig. 4.3). A function E de�nes the

energy in the current state. In each iteration, wemove to a neighboring statewith a certain

acceptance probability P, depending on the energies in the current and neighboring

states and the current temperature T . �e temperature is decreased with each iteration of

the Simulated Annealing algorithm and we stop iterating when the temperature is zero.

Allowing the solution to move to a higher energy state allows us to avoid local minima.

1. State s: A set of mappings from destination hosts to core switches. Each host in a

pod is assigned a particular core switch that it receives tra�c from.

2. Energy function E: �e total exceeded capacity over all the links in the current

state. Every state assigns a unique path to every �ow. We use that information

to �nd the links for which the total capacity is exceeded and sum up exceeded

demands over these links.

3. Temperature T : �e remaining number of iterations before termination.

4. Acceptance probability P for transition from state s to neighbor state sn, with en-

ergies E and En.

P(En , E , T) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if En < E

ec(E−En)/T if En ≥ E

where c is a parameter that can be varied. We empirically determined that c =

0.5 × T0 gives best results for a 16 host cluster and c = 1000 × T0 is best for larger

data centers.

5. Neighbor generator function Neighbor(): Swaps the assigned core switches for a

pair of hosts in any of the pods in the current state s.

While simulated annealing is a known technique, our contribution lies in an

optimization to signi�cantly reduce the search space and the choice of appropriate energy
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and neighbor selection functions to ensure rapid convergence to a near optimal schedule.

A straightforward approach is to assign a core for each �ow individually and perform

simulated annealing. However this results in a huge search space limiting the e�ective-

ness of simulated annealing. �e diameter of the search space (maximum number of

neighbor hops between any two states) with this approach is equal to the number of �ows

in the system. Our technique of assigning core switches to destination hosts reduces the

diameter of the search space to the minimum of the number of �ows and the number

of hosts in the data center. �is heuristic reduces the search space signi�cantly: in a 27k

host data center with 27k large �ows, the search space size is reduced by a factor of 1012000.

Simulated Annealing performs better when the size of the search space and its diameter

are reduced [41]. With the straightforward approach, the runtime of the algorithm is

proportional to the number of �ows and the number of iterations while our technique’s

runtime depends only on the number of iterations.

We implemented both the baseline and optimized version of Simulated Anneal-

ing. Our simulations show that for randomized communication patterns in a 8,192 host

data center with 16k �ows, our techniques deliver a 20% improvement in bisection band-

width and a 10-fold reduction in computation time compared to the baseline.�ese gains

increase both with the size of the data center as well as the number of �ows.

Initial State: Each pod has some �xed downlink capacity from the core switches which

is useful only for tra�c destined to that pod. So an important insight here is that we

should distribute the core switches among the hosts in a single pod. For a fat-tree, the

number of hosts in a pod is equal to the number of core switches, suggesting a one-to-one

mapping. We restrict our solution search space to such assignments, i.e. we assign cores

not to individual �ows, but to destination hosts. Note that this choice of initial state is

only used when the Simulated Annealing scheduler is run for the �rst time. We use an

optimization to handle the dynamics of the system which reduces the importance of this

initial state over time.

Neighbor Generator: A well-cra�ed neighbor generator function intrinsically avoids

deep local minima. Complying with the idea of restricting the solution search space to

mappings with near-uniformmapping of hosts in a pod to core switches, our implemen-

tation employs three di�erent neighbor generator functions: (1) swap the assigned core
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Estimate-Demands()

1 for all i , j

2 Mi , j ← 0

3 do

4 foreach h ∈ H do Est-Src(h)

5 foreach h ∈ H do Est-Dst(h)

6 while some Mi , j .demand changed

7 return M

Est-Src(src: host)

1 dF ← 0

2 nU ← 0

3 foreach f ∈ ⟨src→ dst⟩ do

4 if f .converged then

5 dF ← dF + f .demand

6 else

7 nU ← nU + 1

8 eS ←
1.0−dF
nU

9 foreach ( f ∈ ⟨src→ dst⟩ and

10 not f .converged) do

11 M f .src, f .dst.demand← eS

Est-Dst(dst: host)

1 dT , dS , nR ← 0

2 foreach f ∈ ⟨src→ dst⟩

3 f .rl← true

4 dT ← dT + f .demand

5 nR ← nR + 1

6 if dT ≤ 1.0 then

7 return

8 eS ←
1.0
nR

9 do

10 nR ← 0

11 foreach f ∈ ⟨src→ dst⟩ and f .rl do

12 if f .demand < eS then

13 dS ← dS + f .demand

14 f .rl← false

15 else

16 nR ← nR + 1

17 eS ←
1.0−dS
nR

18 while some f .rl was set to false

19 foreach f ∈ ⟨src→ dst⟩ and f .rl do

20 M f .src, f .dst.demand← eS

21 M f .src, f .dst.converged← true

Identi�er Description

M �e demand matrix

H �e set of hosts

dF “Converged” demand

nU �e number of unconverged �ows

eS �e computed equal share rate

⟨src→ dst⟩ �e set of �ows from src to some dst

dT �e total demand

dS Sender limited demand

f .rl A �ag for a receiver limited �ow

nR �e number of receiver limited �ows

Figure 4.4: Demand estimator pseudocode for TCP �ows, with identi�er legend.
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switches for any two randomly chosen hosts in a randomly chosen pod, (2) swap the

assigned core switches for any two randomly chosen hosts in a randomly chosen edge

switch, (3) randomly choose an edge or aggregation switch with equal probability and

swap the assigned core switches for a random pair of hosts that use the chosen edge

or aggregation switch to reach their currently assigned core switches. Our neighbor

generator function randomly chooses between the 3 described techniques with equal

probability at runtime for each iteration. Using multiple neighbor generator functions

helps us avoid deep local minima in the search spaces of individual neighbor generator

functions.

Calculation of Energy Function: �e energy function for a neighbor can be calculated

incrementally based on the energy in the current state and the cores that were swapped

in the neighbor. We need not recalculate exceeded capacities for all links. Swapping

assigned cores for a pair of hosts only a�ects those �ows destined to those two hosts. So

we need to recalculate the di�erence in the energy function only for those speci�c links

involved and update the value of the energy based on the energy in the current state.�us,

the time to calculate the energy only depends on the number of large �ows destined to

the two a�ected hosts.

Dynamically-Changing Flows: With dynamically-changing �ow patterns, in every

scheduling phase, a few �ows would be newly classi�ed as large �ows and a few older

ones would have completed their transfers. We have implemented an optimization where

we set the initial state to the best state from the previous scheduling phase. �is allows

the route-placement of existing, continuing �ows to be disrupted as little as possible if

their current paths can still support their bandwidth requirements. Further, the initial

state that is used when the Simulated Annealing scheduler �rst starts up becomes less

relevant over time due to this optimization.

Search Space: �e key characteristic of Simulated Annealing is assigning unique core

switches based on destination hosts in a pod, crucial to reducing the size of the search

space. However, there are communication patterns where an optimal solution necessar-

ily requires a single destination host to receive incoming tra�c through multiple core

switches. While we omit the details for brevity, we �nd that, at least for the fat-tree topol-
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Table 4.1: Complexity of Global First Fit and Simulated Annealing. k is the number of

switch ports, ∣F ∣ is the total number of large �ows, and favg is the average number of large

�ows to a host. k3 is due to link-state structures, and ∣F ∣ is due to the �ows’ state.

Algorithm Time Space

Global First-Fit O((k/2)2) O(k3 + ∣F ∣)
Simulated Annealing O( favg) O(k3 + ∣F ∣)

ogy, all communication patterns can be handled if: i) themaximumnumber of large �ows

to or from a host is at most k/2, where k is the number of ports in the network switches,

or ii) the minimum threshold of each large �ow is set to 2/k of the link capacity. Given

that in practice data centers are likely to be built from relatively high-radix switches, e.g.,

k ≥ 32, our search space optimization is unlikely to eliminate the potential for locating

optimal �ow assignments in practice.

4.2.5 Comparison of Placement Algorithms

With Global First Fit, a large �ow can be re-routed immediately upon detection

and is essentially pinned to its reserved links. WhereasSimulated Annealingwaits for the

next scheduling tick, uses previously computed �ow placements to optimize the current

placement, and delivers even better network utilization on average due to its probabilistic

search.

We chose the Global First Fit and Simulated Annealing algorithms for their sim-

plicity; we take the view that more complex algorithms can hinder the scalability and

e�ciency of the scheduler while gaining only incremental bandwidth returns. We believe

that they strike the right balance of computational complexity and delivered performance

gains. Table 4.1 gives the time and space complexities of both algorithms. Note that the

time complexity of Global First Fit is independent of ∣F ∣, the number of large �ows in the

network, and that the time complexity of Simulated Annealing is independent of k.

More to the point, the simplicity of our algorithms makes them both well-suited

for implementation in hardware, such as in an FPGA, as they consist mainly of sim-
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ple arithmetic. Such an implementation would substantially reduce the communication

overhead of crossing the network stack of a standalone scheduler machine.

Overall, while Simulated Annealing is more conceptually involved, we show in

§ 4.4 that it almost always outperforms Global First Fit, and delivers close to the optimal

bisection bandwidth both for our testbed and in larger simulations. We believe the addi-

tional conceptual complexity of Simulated Annealing is justi�ed by the bandwidth gains

and tremendous investment in the network infrastructure of modern data centers.

4.2.6 Fault Tolerance

Any scheduler must account for switch and link failures in performing �ow

assignments. While we omit the details for brevity, ourHedera implementation augments

the PortLand routing and fault tolerance protocols [97]. Hence, the Hedera scheduler

is aware of failures using the standard PortLand mechanisms and can re-route �ows

mapped to failed components. Speci�cally, existing �ows assigned to failed links or

switches would be re-mapped, and any paths going through them would be skipped

during path search on subsequent scheduling rounds.

We also note that all scheduler-assigned �ow mappings are so�-state and are

optimizations formaximizing bisection bandwidth.�ey are not needed for connectivity.

�erefore, in the case of scheduler machine failure, hotswapping a backup scheduler

would be possible a�er �ow entries time out, and would not require a strong consistency

model. Furthermore, barring scheduler backups, switches would simply revert to their

default ECMP forwarding in the worst-case.

4.3 Implementation

To test our scheduling techniques on a real physical multi-rooted network, we

built as an example the fat-tree network described abstractly in prior work [2]. In ad-

dition, to understand how our algorithms scale with network size, we implemented a

simulator to model the behavior of large networks with many �ows under the control of

a scheduling algorithm.



71

��������

	
���

�
���

���������

����������

�����

��������

Figure 4.5: Hedera system architecture. �e interconnect shows the data-plane network,

with GigE links throughout.

4.3.1 Topology

For the rest of the chapter, we adopt the following terminology: for a fat-tree

network built from k-port switches, there are k pods, each consisting of two layers: lower

pod switches (edge switches), and the upper pod switches (aggregation switches). Each

edge switchmanages (k/2) hosts. �e k pods are interconnected by (k/2)2 core switches.

One of the main advantages of this topology is the high degree of available path

diversity; between any given source and destination host pair, there are (k/2)2 equal-

cost paths, each corresponding to a core switch. Note, however, that these paths are

not link-disjoint. To take advantage of this path diversity (to maximize the achievable

bisection bandwidth), we must assign �ows non-con�icting paths. A key requirement of

ourwork is to perform such schedulingwith nomodi�cations to end-host network stacks

or operating systems. Our testbed consists of 16 hosts interconnected using a fat-tree of

twenty 4-port switches, as shown in Fig. 4.5.

We deploy a parallel control plane connecting all switches to a 48-port non-

blocking GigE switch. We emphasize that this control network is not required for the

Hedera architecture, but is used in our testbed as a debugging and comparison tool.

�is network transports only tra�c monitoring and management messages to and from

the switches; however, these messages could also be transmitted using the data plane.

Naturally, for larger networks of thousands of hosts, a control network could be organized
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as a traditional tree, since control tra�c should be only a small fraction of the data tra�c.

In our deployment, the �ow scheduler runs on a separate machine connected to the 48-

port switch.

4.3.2 Hardware Description

�e switches in the testbed are 1U dual-core 3.2 GHz Intel Xeon machines, with

3GB RAM, and NetFPGA 4-port GigE PCI card switches [86]. �e 16 hosts are 1U quad-

core 2.13 GHz Intel Xeon machines with 3GB of RAM.�ese hosts have two GigE ports,

the �rst connected to the control network for testing and debugging, and the other to

its NetFPGA edge switch. �e control network is organized as a simple star topology.

�e central switch is a Quanta LB4G 48-port GigE switch. �e scheduler machine has a

dual-core 2.4 GHz Intel Pentium CPU and 2GB of RAM.

4.3.3 OpenFlow Control

�e switches in the tree all run OpenFlow [91], which allows access to the for-

warding tables for all switches. OpenFlow implementations have been ported to a variety

of commercial switches, including those from Juniper, HP, andCisco. OpenFlow switches

match incoming packets to �ow entries that specify a particular action such as duplica-

tion, forwarding on a speci�c port, dropping, and broadcast. �e NetFPGA OpenFlow

switches have 2 hardware tables: a 32-entry TCAM (that accepts variable-length pre�xes)

and a 32K entry SRAM that only accepts �ow entries with fully quali�ed 10-tuples.

WhenOpenFlow switches start, they attempt to open a secure channel to a central

controller. �e controller can query, insert, modify �ow entries, or perform a host of

other actions. �e switches maintain statistics per �ow and per port, such as total byte

counts, and �owdurations.�e default behavior of the switch is as follows: if an incoming

packet does not match any of the �ow entries in the TCAM or SRAM table, the switch

inserts a new �ow entry with the appropriate output port (based on ECMP) which allows

any subsequent packets to be directly forwarded at line rate in hardware. Once a �ow

grows beyond the speci�ed threshold, the Hedera scheduler may modify the �ow entry

for that �ow to redirect it along a newly chosen path.
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4.3.4 Scheduling Frequency

Our scheduler implementation polls the edge switches for �ow statistics (to detect

large �ows), and performs demand estimation and scheduling once every �ve seconds.

�is period is due entirely to a register read-rate limitation of the OpenFlow NetFPGA

implementation. However, our scalability measurements in § 4.4 show that a modestly-

provisioned machine can schedule tens of thousands of �ows in a few milliseconds, and

that even at the 5s polling rate, Hedera signi�cantly outperforms the bisection bandwidth

of current ECMP methods. In general, we believe that sub-second and potentially sub-

100ms scheduling intervals should be possible using straightforward techniques.

4.3.5 Simulator

Since our physical testbed is restricted to 16 hosts, we also developed a simulator

that coarsely models the behavior of a network of TCP �ows. �e simulator accounts

for �ow arrivals and departures to show the scalability of our system for larger networks

with dynamic communication patterns. We examine our di�erent scheduling algorithms

using the �ow simulator for networks with as many as 8,192 hosts. Existing packet-level

simulators, such as ns-2, are not suitable for this purpose: e.g. a simulation with 8,192

hosts each sending at 1Gbps would have to process 2.5× 1011 packets for a 60 second run.

If a per-packet simulator were used to model the transmission of 1 million packets per

second using TCP, it would take 71 hours to simulate just that one test case.

Our simulator models the data center topology as a network graph with directed

edges. Each edge has a �xed capacity. �e simulator accepts as input a communication

pattern among hosts and uses it, along with a speci�cation of average �ow sizes and

arrival rates, to generate simulated tra�c. �e simulator generates new �ows with an

exponentially distributed length, with start times based on a Poisson arrival process with

a given mean. Destinations are based upon the suite in § 4.4.

�e simulation proceeds in discrete time ticks. At each tick, the simulation up-

dates the rates of all �ows in the network, generates new �ows if needed. Periodically

it also calls the scheduler to assign (new) routes to �ows. When calling the Simulated
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Annealing and Global First Fit schedulers, the simulator �rst calls the demand estimator

and passes along its results.

When updating �ow rates, the simulator models TCP slow start and AIMD, but

without performing per-packet computations. Each tick, the simulator shu�es the order

of �ows and computes the expected rate increase for each �ow, constrained by available

bandwidth on the �ow’s path. If a �ow is in slow start, its rate is doubled. If it is in

congestion avoidance, its rate is additively increased (using an additive increase factor of

15MB/s to simulate a network with an RTT of 100µs). If the �ow’s path is saturated, the

�ow’s rate is halved and bandwidth is freed along the path. Each tick, we also compute

the number of bytes sent by the �ow and purge �ows that have completed sending all

their bytes.

Since our simulator does not model individual packets, it does not capture the

variations in performance of di�erent packet sizes. Another consequence of this decision

is that our simulation cannot capture inter-�ow dynamics or bu�er behavior. As a result,

it is likely that TCP Reno/New Reno would perform somewhat worse than predicted by

our simulator. In addition, we model TCP �ows as unidirectional although real TCP

�ows involve ACKs in the reverse direction; however, for 1500B Ethernet frames and

delayed ACKs, the bandwidth consumed by ACKs is about 2%. We feel these trade-o�s

are necessary to study networks of the scale described in this chapter.

We ran each simulation for the equivalent of 60 seconds andmeasured the average

bisection bandwidth during the middle 40 seconds. Since the simulator does not capture

inter-�owdynamics and tra�c burstiness our results are optimistic (simulator bandwidth

exceeds testbed measurements) for ECMP based �ow placement because resulting hash

collisions would sometimes cause an entire window of data to be lost, resulting in a

coarse-grained timeout on the testbed (see § 4.4). For the control network we observed

that the performance in the simulator more closely matched the performance on the

testbed. Similarly, forGlobal First Fit andSimulated Annealing, which try to optimize for

minimum contention, we observed that the performance from the simulator and testbed

matched very well. Across all the results, the simulator indicated better performance than

the testbed when there is contention between �ows.
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4.4 Evaluation

�is section describes our evaluation of Hedera using our testbed and simulator.

�e goal of these tests is to determine the aggregate achieved bisection bandwidth with

various tra�c patterns.

4.4.1 Benchmark Communication Suite

In the absence of commercial data center network traces, for both the testbed

and the simulator evaluation, we �rst create a group of communication patterns similar

to chapter 3 according to the following styles:

1. Stride(i): A host with index x sends to the host with index (x+ i)mod(num_hosts).

2. Staggered Prob (EdgeP, PodP): A host sends to another host in the same edge switch

with probability EdgeP, and to its same pod with probability PodP, and to the rest

of the network with probability 1-EdgeP - PodP.

3. Random: A host sends to any other host in the network with uniform probability.

We include bijective mappings and ones where hotspots are present.

We consider these mappings for networks of di�erent sizes: 16 hosts, 1,024 hosts,

and 8,192 hosts, corresponding to k = {4, 16, 32}.

4.4.2 Testbed Benchmark Results

We ran benchmark tests as follows: 16 hosts open socket sinks for incoming tra�c

andmeasure the incoming bandwidth constantly. �e hosts in succession then start their

�ows according to the sizes and destinations as described above. Each experiment lasts

for 60 seconds and uses TCP �ows; we observed the average bisection bandwidth for the

middle 40 seconds.

We compare the performance of the scheduler on the fat-tree network to that of

the same experiments on the control network. �e control network connects all 16 hosts

using a non-blocking 48-port gigabit Ethernet switch and represents an ideal network.
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In addition, we include a static hash-based ECMP scheme, where the forwarding path is

determined by a hash of the destination host IP address.

Fig. 4.6 shows the bisection bandwidth for a variety of randomized, staggered,

stride and hotspot communication patterns; our experiments saturate the links using

TCP. In virtually all the communication patterns explored,Global First Fit andSimulated

Annealing signi�cantly outperform static hashing (ECMP), and achieve near the optimal

bisection bandwidth of the network (15.4Gbps goodput). Naturally, the performance

of these schemes improves as the level of communication locality increases, as demon-

strated by the staggered probability �gures. Note that for stride patterns (common to

HPC applications), the heuristics consistently compute the correct �ow-to-core map-

pings to e�ciently utilize the fat-tree network, whereas the performance of static hash

quickly deteriorates as the stride length increases. Furthermore, for certain patterns,

these heuristics also marginally outperform the commercial 48-port switch used for our

control network. We suspect this is due to di�erent bu�ers/algorithms of the NetFPGAs

vs. the Quanta switch.

Upon closer examination of the performance using packet captures from the

testbed, we found that when there was contention between �ows, an entire TCP window

of packets was o�en lost. So the TCP connection was idle until the retransmission

timer �red (RTOmin = 200ms). ECMP hash based �ow placement experienced over 5

times the number of retransmission timeouts as the other schemes. �is explains the

overoptimistic performance of ECMP in the simulator as explained in § 4.3 since our

simulator does not model retransmission timeouts and individual packet losses.

4.4.3 Data Shu�e

We also performed an all-to-all in-memory data shu�e in our testbed. A data

shu�e is an expensive but necessary operation formanyMapReduce/Hadoop operations

in which every host transfers a large amount of data to every other host participating in

the shu�e. In this experiment, each host sequentially transfers 500MB to every other

host using TCP (a 120GB shu�e).

�e shu�e results in Table 4.2 show that centralized �ow scheduling performs

considerably better (39% better bisection bandwidth) than static ECMPhash-based rout-



78

Table 4.2: A 120GB shu�e for the placement heuristics in our testbed. Shown is total

shu�e time, average host-completion time, average bisection bandwidth and average

host goodput.

Metric ECMP GFF SA Control

Total Shu�e Time (s) 438.44 335.50 335.96 306.37
Average Host Completion (s) 358.14 258.70 261.96 226.56
Bisection Bandwidth (Gbps) 2.81 3.89 3.84 4.44
Host Goodput (MB/s) 20.94 28.99 28.63 33.10

ing. Comparing this to the data shu�e performed in VL2 [51], which involved all hosts

making simultaneous transfers to all other hosts (versus the sequential transfers in our

work), we see that static hashing performs betterwhen the number of �ows is signi�cantly

larger than the number of paths; intuitively a hash collision is less likely to introduce

signi�cant degradation when any imbalance is averaged over a large number of �ows.

For this reason, in addition to the delay of the Hedera observation/route-computation

control loop, we believe that tra�c workloads characterized by many small, short RPC-

like �ows would have limited bene�t from dynamic scheduling, and Hedera’s default

ECMP forwarding performs load-balancing e�ciently in this case. Hence, by threshold-

ing our scheduler to only operate on larger �ows, Hedera performs well for both types of

communication patterns.

4.4.4 Simulation Results

OMNeT++ Simulations

Using the OMNeT++ network simulator [100], we show in Table 4.3 the achieved

bisection bandwidth and the mean time for each host to transfer a 1MB �le simultane-

ously using TCP with the same topology and benchmark communication suite as our

testbed and compare that to a non-blocking switch (labeled control). �is con�rms that

oversubscription due to ine�cient load-balancing can greatly delay �le transfers and

overall job completion times.
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Table 4.3: Network bisection bandwidth and mean completion time for simultaneous

1MB transfers in OMNeT++.

ECMP GFF SA Control

Tra�c BW Time BW Time BW Time BW Time
Pattern (GB/s) (ms) (GB/s) (ms) (GB/s) (ms) (GB/s) (ms)

Stride(1) 1.94 10.90 1.94 10.90 1.94 10.90 1.93 11.00
Stride(2) 0.86 24.70 1.93 11.20 1.93 11.20 1.93 11.00
Stride(4) 0.48 41.90 1.92 11.30 1.92 11.30 1.93 11.00
Stride(8) 0.48 41.90 1.92 11.30 1.92 11.30 1.93 11.00
Stag(1, 0) 1.94 10.90 1.94 10.90 1.94 10.90 1.93 11.00
Stag(0.5, 0.3) 1.38 20.63 1.93 11.20 1.93 11.20 1.93 11.00
Stag(0.2, 0.3) 0.96 32.47 1.25 20.85 1.93 11.20 1.93 11.00
Random 0.66 38.75 1.07 19.28 1.93 11.20 1.93 11.00
Non-bijective 0.82 37.84 1.05 23.24 1.05 23.24 1.09 16.63

Next we evaluateGlobal First Fit andSimulated Annealing in comparison to static

hashing and an idealized non-blocking switch for larger topologies using our simulator.

Communication Patterns

In Fig. 4.7 we show the aggregate bisection bandwidth achieved when running

the benchmark suite for a simulated fat-tree network with 8,192 hosts (when k=32). We

compare our algorithms against a hypothetical non-blocking switch for the entire data

center and against static ECMP hashing. �e performance of ECMP worsens as the

probability of local communication decreases. �is is because even for a completely fair

and perfectly uniform hash function, collisions in path assignments do happen, either

within the same switch or with �ows at a downstream switch, wasting a portion of the

available bandwidth. A global scheduler makes discrete �ow placements that are chosen

by design to reduce overlap. In most of these di�erent communication patterns, our

dynamic placement algorithms signi�cantly outperform static ECMPhashing. Figure 4.8

shows the variation over time of the bisection bandwidth for the 1,024 host fat-tree net-

work. Global First Fit and Simulated Annealing perform fairly close to optimal for most

of the experiment.
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Figure 4.8: Network bisection bandwidth vs. time for a 1,024 host fat-tree and a random

bijective tra�c pattern.

Quality of Simulated Annealing

To explore the parameter space of Simulated Annealing, we show in Table 4.4 the

e�ect of varying the number of iterations at each scheduling period for a randomized,

non-bijective communication pattern. �is table con�rms our initial intuition regarding

the assignment quality vs. the number of iterations, as most of the improvement takes

place in the �rst few iterations. We observed that the performance of Simulated Anneal-

ing asymptotically approaches the best result found bySimulated Annealing a�er the �rst

few iterations.

�e table also shows the percentage of �nal bisection bandwidth for a random

communication pattern as number of hosts and �ows increases. �is supports our belief

that Simulated Annealing can be run with relatively few iterations in each scheduling pe-

riod and still achieve comparable performance over time. �is is aided by remembering

core assignments across periods, and by the arrival of only a few new large �ows each

interval.
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Table 4.4: Percentage of full bisection bandwidth vs. the Simulated Annealing iterations,

for a case of a random, non-bijective tra�c pattern. Also shown is the same load running

on a non-blocking topology.

Number of Hosts

SA Iterations 16 1,024 8,192

1,000 78.73 74.69 72.83
50,000 78.93 75.79 74.27
100,000 78.62 75.77 75.00
500,000 79.35 75.87 74.94
1,000,000 79.04 75.78 75.03
1,500,000 78.71 75.82 75.13
2,000,000 78.17 75.87 75.05

Non-blocking 81.24 78.34 77.63

Complexity of Demand Estimation

Since the demand estimation is performed once per scheduling period, its run-

timemust be reasonably small so that the length of the control loop is as small as possible.

We studied the runtime of demand estimation for di�erent tra�cmatrices in data centers

of varying sizes.

Table 4.5 shows the runtimes of the demand estimator for di�erent input sizes.

�e reported runtimes are for runs of the demand estimator using 4 parallel threads

of execution on a modest quad-core 2.13GHz machine. Even for a large data center

with 27,648 hosts and 250,000 large �ows (average of nearly 10 large �ows per host),

the runtime of the demand estimation algorithm is only 200ms. For more common

scenarios, the runtime is approximately 50-100ms in our setup. We expect the scheduler

machine to be a fairly high performance machine with more cores, thereby still keeping

the runtime well under 100ms even for extreme scenarios.

�ememory requirement for the demand estimator in our implementation using

a sparsematrix representation is less than 20MBeven for the extreme scenariowith nearly

250,000 large �ows in a data center with 27k hosts. In more common scenarios, with a

reasonable number of large �ows in the data center, the entire data structure would �t in

the L2 cache of a modern CPU.
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Table 4.5: Demand estimation runtime for di�erent networks and number of large �ows.

k Hosts
Large Runtime

Flows (ms)

16 1,024 1,024 1.45
16 1,024 5,000 4.14
32 8,192 8,192 2.71
32 8,192 25,000 9.23
32 8,192 50,000 26.31
48 27,648 27,648 6.91
48 27,648 100,000 51.30
48 27,648 250,000 199.43

Table 4.6: Runtime (ms) vs. number of Simulated Annealing iterations for di�erent

number of �ows f .

1,024 Hosts 8,192 Hosts

Iterations f = 3,215 f = 6,250 f = 25k f = 50k

1,000 2.997 5.042 6.898 11.573
5,000 12.209 20.848 19.091 32.079
10,000 23.447 40.255 32.912 55.741

Considering the simplicity and number of operations involved, an FPGA imple-

mentation can store the sparse matrix in an o�-chip SRAM. An FPGA such as the Xilinx

Virtex-5 can implement up to 200 parallel processing cores to process this matrix. We

estimate that such a con�guration would have a computational latency of approximately

5ms to perform demand estimation even for the case of 250,000 large �ows.

Complexity of Simulated Annealing

In Table 4.6 we show the runtime of Simulated Annealing for di�erent experi-

mental scenarios. �e runtime of Simulated Annealing is asymptotically independent of

the number of hosts and only dependent on the number of �ows. �e main takeaway

here is the scalability of our Simulated Annealing implementation and its potential for

practical application; for networks of thousands of hosts and a reasonable number of
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Table 4.7: Length of control loop (ms).

Flows per Host

Hosts 1 5 10

1,024 100.2 100.9 101.7
8,192 101.4 106.8 113.5
27,648 104.6 122.8 145.5

�ows per host, the Simulated Annealing runtime is on the order of tens of milliseconds,

even for 10,000 iterations.

Control Overhead

To evaluate the total control overhead of the centralized scheduling design, we

analyzed the overall communication and computation requirements for scheduling. �e

control loop includes 3 components—all switches in the network send the details of large

�ows to the scheduler, the scheduler estimates demands of the �ows and computes their

routes, and the scheduler transmits the new placement of �ows to the switches.

We made some assumptions to analyze the length of the control loop. (1) �e

control plane ismade upof 48-portGigE switcheswith an average 10µs latency per switch.

(2) �e format of messages between the switches and the controller are based on the

OpenFlow protocol (72B per �ow entry) [91]. (3)�e total computation time for demand

estimation and scheduling of the �ows is conservatively assumed to be 100ms. (4)�e last

hop link to the scheduler is assumed to be a 10GigE link. �is higher speed last hop link

allows a large number of switches to communicate with the scheduler simultaneously.

We assumed that the 10GigE link to the controller can be fully utilized for transfer of

scheduling updates.

Table 4.7 shows the length of the control loop for varying number of large �ows

per host. �e values indicate that the length of the control loop is dominated by the com-

putation time, estimated at 100ms. �ese results show the scalability of the centralized

scheduling approach for large data centers.
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Chapter 5

User-extensible Active Queue

Management

In this chapter, we address the challenge of network extensibility by bypassing

the long lead-time and di�culty standardization process for adopting new AQM disci-

plines by the switch vendors. Instead, we present a model where new and experimen-

tal AQM disciplines can be deployed and evaluated directly in production datacenter

networks, without modifying existing switches or end-hosts. To this end, we deploy

user-programmable “bump on the wire” middleboxes, called NetBumps, that augment

the existing switching infrastructure.1 In this model, each NetBump provides a virtual

queue primitive that enforces a range of AQMmechanisms at line rate, mechanisms that

would normally have to be implemented in the switches themselves. Furthermore, due

to its streamlined forwarding from input port to output port with no actual switching,

we greatly reduce the latency imposed by NetBump since its functionality is limited to

modi�cations of packets in �ight, using a user-level, zero-copy, kernel-bypass network

API, with no actual queuing or bu�ering done within.

By their placement at key points in the network, NetBumps enable AQM tech-

niques to be incrementally deployed and evaluated in real-world tra�c scenarios. For

example, in a typical data center enviroment, NetBumps would be placed inline with the

top-of-rack’s (ToR) uplinks (see Fig. 5.1) to enable the tra�cmonitoring and enforcement

1�e “bump on the wire” term here is unrelated to previous work about IPsec deployment boxes [74].

86
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Figure 5.1: Deployment scenario in the data center. “NetBump-enabled racks” include

NetBumps in-line with the Top-of-Rack (ToR) switch’s uplinks, and monitor output

queues at the host-facing ports.

of AQM policies and protocols for that rack. �is way, NetBump-enabled swathes of the

network could be expanded as needed.

By providing a clear and simple vAQM API, this makes implementing new net-

work functions straightforward. In our experience, new queuing disciplines, congestion

control strategies, protocol-speci�c packet headers (speci�cally, ones not supported by

commercial hardware, e.g. for XCP [72]), and new packets (for a new congestion control

protocol we implement in this work) can be built and deployed at line rate into exist-

ing networks. Network researchers can quickly develop and experiment with protocol

parameters and design by simply modifying their NetBump applications.

5.1 Motivation

In this section we �rst present an example of NetBump functionality in action,

and then motivate our requirements for a low-latency implementation.

5.1.1 NetBump Example

In Fig. 5.2, we show a simple network where two source hosts H1 and H2 each

send data to a single destination host Hd (in �ows F1 and F2, respectively). H1 and H2 are
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Figure 5.2: Anexample ofNetBump installed on top of a Top-of-Rack switch,monitoring

downstream physical queues.

connected to Switch0 at 1Gbps. Switch 0 has a 10Gbps uplink to the NetBump (through

the aggregation layer), and on the other side of the NetBump is a second 10Gbps link

to Switch1. Destination host Hd is attached to Switch1 at 1Gbps. Flows F1 and F2 each

have a maximum bandwidth of 1Gbps, and since host Hd has only a single 1Gbps link,

congestion will occur on Hd ’s input or output port in Switch1 if rate(F1) + rate(F2) >

1Gbps. Without NetBump, assuming Switch1 implements a drop-tail queuing discipline,

packets from F1 and F2 will be interleaved inHd ’s physical queue until the queue becomes

full, at which point Switch1 will drop packets arriving to the full queue. �is leads to

known problems such as burstiness and lack of fairness.

Instead, as NetBump forwards packets from its input port to its output port,

it estimates the occupancy of a virtual queue associated with Hd ’s output port bu�er.

When a packet arrives, Hd ’s virtual queue occupancy is increased by the packet’s size.

Because theNetBump knows the speed of the link between Switch1 andHd (§ 5.2.1), it can

compute the estimated drain rate, or the rate that data leaves Hd ’s queue. By integrating

this drain rate over the time between subsequent packets, it calculates the amount of data

that has le� the queue since the last packet arrival.

Within NetBump, applications previously requiring new hardware development

can instead act on the virtual queue. For example, to implement a Random Early De-

tection (RED) queuing discipline, the NetBump shown in Fig. 5.2 maintains a virtual

output queue for each physical queue in Switch1.�is virtual queuemaintains twoparam-
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eters, MinThreshold and MaxThreshold, as well as a weighted estimate of the current

downstream queue length. According to the RED discipline, packets are sent unmodi�ed

when themoving average of the queue length is below the MinThreshold, the packets are

marked (or dropped) probabilistically when the average is between the two thresholds,

and packets are unconditionally marked (or dropped) when it is above MaxThreshold.

Note that in this example, just as in all the network mechanisms presented in this

chapter, packets are never delayed or queued in the NetBump itself. Instead, NetBump

marks, modi�es, or drops packets at line rate as if the downstream switch directly sup-

ported the functionality in question. Note also that NetBump is not limited to a single

queuing discipline or application–it is possible to compose multiple applications (e.g.

QCN congestion control with Explicit Congestion Noti�cation (ECN) marking [42]).

Furthermore, AQM functionality can act only on particular �ows transiting a particular

end-to-end path if desired.

5.1.2 Design Requirements

�e primary goal of NetBump is enabling rapid and easy evaluation of new queue

management and congestion controlmechanisms in deployed networkswithminimal in-

trusiveness. We next describe the requirements that NetBump must meet to successfully

reach this goal.

Deployment with unmodi�ed switches and end-hosts: We seek to enable AQM devel-

opment and experimentation to take place in the data center or enterprise itself, rather

than separate from the network.�ismeans thatNetBumpworks despite leaving switches

and end-hosts unmodi�ed. �us a requirement of NetBump is that it implements a vir-

tual Active Queue Management (vAQM) discipline that tracks the status of neighboring

switch bu�ers. �is will di�er from previous work that applies this technique within

switches [48, 79], as our implementation will be remote to the switch.

Distributed deployment: Modern networks increasingly rely on multipath topologies

both for redundancy in the face of link and switch failure, and for improving throughput

by utilizing several, parallel links. Le� unaddressed, multipath poses a challenge for the

NetBumpmodel since a single bump may not be able to monitor all of the �ows heading
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to a given destination. �erefore a requirement for NetBump is that it supports enough

throughput to manage a su�cient number of links, and that it supports a distributed

deployment model. In a distributed model, multiple bumps deployed throughout the

network coordinate with each other to manage �ows transiting them. In this way, a set

of �ows taking separate network paths can still be subjected to a logically centralized,

though physically distributed, AQM policy.

Ease of development: Rather than serving as a �nal deployment strategy, we see Net-

Bump as an experimental platform, albeit one that is deployed directly on the production

network. �us rapid prototyping and recon�guration are a requirement of its design.

Speci�cally, the platform should export a clear API with which users can quickly develop

vAQM applications using C/C++.

Minimizing latency: Many data center and enterprise applications have strict latency

deadlines, and any datapath processing elements must likewise have strict performance

guarantees, especially given NetBump’s target deployment environment of data center

networks, whose one-way latency diameters are measured in microseconds. Since the

throughput of TCP is in part a function of the network round-trip time [103], any ad-

ditional latency imposed by NetBump can a�ect application �ows. To show this e�ect,

we measured the completion times of two �ows–one in which a single byte is exchanged

between a sender-receiver pair, and one where 1MB is exchanged between that same pair.

Fig. 5.3 shows the normalized completion times of each �ow as a function of one-way

middlebox latency. Perhaps not surprising, adding even tens of microseconds of one-

way latency has a signi�cant impact on �ow completion times when the baseline network

RTT is very small.

Forwarding at line rate: Although data center hosts still primarily operate at 1Gbps,

10Gbps has become standard at rack-level aggregation. Deploying a NetBump inline

with top-of-rack uplinks and between 10Gbps switches will require an implementation

that can support 10Gbps line rates. �e challenge then becomes keeping up with packet

arrival rates: 10Gbps corresponds to 14.88M 64-byte minimum sized packets per second,

including Ethernet overheads.
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Figure 5.3: E�ect ofmiddlebox latency on completion time of short (1 Byte) andmedium-

sized (1MB) TCP �ows. Baseline (direct-connect) transfer time was 213µs (1B), 9.0ms

(1MB), others are through a NetBump with con�gurable added delay.

5.2 Design

In this section we describe the design of the primary NetBump vAQM pipeline,

including how this design can scale to support faster links and a distributed deployment

for multi-path data center designs. We discuss our implementation choices in § 5.4.

5.2.1 �e NetBump Pipeline

�e core NetBump pipeline consists of four algorithms: 1) packet classi�cation,

2) virtual queue (VQ) drain estimation, 3) packet marking/dropping, and optionally 4)

extensible packet processing.

Virtual Queue Table Data Structure: Each NetBump maintains a set of virtual queues,

which di�er from physical queues in that they do not store or bu�er packets. Instead,

as packets pass through a virtual queue, it maintains state on what its occupancy would

be if it were actually storing packets. �us each virtual queue must keep track of 1) the

number and sizes of packets transiting it, 2) the packet arrival times, and 3) the virtual

rate at which they drain from the queue. Note that packets actually drain at line rate (i.e.
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Figure 5.4: �e NetBump pipeline.

10Gbps), however a virtual queue could be con�gured with a virtual drain parameter of

1Gbps or 100Mbps.

�e virtual queue table is a simple data structure kept by the NetBump that stores

each of these three parameters for each virtual queue supported by that bump. For the

AQM functionality we consider, we only need to know the virtual queue occupancy and

drain rate, and so each virtual queue keeps 1) the size in bytes of the queue, 2) the time

the last packet arrived to the queue, and 3) the virtual queue drain rate. �ese values are

updated when a packet arrives to the virtual queue.

1. Packet Classi�cation: As packets arrive to the NetBump, they must �rst be classi�ed

to determine into which virtual queue they will be enqueued. �is classi�cation API is

extensible in NetBump, and can be overridden by a user as needed. A reasonable scheme

would be to map packets to virtual queues corresponding to the downstream physical

switch output bu�er that the packet will reside in when it leaves the bump. In this case the

virtual queue is emulating the downstream switch port directly. Note that virtual queues

do not have to be associated in this way, though they are for most of the applications we

consider in this work.

To make this association, NetBump requires two pieces of information: the map-

ping of packet destinations to downstream output ports, and the speed of the link at-

tached to that port. �e mapping is needed to determine the destination virtual queue

for a particular packet, and the link speed is necessary for estimating the virtual queue’s

drain rate.�ere are a variety of ways of determining these values.�e bump could query
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Table 5.1: �e NetBump API.

Function Description

void init(vQueue *vq, int rate); Initializes a virtual queue and set the drain rate

vQueue * classify(Packet *p); Classi�es a packet to a virtual queue

void vAQM(Packet *p, vQueue *vq); Updates internal vAQM state

int estimateQlen(vQueue *vq); Returns an estimate of a virtual queue’s length

int process(Packet *p, vQueue *vq); Packet processing (modify, duplicate, drop, etc.)

int forward(Packet *p) const; Gets the output port (for multi-NIC bumps)

neighboring switches (e.g. using SNMP) for their outgoing link speeds, or those values

could be statically con�gured when the bump is placed in the network. For so�ware-

de�ned networks based on OpenFlow [53,91], the central controller could be queried for

host-to-port mappings and link speeds, as well as the network topology. In our evalua-

tion, we statically con�gure theNetBumpwith the port-to-hostmapping and link speeds.

2. Queue Drain Estimation: �e purpose of the queue drain estimation algorithm is

to calculate, at the time a packet is received into the bump, the occupancy of the virtual

queue associated with the packet (Fig. 5.5). �e virtual queue estimator is a leaky bucket

that is �lled as packets are assigned to it, and drained according to a �xed drain rate

determined by the port speed [128].

Lines 1-6 implement the leaky bucket. First, the elapsed time since the last packet

arrived to this virtual queue is calculated. �is elapsed time is multiplied by a physical

port’s rate to calculate how many bytes would have le� the downstream queue since

receiving the last packet. �e physical port’s drain rate comes from the link speed of

the downstream switch or end-host. �is amount is then subtracted from the current

estimate (or set to zero, if the result would be negative) of queue occupancy to get an

updated occupancy. If this is the �rst packet to be sent to that port, then the default

queue occupancy estimate of 0 is used instead. Lastly, the “last packet arrival” �eld of the

virtual queue is updated accordingly.

A key design decision in NetBump is whether to couple the size of the virtual

queue inside the bump with the actual size of the physical bu�er in the downstream

switch. If we knew the size of the downstream queue, then we could set the maximum

allowed occupancy of the virtual queue accordingly. �is would be challenging in gen-
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Procedure vAQM(Packet *pkt, vQueue *VQ):

1 if (VQ→lastUpdate > 0) {

2 elapsedTime = pkt→timestamp – VQ→lastUpdate

3 drainAmt = elapsedTime * VQ→rate

4 VQ→tokens –= drainAmt

5 VQ→tokens = max(0, VQ→tokens)

6 }

7 VQ→tokens += pkt→len

8 VQ→lastUpdate = pkt→timestamp

Procedure RED(Packet *pkt, vQueue *VQ):

9 VQ→avg = calculateAvg(v→tokens)

10 if (VQ→avg > VQ→Max�resh) {

11 VQ→tokens –= pkt→len

12 drop(pkt)

13 } else if (VQ→avg > VQ→Min�resh) {

14 calculate probability ρ

15 with probability ρ:

16 mark(pkt)

17 }

Figure 5.5: �e queue drain estimation algorithm and the implementation of RED.

eral, since switches do not typically export the maximum queue size programmatically.

Furthermore, for shared bu�er switches, this quantity might change based on the instan-

taneous tra�c in the network. In fact, by assuming a small bu�er size in the virtual queue

within NetBump, we can constrain the �ow of packets to reduce actual bu�er occupancy

throughout the network.�us, assuming small bu�ers in our virtual queues has bene�cial

e�ects on the network, and simpli�es NetBump’s design.

3. Packet Marking/Dropping: At line 9 in Fig. 5.5, NetBump has an estimate for the

virtual queue occupancy. Here a variety of actions can be performed, based on the ap-

plication implemented in the bump. �e example code shows a general random-early
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drop (RED) application [58]. In this example, there is a “min” limit that results in packet

marking, and a “max” limit that results in packet dropping. Packet marking takes the

form of setting the ECN bit in the header, and dropping is performed simply in so�ware.

4. Extensible Processing Stage: In addition to the vAQM estimation and packet mark-

ing/dropping functionality built into the basic NetBump pipeline, developers can op-

tionally include arbitrary additional packet processing. NetBump developers can include

extensions to process packet streams. �is API is quite simple, in that the extension is

called once per packet, which is represented by a pointer to the packet data and length

�eld. Developers can read, modify, and adjust the packet arbitrarily before re-injecting

the packet back into the NetBump pipeline (or dropping it entirely).

Packets destined to particular virtual queues can be forwarded to di�erent ex-

tensions, each of which runs in its own thread, coordinating packet reception from the

NetBump pipeline through a shared producer-consumer queue. By relying onmulti-core

processors, each extension can be isolated to run on its own core. �is has the advantage

that any latency induced by an extension only a�ects the tra�c subject to that extension.

Furthermore, correctness or performance bugs in an extension only a�ects the subset of

network tra�c enqueued in the virtual queues serving that extension. �is enables an

incremental “opt-in” experimental platform for introducing new NetBump functionality

into the production network.

An advantage of theNetBump architecture is that packets travel a single path from

the input port to the output port. �us, unlike multi-port so�ware routers, here packets

can remain entirely on a single core, and stay within a single cache hierarchy. �e only

point of synchronization is the shared vAQM data structure, and we study the overhead

of this synchronization and the resulting lock contention in § 5.5.2.

5.2.2 Scaling NetBump

Managing packet �ows in multipath environments requires that NetBump scale

with the number of links carrying a particular set of �ows. �is scaling operates within

two distinct regions. First, supporting additional links by adding NICs and CPU cores to

a single server, and second, through a distributed deployment model.
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Multi-link NetBump

For multipath environments in which packets headed to a single destination

might travel over multiple paths, it is possible to scale NetBump by simply adding new

NICs and CPU cores. For example, a top-of-rack switch with two 10Gbps uplinks would

meet these requirements. Here, a single server is only limited in the number of links that

it can support by the amount of PCI bandwidth and the number of CPU cores. Each

pair of network interfaces supports a single link (10Gbps in, and 10Gbps out), and PCIe

gen 2 supports up to three such bi-directional links. In this case, “Multi-link” NetBump

is still conceptually simpler than a so�ware-based router, since packets still follow a

single-input, single-output path. Each supported link is handled independently inside

the bump, and we can assign to it a dedicated CPU core. �e only commonality between

these links is the vAQM table, which is shared across the links.

Distributed NetBump

For multi-path environments, where NetBumps must be physically separated,

or for those with more links than are supported by a single server, we consider a dis-

tributed NetBump implementation. Naturally, if multiple NetBumps contribute packets

to a shared downstream bu�er, they must exchange updates to maintain accurate vAQM
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estimates. Note that the vAQM table maintains queue estimates for each of neighboring

switch’s ports (or a monitored subset).

In this case, where we assume the topology (adjacency matrix and link speeds)

to be known in advance, NetBumps update their immediate neighbor bumps about the

tra�c they have processed (Fig. 5.6). Hence, updates are not the queue estimate itself,

but tuples of individual packet lengths and physical downstream switch and port IDs, so

that forwarding tables need not be distributed. Each source NetBump sends an update

to its monitoring neighbors at a given tunable frequency (e.g. per packet, or batched),

and each destination NetBump calculates a new queue estimate by merging its previous

estimate with the tra�c update from its neighbor, according to the algorithm in Fig. 5.5.

In this design, updates are tiny; 4B per monitored �ow packet (i.e. 2B for packet size

and 2B for the port identi�er). �is translates to about 3MB/s of control tra�c per

10Gbps monitored �ow. Note also that updates can be transmitted on a dedicated link,

or in-band with the monitored tra�c. We chose the latter for our Distributed NetBump

implementation.

�e above technique introduces two possible sources of queue estimation error:

1) batching updates causes estimates to be slightly stale, and since packet sizes are not

uniform, the individual packet components of a virtual queue and their respective order

would not necessarily be the same, and 2) the propagation delay of the update. Despite

this incremental calculation, the estimation naturally synchronizes whenever the bu�er

occupancy is near its empty/full boundaries.

5.3 Deployed Applications

In this section, we describe the design and implementation of several vAQM and

congestion control applications we developed with NetBump.

5.3.1 Random Early Detection

�e �rst vAQM scheme we implemented is Random Early Detection (RED) [43].

�e goal of RED is to keep the average queue length lowwhile achieving high throughput.

RED bu�ermanagement consists of two parts: estimation of the average queue size using
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an exponentially-weighed moving average, and a decision on dropping or marking a

packet.�e packetmark or drop rate increases linearly fromzero, when the average queue

length is at MinThresh, to amaximumprobabilitywhen the average queue length reaches

MaxThresh. Our implementation is based on the algorithmproposed in the original RED

paper. �is vAQM stage maintains MinThresh and MaxThreshwatermarks (with values

of 20 and 60 packets, respectively), a wq setting of 0.1, and varies maxp. We based these

values on previous work by Floyd et al. [107].

5.3.2 Data Center TCP

We next implemented Data Center TCP (DCTCP) [5] on NetBump. �e purpose

of DCTCP is to improve the behavior of TCP in data center environments, speci�cally

by reducing queue buildup, bu�er pressure, and incast. It requires changes to the end-

hosts as well as network switches. A DCTCP-enabled switch marks the ECN bits of

packets when the size of the output bu�er in the switch is greater than the marking

threshold K. Unlike RED, this marking is based on instantaneous queue size, rather

than a smoothed average. �e receiver is responsible for signaling back to the sender the

particular sequence ofmarked packets (see [5] for a complete description), and the sender

maintains an estimate α of the fraction of marked packets. Unlike a standard sender that

cuts the congestion window in half when it receives an ECN-marked acknowledgment,

a DCTCP sender reduces its rate according to: cwnd ← cwnd ∗ (1 − α/2). We support

DCTCP in the end-hosts by using a modi�ed Linux TCP stack supplied by Kabbani and

Alizadeh [67].

Implementing DCTCP in NetBump was straightforward, and relied on much

of the same code as RED. Here, instead of computing a smoothed queue average of

the downstream physical queue occupancy, we mark based on the instantaneous queue

size. Next, we set both LowThresh and HighThresh to the supplied K (chosen to be 20

packets, based on the authors’ guidelines [5]). We experimented with other values of K,

and found that changing this value had little noticeable e�ect on aggregate throughput

or rate convergence.
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5.3.3 Quantized Congestion Noti�cation

We also implemented the IEEE 802.1Qau-QCN L2 Quantized Congestion Con-

trol (QCN) algorithm [4]. QCN-enabled switches monitor their output queue occupan-

cies and upon sensing congestion (using a combination of queue buildup rate and queue

occupancy), they send feedback packets to upstreamReaction Points.�eReactionPoints

are then responsible for adjusting the sending rate according to a prescribed formula. For

every QCN-enabled link, there are two basic algorithms:

Congestion Point (CP): For every output queue, the switch calculates a feedbackmeasure

(Fb) whenever a new frame is queued. �is measure captures both the rate at which

the queue is building up (Qδ), as well as the di�erence (Qo�) between the current queue

occupancy and a desired equilibrium threshold (Qeq, assumed to be 20% of the physical

bu�er). If Q denotes the current queue occupancy, Qold is the previous iteration, and w

is the weight controlling rate build-up, then:

Qo� = Q −Qeq Qδ = Q −Qold

Fb = −(Qo� +wQδ)

Based on Fb, the switch probabilistically generates a congestion noti�cation

frame proportional to the severity of the congestion (the probability pro�le is similar

to RED [43], i.e. it starts from 1% and plateaus at 10% when ∣Fb∣ ≥ Fbmax). �is QCN

frame is destined to the upstream reaction point from which the just-added frame was

received. If Fb ≥ 0, then there is no congestion and no noti�cation is generated.

Reaction Point (RP): Since the network generates signals for rate decreases, QCN

senders must probe for available bandwidth gradually until another noti�cation is

received.�e reaction point algorithmhas two phases: Fast-Recovery (FR) andAdditive-

Increase (AI), similar, but independent from, BIC-TCP’s dynamic probing.

�e RP algorithm keeps track of the sending Target Rate (TR) and Current Rate

(CR).When a congestion control frame is received, the RP algorithm immediately enters

the Fast Recovery phase; it sets the target rate to the current rate, and reduces the current

rate by an amount proportional to the congestion feedback (by at most 1/2). Barring

further congestion noti�cations, it tries to recover the lost bandwidth by setting the cur-
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rent rate to the average of the current and target rates, once every cycle (where a cycle is

de�ned in the base byte-counter model as 100 frames). �e RP exits the Fast Recovery

phase a�er �ve cycles, and enters the Additive Increase phase, where the RP continually

probes for more bandwidth by adding a constant increase to its target rate (1.5Mbps in

our implementation), and again setting the current sending rate to the average of the CR

and TR.

5.4 Implementation

NetBump can be implemented using a wide variety of underlying technologies,

either in hardware or in so�ware. We evaluated three such choices: 1) the stock Linux-

based forwarding path, 2) the RouteBricks so�ware router, and 3) a user-level application

relying on kernel-bypass network APIs to read and write packets directly to the network.

We call this last implementationUNetBump.We show in Fig. 5.7 the latency distributions

of these systems when forwarding 1500B packets at 10Gbps (except Linux with 9000B).

�e baseline for comparison being a simple loopback.

All of our implementations are deployed on HP DL380G6 servers with two Intel

E5520 four-core CPUs, each operating at 2.26GHzwith 8MB of cache.�ese servers have

24 GB of DRAM separated into two 12GB banks, operating at a speed of 1066MHz. For

the Linux and UNetBump implementations, we use an 8-laneMyricom 10G-PCIE2-8B2-

2S+E dual-port 10Gbps NIC which has two SFP+ interfaces, plugged into a PCI-Express

Gen 2 bus. For RouteBricks, we used an Intel E10G42AFDAdual-port 10GbpsNIC (using

an 82598EB controller) with two SFP+ interfaces.

5.4.1 Linux

�e Linux kernel natively supports a complete IP forwarding path, including

a con�gurable set of queuing disciplines that are managed through the “tra�c control

(tc)” extensions [84]. Linux tc supports �ow and packet shaping, scheduling, policing,

and dropping. While tc supports a variety of queuing disciplines, it does not support

managing the queues of remote switches. �is support would have to be added to the

kernel. In our evaluation we used Linux kernel version 2.6.32. We found that the latency
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Figure 5.7: Forwarding latency of baseline, UNetBump, Linux, RouteBricks (batching

factor of 16, and a Click burst factor of 16), both with and without an outlier queue.

overheads of the Linux forwarding pathwere very high, with amean latency above 500µs,

and a 99th percentile above 1500µs. Furthermore, our evaluation found that Linux was

not able to forward non-Jumbo frames at speeds approaching 10Gbps (and certainly not

with minimum-sized packets). Based on these microbenchmarks, we decided not to

further consider Linux as an implementation alternative.

5.4.2 RouteBricks

RouteBricks [32] is a high-throughput so�ware router implementation built us-

ing Click’s core, extensive element library, and speci�cation language. It increases the

scalability of Click in two ways–by improving the forwarding rate within a single server,

and by federating a set of servers to support throughputs beyond the capabilities of a

single server. To improve the scalability within a single server, RouteBricks relies on

a re-architected NIC driver that supports multiple queues per physical interface. �is

enables multiple cores to read and write packets from the NIC without imposing lock

contention, which greatly improves performance [31, 35, 90, 137]. Currently, RouteBricks

works only with the ixgbe device driver, which delivers packets out of the driver in

�xed-size batches of 16 packets each. We built a single-node RouteBricks server using

the same HP server architecture described above, but with the Intel E10G42AFDA NIC
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(the only available NIC that RouteBricks driver patch still supported). �is server used

the Intel ixgbe driver (version 1.3.56.5), with a batching factor of 16.

�e use of this batching driver improves throughput by amortizing the overhead

of transferring those packets over an entire batch, rather than on a packet-by-packet basis.

�is enables RouteBricks to support very high line rates, however the use of batching

increases latency on an individual packet basis.2 We also tried a batching factor of 1 and

found that the throughput dropped below 10Gbps. Indeed RouteBricks was designed for

high throughput, not low-latency. �ere is nothing in the Click or RouteBricks model

that precludes low-latency forwarding, however for this work we chose not to use Route-

Bricks.

5.4.3 UNetBump

In user-level networking, instead of having the kernel deliver and demultiplex

packets, theNIC instead delivers those packets directly to the application.�is is typically

coupled with kernel-bypass support, which enables the NIC to directly copy packets into

a memory region mapped to the application. User-level networking has been further

developed to better support virtualization by enabling individual �ows to bypass the

hypervisor and terminate directly in a guest VM [85].

User-level networking is a well-studied approach that has been implemented in

a number of commercially-available products. Myricom o�ers Ethernet NICs with user-

level networking APIs that we use in our evaluation. Intel supports user-level, kernel-

bypass networking via the PF_RING/DNA driver [104]. SolarFlare o�ers a set of “So-

larstorm” NICs with this functionality [121], as does SMC [118]. �ere have been at least

two e�orts to create an open and cross-vendor API to user-level, kernel-bypass network

APIs [102, 108]. We re-evaluate the use of user-level networking to support low-latency

applications, especially those requiring low latency variation. Note that it is possible to

layer the RouteBricks/Click runtime on top of the user-level, kernel-bypass APIs we use

in UNetBump.

2Despite extensive debugging with the help of the RouteBricks authors, we could not lower this latency
further.
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Figure 5.8: Two-rack 802.1Qau-QCN and DCTCP Testbed

5.5 Evaluation

Our evaluation seeks to answer the following questions: 1) How expressive is

NetBump? 2) How easy is it to deploy applications? 3) How e�ective is vAQM estimation

in practice? 4) What are the latency overheads and throughput limitations of NetBump?

To answer these, we built and deployed a set of NetBump prototypes in our ex-

perimental testbed. We started by evaluating the baseline latency and latency variation of

the range of implementation choices. Based on these measurements, we proceeded with

construction of UNetBump, a fully-functional prototype based on user-level networking

APIs. We then evaluate a range of AQM functionalities with UNetBump.

5.5.1 Testbed Environment

Our experimental testbed consists of a set dual-processor Nehalem server de-

scribed above, using either Myricom NICs, or in the case of RouteBricks, the Intel NIC.

�eMyricomNICs use the Sni�er10G driver version 1.1.0b3. We use copper direct-attach

SFP+ connectors to interconnect the 10Gbps end-hosts to our NetBumps. Experiments

with 1Gbps end-hosts rely on a pair of SMC 8748L2 switches that each have 1.5MB of

shared bu�ering across all ports. Each SMC switch has a 10Gbps uplink that we connect

to the appropriate NetBump.

We evaluate NetBump in three di�erent contexts.�e �rst is inmicrobenchmark,

to examine its throughput and latency characteristics. Here we deploy NetBump as a
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loopback (simply connecting the two ports to the same host) to eliminate the e�ects

of clock skew and synchronization. �e second simply puts a NetBump inline between

two machines, and tests NetBump’s operation at full 10Gbps. Separating the source and

destination to di�erent machines enables throughput measurement with real tra�c.

�e third testbed, Fig. 5.8, evaluates NetBump in a realistic data center environ-

ment in which it might be deployed right above the top-of-rack switch. Here, we have

two twelve-node racks of end-hosts, each connected to a 1Gbps switch. A 10Gbps uplink

connects the two 1Gbps switches and the NetBump is deployed inline with those uplinks.

In this case, the NetBump actually has four 10Gbps interfaces–two to the uplinks of each

of the two SMC 1Gbps switches, and two that connect to a second NetBump. We use this

testbed to evaluate 802.1Qau-QCN, with one NetBump acting as the Congestion Point

(CP) and the other as the Reaction Point (RP).

5.5.2 Microbenchmarks

NetBump Latency

A key metric for evaluation is the latency overhead. To measure this, we use a

loopback testbed and had a packet generator on the client host send packets onto thewire,

through the NetBump, and back to itself. To calibrate, we also replace the NetBump with

a simple loopback wire, which gives us the baseline latency overhead of themeasurement

host itself. We subtract this latency from the observed latency with theNetBump in place,

giving us the latency of just the NetBump. We generated a constant stream of 1500-byte

packets sent at con�gurable rates (Fig. 5.9).

For UNetBump, the latency is quite low for the majority of forwarded packets.

�ere is a jump in latency at the tail due to NIC packet batching when they arrive above

a certain rate. �ere is no way to disable this batching in so�ware, even though we were

only using a single CPU core which could have serviced a higher packet rate without

requiring batching. �e forwarding performance of UNetBumpwas su�cient to keep up

with line rate using minimum-sized packets and a single CPU core.
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Figure 5.9: Latency percentiles imposed by UNetBump vs. o�ered load. Baseline is the

loopback measurement overhead.

vAQM Estimation Accuracy

To evaluate the accuracy of the vAQM estimation, we ran iperf sessions be-

tween two hosts, connected in series by a NetBump and another pass-through machine

(which records the timestamps of incoming frames). Since we cannot export physi-

cal bu�er occupancy of commercial switches, we use the frame timestamps and lengths

from the downstream pass-through machine to recreate the output bu�er size over time,

knowing the drain-rate. Fig. 5.10 shows the NetBump virtual queue size vs. the actual

downstream queue. �e estimate was within two MTUs 95% of the time.

Distributed NetBump

We also measured the accuracy of queue estimation when multiple NetBumps

exchange updates to estimate a common downstream queue. In the �rst experiment,

measure the e�ect of update latency on queue estimate accuracy. We varied the times-

tamp interleaving of two TCP iperf �ows that share a downstream queue in order to

simulate receiving delayed updates fromaneighboringNetBump. Fig. 5.11 shows theCDF

of the di�erence between the delayed inter-bump estimation and the in-sync version.

Even when update latency was 25µs, the di�erence was always under 2MTU.
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MTUs 95% of the time.

Figure 5.10: Downstream vAQM estimation accuracy.

Next, we show the accuracy of NetBump’s queue estimating of a downstream

queue, based solely on updates from its neighbor. In our implementation, the updates are

transmitted in-band with the monitored tra�c. Fig. 5.12 gives the CDF of the di�erence

between the actual queue size and the distributedNetBump estimate. We observe that the

estimate is within 3MTUs 90% of the time. Note, however, the e�ect of update batching:

estimates quickly dri� when updates are delayed. Fig. 5.13 shows a typical relative dif-

ference CDF when background elephant �ows are present (i.e. some �ows are observed

directly, and others indirectly through updates).
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Figure 5.11: CDF of the absolute di�erence between the queue estimate with delayed

updates and the in-sync version. �e combined throughput is rate-limited to 5Gbps, and

the downstream bu�er is 40KB.

E�ect of assigning CPU a�nity

One of the challenges of designing NetBump was not only maintaining a low

average latency, but also reducing variance. Modern CPU architectures provide separate

cores on the same die and physically separate memory across multiple Non-Uniform

Memory Access (NUMA) banks. �is means that access time to memory banks changes

based on which core issues a given request. To reduce latency outliers, we allocated

memory to each UNetBump thread from the same NUMA domain as the CPU core it

was scheduled to.

Given the signi�cant additional latency thatmay be introduced by the unmodi�ed

Linux kernel scheduler, we compare latency of NetBump with and without CPU-a�nity

and scheduler modi�cations. Our control experiment uses default scheduling. To im-

prove on this, we exclude all but one of the CPU cores from the default scheduler, and

ensure that the UNetBump user-space programs execute on the reserved cores. We then

examined the average, 95th, 99th, 99.9th, and maximum latencies through NetBump

compared to the baseline (Table 5.2). CPU-a�nity had a minor e�ect on latency on

average, but was most pronounced on outlier packets. �e maximum observed latency

was 17 times smaller with CPU-a�nity at the 99.9th percentile, showing the importance

of explicit resource isolation in low-latency deployments.
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Figure 5.12: CDF of the di�erence between actual queue size and the Distributed

NetBump estimate using a 1Gbps rate-limited TCP �ow and a 40KB bu�er. �e

estimating NetBump does not observe the monitored tra�c directly.

Table 5.2: UNetBump latency percentiles vs. CPU core a�nity.

Latency (µs) Avg 95th 99th 99.9th Max

No A�nity 32 39 76 1,322 3,630
With A�nity 30 42 83 169 208

Multicore performance

In UNetBump, basic vAQM estimation can be done at 10Gbps using only a single

CPU core. However, to support higher link rates, additional cores might be necessary.

�e NIC itself will partition �ows across CPU cores using a hardware hash function. In

this scenario, a user-space thread would be responsible for handling each ring pair, and

the only time these threads must synchronize would be when updating the vAQM state

table. To evaluate the e�ect of this synchronization on the latency of NetBump in amulti-

threaded implementation, we examined the e�ect of vAQM table lock overhead. As a

baseline, a single-threaded forwarding pipeline (FP) has a latency of 29.16µs. Running

NetBump with two FPs (two ring pairs in the NIC and each FP running on its own core)

increased that latency by 17.9% to 35.5µs. Further running NetBump with four FPs on
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Figure 5.13: Typical distributed NetBump relative error with background elephant �ows.

Table 5.3: Coding e�ort for NetBump and its applications.

Application Lines of Code

NetBump core 940
RED 29

DCTCP 29
QCN 464

four cores increased the latency by an additional 1.95% to 36.8µs. �us we �nd that the

synchronization overhead isminimal to gain back a four-fold increase in computation per

packet, or alternatively, a four-fold increase in supported line rate. A key observation is

that NetBump avoids some of the required synchronization overheads found in so�ware

routers [31, 35, 90] with multiple ports, since in NetBump each input port only forwards

to a single output port, preventing packets from spanning cores or causing contention on

shared output ports.

5.5.3 Deployed Applications

One metric highlighting the ease of writing new applications with NetBump is

shown in Table 5.3. Most of our applications took only 10s of lines of code, and QCN,

which is much more complex, was written in less than 500 lines of code. �e time

commitment ranged from hours to a couple of days in the case of QCN.We now examine

each application in detail.
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Figure 5.14: Evaluation of RED with twomaxp parameter settings, showing the e�ect of

reduced bu�ering given a higher marking probability.

Random Early Detection

Fig. 5.14 shows how deploying RED lowers the downstream bu�er occupancy for

a set of �ows. Here three alternatives are compared: RED with two maxp parameter

values, as well as the baseline drop-tail queuing discipline. One observation was that

experimenting with di�erent RED parameters was very easy with NetBump, and thus we

could rapidly explore its parameter space by simply providing di�erent arguments to our

NetBump application’s command line.

Data Center TCP

�e next experiment represents a recreation of the DCTCP convergence test pre-

sented by Alizadeh et al. [5] performed in our two-rack testbed (see Fig. 5.8). Five source

nodes each open aTCP connection to one of �ve destination nodes in 25 second intervals.

In the baseline TCP case (Fig. 5.16(a)), due to bu�er pressure and a drop-tail queuing

discipline, the bandwidth is shared unfairly, resulting in a wide oscillation of throughput

and unfair sending rate among the �ows. Fig. 5.16(b) shows the throughput of DCTCP-

enabled endpoints and a DCTCP vAQM strategy in the NetBump. Like in the original

DCTCP work, here the fair sharing of network bandwidth results from the lower queue

utilization a�orded by senders appropriately backing o� in response to NetBump-set

ECN signals.

Another contribution of reduced queue buildup is better support for mixtures

of latency-sensitive and long-lived �ows. Fig. 5.15 shows the CDF of response time for
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Figure 5.15: Baseline TCP (CUBIC) and DCTCP response times for short RPC-type

�ows in the presence of background elephant �ows.

10,000 RPC-type requests in the presence of two large elephant �ows, comparing stock

TCP endpoints without NetBump DCTCP support. �is �gure recreates a key DCTCP

result: signaling the long �ows to reduce their rates results in smaller queues, lower RTT,

and in the end, shorter response times.

Quantized Congestion Noti�cation

Another example of how the NetBump programming model enabled easy and

rapid prototyping and evaluation of new protocols was deploying 802.1Qau-QCN. Our

implementation of QCN is 464 lines of code, and it took around 2-3 days to write and

debug. Developing QCN within NetBump enabled us to easily tune parameters and

evaluate their e�ect. �is was especially important given QCN’s novelty, and the lack

of other tools or simulations we could have used to study it. Using the testbed topology

of Fig. 5.8, we use NetBump0 as the CP, and NetBump1 as the RP. In our RP, we chose a

virtual queue size of 100KB (and Qeq at 20KB).

�rough our evaluation, we found that the feedback control loop tends to bemore

stable when the frequency of feedback messages is higher and their e�ect smaller. For

this reason, we use Fbmax = 32, and plateau the probability pro�le at 20%. We also found

that due to the burstiness of the packet arrival rate, we had to decrease w to 1 to avoid

unnecessary rate drops. Our implementation also needed to consider the relative �ow

weights in the entire queue when choosing which �ow to rate limit, rather than just using

the current packet. We use the byte counter-only model of RP in our implementation.
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(a) Baseline TCP (CUBIC)
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(b) DCTCP

Figure 5.16: �e e�ect on fairness and convergence of DCTCP on �ve �ows sharing a

bottleneck link.
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Figure 5.17: QCNwith three 1GbpsUDP�ows. WithQCN enabled, the RP virtual queue

occupancy never exceeded 40%, as opposed to persistent drops downstream without.

For the Additive Increase phase, we use cycles of 100 packets, and an increase of 1.5Mbps

(to exaggerate and show the convergence of the virtual port current rates), and 600 packet

cycles for the Fast Recovery phase.

�e throughput of three 1Gbps UDP �ows sharing the same bottleneck link

is shown in Fig. 5.17. Without QCN, the downstream bu�er would be persistently

overwhelmed by the three UDP �ows from 5-20s, but with QCN enabled, congestion

is pushed upstream and the virtual queue occupancy never exceeded 40%, thereby

preventing drops for potential mice �ows.

5.5.4 Evaluation Summary

In this section we have described several vAQM and congestion control applica-

tions built with NetBump. We found that even though some had been extensively studied

in the literature (e.g. RED), �nding the particular parameters to make them work well in

our network required several attempts. NetBump simpli�ed this design–deploy–evaluate

loop. Furthermore, in the case of QCN, there was little experience available due to its

novelty and lack of deployments. �e ability to develop our implementation in so�ware,

while testing it with real tra�c, proved extremely useful.
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Chapter 6

Conclusions and Future Work

We here provide a summary of the contributions of this dissertation and a few

concluding remarks, and �nally give some important directions for future research be-

yond this work.

6.1 Summary

In chapter 1, we set out to prove the following: �at by combining commodity,

o�-the-shelf networking equipment with the power of network programmability using

open standards, it is possible to overcome all of the following three challenges:

1. Building scalable data center topologies. Speci�cally, those that can accommodate

tens of thousands of servers, and support all-to-all communication at the full speed

of the edge.

2. Overcoming forwarding scalability limitations. Namely, the ability to actually

achieve the full bisection bandwidth possible for multipath topologies.

3. Support continually and rapidly extensible networking functionality.

We here summarize howwe tackled each of these goals. First, in chapter 3, we dis-

cussed how bandwidth is increasingly becoming major a scalability bottleneck in large-

scale clusters. Existing solutions for addressing this bottleneck center around hierarchies

of switches, with expensive, non-commodity switches at the top of the hierarchy. At any
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given point in time, the port density of high-end switches limits overall cluster size while

at the same time incurring tremendous cost. To overcome this limitation, we presented a

data center communication architecture that leverages commodity Ethernet switches to

deliver scalable bandwidth for large-scale clusters. We base our topology around the fat-

tree and then present techniques to perform switch-local load balancing while remaining

backward compatible with Ethernet, IP, and TCP.

Overall, we �nd that we are able to deliver scalable bandwidth at a fraction of

the per-port cost of existing techniques. We believe that larger numbers of commodity

switches have the potential to displace high-end switches in data centers in the same way

that clusters of commodity PCs have displaced supercomputers for high-end computing

environments.

Next, in chapter 4, we address the issue of forwarding adaptability to dynamic

tra�c patterns. �e most important �nding of our work is that in the pursuit of e�cient

use of multipath network topologies, a central scheduler with global knowledge of active

�ows can signi�cantly outperform the hash-based ECMP load-balancing method that is

currently deployed in commercial switches. We limit the overhead of our approach by

focusing our scheduling decisions on the large �ows responsible for much of the bytes

sent across the network. We �nd that Hedera’s performance gains are dependent on

the rates and durations of the �ows in the network; the bene�ts are more evident when

the network is stressed with many large data transfers both within pods and across the

diameter of the network.

We have demonstrated the feasibility of building a working prototype of our

scheduling system for multi-rooted trees, and have shown that Simulated Annealing

almost always outperforms Global First Fit and is capable of delivering near-optimal

bisection bandwidth for a wide range of communication patterns both in our physical

testbed and in simulated data center networks consisting of thousands of nodes. Given

the low computational and latency overheads of our �ow placement algorithms, the large

investment in network infrastructure associated with data centers (many millions of

dollars), and the incremental cost of Hedera’s deployment (e.g., one or two servers), we

show that dynamic �ow scheduling has the potential to deliver substantial bandwidth

gains with moderate additional cost.
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Finally, in chapter 5, we presented NetBump, a platform for developing, exper-

imenting with, and deploying alternative packet bu�ering and queuing disciplines with

minimal intrusiveness and at low latency. NetBump leaves existing switches and end-

hosts unmodi�ed. It acts as a “bump on the wire”, examining, optionally modifying,

and forwarding packets at line rate in tens of microseconds to implement a variety of

virtual active queuing disciplines and congestion control protocols implemented in user-

space. We built and deployed several applications with NetBump, including DCTCP

and 802.1Qau-QCN. �ese applications were quickly developed in hours or days, and

required only tens or hundreds of lines of code in total.

A major barrier to developing and deploying new network functionality is

the di�culty of programming the network datapath. In this work we evaluate Net-

Bump as deployed on a variety of so�ware-programmable systems, including Linux and

Click/RouteBricks, and a user-level, kernel-bypass networking API. We found this latter

implementation choice, despite being the oldest, provided the lowest-latency perfor-

mance, supporting line-rate forwarding of minimum-sized packets at 9.5Gbps across

each of these applications. �e adoption of multi-core processors, along with kernel-

bypass commodity NICs, provides a feasible platform to deploy data modi�cations

written in user-space at line rate. Our experience has shown that NetBump is a useful

and practical platform for prototyping and deploying new network functionality in real

data center environments.

In conclusion, and revisiting the hypothesis statement, we have shown how all

constituent projects of this dissertation leveraged commodity components and open

standards to achieve their respective goals. Furthermore, these projects were highly

congruent, in spirit, with the philosophy of So�ware-De�ned Networking (SDN);

speci�cally as it relates to (1) providing a clear networking API to enable experimentation

and deployment of new protocols (e.g. NetBump), and (2) exposing network events and

management to applications (e.g. �ow scheduling with Hedera). �is research certainly

would not have been possiblewithout this opening up ofmonolithic, vertically-integrated

commercial switches into open, general purpose forwarding machines with accessible,

centralized control. Going forward into the next decade, we strongly believe in this

model’s disruptive and transformative power over the networking world in general.
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6.2 Future Work

�e data center networking �eld is in its infancy and rapidly evolving, from an

operations engineering perspective in general, and a network interconnect design in

particular. Even with the deluge of data center networking research and innovation by

academia, small start-ups, and big industry players in the past decade, we feel that the

community has barely scratched the surface, and that there is an almost in�nite amount

of work to be done.

We here mention some exciting related on-going research and a few open prob-

lems. �is list is by no means exhaustive.

6.2.1 Network Operating System

�e network operating system concept envisioned by so�ware-de�ned network-

ing stems from a great body of previous work [17, 18, 19, 50], and has seen great strides in

recent projects like NOX [53] and Onix [78]. While these last two systems are advanced

control platforms currently in use in production networks of thousands of hosts, this

�eld is evolving and there is still signi�cant work to be done. Onix, for example, cur-

rently only allows one running management application at any given time. To support

an analog of the multiprogramming model from ancient systems like the IBM S/360 [7]

and MULTICS [110], several problems such as protection and concurrent resource man-

agement would have to be solved in the networking domain.

One speci�c example where such a network operating system would a�ect and

drastically improve the performance of Hedera is the large-�ow noti�cation mechanism.

Instead of Hedera polling the edge switches for �ow statistics and performing the �ow

detection (possibly redundant functionality re-implemented unnecessarily by other net-

work applications), the OS would provide these triggers explicitly, thereby reducing the

detection latency overhead.�eOSwould also handle the requisite �ow table entry inser-

tion once paths are computed. On the whole, the possibilities for network management

application composition are endless.



119

6.2.2 Cabling Complexity

Naturally, one of the major drawbacks of using fat-tree topologies is the large

overhead of cabling involved. For a k-port fat-tree, there are (3/4)∗k3 cables to install and

debug. To overcome this limitation, Farrington et al. [40] suggest leveraging commodity

merchant silicon switching chips to package such a fat-tree topology onto a distributed

multi-stage switch. Such an approachwould o�er great savings in overall cost, rack space,

and cabling e�ort.

Another issue is that of incremental deployment. As an operator builds pods

incrementally as the data center expands, the operator is faced with two options: either

have the core switching layer fully populated with switches (and have a fraction of ports

empty in the interim), or build the core layer incrementally as well (and multiplex cores

accordingly). While the latter is more e�cient in terms of core layer utilization, it does

require re-wiring the core layer whenever new pods are added.

A compromise between these two extremes would be to use an intelligent patch

panel (e.g. using an optical circuit switch), that would allow pods and core switches

to be plugged in once, and would recon�gure the pod-core wiring scheme whenever

topology changes are needed. Implementing the glue logic behind thismechanismwould

be fairly straightforward, and would simplify the incremental deployment scenario for

multi-rooted tree topologies in general.

6.2.3 Hybrid Interconnects

Several recent research e�orts have proposed augmenting the electrical switches

in the data center with either optical switches (e.g. Helios [39]), or with short-range wire-

less links (e.g. �yways [56]). At a high-level, these approaches supplement an oversub-

scribed core networkwith dynamically added connectivity between podswith su�ciently

stable tra�c demands. �ese approaches have the bene�t of lowering cost, power, and

cabling complexity.

Besides augmenting traditional electrical switches, optical circuit switches in the

data center have another exciting application. When used as an patch-panel onto which

all pod and core switches are connected, optical switches can be used to dynamically
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alter the physical topology of the network on-the-�y to implement dynamically-de�ned

topologies with di�erent levels of oversubscription. �is could be based on communi-

cation demands, for example, or as a mechanism for physical isolation in multi-tenant

environments over time. �is would have the potential to deliver high-bandwidth dy-

namically where and when needed, and in situations where full 1:1 bisection may not be

required at all times.

6.2.4 Balanced Systems

E�cient network utilization is only one piece of the overall data center utilization

puzzle. While the challenge of building large balanced systems is a vast �eld of research,

there remains an important challenge of system provisioning (in terms of CPU, memory,

I/O bandwidth, disk, etc.) in the data center. Since these clusters serve a rich mix of

applications and tenants, what server con�guration would be considered acceptable, in

terms of performance and cost, for a given set of so�ware requirements and latency

deadlines?

�e current state-of-the-art is to simply follow various system design rules of

thumb accumulated over decades, as well as testing sample con�gurations’ performance

in small deployments. �e BICMIC [120] and scc [89] projects take a more disciplined

approach by using resource characterization, modeling the intended workload, and a

required SLA contract to �nd the most cost-e�ective cluster design.

An example of this research would be the TritonSort project [106], which at-

tempted to architect a sorting system and provision computing nodes such that overall

utilization of system resources is maximized. To show the potential impact of this e�ort,

TritonSort achieved a six-fold improvement in per-node e�ciency over the previous

sorting record holder.

�ese e�orts show that there is substantial room for improvement in terms of

balanced so�ware/hardware systemdesign, and thatmuchworkneeds to be done to bring

those gains to general distributed computing frameworks like MapReduce/Hadoop.
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