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Abstract

The collection of data has become an integral part of our everyday lives. The
algorithms necessary to process this information become paramount to our ability to
interpret this resource. This type of data is typically recorded in a variety of signals
including images, sounds, time series, and bio-informatics. In this work, we develop a
number of algorithms to recover these types of signals in a variety of modalities. This
work is mainly presented in two parts.

Initially, we apply and develop large-scale optimization techniques used for
signal processing. This includes the use of quasi-Newton methods to approximate
second derivative information in a trust-region setting to solve regularized sparse
signal recovery problems. We also formulate the compact representation of a large
family of quasi-Newton methods known as the Broyden class. This extension of the
classic quasi-Newton compact representation allows different updates to be used
at every iteration. We also develop the algorithm to perform efficient solves with
these representations. Within the realm of sparse signal recovery, but particular to
photon-limited imaging applications, we also propose three novel algorithms for signal
recovery in a low-light regime. First, we recover the support and lifetime decay of
a flourophore from time dependent measurements. This type of modality is useful
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in identifying different types of molecular structures in tissue samples. The second
algorithm identifies and implements the Shannon entropy function as a regularization
technique for the promotion of sparsity in reconstructed signals from noisy downsampled
observations. Finally, we also present an algorithm which addresses the difficulty of
choosing the optimal parameters when solving the sparse signal recovery problem. There
are two parameters which effect the quality of the reconstruction, the norm being used, as
well as the intensity of the penalization imposed by that norm. We present an algorithm
which uses a parallel asynchronous search along with a metric in order to find the optimal
pair.

The second portion of the dissertation draws on our experience with large-scale
optimization and looks towards deep learning as an alternative to solving signal recovery
problems. We first look to improve the standard gradient based techniques used during
the training of these deep neural networks by presenting two novel optimization
algorithms for deep learning. The first algorithm takes advantage of the limited memory
Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm in a trust-region
setting in order to address the large scale minimization problem associated with deep
learning. The second algorithm uses second derivative information in a trust-region
setting where the Hessian is not explicitly stored. We then use a conjugate based method
in order to solve the trust-region subproblem.

Finally, we apply deep learning techniques to a variety of applications in signal
recovery. These applications include revisiting the photon-limited regime where we
recover signals from noisy downsampled observations, image disambiguation which
involves the recovery of two signals which have been superimposed, deep learning for
synthetic aperture radar (SAR) where we recover information describing the imaging
system as well as evaluate the impact of reconstruction on the ability to perform target
detection, and signal variation detection in the human genome where we leverage the
relationships between subjects to provide better detection.
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Chapter 1

Introduction

Over the course of this dissertation, we will present a variety of methods for data
driven signal processing. As we become a data driven society, it is imperative to be able
to extract the pertinent information from observed data so that we may use it to make
informed decisions. This data takes shape as a variety of different types of signals. As
such, the methods we use must be diverse and be able themselves to handle the diversity
of the modalities of our observations.

1.1 Organization of the Dissertation
The overall structure of this dissertation is divided into two parts. In the first part of

the dissertation (i.e. Chapters 2 and 3) will discuss the recovery of sparse signals and the
large scale optimization algorithms suited to perform these signal reconstructions. In the
second part of the dissertation, deep learning is presented as an alternative to numerical
optimization as a signal recovery method. Chapters in this dissertation are organized as
follows

Chapter 2: Large Scale Optimization

In this chapter, we propose two novel algorithms for large scale optimization
applications: (1) A limited memory trust-region method for the recovery of sparse signals
under a Gaussian assumption, (2) a compact representation of the full Broyden class of
quasi-Newton updates.

Chapter 3: Sparse Optimization

In this chapter we lay the foundation for sparse signal recovery under an assumption
of Poisson noise. The Poisson model is motivated by applications in photon-limited or
low light imaging. We propose three novel methods for the recovery of sparse signals in
this regime: (1) A bounded photon-limited image recovery algorithm for applications
in fluorescence lifetime imaging microscopy (FLIM) where measurements are time
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dependent, (2) a non-convex Shannon Entropy regularization method to promote sparsity
in the recovery of sparse signals and (3) a parallel asynchronous pattern search method
relying on derivative free optimization techniques in order to tune hyperparameters
necessary to reconstruction in a photon-limited regime.

Chapter 4: Deep Learning

In this chapter we transition to the deep learning portion of the dissertation. We
discuss the overall structure of the feed forward network as well as the different types of
components that help build a neural network architecture. In particular, we discuss fully
connected layers, convolutional layers, activation functions, cost functions and we lightly
touch on the Back-propagation algorithm involved in the optimization routine necessary
during the learning process.

Chapter 5: Optimization for Deep Learning Applications

In this chapter we discuss the current methods used in the gradient based training of
neural networks. We also propose two novel algorithms for parameter learning in deep
learning: (1) We extend beyond the gradient descent algorithm and use quasi-Newton
approximations in a trust-region setting in order to estimate curvature information
and improve the learning process, (2) a trust-region method which uses second order
information without explicitly storing the Hessian and solves the trust-region subproblem
using a conjugate gradient method.

Chapter 6: Applications in Deep Learning

In this chapter we focus on a variety of applications of deep learning for signal
recovery. First, we revisit a photon-limited regime and show the ability of neural networks
to recover signals from noisy downsampled observations. Second, we employ fully
connected layers to perform blind source separation in the domain of images. Third, we
switch modalities to remote sensing where we apply simple neural networks to recover
the system matrix describing the physics in a synthetic aperture radar imaging system. We
also utilize this architecture to recover an inverse approximation to solve the linear system
recovery problem. We also investigate the effects of the quality of signal reconstruction
in target classification. Finally, we investigate the use of neural networks as well as other
machine learning algorithms in the detection of signal variations in the human genome.

Chapter 7: Conclusion

This chapter concludes the dissertation and makes suggestions for extending this work
in the future.



Chapter 2

Large-Scale Optimization

As our society becomes increasingly data driven, the need for algorithms which
implement efficient scalable numerical optimization routines have become increasingly
more important. These types of algorithms have applications in machine learning, cancer
research and power grid distribution [24, 26, 37]. One class of these types of algorithms
known as quasi-Newton methods have become increasingly popular as the amount of
available computing power increases. Initially discovered by William Davidon of Argonne
National Laboratory in 1959 and left unpublished until 1963 as the first quasi-Newton
method, these methods use gradient-based information in order to approximate second
derivative information. The result is an algorithm with super linear convergence which
is an improvement on most gradient based methods [33]. In this chapter we present two
novel algorithms which take advantage of quasi-Newton methods. The first algorithm is
motivated by applications in compressive sensing. We apply the quasi-Newton methods in
a trust-region setting in order to recover a sparse signal from downsampled observations.
In the second algorithm, we present a formulation which incorporates a broad family of
commonly used quasi-Newton methods in a single representation.

2.1 Limited-Memory Trust-Region Methods for Sparse
Relaxation

The work described in this section is based on the paper by Adhikari, DeGuchy,
Erway, Lockhart and Marcia [1]. In this work, we focus on the sparse recovery problem

minimize
f∈ℝ�̃�

1
2‖Af − b‖2

2 + 𝜏‖f‖1, (2.1)

where A ∈ ℝ�̃�×�̃�, f ∈ ℝ�̃�, b ∈ ℝ�̃�, �̃� ≪ ̃𝑛, and 𝜏 > 0 is a constant regularization
parameter. Under this regime we operate under a gaussian noise assumption where (2.1),
incorporates a data fidelity term that is regularized by an ℓ1-norm regularization term
[14]. By letting f = u − v, where u, v ≥ 0, we can write (2.1) as the constrained but

3
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differentiable optimization problem,

minimize
u,v∈ℝ�̃�

1
2‖A(u − v) − b‖2

2 + 𝜏1𝑇
�̃�(u + v)

subject to u, v ≥ 0,

where 1�̃� is the ̃𝑛-vector of ones [19]. We transform the constrained differentiable
problem into an unconstrained optimization problem using the change of variables
u𝑖 = log(1 + 𝑒 ̃u𝑖) and v𝑖 = log(1 + 𝑒 ̃v𝑖), where ũ𝑖, ṽ𝑖 ∈ ℝ for 1 ≤ 𝑖 ≤ ̃𝑛. With these
definitions, u and v are guaranteed to be non-negative. Thus, (2.1) is equivalent to the
following minimization problem:

min
̃u,ṽ∈ℝ�̃�

𝛷( ̃u, ṽ) △=
1
2

�̃�
∑
𝑖=1

⎡⎢
⎣

⎧{
⎨{⎩

�̃�
∑
𝑗=1

A𝑖,𝑗 log ⎛⎜
⎝

1 + 𝑒 ̃u𝑗

1 + 𝑒 ̃v𝑗
⎞⎟
⎠

⎫}
⎬}⎭

−b𝑖
⎤⎥
⎦

2

+𝜏
�̃�

∑
𝑗=1

log ((1+𝑒 ̃u𝑗)(1+𝑒ṽ𝑗)). (2.2)

Notice that the gradient of 𝛷( ̃u, ṽ) can be written as follows: Letting �̃� ∈ ℝ�̃� with �̃�𝑖 =
log(1 + 𝑒 ̃u𝑖) − log(1 + 𝑒 ̃v𝑖), then

∇ũ𝑖
𝛷(ũ, ṽ) = 𝑒ũ𝑖

1 + 𝑒 ̃u𝑖
( (A𝑇( A�̃� − 𝑦))𝑖 + 𝜏),

∇ ̃𝑣𝑖
𝛷( ̃𝑢, ̃𝑣) = 𝑒 ̃𝑣𝑖

1 + 𝑒 ̃𝑣𝑖
( (A𝑇(−A�̃� + 𝑦))𝑖 + 𝜏),

and
∇𝛷(𝑥) = [∇ ̃u𝛷( ̃u, ṽ)

∇ ̃v𝛷(ũ, ṽ)] .

We propose solving (2.2) using a limited-memory quasi-Newton trust-region optimization
approach, which we describe in the next section.

Related Work

There are various methods for solving (2.1) (see e.g., Eldar and Kutyniok [15] and
all the references therein), many of which use a gradient descent-type approach. Our
proposed approach is based on quasi-Newton methods, which have been previously
shown to be effective for sparsity recovery problems [25, 38, 40]. For example, Becker
and Fadili [3] use a zero-memory rank-one quasi-Newton approach for proximal splitting.
Trust-region methods have also been implemented for sparse reconstruction [22, 35]. Our
approach is novel in the transformation of the sparse recovery problem to a differentiable
unconstrained minimization problem and in the use of eigenvalues for efficiently solving
the trust-region subproblem.

2.1.1 Trust-Region Methods
In this section, we outline the use of a trust-region method to solve (2.2). We begin

by combining the unknowns ũ and ̃v into one vector of unknowns 𝑥 = [ũ𝑇 ̃v𝑇]𝑇 ∈ ℝ𝑛,
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where 𝑛 = 2 ̃𝑛. With this substitution, 𝛷 can be considered as a function of 𝑥. Trust-region
methods to minimize 𝛷(𝑥) define a sequence of iterates {𝑥𝑘} that are updated as follows:
𝑥𝑘+1 = 𝑥𝑘 + 𝑝𝑘, where 𝑝𝑘 is defined as the search direction. Each iteration, a new
search direction 𝑝𝑘 is computed from solving the following quadratic subproblem with
a two-norm constraint:

𝑝𝑘 = arg min
𝑝∈ℝ𝑛

𝑞𝑘(𝑝) △= 𝑔𝑇
𝑘 𝑝 + 1

2𝑝𝑇𝐵𝑘𝑝 s.t. ‖𝑝‖2 ≤ 𝛿𝑘, (2.3)

where 𝑔𝑘
△= ∇𝛷(𝑥𝑘), 𝐵𝑘 is an approximation to ∇2𝛷(𝑥𝑘), and 𝛿𝑘 is a given positive

constant. In large-scale optimization, solving (2.3) represents the bulk of the
computational effort in trust-region methods.

Methods that solve the trust-region subproblem to high accuracy are often based on
the optimality conditions for a global solution to the trust-region subproblem given in the
following theorem [11, 20, 31]:

Theorem 1. Let 𝛿 be a positive constant. A vector 𝑝∗ is a global solution of the
trust-region subproblem (2.3) if and only if ‖𝑝∗‖2 ≤ 𝛿 and there exists a unique 𝜎∗ ≥ 0
such that 𝐵 + 𝜎∗𝐼 is positive semidefinite and

(𝐵 + 𝜎∗𝐼)𝑝∗ = −𝑔 and 𝜎∗(𝛿 − ‖𝑝∗‖2) = 0. (2.4)

Moreover, if 𝐵 + 𝜎∗𝐼 is positive definite, then the global minimizer is unique.

2.1.2 Quasi-Newton Methods
In this section we show how to build an approximation 𝐵𝑘 of ∇2𝛷(𝑥) using

limited-memory quasi-Newton matrices.
Given the continuously differentiable function 𝛷 and a sequence of iterates {𝑥𝑘},

traditional quasi-Newton matrices are genererated from a sequence of update pairs
{(𝑠𝑘, 𝑦𝑘)} where 𝑠𝑘

△= 𝑥𝑘+1 − 𝑥𝑘 and 𝑦𝑘
△= ∇𝛷(𝑥𝑘+1) − ∇𝛷(𝑥𝑘). In particular, given an initial

matrix 𝐵0, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update [28, 32] generates a
sequence of matrices using the following recursion:

𝐵𝑘+1
△= 𝐵𝑘 − 1

𝑠𝑇
𝑘 𝐵𝑘𝑠𝑘

𝐵𝑘𝑠𝑘𝑠𝑇
𝑘 𝐵𝑘 + 1

𝑦𝑇
𝑘 𝑠𝑘

𝑦𝑘𝑦𝑇
𝑘 , (2.5)

provided 𝑦𝑇
𝑘 𝑠𝑘 ≠ 0. In practice, 𝐵0 is often taken to be a nonzero constant multiple of the

identity matrix, i.e., 𝐵0 = 𝛾𝐼, for some 𝛾 > 0. Limited-memory BFGS (L-BFGS) methods
store and use only the 𝑚 most-recently computed pairs {(𝑠𝑘, 𝑦𝑘)}, where 𝑚 ≪ 𝑛. Often 𝑚
may be very small (for example, Byrd et al. [9] suggest 𝑚 ∈ [3, 7]).

The BFGS update is the most widely-used rank-two update formula that (i) satisfies the
secant condition 𝐵𝑘+1𝑠𝑘 = 𝑦𝑘, (ii) has hereditary symmetry, and (iii) generates a sequence
of positive-definite {𝐵𝑘}, provided that 𝑦𝑇

𝑖 𝑠𝑖 > 0 for 𝑖 = 0, … 𝑘.
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The L-BFGS matrix 𝐵𝑘+1 in (2.5) can be defined recursively as follows:

𝐵𝑘+1 = 𝐵0 +
𝑘

∑
𝑖=0

{− 1
𝑠𝑇
𝑖 𝐵𝑖𝑠𝑖

𝐵𝑖𝑠𝑖𝑠𝑇
𝑖 𝐵𝑖 + 1

𝑦𝑇
𝑖 𝑠𝑖

𝑦𝑖𝑦𝑇
𝑖 } .

Then 𝐵𝑘+1 is at most a rank-2(𝑘 + 1) perturbation to 𝐵0, and thus, 𝐵𝑘+1 can be written as

𝐵𝑘+1 = 𝐵0 +
⎡⎢⎢
⎣
𝛹𝑘

⎤⎥⎥
⎦

[ 𝑀𝑘 ][ 𝛹𝑇
𝑘 ]

for some 𝛹𝑘 ∈ ℝ𝑛×2(𝑘+1) and 𝑀𝑘 ∈ ℝ2(𝑘+1)×2(𝑘+1). Byrd et al. [9] showed that 𝛹𝑘 and
𝑀𝑘 are given by

𝛹𝑘 = [𝐵0𝑆𝑘 𝑌𝑘] and 𝑀𝑘 = − [𝑆𝑇
𝑘 𝐵0𝑆𝑘 𝐿𝑘
𝐿𝑇

𝑘 −𝐷𝑘
]

−1

,

where 𝑆𝑘
△= [ 𝑠0 𝑠1 𝑠2 ⋯ 𝑠𝑘 ] ∈ ℝ𝑛×(𝑘+1), and 𝑌𝑘

△= [ 𝑦0 𝑦1 𝑦2 ⋯ 𝑦𝑘 ] ∈ ℝ𝑛×(𝑘+1),
and 𝐿𝑘 is the strictly lower triangular part and 𝐷𝑘 is the diagonal part of the matrix 𝑆𝑇

𝑘 𝑌𝑘 ∈
ℝ(𝑘+1)×(𝑘+1), i.e., 𝑆𝑇

𝑘 𝑌𝑘 = 𝐿𝑘 + 𝐷𝑘 + 𝑈𝑘, where 𝑈𝑘 is a strictly upper triangular matrix.

2.1.3 Solving the Trust-Region Subproblem
In this section, we show how to solve (2.3) efficiently. First, we transform (2.3) into

an equivalent expression. For simplicity, we drop the subscript 𝑘. Let 𝛹 = 𝑄𝑅 be the
“thin” QR factorization of 𝛹, where 𝑄 ∈ ℝ𝑛×2(𝑘+1) has orthonormal columns and 𝑅 ∈
ℝ2(𝑘+1)×2(𝑘+1) is upper triangular. Then

𝐵𝑘+1 = 𝐵0 + 𝛹𝑀𝛹𝑇 = 𝛾𝐼 + 𝑄𝑅𝑀𝑅𝑇𝑄𝑇.

Now let 𝑉𝛬𝑉𝑇 = 𝑅𝑀𝑅𝑇 be the eigendecomposition of 𝑅𝑀𝑅𝑇 ∈ ℝ2(𝑘+1)×2(𝑘+1), where
𝑉 ∈ ℝ2(𝑘+1)×2(𝑘+1) is orthogonal and 𝛬 is diagonal with 𝛬 = diag(�̂�1, … , �̂�2(𝑘+1)).
We assume that the eigenvalues �̂�𝑖 are ordered in increasing values, i.e., �̂�1 ≤ �̂�2 ≤
⋯ ≤ �̂�2(𝑘+1). Since 𝑄 has orthonormal columns and 𝑉 is orthogonal, then 𝑃∥

△= 𝑄𝑉 ∈
ℝ𝑛×2(𝑘+1) also has orthonormal columns. Let 𝑃⟂ be a matrix whose columns form an
orthonormal basis for the orthogonal complement of the column space of 𝑃∥. Then,
𝑃 △= [ 𝑃∥ 𝑃⟂] ∈ ℝ𝑛×𝑛 is such that 𝑃𝑇𝑃 = 𝑃𝑃𝑇 = 𝐼. Thus, the spectral decomposition
of 𝐵 is given by

𝐵 = 𝑃𝛬𝑃𝑇, where 𝛬 △= [𝛬1 0
0 𝛬2

] = [�̂� + 𝛾𝐼 0
0 𝛾𝐼] , (2.6)

where 𝛬 = diag(𝜆1, … , 𝜆𝑛), 𝛬1 = diag(𝜆1, … , 𝜆2(𝑘+1)) ∈ ℝ2(𝑘+1)×2(𝑘+1), and 𝛬2 =
𝛾𝐼𝑛−2(𝑘+1). Since the �̂�𝑖’s are ordered, then the eigenvalues in 𝛬 are also ordered, i.e.,
𝜆1 ≤ 𝜆2 ≤ … ≤ 𝜆2(𝑘+1). The remaining eigenvalues, found on the diagonal of 𝛬2, are
equal to 𝛾. Finally, since 𝐵 is positive definite, then 0 < 𝜆𝑖 for all 𝑖.
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Defining 𝑣 = 𝑃𝑇𝑝, the trust-region subproblem (2.3), can be written as

𝑣∗ = arg min
𝑣∈ℝ𝑛

𝑞𝑘(𝑣) △= ̃𝑔𝑇𝑣 + 1
2𝑣𝑇𝛬𝑣 (2.7)

subject to ‖𝑣‖2 ≤ 𝛿,

where ̃𝑔 = 𝑃𝑇𝑔. From the optimality conditions in Theorem 1, the solution, 𝑣∗, to (2.7)
must satisfy the following equations:

(𝛬 + 𝜎∗𝐼)𝑣∗ = − ̃𝑔 (2.8)
𝜎∗(‖𝑣∗‖2 − 𝛿) = 0 (2.9)

𝜎∗ ≥ 0 (2.10)
‖𝑣∗‖2 ≤ 𝛿, (2.11)

for some scalar 𝜎∗. Note that the usual requirement that 𝜎∗ + 𝜆𝑖 ≥ 0 for all 𝑖 is not
necessary here since 𝜆𝑖 > 0 for all 𝑖 (i.e., 𝐵 is positive definite). Note further that (2.9)
implies that if 𝜎∗ > 0, the solution must lie on the boundary, i.e., ‖𝑣∗‖2 = 𝛿. In this case,
the optimal 𝜎∗ can be obtained by finding solving the so-called secular equation:

𝜙(𝜎) = 1
‖𝑣(𝜎)‖2

− 1
𝛿 = 0, (2.12)

where ‖𝑣(𝜎)‖2 = ‖ − (𝛬 + 𝜎𝐼)−1 ̃𝑔‖2. Since 𝜆𝑖 + 𝜎 > 0 for any 𝜎 ≥ 0, 𝑣(𝜎) is well-defined.
In particular, if we let

̃𝑔 = [𝑃𝑇
||

𝑃𝑇
⟂
] 𝑔 = [𝑃𝑇

|| 𝑔
𝑃𝑇

⟂𝑔] = [𝑔||
𝑔⟂

] ,

then

‖𝑣(𝜎)‖2
2 =

⎧{
⎨{⎩

2(𝑘+1)
∑
𝑖=1

(𝑔||)2
𝑖

(𝜆𝑖 − 𝜎)2

⎫}
⎬}⎭

+
‖𝑔⟂‖2

2
(𝛾 − 𝜎)2 . (2.13)

We note that 𝜙(𝜎) ≥ 0 means 𝑣(𝜎) is feasible, i.e., ‖𝑣(𝜎)‖2 ≤ 𝛿. Specifically, the
unconstrained minimizer 𝑣(0) = −𝛬−1 ̃𝑔 is feasible if and only if 𝜙(0) ≥ 0 (see Fig. 1(a)).
If 𝑣(0) is not feasible, then 𝜙(0) < 0 and there exists 𝜎∗ > 0 such that 𝑣(𝜎∗) = −(𝛬 +
𝜎∗𝐼)−1 ̃𝑔 with 𝜙(𝜎∗) = 0 (see Fig. 1(b)). Since 𝐵 is positive definite, the function 𝜙(𝜎) is
strictly increasing and concave down for 𝜎 ≥ 0, making it a good candidate for Newton’s
method. In fact, it can be shown that Newton’s method will converge monontonically and
quadratically to 𝜎∗ with initial guess 𝜎(0) = 0 [11].

The method to obtain 𝜎∗ is significantly different that the one used by Burke et al.
[8] in that we explicitly use the eigendecomposition within Newton’s method to compute
the optimal 𝜎∗. That is, we differentiate the reciprocal of ‖𝑣(𝜎)‖ in (2.13) to compute the
derivative of 𝜙(𝜎) in (2.12), obtaining a Newton update that is expressed only in terms of
𝑔∥, 𝑔⟂, and the eigenvalues of 𝐵. In contrast to the method by Burke et al. [8] (specifically
Alg. 2 in their paper), this approach eliminates the need for matrix solves for each Newton
iteration.



8

σ
-3 -2 -1 0 1 2 3

φ
(σ
)

-0.2

-0.1

0

0.1

0.2

−λ1−λ2

σ
-3 -2 -1 0 1 2 3

φ
(σ
)

-0.4

-0.3

-0.2

-0.1

0

0.1

−λ1−λ2 σ∗

(a) (b)

Figure 2.1: Plot of the secular function 𝜙(𝜎) given in (2.12). (a) The case when 𝜙(0) ≥ 0, which
implies that the unconstrained minimizer of (2.7) is feasible. (b) When 𝜙(0) < 0, there exists
𝜎∗ > 0 such that 𝜙(𝜎∗) = 0, i.e., 𝑣∗ = −(𝛬 + 𝜎∗𝐼)−1 ̃𝑔 is well-defined and is feasible.

Given 𝜎∗ and 𝑣∗, the optimal 𝑝∗ is obtained as follows. Letting 𝜏∗ = 𝛾 + 𝜎∗, the
solution to the first optimality condition, (𝐵 + 𝜎∗𝐼)𝑝∗ = −𝑔, is given by

𝑝∗ = −(𝐵 + 𝜎∗𝐼)𝑔
= −(𝛾𝐼 + 𝛹𝑀𝛹𝑇 + 𝜎∗𝐼)−1𝑔

= − 1
𝜏∗ [𝐼 − 𝛹(𝜏∗𝑀−1 + 𝛹𝑇𝛹)−1𝛹𝑇] 𝑔, (2.14)

using the Sherman-Morrison-Woodbury formula. Algorithm 1 details the proposed
approach for solving the trust-region subproblem.

Algorithm 1: L-BFGS Trust-Region Subproblem Solver
Compute 𝑅 from the “thin” QR factorization of 𝛹;
Compute the spectral decomposition

𝑅𝑀𝑅𝑇 = 𝑉�̂�𝑉𝑇 with �̂�1 ≤ �̂�2 ≤ ⋯ ≤ �̂�2(𝑘+1);
Let 𝛬1 = �̂� + 𝛾𝐼;
Define 𝑃∥ = 𝛹𝑅−1𝑉 and 𝑔∥ = 𝑃𝑇

∥ 𝑔;

Compute ‖𝑃𝑇
⟂𝑔‖2 = √‖𝑔‖2

2 − ‖𝑔∥‖2
2;

if 𝜙(0) ≥ 0 then
𝜎∗ = 0 and compute 𝑝∗ from (5.2.2) with 𝜏∗ = 𝛾;

else
Use Newton’s method to find 𝜎∗;
Compute 𝑝∗ from (5.2.2) with 𝜏∗ = 𝛾 + 𝜎∗;

end if

The method described here guarantees that the trust-region subpoblem is solved
to high accuracy. Other L-BFGS trust-region methods that solve to high accuracy
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include the Moré-Sorensen Sequential Method (MSS) [16], which uses a shifted
L-BFGS approach, and the Limited-Memory Trust-Region Method [6], which uses a
“shape-changing” norm in (2.3).

Convergence

Global convergence of Algorithm 2 can be proven by modifying the techniques
found in [8, 34] that require that the following assumptions are satisfied: [A.1] There are
constants 𝑙 and 𝑢 such that 𝑙 ≤ ‖𝐵𝑘‖ ≤ 𝑢 for all 𝑘. [A.2] ∇𝛷 is Lipschitz continuous. For
Assumption A.1, since 𝐵𝑘 is symmetric and positive definite, ‖𝐵𝑘‖2 = 𝜆max. Because we
are able to explicitly compute the eigenvalues of 𝐵𝑘 in (2.6), we can satisfy Assumption
A.1 by accepting an update pair (𝑠𝑘, 𝑦𝑘) only if 𝑙 ≤ 𝜆max ≤ 𝑢. For Assumption A.2, the
gradient of the function 𝛷(𝑥) is continuously differentiable, and therefore, ∇𝛷 must be
Lipschitz continuous.

With these assumptions satisfied and noting that 𝛷(𝑥𝑘) ≥ 0 for all 𝑥𝑘 (since each term
in (2.2) is nonnegative), then by [8, Theorem 5.4] the sequence of iterates generated by
Algorithm 2 converges to a critical point of 𝛷.

Algorithm 2: Trust-Spa: Limited-Memory BFGS Trust-Region Method for Sparse
Relaxation

Define parameters: 𝑚, 0 < 𝜏1 < 0.5, 0 < 𝜀;
Initialize 𝑥0 ∈ ℝ𝑛 and compute 𝑔0 = ∇𝛷(𝑥0);
Let 𝑘 = 0;
while not converged do

if ‖𝑔𝑘‖2 ≤ 𝜀 then done
Use Algorithm 1 to find 𝑝𝑘 that solves (2.3);
Compute 𝜌𝑘 = (𝛷(𝑥𝑘 + 𝑝𝑘) − 𝛷(𝑥𝑘))/𝑞𝑘(𝑝𝑘);
Compute 𝑔𝑘+1 and update 𝐵𝑘+1;
if 𝜌𝑘 ≥ 𝜏1 then

𝑥𝑘+1 = 𝑥𝑘 + 𝑝𝑘;
else

𝑥𝑘+1 = 𝑥𝑘;
end if
Compute trust-region radius 𝛿𝑘+1;
𝑘 ← 𝑘 + 1;

end while
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(a) Truth 𝑓 ( ̃𝑛 = 4096, number of nonzeros = 160)
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Figure 2.2: Experimental setup: (a) True signal f of size 4,096 with 160 spikes (±1), (b)
Compressive measurements y with 5% Gaussian noise.

2.1.4 Numerical Experiments
We evaluate the performance of the proposed method (Trust-Spa) by solving 1D

and 2D signal reconstruction problems. In particular, we compare the results with the
widely-used GPSR method [19] and the more recent method, YALL1 [36]. All three
methods were initialized using the same starting point, i.e., zero, and terminate if the
relative objective values do not significantly change, i.e, |𝛷(𝑥𝑘+1)−𝛷(𝑥𝑘)|/|𝛷(𝑥𝑘)| ≤ 10−8.
The regularization parameter 𝜏 in (2.1) is optimized independently for each algorithm to
minimize the mean-squared error (MSE = 1

𝑛‖f̂ − f‖2
2, where f̂ is an estimate of f).

1D Signal Recovery

In this experiment, the true signal f is of size 4,096 with 160 randomly assigned
nonzeros with amplitude ±1 (see Fig. 2.2(a)). We obtain compressive measurements y
of size 1,024 (see Fig. 2.2(b)) by projecting the true signal using a randomly generated
system matrix (A) from the standard normal distribution with orthonormalized rows. In
particular, the measurements are corrupted by 5% of Gaussian noise.

We use compressive measurements b of size 1,024 (with 5% noise) to recover the
true signal f of size 4,096 made up of 160 nonzeros with values ±1. On average over 10
trials, the proposed Trust-Spa method (average MSE = 9.827e-5) is shown to outperform
GPSR (average MSE = 1.758e-4) and YALL1 (average MSE = 1.753e-4) in comparable
computation time. Note that the Trust-Spa has fewer reconstruction artifacts (see Fig. 2.3).
Because of the variable transformations used by Trust-Spa, the algorithm terminates with
no zero components in its solution (even though the true signal has only 160 nonzero
components); however, only a relatively few components of the Trust-Spa reconstruction
have significant amplitudes. For example, in on e particular one, only 579 components
are greater than 10−6 in absolute value. This has the effect of rendering most spurious
solutions less visible.
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Figure 2.3: A Zoomed region of all reconstructions. Note the presence of more artifacts in the
GPSR reconstruction (b) and the YALL1 recontrsuction (c) in comparison to the reconstruction
from our proposed method Trust-Spa (a).

2D Signal Recovery

Here, we wish to deblur a Quick Response (QR) code of size 512 × 512 (see
Fig. 2.4(a)) from a 3% zero-mean Gaussian noise corrupted blurry image. GPSR obtained
MSE 5.3e-1 (20 sec) and YALL1 obtained MSE 4.03e-1 (40 sec). In contrast, the
proposed Trust-Spa method took only 16 seconds to converge with MSE 3.9e-1. In the
case of GPSR, there are very high amplitude artifacts around edges of the reconstruction
(compare zoomed-in log-error plots Figs. 2.4(c) and 2.4(d) for orange areas). Even though
YALL1 gives competitive results in MSE, it does not recover edges as well as Trust-Spa
(compare circled areas in Fig. 2.4(e) with Figs. 2.4(c) and 2.4(d)).

2.1.5 Conclusion
In this work, we proposed an approach for solving the ℓ2-ℓ1 minimization problem

that arises in compressed sensing and sparse recovery problems. Unlike gradient
projection-type methods, our approach uses gradients from previous iterations to
approximate a more accurate Hessian. Numerical experiments show that our proposed
approach mitigates spurious solutions more effectively with a lower average MSE in a
smaller amount of time.
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Figure 2.4: (a) True QR code image, (b) Trust-Spa reconstruction, (c) Log-error plot of the
Trust-Spa reconstruction, (d) Log-error plot of the GPSR reconstruction, and (e) Log-error plot of
the YALL1 reconstruction. Note the log-error of GPSR has higher amplitude, and the YALL1
reconstruction has more edge artifacts than the Trust-Spa reconstruction.
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2.2 Compact Representation of the Full Broyden Class of
Quasi-Newton Updates

In section 2.1 we relied on approximations of second derivative information to solve
the sparse signal recovery problem. In particular, we used the compact representation of
the popular L-BFGS (2.5) update which belongs to a broader class of approximations
known as the Broyden class. This work, based on the paper by DeGuchy, Erway and
Marcia [12], presents an algorithm which extends the notion of a compact representation
to the full Broyden class of updates.

Quasi-Newton methods for minimizing a continuously differentiable function 𝑓 ∶
ℝ𝑛 → ℝ generate a sequence of iterates {𝑥𝑘} such that 𝑓 is strictly decreasing at each
iterate. Crucially, at each iteration a quasi-Newton matrix is used to approximate ∇2𝑓 (𝑥𝑘)
that is assumed to be either too computationally expensive to compute or unavailable. The
approximation to the Hessian is updated each iteration using the most recently-computed
iterate 𝑥𝑘+1 by defining a new quasi-Newton pair (𝑠𝑘, 𝑦𝑘) given by

𝑠𝑘
△= 𝑥𝑘+1 − 𝑥𝑘 and 𝑦𝑘

△= ∇𝑓 (𝑥𝑘+1) − ∇𝑓 (𝑥𝑘).

The quasi-Newton Broyden family of updates is given by

𝐵𝑘+1 = 𝐵𝑘 − 1
𝑠𝑇
𝑘 𝐵𝑘𝑠𝑘

𝐵𝑘𝑠𝑘𝑠𝑇
𝑘 𝐵𝑘 + 1

𝑦𝑇
𝑘 𝑠𝑘

𝑦𝑘𝑦𝑇
𝑘 + 𝜙𝑘(𝑠𝑇

𝑘 𝐵𝑘𝑠𝑘)𝑤𝑘𝑤𝑇
𝑘 , (2.15)

where 𝜙𝑘 ∈ ℜ and
𝑤𝑘 = 𝑦𝑘

𝑦𝑇
𝑘 𝑠𝑘

− 𝐵𝑘𝑠𝑘
𝑠𝑇
𝑘 𝐵𝑘𝑠𝑘

.

For 𝜙𝑘 ∈ [0, 1], 𝐵𝑘+1 is said to be in the restricted or convex Broyden class of updates.
Setting 𝜙 = 0 gives the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update, arguably
the most widely-used symmetric positive-definite update and a member of the restricted
Broyden class. For 𝜙 ∉ [0, 1], the sequence of quasi-Newton matrices generated by this
update is not guaranteed to be positive definite. The most well-known update not in the
restricted Broyden class is the symmetric rank-one (SR1) update, which is obtained by
setting 𝜙𝑘 = (𝑠𝑇

𝑘 𝑦𝑘)/(𝑠𝑇
𝑘 𝑦𝑘 − 𝑠𝑇

𝑘 𝐵𝑘𝑠𝑘).
There has been interest in the entire Broyden class of updates, and in particular, in

negative values of 𝜙. Research has shown that negative values of 𝜙 are desirable [10]
and under some conditions, quasi-Newton methods based on negative values of 𝜙 exhibit
superlinear convergence rates [10, 39]. There has also been empirical evidence that
𝜙 < 0 may lead to more efficient algorithms than BFGS [27, 39]. More recently, the
entire Broyden class of quasi-Newton methods has been generalized to solve minimization
problems over Riemannian manifolds [23].

Compact representations of matrices from the Broyden class of updates were first
described by Byrd et al [9] as matrix decompositions of the form

𝐵𝑘+1 = 𝐵0 + 𝛹𝑘𝑀𝑘𝛹𝑇
𝑘 ,
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where 𝛹𝑘 ∈ ℜ𝑛×𝑙, 𝑀𝑘 ∈ ℜ𝑙×𝑙, and 𝐵0 is the initial matrix. The size of 𝑙 depends on
the rank of the update; in the case of a rank-two update, 𝑙 = 2(𝑘 + 1), and in the case
of a rank-one update, 𝑙 = 𝑘 + 1. Compact representations are known for members of
the restricted Broyden class [9, 18]; however, outside the restricted Broyden class, the
only known compact formulation is for the SR1 update (found in [9]). In this work, we
present the compact representation for the full Broyden class of quasi-Newton matrices,
allowing 𝜙 to be negative and to change each iteration. We also demonstrate how to
efficiently solve linear systems with any member of the Broyden class using the compact
representation of its inverse. This work can be viewed as an extension of the results found
in [17, 18], which presented the compact representation for members of the restricted
Broyden class and their inverses, as well as a practical method for solving linear systems
involving only restricted Broyden class matrices (i.e., 𝜙 ∈ [0, 1]).

One important application of the compact representation is the ability to efficiently
compute the eigenvalues and a partial eigenbasis when the number of stored pairs is
small [18], which is the case in large-scale optimization with so-called limited-memory
quasi-Newton updates. In this setting, only the most recently-computed 𝑀 quasi-Newton
pairs {(𝑠𝑘, 𝑦𝑘)}, 𝑘 = 0, 1, … , 𝑀 − 1, are stored and used to update 𝐵𝑘+1 using the recursive
application of (2.15). Typically, in large-scale applications 𝑀 ≤ 10 regardless of 𝑛, i.e.,
𝑀 ≪ 𝑛 (see, e.g., [9]). With the eigenvalues it is now possible to compute condition
numbers, compute singular values, and perform sensitivity analysis.

This work is organized in seven sections. In the second section, we review the
compact formulation for the restricted Broyden class of updates (𝜙 ∈ [0, 1]) as well
as overview the efficient computation of their eigenvalues. The main result of this work
is in Section 3 where the compact representation is given for the entire Broyden class
of updates that allows for 𝜙 to change each update. In this section, we also present a
practical iterative method to compute the compact representation. In Section 4, we show
how to perform linear solves with any member of the Broyden class using the compact
representation of their inverse. Numerical experiments are reported in Section 5. Finally,
Section 6 contains concluding remarks, and Section 7 includes acknowledgements for this
work.

Notation and Assumptions

Throughout this work, we make use of the following matrices:

𝑆𝑘
△= ( 𝑠0 𝑠1 𝑠2 ⋯ 𝑠𝑘 ) ∈ ℜ𝑛×(𝑘+1), (2.16)

𝑌𝑘
△= ( 𝑦0 𝑦1 𝑦2 ⋯ 𝑦𝑘 ) ∈ ℜ𝑛×(𝑘+1). (2.17)

Furthermore, we make use of the following decomposition of 𝑆𝑇
𝑘 𝑌𝑘 ∈ ℜ(𝑘+1)×(𝑘+1):

𝑆𝑇
𝑘 𝑌𝑘 = 𝐿𝑘 + 𝐷𝑘 + 𝑅𝑘, (2.18)

where 𝐿𝑘 is strictly lower triangular, 𝐷𝑘 is diagonal, and 𝑅𝑘 is strictly upper triangular. We
assume that the matrix 𝐵𝑘 is nonsingular for each 𝑘. Finally, throughout the manuscript, 𝐼𝑗
denotes the 𝑗 × 𝑗 identity matrix.
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2.2.1 Compact Representation for the Restricted Broyden Class
The most widely-used member of the restricted Broyden class is the BFGS update (i.e.,

𝜙 = 0). In this case, 𝛹𝑘 and 𝑀𝑘 are given in [9]:

𝛹𝑘
△= (𝐵0𝑆𝑘 𝑌𝑘) and 𝑀𝑘

△= − (𝑆𝑇
𝑘 𝐵0𝑆𝑘 𝐿𝑘
𝐿𝑇

𝑘 −𝐷𝑘
)

−1

, (2.19)

where 𝑆𝑘 and 𝑌𝑘 are defined in (2.16). The compact representation for any matrix in the
restricted Broyden class (i.e, 𝜙 ∈ [0, 1]) is given in [18]; in particular, for any matrix in
the restricted Broyden class,

𝛹𝑘
△= (𝐵0𝑆𝑘 𝑌𝑘) and 𝑀𝑘 = (−𝑆𝑇

𝑘 𝐵0𝑆𝑘 + 𝜙𝛬𝑘 −𝐿𝑘 + 𝜙𝛬𝑘
−𝐿𝑇

𝑘 + 𝜙𝛬𝑘 𝐷𝑘 + 𝜙𝛬𝑘
)

−1

,

where 𝐿𝑘 and 𝐷𝑘 are given in (2.18) and 𝛬𝑘 ∈ ℝ(𝑘+1)×(𝑘+1) is the diagonal matrix 𝛬𝑘 =
diag(𝜆𝑖), (0 ≤ 𝑖 ≤ 𝑘), given by

𝜆𝑖
△= (− 1 − 𝜙

𝑠𝑇
𝑖 𝐵𝑖𝑠𝑖

− 𝜙
𝑠𝑇
𝑖 𝑦𝑖

)
−1

. (2.20)

To our knowledge, the only compact representation known for a member of the
Broyden class of updates outside the restricted class is for the SR1 update (i.e., 𝜙𝑘 =
(𝑠𝑇

𝑘 𝑦𝑘)/(𝑠𝑇
𝑘 𝑦𝑘 − 𝑠𝑇

𝑘 𝐵𝑘𝑠𝑘).) As with the BFGS case, its compact representation is also given
in [9]:

𝛹𝑘 = 𝑌𝑘 − 𝐵0𝑆𝑘 and 𝑀𝑘 = (𝐷𝑘 + 𝐿𝑘 + 𝐿𝑇
𝑘 − 𝑆𝑇

𝑘 𝐵0𝑆𝑘)−1.

Notice that 𝛹𝑘 in the compact representation for SR1 matrices is half the size of that of 𝛹𝑘
for the rank-two updates.

Applications of the Compact Representation

In this section, we briefly review how the eigenvalues of any quasi-Newton matrix
that exhibits a compact representation can be efficiently computed. The first method to
compute eigenvalues of limited-memory quasi-Newton matrices was proposed by Lu [29].
This method makes use of the singular value decomposition and an eigendecomposition
of small matrices. An alternative approach, first described by Burdakov et al. [7], uses
the QR factorization in lieu of the singular value decomposition. An overview of the
method found in [7] follows below. For this section, we assume 𝑘 is small, as in the case
of limited-memory quasi-Newton matrices; moreover, we assume 𝛹𝑘 ∈ ℝ𝑛×𝑙 is full rank,
where 𝑙 is either 𝑙 = 2(𝑘 + 1) or 𝑙 = 𝑘 + 1. Finally, we assume 𝐵0 = 𝛾𝐼, where 𝛾 ∈ ℝ.

Let 𝑄𝑅 be the “thin” QR decomposition of 𝛹𝑘, where 𝑄 ∈ ℝ𝑛×𝑙 has orthonormal
columns and 𝑅 ∈ ℝ𝑙×𝑙 is upper triangular (see, e.g., [21]). Then,

𝐵𝑘+1 = 𝐵0 + 𝛹𝑘𝑀𝑘𝛹𝑇
𝑘 = 𝐵0 + 𝑄𝑅𝑀𝑘𝑅𝑇𝑄𝑇.
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The matrix 𝑅𝑀𝑘𝑅𝑇 is a real symmetric 𝑙 × 𝑙 matrix, whose spectral decomposition can be
explicitly computed since 𝑙 is small. Letting 𝑉𝛥𝑉𝑇 be its spectral decomposition gives
that

𝐵𝑘+1 = 𝐵0 + 𝑄𝑉𝛥𝑉𝑇𝑄𝑇 = 𝛾𝐼 + 𝑄𝑉𝛥𝑉𝑇𝑄𝑇 = 𝑄𝑉(𝛾𝐼 + ̂𝛥)𝑉𝑇𝑄𝑇, (2.21)

where ̂𝛥 is a diagonal matrix whose leading 𝑙 × 𝑙 block is 𝛥 while the rest of the matrix
is zeros. Thus, the spectral decomposition of 𝐵𝑘+1 is given by (2.21). (Note that in
practice, the matrices 𝑄 and 𝑉 in (2.21) are not stored.) Note that the matrix 𝐵𝑘+1 has
an eigenvalue of 𝛾 with multiplicity 𝑛 − 𝑙 and 𝑙 eigenvalues given by 𝛾 + 𝛥𝑖,𝑖, where
1 ≤ 𝑖 ≤ 𝑙. It also turns out that it is also possible to efficiently compute the eigenvectors
associated with the nontrivial eigenvalues and only one eigenvector associated with the
trivial eigenvalue 𝛾. (For more details, see [7, 18].)

Generally speaking, computing the eigenvalues of 𝐵𝑘+1 directly is an 𝑂(𝑛3) process.
In contrast, the above decomposition requires the QR factorization of 𝛹𝑘 and the
eigendecomposition of 𝑅𝑀𝑘𝑅𝑇, requiring 𝑂(𝑛𝑙2) flops and 𝑂(𝑙3) flops, respectively.
Since 𝑙 ≪ 𝑛, the proposed method’s runtimes should increase only linearly with 𝑛. (For
some details regarding updating the (full) QR factorization after a new quasi-Newton pair
is computed, see [18].) This efficient computation of eigenvalues and a partial eigenbasis
appears in new methods for large-scale optimization [1, 2, 4, 5, 7].

The compact representation is also useful for solving linear systems with
quasi-Newton matrices. In [8], Burke et al. use the compact formulation of a BFGS matrix
to solve a linear system involving a diagonally-shifted BFGS matrix. In [17], the compact
representation for the inverse of any member in the restricted Broyden class is given as
well as a practical method to solve linear systems involving these matrices using this
representation.

2.2.2 Compact Representation for any Member of the Broyden Class
The main result for this section is a theorem giving the compact representation for any

member of the Broyden class. The representation allows 𝜙 to change each iteration and
to be negative. In this section, we also present a practical algorithm for computing the
compact representation.

We begin by observing that 𝐵𝑘+1 in (2.15) can be written as

𝐵𝑘+1 = 𝐵𝑘 + (𝐵𝑘𝑠𝑘 𝑦𝑘) 𝑂𝑘 ((𝐵𝑘𝑠𝑘)𝑇

𝑦𝑇
𝑘

) , (2.22)

where

𝑂𝑘 =
⎛⎜⎜⎜⎜⎜⎜
⎝

−(1 − 𝜙𝑘)
𝑠𝑇
𝑘 𝐵𝑘𝑠𝑘

− 𝜙𝑘
𝑦𝑇

𝑘 𝑠𝑘

− 𝜙𝑘
𝑦𝑇

𝑘 𝑠𝑘
(1 + 𝜙𝑘

𝑠𝑇
𝑘 𝐵𝑘𝑠𝑘

𝑦𝑇
𝑘 𝑠𝑘

) 1
𝑦𝑇

𝑘 𝑠𝑘

⎞⎟⎟⎟⎟⎟⎟
⎠

. (2.23)

We now state two lemmas about 𝑂𝑘; specifically, we provide the condition for 𝑂𝑘 when is
singular as well as its inverse when it is nonsingular.
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Lemma 1. The 2 × 2 matrix 𝑂𝑘 is singular if and only if 𝜙𝑘 = (𝑠𝑇
𝑘 𝑦𝑘)/(𝑠𝑇

𝑘 𝑦𝑘 − 𝑠𝑇
𝑘 𝐵𝑘𝑠𝑘).

Proof. The determinant of 𝑂𝑘 is given by

det(𝑂𝑘) = −(1 − 𝜙𝑘)
𝑠𝑇
𝑘 𝐵𝑘𝑠𝑘

(1 + 𝜙𝑘
𝑠𝑇
𝑘 𝐵𝑘𝑠𝑘

𝑦𝑇
𝑘 𝑠𝑘

) 1
𝑦𝑇

𝑘 𝑠𝑘
−

𝜙2
𝑘

(𝑦𝑇
𝑘 𝑠𝑘)2

= 1
𝑦𝑇

𝑘 𝑠𝑘
(−(1 − 𝜙𝑘)

𝑠𝑇
𝑘 𝐵𝑘𝑠𝑘

− 𝜙𝑘
𝑦𝑇

𝑘 𝑠𝑘
) .

Thus, 𝑂𝑘 is singular if and only if

− (1 − 𝜙𝑘)
𝑠𝑇
𝑘 𝐵𝑘𝑠𝑘

− 𝜙𝑘
𝑦𝑇

𝑘 𝑠𝑘
= 0; (2.24)

in other words, 𝜙𝑘 = (𝑦𝑇
𝑘 𝑠𝑘)/(𝑦𝑇

𝑘 𝑠𝑘 − 𝑠𝑇
𝑘 𝐵𝑘𝑠𝑘). �

Lemma 1 states that 𝑂𝑘 is singular if and only if the SR1 update is used. Special
care will given to the SR1 case, since unlike other members of the Broyden class, this
is a rank-one update. For the duration of this manuscript, we let 𝜙𝑆𝑅1

𝑘
△= (𝑦𝑇

𝑘 𝑠𝑘)/(𝑦𝑇
𝑘 𝑠𝑘 −

𝑠𝑇
𝑘 𝐵𝑘𝑠𝑘). For 𝜙𝑘 ≠ 𝜙𝑆𝑅1

𝑘 , 𝑂𝑘 is invertible and its inverse is given in Lemma 2. This result
can be derived by using the formula for the inverse of a 2 × 2 matrix.

Lemma 2. If 𝑂𝑘 is invertible, then

𝑂−1
𝑘 =

⎛⎜⎜⎜⎜
⎝

−𝑠𝑇
𝑘 𝐵𝑘𝑠𝑘 + 𝜙𝑘

𝛼𝑘 + 𝛽𝑘

𝜙𝑘
𝛼𝑘 + 𝛽𝑘𝜙𝑘

𝛼𝑘 + 𝛽𝑘
𝑦𝑇

𝑘 𝑠𝑘 + 𝜙𝑘
𝛼𝑘 + 𝛽𝑘

⎞⎟⎟⎟⎟
⎠

,

where 𝛼𝑘 = −(1 − 𝜙𝑘)/(𝑠𝑇
𝑘 𝐵𝑘𝑠𝑘) and 𝛽𝑘 = −𝜙𝑘/(𝑦𝑇

𝑘 𝑠𝑘).
We now state the main theorem of this manuscript that presents the compact

representation for any member of the Broyden class, while allowing the parameter 𝜙
to vary at each iteration. After proving this theorem, we discuss several aspects of this
compact representation as well as the key differences between the compact representation
for the Broyden class of matrices (Theorem 1) and the compact representation of the
restricted Broyden class reviewed in Section 2.

To present this theorem, we make use the following notation. Let 𝛱𝑘 ∈ ℝ2(𝑘+1)×2(𝑘+1)

be the permutation matrix

𝛱𝑘 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝐼𝑘 0 0 0
0 0 𝐼𝑘 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟
⎠

, (2.25)

with 𝛱0
△= 𝐼2. Additionally, let 𝛯𝑘 be defined recursively as

𝛯𝑘 = (𝛱𝑇
𝑘−1𝛯𝑘−1 0

0 𝐸𝑘
) , where 𝐸𝑘 =

⎧{
⎨{⎩

(−1 1)𝑇 if 𝜙𝑘 = 𝜙𝑆𝑅1
𝑘

𝐼2 otherwise,
(2.26)
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with 𝛯0
△= 𝐸0. Finally, define 𝛤𝑘 ∈ ℝ(𝑘+1)×(𝑘+1) to be a diagonal matrix such that

𝛤𝑘 = diag
0≤𝑗≤𝑘

(𝛾𝑗), where 𝛾𝑗 =
⎧{
⎨{⎩

𝜙𝑗 (− 1−𝜙𝑗

𝑠𝑇
𝑗 𝐵𝑗𝑠𝑗

− 𝜙𝑗

𝑠𝑇
𝑗 𝑦𝑗

)
−1

if 𝜙𝑗 ≠ 𝜙𝑆𝑅1
𝑗

0 otherwise.
(2.27)

With these definitions, we state our main results.

Theorem 1. Let 𝛹𝑘 = (𝐵0𝑆𝑘 𝑌𝑘) ∈ ℜ𝑛×2(𝑘+1). If 𝐵𝑘+1 is a member of the Broyden class
of updates, then

𝐵𝑘+1 = 𝐵0 + 𝛹𝑘𝑀𝑘𝛹𝑇
𝑘 , (2.28)

where

𝑀𝑘 = (𝛯𝑇
𝑘 𝛱𝑘 (−𝑆𝑇

𝑘 𝐵0𝑆𝑘 + 𝛤𝑘 −𝐿𝑘 + 𝛤𝑘
−𝐿𝑇

𝑘 + 𝛤𝑘 𝐷𝑘 + 𝛤𝑘
) 𝛱𝑇

𝑘 𝛯𝑘)
−1

, (2.29)

𝐿𝑘 and 𝐷𝑘 are defined in (2.18), and

𝛹𝑘 = 𝛹𝑘𝛱𝑇
𝑘 𝛯𝑘. (2.30)

Proof. This proof is by induction on 𝑘. For the base case (𝑘 = 0), 𝐷0 = 𝑦𝑇
0𝑠0 with 𝐿0 =

𝑅0 = 0, and 𝛤0 is the scalar 𝛾0. Thus, 𝑀0 defined in (2.29) reduces to

𝑀0 = (𝛯𝑇
0𝛱0 (−𝑠𝑇

0𝐵0𝑠0 + 𝛾0 𝛾0
𝛾0 𝑑0 + 𝛾0

) 𝛱𝑇
0𝛯0)

−1

. (2.31)

By (2.22), 𝐵1 is given by 𝐵1 = 𝐵0 + 𝛹0𝑀0𝛹𝑇
0 where 𝛹0 = (𝐵0𝑠0 𝑦0) and

𝑀0
△=

⎛⎜⎜⎜⎜⎜⎜
⎝

−(1 − 𝜙0)
𝑠𝑇
0𝐵0𝑠0

− 𝜙0
𝑦𝑇

0𝑠0

− 𝜙0
𝑦𝑇

0𝑠0
(1 + 𝜙0

𝑠𝑇
0𝐵0𝑠0
𝑦𝑇

0𝑠0
) 1

𝑦𝑇
0𝑠0

⎞⎟⎟⎟⎟⎟⎟
⎠

. (2.32)

It remains to show that 𝑀0 = 𝛱𝑇
0𝛯0𝑀0𝛯𝑇

0𝛱0. Since the initial permutation matrix is
defined as 𝛱0 = 𝐼2, we only need to show 𝑀0 = 𝛯0𝑀0𝛯𝑇

0 . For simplicity, 𝑀0 can be
written as

𝑀0 = (𝛼0 𝛽0
𝛽0 𝛿0

) , (2.33)

where

𝛼0 = −(1 − 𝜙0)
𝑠𝑇
0𝐵0𝑠0

, 𝛽0 = − 𝜙0
𝑦𝑇

0𝑠0
, and 𝛿0 = (1 + 𝜙0

𝑠𝑇
0𝐵0𝑠0
𝑦𝑇

0𝑠0
) 1

𝑦𝑇
0𝑠0

. (2.34)

From Lemma 1, 𝑀0 is nonsingular if and only if 𝜙0 ≠ 𝜙𝑆𝑅1
0 . Thus, we consider the

following two cases separately: (a) 𝜙0 = 𝜙𝑆𝑅1
0 and (b) 𝜙0 ≠ 𝜙𝑆𝑅1

0 .
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Case (a): If 𝜙0 = 𝜙𝑆𝑅1
0 , then 𝛯0 = 𝐸0 = (−1 1)𝑇 by (2.26). By (2.24), 𝛼0 + 𝛽0 = 0, and

thus, 𝑀0 can be simplified as

𝑀0 = (−𝛽0 𝛽0
𝛽0 −𝛽0

) = (−𝛽0) ( 1 −1
−1 1) = −𝛽0𝛯0𝛯𝑇

0 .

Finally, since 𝜙0 = (𝑦𝑇
0𝑠0)/(𝑠𝑇

0𝑦0 − 𝑠𝑇
0𝐵0𝑠0) and 𝛽0 = −𝜙0/𝑦𝑇

0𝑠0, then

𝑀0 = (𝛯𝑇
0 (−𝑠𝑇

0𝐵0𝑠0 + 𝛾0 𝛾0
𝛾0 𝑠𝑇

0𝑦0 + 𝛾0
) 𝛯0)

−1

= 1
𝑠𝑇
0𝑦0 − 𝑠𝑇

0𝐵0𝑠0
= −𝛽0,

and thus, 𝑀0 = 𝛯0𝑀0𝛯𝑇
0 , as desired.

Case (b): If 𝜙0 ≠ 𝜙𝑆𝑅1
0 , then 𝑀0 is nonsingular and 𝛯0 = 𝐼2. Thus, it remains to show

𝑀0 = 𝑀0. By Lemma 1, 𝛼0 + 𝛽0 ≠ 0, making 𝛾0 = 𝜙0/(𝛼0 + 𝛽0) well defined. By
Lemma 2, the inverse of 𝑀0 is given by

𝑀−1
0 = (−𝑠𝑇

0𝐵0𝑠0 + 𝛾0 𝛾0
𝛾0 𝑠𝑇

0𝑦0 + 𝛾0
) = 𝑀−1

0 . (2.35)

Note that the last equality in (2.35) follows since 𝛱0 = 𝐼2.

For the induction step, assume

𝐵𝑚 = 𝐵0 + 𝛹𝑚−1𝑀𝑚−1𝛹𝑇
𝑚−1, (2.36)

where 𝑀𝑚−1 = (𝛯𝑇
𝑚−1𝛱𝑚−1𝛺𝑚−1𝛱𝑇

𝑚−1𝛯𝑚−1)−1 and

𝛺𝑚−1 = (−𝑆𝑇
𝑚−1𝐵0𝑆𝑚−1 + 𝛤𝑚−1 −𝐿𝑚−1 + 𝛤𝑚−1
−𝐿𝑇

𝑚−1 + 𝛤𝑚−1 𝐷𝑚−1 + 𝛤𝑚−1
) . (2.37)

From (2.22), we have

𝐵𝑚+1 = 𝐵0+𝛹𝑚−1𝑀𝑚−1𝛹𝑇
𝑚−1+(𝐵𝑚𝑠𝑚 𝑦𝑚)(𝛼𝑚 𝛽𝑚

𝛽𝑚 𝛿𝑚
)((𝐵𝑚𝑠𝑚)𝑇

𝑦𝑇
𝑚

), (2.38)

where

𝛼𝑚 = − 1 − 𝜙𝑚
𝑠𝑇
𝑚𝐵𝑚𝑠𝑚

, 𝛽𝑚 = − 𝜙𝑚
𝑦𝑇

𝑚𝑠𝑚
, and 𝛿𝑚 = (1 + 𝜙𝑚

𝑠𝑇
𝑚𝐵𝑚𝑠𝑚
𝑦𝑇

𝑚𝑠𝑚
) 1

𝑦𝑇
𝑚𝑠𝑚

.

Multiplying (2.36) by 𝑠𝑚 on the right, we obtain

𝐵𝑚𝑠𝑚 = 𝐵0𝑠𝑚 + 𝛹𝑚−1𝑀𝑚−1𝛹𝑇
𝑚−1𝑠𝑚. (2.39)

Then, substituting this into (2.38) yields

𝐵𝑚+1 = 𝐵0 + 𝛹𝑚−1𝑀𝑚−1𝛹𝑇
𝑚−1 + (2.40)

(𝐵0𝑠𝑚+𝛹𝑚−1𝑝𝑚 𝑦𝑚)(𝛼𝑚 𝛽𝑚
𝛽𝑚 𝛿𝑚

)((𝐵0𝑠𝑚+𝛹𝑚−1𝑝𝑚)𝑇

𝑦𝑇
𝑚

),



20

where 𝑝𝑚
△= 𝑀𝑚−1𝛹𝑇

𝑚−1𝑠𝑚. Equivalently,

𝐵𝑚+1 = 𝐵0 + (𝛹𝑚−1 𝐵0𝑠𝑚 𝑦𝑚)M𝑚
⎛⎜⎜⎜
⎝

𝛹𝑇
𝑚−1

(𝐵0𝑠𝑚)𝑇

𝑦𝑇
𝑚

⎞⎟⎟⎟
⎠

, (2.41)

where

M𝑚 =
⎛⎜⎜⎜
⎝

𝑀𝑚−1 + 𝛼𝑚𝑝𝑚𝑝𝑇
𝑚 𝛼𝑚𝑝𝑚 𝛽𝑚𝑝𝑚

𝛼𝑚𝑝𝑇
𝑚 𝛼𝑚 𝛽𝑚

𝛽𝑚𝑝𝑇
𝑚 𝛽𝑚 𝛿𝑚

⎞⎟⎟⎟
⎠

. (2.42)

Note that M𝑚 has the following decomposition:

M𝑚 =
⎛⎜⎜⎜
⎝

𝐼 𝑝𝑚 0
0 1 0
0 0 1

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

𝑀𝑚−1 0 0
0 𝛼𝑚 𝛽𝑚
0 𝛽𝑚 𝛿𝑚

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜
⎝

𝐼 0 0
𝑝𝑇

𝑚 1 0
0 0 1

⎞⎟⎟⎟
⎠

. (2.43)

Thus, M𝑚 is nonsingular if and only if 𝛼𝑚𝛿𝑚 − 𝛽2
𝑚 ≠ 0; that is, M𝑚 is nonsingular

if and only if 𝜙𝑚 ≠ 𝜙𝑆𝑅1
𝑚 (see Lemma 1). To complete the induction step, we will show

that the last term in (2.41) is equal to 𝛹𝑚𝑀𝑚𝛹𝑇
𝑚 by considering the following two cases

separately: (i) 𝜙𝑚 = 𝜙𝑆𝑅1
𝑚 and (ii) 𝜙𝑚 ≠ 𝜙𝑆𝑅1

𝑚 .

Case (i): If 𝜙𝑚 = 𝜙𝑆𝑅1
𝑚 , then by Lemma 1, 𝛼𝑚 = −𝛽𝑚 ≠ 0. Then

M𝑚 =
⎛⎜⎜⎜
⎝

𝐼 0
0 −1
0 1

⎞⎟⎟⎟
⎠
M̃𝑚 (𝐼 0 0

0 −1 1) , (2.44)

where
M̃𝑚 = (𝑀𝑚−1 − 𝛽𝑚𝑝𝑚𝑝𝑇

𝑚 𝛽𝑚𝑝𝑚
𝛽𝑚𝑝𝑇

𝑚 −𝛽𝑚
) . (2.45)

We now show that M̃𝑚 = 𝑀𝑚. By the inductive hypothesis, 𝑀𝑚−1 is nonsingular.
Together with the fact that 𝛽𝑚 ≠ 0, it can be checked directly that

M̃−1
𝑚 = ( 𝑀−1

𝑚−1 𝑀−1
𝑚−1𝑝𝑚

𝑝𝑇
𝑚𝑀−1

𝑚−1 −𝛽−1
𝑚 + 𝑝𝑇

𝑚𝑀−1
𝑚−1𝑝𝑚

) . (2.46)

The (2,2)-entry of M̃−1
𝑚 can be simplified by substituting in for 𝑝𝑚 and using the inductive

step (2.36):

−𝛽−1
𝑚 + 𝑝𝑇

𝑚𝑀−1
𝑚−1𝑝𝑚 = −𝛽−1

𝑚 + 𝑠𝑇
𝑚(𝛹𝑚−1𝑀𝑚−1𝛹𝑇

𝑚−1)𝑠𝑚

= −𝛽−1
𝑚 − 𝑠𝑇

𝑚𝐵0𝑠𝑚 + 𝑠𝑇
𝑚𝐵𝑚𝑠𝑚

= −𝛽−1
𝑚 − 𝑠𝑇

𝑚𝐵0𝑠𝑚 + (1 − 𝜙𝑚)𝛽−1
𝑚

= −𝑠𝑇
𝑚𝐵0𝑠𝑚 + 𝑠𝑇

𝑚𝑦𝑚.
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Substituting this into (2.46) and using the inductive hypothesis gives:

M̃−1
𝑚 = ( 𝑀−1

𝑚−1 𝛹𝑇
𝑚−1𝑠𝑚

𝑠𝑇
𝑚𝛹𝑚−1 −𝑠𝑇

𝑚𝐵0𝑠𝑚 + 𝑠𝑇
𝑚𝑦𝑚

)

= ((𝛯𝑇
𝑚−1𝛱𝑚−1𝛺𝑚−1𝛱𝑇

𝑚−1𝛯𝑚−1) 𝛯𝑇
𝑚−1𝛱𝑚−1𝛹𝑇

𝑚−1𝑠𝑚
𝑠𝑇
𝑚𝛹𝑚−1𝛱𝑇

𝑚−1𝛯𝑚−1 −𝑠𝑇
𝑚𝐵0𝑠𝑚 + 𝑠𝑇

𝑚𝑦𝑚
)

= (𝛯𝑇
𝑚−1𝛱𝑇

𝑚−1 0
0 1) ( 𝛺𝑚−1 𝛹𝑇

𝑚−1𝑠𝑚
𝑠𝑇
𝑚𝛹𝑚−1 −𝑠𝑇

𝑚𝐵0𝑠𝑚 + 𝑠𝑇
𝑚𝑦𝑚

) (𝛱𝑇
𝑚−1𝛯𝑚−1 0

0 1)

= 𝛯𝑇
𝑚

⎛⎜⎜⎜
⎝

𝛺𝑚−1 −𝛹𝑇
𝑚−1𝑠𝑚 0

−𝑠𝑇
𝑚𝛹𝑚−1 −𝑠𝑇

𝑚𝐵0𝑠𝑚 + 𝛾𝑚 𝛾𝑚
0 𝛾𝑚 𝑠𝑇

𝑚𝑦𝑚 + 𝛾𝑚

⎞⎟⎟⎟
⎠

𝛯𝑚, (2.47)

where
𝛯𝑚

△= (𝛱𝑇
𝑚−1𝛯𝑚−1 0

0 𝐸𝑚
) , and 𝐸𝑚

△= (−1
1) .

Note that the middle matrix in (2.47) can be expressed as

⎛⎜⎜⎜
⎝

𝛺𝑚−1 −𝛹𝑇
𝑚−1𝑠𝑚 0

−𝑠𝑇
𝑚𝛹𝑚−1 −𝑠𝑇

𝑚𝐵0𝑠𝑚 + 𝛾𝑚 𝛾𝑚
0 𝛾𝑚 𝑠𝑇

𝑚𝑦𝑚 + 𝛾𝑚

⎞⎟⎟⎟
⎠

, (2.48)

which is equivalent to

⎛⎜⎜⎜⎜⎜⎜
⎝

−𝑆𝑇
𝑚−1𝐵0𝑆𝑚−1 + 𝛤𝑚−1 −𝐿𝑚−1 + 𝛤𝑚−1 −𝑆𝑇

𝑚−1𝐵0𝑠𝑚 0
−𝐿𝑇

𝑚−1 + 𝛤𝑚−1 𝐷𝑚−1 + 𝛤𝑚−1 −𝑌𝑇
𝑚𝑠𝑚 0

−𝑠𝑇
𝑚𝐵0𝑆𝑚−1 −𝑠𝑇

𝑚𝑌𝑚 −𝑠𝑇
𝑚𝐵0𝑠𝑚 + 𝛾𝑚 𝛾𝑚

0 0 𝛾𝑚 𝑦𝑇
𝑚𝑠𝑚 + 𝛾𝑚

⎞⎟⎟⎟⎟⎟⎟
⎠

.

Substituting this into (2.47), yields

M̃−1
𝑚 = 𝛯𝑇

𝑚𝛱𝑚𝛺𝑚𝛱𝑇
𝑚𝛯𝑚, (2.49)

where 𝛱𝑚 is defined in (2.25), replacing 𝑘 with 𝑚, and 𝛺𝑚 is defined in (2.37), replacing
𝑚 − 1 with 𝑚. Thus, M̃𝑚 = 𝑀𝑚, as defined in (2.29).

We finish this case of the proof by showing that the last term in (2.41) is equal to
𝛹𝑚𝑀𝑚𝛹𝑇

𝑚. Substituting in (2.44) gives that the last term in (2.41) can be written as

(𝛹𝑚−1𝛱𝑇
𝑚−1𝛯𝑚−1 𝐵0𝑠𝑚 𝑦𝑚)

⎛⎜⎜⎜
⎝

𝐼 0
0 −1
0 1

⎞⎟⎟⎟
⎠
M̃𝑚 (𝐼 0 0

0 −1 1)
⎛⎜⎜⎜
⎝

𝛯𝑇
𝑚−1𝛱𝑚−1𝛹𝑇

𝑚−1
(𝐵0𝑠𝑚)𝑇

𝑦𝑇
𝑚

⎞⎟⎟⎟
⎠

.

Using (2.49) this simplifies to

𝛹𝑚𝛱𝑇
𝑚 (𝛱𝑇

𝑚−1𝛯𝑚−1 0
0 𝐸𝑚

) (𝛯𝑇
𝑚𝛱𝑚𝛺𝑚𝛱𝑇

𝑚𝛯𝑚)−1 (𝛯𝑇
𝑚−1𝛱𝑚−1 0

0 𝐸𝑚
) 𝛱𝑚𝛹𝑇

𝑚,
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or, in other words,

𝛹𝑚𝛱𝑇
𝑚𝛯𝑚 (𝛯𝑇

𝑚𝛱𝑚𝛺𝑚𝛱𝑇
𝑚𝛯𝑚)−1 𝛯𝑇

𝑚𝛱𝑚𝛹𝑇
𝑚,

which is exactly 𝛹𝑚𝑀𝑚𝛹𝑇
𝑚. Thus, for 𝜙𝑚 = 𝜙𝑆𝑅1

𝑚 , the inductive step is proven.

Case (ii): We consider the case that 𝜙𝑚 ≠ 𝜙𝑆𝑅1
𝑚 . We begin by showing that 𝑀𝑚 = M𝑚,

given in (2.42). By Lemma 1, 𝛼𝑚 + 𝛽𝑚 ≠ 0. Second, 𝐸𝑚 = 𝐼2 (see (2.26)), and 𝛾𝑚 =
𝜙𝑚/(𝛼𝑚 + 𝛽𝑚) is well-defined (see (2.27)). Then, the inverse of M𝑚 can be computed
using arguments similar to those found in [18]:

M−1
𝑚 =

⎛⎜⎜⎜
⎝

𝑀−1
𝑚−1 −𝑀−1

𝑚−1𝑝𝑚 0
−𝑝𝑇

𝑚𝑀−1
𝑚−1 𝑝𝑇

𝑚𝑀−1
𝑚−1𝑝𝑚 + �̃�𝑚 ̃𝛽𝑚

0 ̃𝛽𝑚 ̃𝛿𝑚

⎞⎟⎟⎟
⎠

, (2.50)

where

�̃�𝑚 = 𝛿𝑚
𝛼𝑚𝛿𝑚 − 𝛽2

𝑚
, ̃𝛽𝑚 = − 𝛽𝑚

𝛼𝑚𝛿𝑚 − 𝛽2
𝑚

and ̃𝛿𝑚 = 𝛼𝑚
𝛼𝑚𝛿𝑚 − 𝛽2

𝑚
. (2.51)

Simplifying the expressions in (2.51), yields

�̃�𝑚 = −𝑠𝑇
𝑚𝐵𝑚𝑠𝑚 + 𝛾𝑚, ̃𝛽𝑚 = 𝛾𝑚, ̃𝛿𝑚 = 𝑦𝑇

𝑚𝑠𝑚 + 𝛾𝑚. (2.52)

We now simplify the entries of (2.50) using the same approach as in [18]. Since 𝑝𝑚 =
𝑀𝑚−1𝛹𝑇

𝑚−1𝑠𝑚, then 𝑀−1
𝑚−1𝑝𝑚 = 𝛹𝑇

𝑚−1𝑠𝑚, giving us an expression for the (1,2) and (2,1)
entries. The (2,2) block entry is simplified by first multiplying (2.39) by 𝑠𝑇

𝑚 on the left to
obtain 𝑠𝑇

𝑚𝐵𝑚𝑠𝑚 = 𝑠𝑇
𝑚𝐵0𝑠𝑚 + 𝑝𝑇

𝑚𝑀−1
𝑚−1𝑝𝑚. Then,

𝑝𝑇
𝑚𝑀−1

𝑚−1𝑝𝑚 + �̃�𝑚 = −𝑠𝑇
𝑚𝐵0𝑠𝑚 + 𝑠𝑇

𝑚𝐵𝑚𝑠𝑚 + �̃�𝑚 = −𝑠𝑇
𝑚𝐵0𝑠𝑚 + 𝛾𝑚.

Thus, using (2.48), (2.50) can be written as

M−1
𝑚 =

⎛⎜⎜⎜
⎝

𝑀−1
𝑚−1 −𝛹𝑇

𝑚−1𝑠𝑚 0
−𝑠𝑇

𝑚𝛹𝑚−1 −𝑠𝑇
𝑚𝐵0𝑠𝑚+𝛾𝑚 𝛾𝑚

0 𝛾𝑚 𝑦𝑇
𝑚𝑠𝑚+𝛾𝑚

⎞⎟⎟⎟
⎠

=
⎛⎜⎜⎜
⎝

𝛯𝑇
𝑚−1𝛱𝑚−1𝛺𝑚−1𝛱𝑇

𝑚−1𝛯𝑚−1 −𝛯𝑇
𝑚−1𝛱𝑚−1𝛹𝑇

𝑚−1𝑠𝑚 0
−𝑠𝑇

𝑚𝛹𝑚−1𝛱𝑇
𝑚−1𝛯𝑚−1 −𝑠𝑇

𝑚𝐵0𝑠𝑚+𝛾𝑚 𝛾𝑚
0 𝛾𝑚 𝑦𝑇

𝑚𝑠𝑚+𝛾𝑚

⎞⎟⎟⎟
⎠

= (𝛯𝑇
𝑚−1𝛱𝑇

𝑚−1 0
0 𝐸𝑚

)
⎛⎜⎜⎜
⎝

𝛺𝑚−1 𝛹𝑇
𝑚−1𝑠𝑚 0

𝑠𝑇
𝑚𝛹𝑚−1 −𝑠𝑇

𝑚𝐵0𝑠𝑚 + 𝛾𝑚 𝛾𝑚
0 𝛾𝑚 𝑦𝑇

𝑚𝑠𝑚 + 𝛾𝑚

⎞⎟⎟⎟
⎠

(𝛱𝑇
𝑚−1𝛯𝑚−1 0

0 𝐸𝑚
)

= 𝛯𝑇
𝑚

⎛⎜⎜⎜
⎝

𝛺𝑚−1 𝛹𝑇
𝑚−1𝑠𝑚 0

𝑠𝑇
𝑚𝛹𝑚−1 −𝑠𝑇

𝑚𝐵0𝑠𝑚 + 𝛾𝑚 𝛾𝑚
0 𝛾𝑚 𝑦𝑇

𝑚𝑠𝑚 + 𝛾𝑚

⎞⎟⎟⎟
⎠

𝛯𝑚

= 𝛯𝑇
𝑚𝛱𝑚𝛺𝑚𝛱𝑇

𝑚𝛯𝑚, (2.53)
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proving that 𝑀𝑚 = M𝑚. Finally, using arguments similar to those in case (i), it can be shown that

𝐵𝑚+1 = 𝐵0 + 𝛹𝑚𝛱𝑇
𝑚𝛯𝑚(𝛯𝑇

𝑚𝛱𝑚𝛺𝑚𝛱𝑇
𝑚𝛯𝑚)−1𝛯𝑇

𝑚𝛱𝑚𝛹𝑇
𝑚 = 𝐵0 + 𝛹𝑚𝑀𝑚𝛹𝑇

𝑚,

as desired. �

There are two main differences in the compact representation for the full Broyden class
(Theorem 1) and the restricted Broyden class (Section 2). First, in Theorem 1, 𝛯𝑘 will always
be the identity matrix for updates belonging to the restricted Broyden class. Second, in (2.22), the
permutation matrices in the definitions of 𝑀𝑘 and 𝛹𝑘, (equations (2.29) and (2.30), respectively)
always cancel out in the restricted Broyden case. To emphasize that the permutation matrices do
not cancel out for the general Broyden class updates, we use the notation 𝑀𝑘 and 𝛹𝑘, in lieu of 𝑀𝑘
and 𝛹𝑘 as in the restricted Broyden case.

Finally, we provide some insight regarding the permutation matrices (2.25). The permutation
matrix 𝛱𝑘 acts in the following manner:

𝛹𝑘𝛱𝑇
𝑘 = (𝐵0𝑠0 ⋯ 𝐵0𝑠𝑘−1 𝑦0 ⋯ 𝑦𝑘−1 𝐵0𝑠𝑘 𝑦𝑘) = (𝛹𝑘−1 𝐵0𝑠𝑘 𝑦𝑘).

Thus, �̂�𝑘 in (2.22), which is given by �̂�𝑘 = 𝛹𝑘𝛱𝑇
𝑘 𝛯𝑘 in (2.30), can be written as

𝛹𝑘𝛱𝑇
𝑘 𝛯𝑘 = (𝛹𝑘−1 𝐵0𝑠𝑘 𝑦𝑘) (𝛱𝑇

𝑘−1𝛯𝑘−1 0
0 𝐸𝑘

)

= (𝛹𝑘−1𝛱𝑇
𝑘−1𝛯𝑘−1 (𝐵0𝑠𝑘 𝑦𝑘)𝐸𝑘)

⋮

= ((𝐵0𝑠0 𝑦0)𝐸0 (𝐵0𝑠1 𝑦1)𝐸1 ⋯ (𝐵0𝑠𝑘 𝑦𝑘)𝐸𝑘). (2.54)

In other words, when applied on the right of 𝛹𝑘, the product 𝛱𝑇
𝑘 𝛯𝑘 permutes the columns of 𝛹𝑘

and, using the matrices {𝐸𝑖}, combines columns of 𝛹𝑘 whenever the update is a rank-one update.

Unfortunately, computing 𝑀𝑘 is not straightforward. In particular, the diagonal matrix 𝛤𝑘
in Eq. (2.27) involves 𝑠𝑇

𝑖 𝐵𝑖𝑠𝑖 for each 𝑖 ∈ {0, … , 𝑘}, which requires 𝐵𝑖 for 0 ≤ 𝑖 ≤ 𝑘. In the
next section, we propose a recursive method for computing 𝑀𝑘 that does not require storing the
matrices 𝐵𝑖 for 0 ≤ 𝑖 ≤ 𝑘.

Computing 𝑀𝑘

In this section, we propose a recursive method for computing 𝑀𝑘 from 𝑀𝑘−1. This method
is based on the method proposed in [17, 18] for solving a linear system whose system matrix
is generated using the restricted Broyden class of updates. We note that when 𝜙 is fixed, the
recursive method here is similar to the one proposed in [30].

In the proof of Theorem 1, we showed that

𝑀𝑘 =

⎧{{{{{
⎨{{{{{⎩

⎛⎜
⎝

𝑀𝑘−1 − 𝛽𝑘𝑝𝑘𝑝𝑇
𝑘 𝛽𝑘𝑝𝑘

𝛽𝑘𝑝𝑇
𝑘 −𝛽𝑘

⎞⎟
⎠

if 𝜙𝑘 = 𝜙𝑆𝑅1
𝑘

⎛⎜⎜⎜⎜⎜
⎝

𝑀𝑘−1 + 𝛼𝑘𝑝𝑘𝑝𝑇
𝑘 𝛼𝑘𝑝𝑘 𝛽𝑘𝑝𝑘

𝛼𝑘𝑝𝑇
𝑘 𝛼𝑘 𝛽𝑘

𝛽𝑘𝑝𝑇
𝑘 𝛽𝑘 𝛿𝑘

⎞⎟⎟⎟⎟⎟
⎠

otherwise,
(2.55)
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which are given in (2.43) and (2.45). We now relate some of the entries in 𝑀𝑘 with other stored or
computable quantities involving the pairs {𝑠𝑖, 𝑦𝑖}, 𝑖 = 0, … , 𝑘. The vector 𝑝𝑘 can be computed as

𝑝𝑘 = 𝑀𝑘−1𝛹𝑇
𝑘−1𝑠𝑘 = 𝑀𝑘−1𝛯𝑇

𝑘−1𝛱𝑘−1 (𝑆𝑇
𝑘−1𝐵0𝑠𝑘
𝑌𝑇

𝑘−1𝑠𝑘
) . (2.56)

Note that in (2.56), the vector 𝑆𝑇
𝑘−1𝐵0𝑠𝑘 is the first 𝑘 − 1 entries in the last column of 𝑆𝑇

𝑘 𝐵0𝑆𝑘, and
the vector 𝑌𝑇

𝑘−1𝑠𝑘 is the first 𝑘 entries in the last column of 𝑌𝑇
𝑘 𝑆𝑘. Moreover, the entry 𝛼𝑘, given by

𝛼𝑘 = −(1 − 𝜙𝑘)/𝑠𝑇
𝑘 𝐵𝑘𝑠𝑘, can be computed from the following:

𝑠𝑇
𝑘 𝐵𝑘𝑠𝑘 = 𝑠𝑇

𝑘 (𝐵0 + 𝛹𝑘−1𝑀𝑘−1𝛹𝑇
𝑘−1)𝑠𝑘 = 𝑠𝑇

𝑘 𝐵0𝑠𝑘 + 𝑠𝑇
𝑘 𝛹𝑘−1𝑝𝑘. (2.57)

In (2.57), the quantity 𝑠𝑇
𝑘 𝐵0𝑠𝑘 is the 𝑘th diagonal entry in 𝑆𝑇

𝑘 𝐵0𝑆𝑘, and 𝑠𝑇
𝑘 𝛹𝑘−1𝑝𝑘 is the inner

product of 𝑝𝑘 and 𝛹𝑇
𝑘−1𝑠𝑘, the latter vector already having been computed in (2.56). Recall that the

entry 𝛽𝑘 is given by 𝛽𝑘 = −𝜙𝑘/𝑦𝑇
𝑘 𝑠𝑘, where 𝑦𝑇

𝑘 𝑠𝑘 is the (𝑘 + 1)st diagonal entry in 𝑆𝑇
𝑘 𝑌𝑘. Finally,

𝛿𝑘 = (1 + 𝜙𝑘𝑠𝑇
𝑘 𝐵𝑘𝑠𝑘/𝑦𝑇

𝑘 𝑠𝑘)/𝑦𝑇
𝑘 𝑠𝑘, which uses the previously computed quantities 𝑠𝑇

𝑘 𝐵𝑘𝑠𝑘 and 𝑦𝑇
𝑘 𝑠𝑘.

For the initialization of 𝑀0, notice that 𝑀0 in (2.31) can be written as

𝑀0 =

⎧{{
⎨{{⎩

−𝛽0 if 𝜙0 = 𝜙𝑆𝑅1
0

⎛⎜
⎝

𝛼0 𝛽0

𝛽0 𝛿0

⎞⎟
⎠

otherwise,
(2.58)

where 𝛼0, 𝛽0, and 𝛿0 are defined as in (2.34).

In Algorithm 3, we use the recursions described above to compute 𝑀𝑘 given in (2.55).

Algorithm 3: This algorithm computes 𝑀𝑘 in (2.55).
Input: An initial 𝜙0 and 𝐵0;
Define 𝑀0 using (2.33);
Define 𝛹0 = (𝐵0𝑠0 𝑦0);

for 𝑗 = 1 ∶ 𝑘 do
𝛹𝑇

𝑗−1𝑠𝑗 ← 𝛯𝑇
𝑗−1𝛱𝑗−1𝛹𝑇

𝑗−1𝑠𝑗;
𝑝𝑗 ← 𝑀𝑗−1(𝛹𝑇

𝑗−1𝑠𝑗);
𝑠𝑇
𝑗 𝐵𝑗𝑠𝑗 ← 𝑠𝑇

𝑗 𝐵0𝑠𝑗 + (𝑠𝑇
𝑗 𝛹𝑗−1)𝑝𝑗;

𝛼𝑗 ← −(1 − 𝜙𝑗)/(𝑠𝑇
𝑗 𝐵𝑗𝑠𝑗);

𝛽𝑗 ← −𝜙𝑗/(𝑦𝑇
𝑗 𝑠𝑗);

𝛿𝑗 ← (1 + 𝜙𝑗(𝑠𝑇
𝑗 𝐵𝑗𝑠𝑗)/(𝑦𝑇

𝑗 𝑠𝑗))/(𝑦𝑇
𝑗 𝑠𝑗);

Form 𝑀𝑗 using (2.55);
end for

Note that the matrices 𝛱𝑗−1 and 𝛯𝑗−1 are not explicitly formed in Algorithm 3. Instead, (2.54) can
be used to compute 𝛹𝑗−1 in line 4 of Algorithm 3. Thus, at iteration 𝑗, only two vectors (𝑝𝑗 and
𝛹𝑇

𝑗−1𝑠𝑗), both of which have length less than or equal to 2𝑗, need to be computed to form 𝑀𝑗.
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2.2.3 Solving Linear Systems
Given the compact representation of 𝐵𝑘+1, we can solve

𝐵𝑘+1𝑟 = 𝑧, (2.59)

where 𝑟, 𝑧 ∈ ℜ𝑛, by computing the compact representation of the inverse of 𝐵𝑘+1. Intuitively
speaking, computing the compact representation of the inverse is due to the fact that 𝐻𝑘+1

△= 𝐵−1
𝑘+1

can also be written using a recursion relation [13]:

𝐻𝑘+1 = 𝐻𝑘 + 1
𝑠𝑇
𝑘 𝑦𝑘

𝑠𝑘𝑠𝑇
𝑘 − 1

𝑦𝑇
𝑘 𝐻𝑘𝑦𝑘

𝐻𝑘𝑦𝑘𝑦𝑇
𝑘 𝐻𝑘 + 𝛷𝑘(𝑦𝑇

𝑘 𝐻𝑘𝑦𝑘)𝑣𝑘𝑣𝑇
𝑘 , (2.60)

where 𝐻𝑘
△= 𝐵−1

𝑘 , 𝑣𝑘 = 𝑠𝑘/(𝑦𝑇
𝑘 𝑠𝑘) − (𝐻𝑘𝑦𝑘)/(𝑦𝑇

𝑘 𝐻𝑘𝑦𝑘), and

𝛷𝑘 =
(1 − 𝜙𝑘)(𝑦𝑇

𝑘 𝑠𝑘)2

(1 − 𝜙𝑘)(𝑦𝑇
𝑘 𝑠𝑘)2 + 𝜙𝑘(𝑦𝑇

𝑘 𝐻𝑘𝑦𝑘)(𝑠𝑇
𝑘 𝐵𝑘𝑠𝑘)

. (2.61)

Note that when 𝜙𝑘 = 𝜙𝑆𝑅1
𝑘 , then the corresponding 𝛷𝑘 is given by

𝛷𝑆𝑅1
𝑘 =

𝑦𝑇
𝑘 𝑠𝑘

𝑦𝑇
𝑘 𝑠𝑘 − 𝑦𝑇

𝑘 𝐻𝑘𝑦𝑘
.

In this section, we derive the compact representation of the inverse of a Broyden class member.
This derivation is similar to the process of finding the inverse of a member of the restricted
Broyden class presented in [17].

Applying the Sherman-Morrison-Woodbury formula (see, e.g., [21]) to the compact
representation of 𝐵𝑘+1 given in (2.22), gives that

𝐵−1
𝑘+1 = 𝐵−1

0 + 𝐵−1
0 𝛹𝑘 (−𝑀−1

𝑘 − 𝛹𝑇
𝑘 𝐵−1

0 𝛹𝑘)−1 𝛹𝑇
𝑘 𝐵−1

0 .

For quasi-Newton matrices it is conventional to let 𝐻𝑖 denote the inverse of 𝐵𝑖 for each 𝑖; with this
notation, the inverse of 𝐵−1

𝑘+1 is given by

𝐻𝑘+1 = 𝐻0 + 𝐻0𝛹𝑘 (−𝑀−1
𝑘 − 𝛹𝑇

𝑘 𝐻0𝛹𝑘)−1 𝛹𝑇
𝑘 𝐻0. (2.62)

Using the definition of 𝛹𝑘 in (2.30) gives that

𝛹𝑇
𝑘 𝐻0𝛹𝑘 = 𝛯𝑇

𝑘 𝛱𝑘 (𝑆𝑇
𝑘 𝐵0𝑆𝑘 𝑆𝑇

𝑘 𝑌𝑘
𝑌𝑇

𝑘 𝑆𝑘 𝑌𝑇
𝑘 𝐻0𝑌𝑘

) 𝛱𝑇
𝑘 𝛯𝑘,

and thus,

−𝑀−1
𝑘 − 𝛹𝑇

𝑘 𝐻0𝛹𝑘 = −𝛯𝑇
𝑘 𝛱𝑘 ( 𝛤𝑘 𝐷𝑘 + 𝑅𝑘 + 𝛤𝑘

𝐷𝑘 + 𝑅𝑇
𝑘 + 𝛤𝑘 𝐷𝑘 + 𝛤𝑘 + 𝑌𝑇

𝑘 𝐻0𝑌𝑘
) 𝛱𝑇

𝑘 𝛯𝑘.

Substituting 𝐻0𝛹𝑘 = 𝐻0(𝐵0𝑆𝑘 𝑌𝑘)𝛱𝑇
𝑘 𝛯𝑘 = (𝑆𝑘 𝐻0𝑌𝑘)𝛱𝑇

𝑘 𝛯𝑘 into (2.62) gives the compact
representation for the inverse of any member of the full Broyden class:

𝐻𝑘+1 = 𝐻0 + 𝛹𝑘𝑀𝑘𝛹𝑇
𝑘 , (2.63)
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where 𝛹𝑘 = (𝑆𝑘 𝐻0𝑌𝑘)𝛱𝑇
𝑘 𝛯𝑘 and

𝑀𝑘 ≡ (−𝛯𝑇
𝑘 𝛱𝑘 ( 𝛤𝑘 𝐷𝑘 + 𝑅𝑘 + 𝛤𝑘

𝐷𝑘 + 𝑅𝑇
𝑘 + 𝛤𝑘 𝐷𝑘 + 𝛤𝑘 + 𝑌𝑇

𝑘 𝐻0𝑌𝑘
) 𝛱𝑇

𝑘 𝛯𝑘)
−1

. (2.64)

Computing 𝑀𝑘. Using an approach similar to how 𝑀𝑘 is computed, 𝑀𝑘 can be computed as
follows:

𝑀𝑘 =

⎧{{{{{
⎨{{{{{⎩

⎛⎜
⎝

𝑀𝑘−1 − ̃𝛽𝑘 ̃𝑝𝑘 ̃𝑝𝑇
𝑘 − ̃𝛽𝑘 ̃𝑝𝑘

− ̃𝛽𝑘 ̃𝑝𝑇
𝑘 − ̃𝛽𝑘

⎞⎟
⎠

if 𝛷𝑘 = 𝛷𝑆𝑅1
𝑘

⎛⎜⎜⎜⎜⎜
⎝

𝑀𝑘−1 + ̃𝛿𝑘 ̃𝑝𝑘 ̃𝑝𝑇
𝑘 ̃𝛽𝑘 ̃𝑝𝑘 ̃𝛿𝑘 ̃𝑝𝑘

̃𝛽𝑘 ̃𝑝𝑇
𝑘 �̃�𝑘 ̃𝛽𝑘

̃𝛿𝑘 ̃𝑝𝑇
𝑘 ̃𝛽𝑘 ̃𝛿𝑘

⎞⎟⎟⎟⎟⎟
⎠

otherwise,
(2.65)

where
�̃�𝑘 = 1

𝑠𝑇
𝑘 𝑦𝑘

+ 𝛷𝑘
𝑦𝑇

𝑘 𝐻𝑘𝑦𝑘

(𝑠𝑇
𝑘 𝑦𝑘)2 , ̃𝛽𝑘 = − 𝛷𝑘

𝑦𝑇
𝑘 𝑠𝑘

, ̃𝛿𝑘 = − 1 − 𝛷𝑘
𝑦𝑇

𝑘 𝐻𝑘𝑦𝑘
, (2.66)

and ̃𝑝𝑘 = 𝑀𝑘−1𝛹𝑇
𝑘−1𝑦𝑘. The initial matrix 𝑀0 is given by the following:

𝑀0 =

⎧{{
⎨{{⎩

− ̃𝛽0 if 𝛷0 = 𝛷𝑆𝑅1
0

⎛⎜
⎝

�̃�0 ̃𝛽0
̃𝛽0 ̃𝛿0

⎞⎟
⎠

otherwise,
(2.67)

where �̃�0, ̃𝛽0, and ̃𝛿0 are defined as in (2.66) with 𝑘 = 0. A practical iterative method to solve
equations of the form (2.59) is given in Algorithm 4. At each iteration 𝑗, only the four vectors 𝑝𝑗,
𝛹𝑇

𝑗−1𝑠𝑗, ̃𝑝𝑗, and 𝛹𝑇
𝑗−1𝑦𝑗, (all of which have length less than or equal to 2𝑗), need to be computed to

form 𝑀𝑗. In addition, the two previous matrices 𝑀𝑗−1 and 𝑀𝑗−1 must be stored; both of these have
dimensions less than or equal to 2𝑗 × 2𝑗.

2.2.4 Numerical Experiments
In this section we test the accuracy of Algorithm 3 to compute the compact representation by

comparing it with the matrix obtained using the Broyden update formula (2.15). In addition, we
demonstrate that solves with 𝐵𝑘+1 in (2.59) can be done efficiently using Algorithm 4 with respect
to both accuracy and time. For these experiments, we used five (limited-memory) quasi-Newton
pairs to compute 𝐵𝑘+1. To generate quasi-Newton pairs, we simulated a line-search method where
the iterates are updated as follows:

𝑥𝑗+1 = 𝑥𝑗 − 𝛼𝑗𝐵−1
𝑗 𝑔𝑗, for 1 ≤ 𝑗 ≤ 4,

where 𝛼𝑗 is drawn from a uniform distribution between 0 and 1. To initialize the process, the
vectors 𝑥0 and 𝑥1 were drawn from a Gaussian distribution with mean 0 and standard deviation
1 so that 𝑠0 = 𝑥1 − 𝑥0. The corresponding gradients, 𝑔𝑗 = ∇𝑓 (𝑥𝑗) for 0 ≤ 𝑗 ≤ 5, were also drawn
from a Gaussian distribution in order to form 𝑦𝑗 = 𝑔𝑗+1 − 𝑔𝑗 for 0 ≤ 𝑗 ≤ 4. The matrix 𝐵0 was
initially defined as 𝐵0 = 𝛾𝐼, where 𝛾 > 0 was drawn from a Gaussian distribution with mean 0.

We considered four experiments where we vary the value of 𝜙𝑖 at each iteration 𝑖. In particular,
we chose values of 𝜙𝑖 according to the scheme given in Table 2.1. We ran each experiment ten
times with 𝑛 = 102, 103, and 104 and report results.
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Algorithm 4 : This algorithm solves 𝐵𝑘+1𝑟 = 𝑧.
Input: An initial 𝜙0, 𝐵0, and 𝐻0;
Define 𝑀0 using (2.32) and 𝑀0 = using (2.67);

for 𝑗 = 1 ∶ 𝑘 do
Compute 𝑠𝑇

𝑗 𝐵𝑗𝑠𝑗 using Algorithm 3;
𝛹𝑇

𝑗−1𝑦𝑗 ← 𝛯𝑇
𝑗−1𝛱𝑗−1𝛹𝑇

𝑗−1𝐻0𝑦𝑗;
̃𝑝𝑗 ← 𝑀𝑗−1(𝛹𝑇

𝑗−1𝑦𝑗);
𝑦𝑇

𝑗 𝐻𝑗𝑦𝑗 ← 𝑦𝑇
𝑗 𝐻0𝑦𝑗 + (𝑦𝑇

𝑗 𝛹𝑗−1) ̃𝑝𝑗;
𝛷𝑗 ← (1 − 𝜙𝑗)(𝑦𝑇

𝑗 𝑠𝑗)2/((1 − 𝜙𝑗)(𝑦𝑇
𝑗 𝑠𝑗)2 + 𝜙𝑗(𝑦𝑇

𝑗 𝐻𝑗𝑦𝑗)(𝑠𝑇
𝑗 𝐵𝑗𝑠𝑗));

�̃�𝑗 ← (1 + 𝛷𝑗(𝑦𝑇
𝑗 𝐻𝑗𝑦𝑗)/(𝑦𝑇

𝑗 𝑠𝑗))/(𝑦𝑇
𝑗 𝑠𝑗);

̃𝛽𝑗 ← −𝛷𝑗/(𝑦𝑇
𝑗 𝑠𝑗);

̃𝛿𝑗 ← −(1 − 𝛷𝑗)/(𝑦𝑇
𝑗 𝐻𝑗𝑦𝑗);

Form 𝑀𝑗 using (2.65);
end for

𝛹𝑘 ← 𝐻0𝛹𝑘𝛱𝑇
𝑘 𝛯𝑘;

𝑟 = 𝐻0𝑧 + 𝛹𝑘𝑀𝑘𝛹𝑇
𝑘 𝑧;

Experiment 𝜙0 𝜙1 𝜙2 𝜙3 𝜙4
1 𝜙0 < 0 1 0 < 𝜙2 < 1 0 𝜙4 > 1
2 𝜙0 < 0 1 𝜙𝑆𝑅1

2 0 𝜙4 > 1
3 𝜙0 < 0 1 𝜙𝑆𝑅1

2 𝜙𝑆𝑅1
3 𝜙4 > 1

4 𝜙𝑆𝑅1
0 1 𝜙𝑆𝑅1

2 0 𝜙4 > 1

Table 2.1: The values of 𝜙𝑖 for 0 ≤ 𝑖 ≤ 4 for each experiment. The choice of 𝜙1 = 1 corresponds
to the BFGS update while 𝜙3 = 0 corresponds to the DFP update. Note that Experiment 1 does
not use SR1 updates.

Accuracy of the Compact Representation

To test the accuracy of the compact representation, we form each 𝐵𝑘+1 using (2.22) together
with the proposed compact formulation given in Theorem 1. (In particular, we use Algorithm 3 to
form 𝑀𝑘.) We denote the resulting matrix by 𝐵CR

𝑘+1. In Table 2, we report the average relative error
of the compact representation in the Frobenius norm:

Relative error =
‖𝐵𝑘+1 − 𝐵CR

𝑘+1‖𝐹
‖𝐵𝑘+1‖𝐹

,

where 𝐵𝑘+1 is computed using (2.15). In addition, we report the maximum relative error for each
set of ten trials.

The small relative errors in Table 2.2 reflects the fact that the proposed compact representation
for the full Broyden class of quasi-Newton matrices is correct; moreover, the relative errors
suggest that Algorithm 3 provides a method to compute the compact representation to high
accuracy.
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Experiment 1
𝑛 Average Error Maximum Error

102 1.3067e-11 7.6229e-11
103 4.6184e-15 1.5131e-14
104 2.4791e-13 2.1677e-12

Experiment 2
𝑛 Average Error Maximum Error

102 1.1665e-11 3.8207e-11
103 4.7083e-15 1.5442e-14
104 1.5523e-13 8.0258e-13

Experiment 3
𝑛 Average Error Maximum Error

102 4.1647e-12 1.9090e-11
103 4.5646e-14 3.7051e-13
104 5.9815e-14 4.2493e-13

Experiment 4
𝑛 Average Error Maximum Error

102 1.8618e-14 1.3834e-13
103 1.0335e-15 3.1745e-15
104 7.6799e-16 4.3197e-15

Table 2.2: Average and maximum relative errors over ten different trials for each experiment with
𝑛 = 102, 103, and 104.

Accuracy of the Compact Representation of the Inverse

In these experiments, we test the accuracy of Algorithm 4 to solve linear systems of the form
𝐵𝑘+1𝑟 = 𝑧, where 𝑟, 𝑧 ∈ ℜ𝑛 and 𝐵𝑘+1 is a quasi-Newton matrix. The matrix 𝐵𝑘+1 is generated using
five quasi-Newton pairs as described in the beginning of this section. Moreover, the righthand side
𝑧 is randomly generated for each experiment. In Table 2.3, we present the average residual error
using the two-norm:

Relative error = ‖𝐵𝑘+1𝑟ICR − 𝑧‖2
‖𝑧‖2

,

where 𝑟ICR is the solution to 𝐵𝑘+1𝑟 = 𝑧 using the inverse compact representation computed by
Algorithm 4. These results suggest that the compact representation of the inverse can be used to
solve linear systems to high accuracy.

Experiment 1
𝑛 Average Error Maximum Error

102 1.6839e-10 1.3668e-09
103 1.8737e-14 9.5484e-14
104 3.3781e-12 2.6962e-11

Experiment 2
𝑛 Average Error Maximum Error

102 3.1829e-10 1.9051e-09
103 2.9169e-14 1.3481e-13
104 2.2182e-12 1.5569e-11

Experiment 3
𝑛 Average Error Maximum Error

102 1.1744e-10 4.6894e-10
103 8.9801e-14 3.5093e-13
104 6.2890e-12 5.2380e-11

Experiment 4
𝑛 Average Error Maximum Error

102 4.5225e-14 3.1923e-13
103 4.8059e-15 3.1537e-14
104 3.7784e-15 5.1305e-15

Table 2.3: Average and maximum relative errors over ten different trials for each experiment with
𝑛 = 102, 103, and 104.

In addition, during the experiments, the computational time of the proposed method was
recorded and compared to a similar solve using the MATLAB “backslash”. In particular, with
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the same quasi-Newton pairs, the backslash command was used to solve 𝐵𝑘+1𝑟 = 𝑧, where
𝐵𝑘+1 was formed using (2.15). The times required were averaged for each experiment and
for each value of 𝑛. These results, as well as the maximum time for each set of ten trials, are
given in Table 4 and do not include the time MATLAB required to form 𝐵𝑘+1. Note that the
average computational times in Table 2.4 indicate that as 𝑛 increases using Algorithm 4 becomes
significantly less computationally expensive than using the backslash command. Finally, we
performed similar experiments for larger systems of equations with 𝑛 = 105 and 106. These results
are reported in Table V. Due to the size of 𝑛, the matrix 𝐵𝑘+1 was too large to store in memory
to test the MATLAB backslash command; for this reason, only results using the inverse compact
representation are presented the table.

Experiment 1
ICR MATLAB backslash

𝑛 Avg. Time Max. Time Avg. Time Max. Time
102 4.8e-03 1.6e-02 1.7e-03 1.1e-02
103 1.3e-03 6.2e-03 1.5e-02 1.9e-02
104 2.0e-03 3.4e-03 5.3e+00 5.6e+00

Experiment 2
ICR MATLAB backslash

𝑛 Avg. Time Max. Time Avg. Time Max. Time
102 3.1e-03 1.1e-02 7.5e-04 4.3e-03
103 9.5e-04 2.4e-03 1.7e-02 3.4e-02
104 1.9e-03 2.8e-03 5.4e+00 5.8e+00

Experiment 3
ICR MATLAB backslash

𝑛 Avg. Time Max. Time Avg. Time Max. Time
102 2.5e-03 4.4e-03 5.3e-04 1.4e-03
103 7.3e-04 2.1e-03 1.6e-02 2.3e-02
104 1.8e-03 3.0e-03 5.3e+00 5.5e+00

Experiment 4
ICR MATLAB backslash

𝑛 Avg. Time Max. Time Avg. Time Max. Time
102 2.6e-03 6.8e-03 8.2e-04 2.6e-03
103 8.6e-04 2.2e-03 1.7e-02 3.3e-02
104 1.7e-03 3.0e-03 5.3e+00 5.7e+00

Table 2.4: Average and maximum computational times for solving 𝐵𝑘+1𝑟 = 𝑧 using the inverse
compact representation (ICR) and the MATLAB “backslash” command with 𝑛 = 102, 103, and
104.

Finally, in Figure 2.5, each of the ten trials that were summarized in Tables 2.4 and 2.5 are
displayed. For smaller 𝑛 (e.g., 𝑛 = 1000), we do not have confidence that the computational times
were recorded correctly by MATLAB because the times required for 𝑛 = 103 were, on average,
smaller than those required for 𝑛 = 102. We suspect this could be because the computations are
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performed so quickly. However, for larger 𝑛, the computational time appears to increase linearly
with respect to 𝑛.

Experiment 1
𝑛 Avg. Time Max. Time

105 1.9e-02 4.2e-02
106 2.6e-01 3.0e-01

Experiment 2
𝑛 Avg. Time Max. Time

105 1.5e-02 2.0e-02
106 2.5e-01 2.9e-01

Experiment 3
𝑛 Avg. Time Max. Time

105 1.8e-02 4.0e-02
106 2.0e-01 2.4e-01

Experiment 4
𝑛 Avg. Time Max. Time

105 1.6e-02 3.0e-02
106 1.9e-01 2.2e-01

Table 2.5: Average and maximum computational times for solving 𝐵𝑘+1𝑟 = 𝑧 using the inverse
compact representation (ICR) with 𝑛 = 105 and 106.

2.2.5 Conclusion
We derived the compact formulation for members of the full Broyden class of quasi-Newton

updates. The compact representation allows for different 𝜙𝑘 at each iteration as well as different
ranks of updates. With this compact formulation, we demonstrated how to solve linear systems
defined by these limited-memory quasi-Newton matrices. Numerical results suggest that the
compact representation can be computed to high accuracy and that we can solve (2.59) efficiently
and accurately using the compact representation of the inverse of 𝐵𝑘+1.

2.3 Summary of Contribution
In this chapter we proposed a novel approach for solving the sparse ℓ2-ℓ1 problem in a

trust-region setting. By using an approximation of second-derivative information known as
the L-BFGS update we improve the quality of the optimization routine and provide improved
reconstructions from noisy observations. Finally, we extended the formulation of the compact
representation typically used to compute the L-BFGS to include the Full Broyden class of
quasi-Newton updates allowing the quasi-Newton method to update at each iteration. We
demonstrate the ability to accurately and efficiently use the formulation to solve large scale linear
systems often involved in solving large scale optimization problems.
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Figure 2.5: Comparison of computational times for solving 𝐵𝑘+1𝑟 = 𝑧 using the inverse compact
representation (ICR) and the MATLAB ”backslash” command. Each experiment displays 10 tests
each for 𝑛 = 10𝑘, where 𝑘 = 2, … 6. The MATLAB “backslash” command could not be used for
𝑛 = 105 and 106 due to memory limitations.
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Chapter 3

Sparse Optimization

Signal recovery methods which seek to reconstruct high-dimensional sources from
low-dimensional observations are particularly difficult in that they are typically formulated
as nonlinear optimization problems. This is especially true in the application known as
photon-limited imaging. Under this regime, measurements at the detector contain low photon
counts and are corrupted with Poison noise. In this chapter we present three algorithms with a
focus on photon-limited applications. The first method incorporates more sophisticated bounds
in the optimization problem to increase the accuracy of the solution. The second utilizes a
generalized Shannon entropy function as a regularizer to promote sparsity. The third method uses
asynchronous parallel pattern searches to determine the intensity of the regularization term. In
the next section, we define the conditions under which this modality is established as well as the
associated optimization problem used to reconstruct their associated signals.

3.1 Sparse Signal Recovery
Sparse signal recovery is fundamental in the theory of compressed sensing, which seeks to

recover a signal from a series of low dimensional observations. The signal is obtained as the
solution of an underdetermined linear system where we rely on the a priori knowledge that the
signal of interest has a high level of sparsity. In this context, a high level of sparsity corresponds
to the fact that the signal can be represented by only a few crucial non-zero elements. It is the a
priori knowledge of sparsity which allows us to recover the signal from a lower number of samples
than the minimum requirement established by the Nyquist-Shannon sampling theorem [17, 22].
The assumption of sparsity is not limited to a signal’s canonical basis. For instance, applications
of compressive sensing with natural images leverage the sparsity of the images in the wavelet or
discrete cosine basis [5]. In magnetic resonance imaging (MRI), sparsity in the Fourier domain
has been used to decrease the number of readings required and therefore increase the speed of
image processing [50]. Beyond these applications, sparse signal recovery has been proven effective
in a variety of applications such as astronomy, radar imaging and communication [14, 16, 56]

The signal recovery problem described previously, can be mathematically formulated as the
following: If we let f∗ ∈ ℝ𝕟 be the sparse signal of interest, then we can model the observational
process as the linear equation

y = Af∗, (3.1)

where y ∈ ℝ𝑚 is a vector of the recorded measurements and A ∈ ℝ𝑚×𝑛 is a matrix, with

35
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Figure 3.1: (a) The ”woman” image. (b) The Haar wavelet coefficients of the ”woman” image in
(a). (c) The magnitude of the discrete cosine transform. Note that most of the power lies in the
upper left coefficients.

Figure 3.2: The sparse signal recovery problem where y is the low dimensional observation, A is
the projection matrix dependent on the imaging system, 𝛷 is a sparsifying basis and x is the vector
of basis coefficients.

𝑛 > 𝑚, describing the observational processes. As described previously, f∗ need not be sparse
in the canonical basis. In order to accommodate this scenario, let us consider the sparsifying
basis 𝛷 ∈ ℝ𝑛×𝑛, then (3.1) can be reformulated as y = A𝛷x, where x ∈ ℝ𝑛 contains the
sparse coefficients. The setup is shown in Figure 3.2, note that f∗ = 𝛷x, thus if f∗ is sparse in the
canonical basis then 𝛷 is the identity matrix and x = f∗. During this explanation we have assumed
that the collection of measurements is a noiseless action. In actuality, noise often effects the
quality of the observations used to reconstruct the signal. In the next chapter we will be discussing
applications of signal recovery in a photon-limited regime, as such, it is necessary to discuss the
recovery of sparse signals in the setting of a Poisson process.

3.2 The Inhomogeneous Poisson Process Model
In order to create a realistic model of the signal recovery process, we must consider the fact

that the observations used during the process are likely corrupted by noise. Factors such as faulty
equipment, transmission errors or even human error may be culpable for the presence of corrupted
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signals. Typically, this type of noise is assumed to be Gaussian in nature, which is suitable for
most applications in signal recovery. On the other hand we are interested in applications of
photon-limited imaging where we assume that the number of photons hitting the detectors or
charged-coupled devices (CCD), is relatively low. Beyond the low number of photons being
recorded at the detector, we also assume that the measurements are corrupted by Poisson noise
and model the process using a Poisson distribution [61]. Under the inhomogenous Poisson process
model, we can describe the observational process as

y ∼ Poisson(Af∗), (3.2)

where y ∈ ℤ𝑚
+ is the vector of observed photon counts, 𝑓 ∗ ∈ R𝑛

+ is the vector of true signal
intensity and 𝐴 ∈ ℝ𝑚×𝑛

+ is the system matrix.
The estimation of the true signal f∗ from the model described in (3.2) is obtained by

minimizing the negative Poisson log-likelihood function

𝐹(f) = 1
𝑇Af −

𝑚
∑
𝑖=1

𝑦𝑖 log(e𝑇
𝑖 Af), (3.3)

where 1 is an m-vector of ones and e𝑖 is the 𝑖-th column of the canonical basis.The likelihood
function (3.3) corresponds to observing y given Af. Because we are operating under the
assumption that the true signal of interest is sparse, many components of the estimation f
are assumed to be zero. When this occurs, (3.3) contains a singularity. In order to avoid this
complication we introduce the parameter 0 < 𝛽 ≪ 1 within the log function [28]. The result is
the convex function

𝐹(f) = 1
𝑇Af −

𝑚
∑
𝑖=1

𝑦𝑖 log(e𝑇
𝑖 Af + 𝛽). (3.4)

For the applications presented in this Chapter, the true signal f∗ is non-negative, furthermore
(3.4) is ill-posed as a result of the underdetermined nature of (3.2). In order to make the problem
more tractable, penalization terms are incorporated into the optimization process. The resultant
constrained optimizaion problem takes the form:

f̂ = arg min
f∈ℝ𝑛

𝐹(f) + 𝜏pen(f) (3.5)

subject to f ⪰ 0,

where 𝜏 > 0 is the weight of the penalization term and pen is a typically non-convex penalty
function promoting sparsity in the solution. Over the course of the work in this Chapter, we will
describe optimization techniques used to solve (3.5).

3.3 Photon-Limited Fluorescence Lifetime Imaging
Microscopy Signal Recovery with Known Bounds

The work described in this section is based on the paper by DeGuchy, Adhikari, Kim, and
Marcia [20]. Fluorescence microscopy is a technique that offers a sensitive, specific and versatile
approach to studying in vivo cellular and molecular dynamics in real time [46, 62]. In particular,
fluorescence lifetime imaging (FLIM) is emerging as an increasingly important improvement
in fluorescence microscopy that allows for the analysis of complex events within biological
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specimens [25, 29, 54]. The lifetime of a fluorophore provides vital information about the local
environment as a result of its sensitivity to factors such as pH levels, ion presence and oxygen
concentration. Even though the fluorescence lifetime is sensitive to the previously mentioned
factors, measurements are independent of local fluorophore concentration or absorption in the
sample [39]. In fluorescence lifetime imaging, the fluorescence spatial distribution and decay
rates within a tissue sample are recovered. The population of fluorophores within the tissue
domain is typically low. Thus, many of the recently developed methods for sparse signal recovery
can potentially be applied to FLIM applications. However, these methods typically minimize a
least-squares cost function (e.g., [7, 15]), thereby implicitly assuming the measurement intensity is
sufficiently high and the system noise can be modeled using Gaussian statistics. Here, we operate
under the assumption presented in Section 3.2 in that the number of photons hitting the CCD is
relatively low, and thus the measurements are corrpupted by Poisson noise [10]. In addition, we
also assume the maximum concentration of fluorophore is known, information that we can exploit
by incorporating bound constraints to the optimization problem to improve the reconstruction.
In this work, we propose a method for solving the FLIM inverse problem in this setting with
time-dependent measurements.

3.3.1 Fluoresence-Lifetime Model
For the fluorescence-lifetime imaging problem, we recover the time-dependent fluorescence

emitted by fluorophores from time-dependent measurements due to pulsed excitation of a strongly
scattering medium. This involves determining the location of the fluorophores as well as their
corresponding concentration and lifetime. The optical properties of the medium are assumed to
be known to sufficient precision. In this section, we review our partial differential equation model
(see [2, 9, 68] for details).

Forward Model

Let 𝛺 denote the domain of a uniform absorbing and scattering medium with boundary
denoted by 𝜕𝛺. A pulse of exciting light is injected through 𝜕𝛺 and propagates into 𝛺. Let
𝑆(r, 𝑡) denote an exterior time-dependent source of exciting light, where r ∈ 𝜕𝛺 is a prescribed
location on the boundary and 𝑡 > 0. We denote the intensity of the exciting light source by 𝐼𝑒(r, 𝑡),
where r ∈ 𝛺 is a position within the interior domain and 𝑡 ∈ [0, 𝑇] for some final time 𝑇. The
propagation and scattering of light in the domain is governed by the following initial-boundary
value problem for the diffusion equation:

1
𝑐

𝜕𝐼𝑒

𝜕𝑡 − ∇ ⋅ (𝜅𝑒∇𝐼𝑒) + 𝜇𝑒
𝑎𝐼𝑒 = 0 in 𝛺 × (0, 𝑇],

𝐼𝑒(r, 0) = 0 in 𝛺 (3.6)

𝐼𝑒 + 𝛼𝑒𝜅𝑒 𝜕𝐼𝑒

𝜕𝑛 =
⎧{
⎨{⎩

𝛾𝑒𝑆(r, 𝑡) on r ∈ r𝑠,
0 on r ∈ 𝜕𝛺\r𝑠,

where 𝜅𝑒 denotes the diffusion coefficient, 𝜇𝑒
𝑎 denotes the absorption coefficient at the exciting

wavelength, 𝜕𝐼𝑒/𝜕𝑛 denotes the outward normal derivative of 𝐼𝑒, the constants 𝛼𝑒 and 𝛾𝑒 are
defined in terms of 𝜇𝑒

𝑎 and 𝜅𝑒 as part of the diffusion approximation and r𝑠 denotes the set of
source locations on the boundary.



39

Portions of the exciting light source 𝐼𝑒(r, 𝑡) are absorbed by the fluorophores and are then
re-emitted. The transportation of the re-emitted light 𝐼 𝑓(r, 𝑡) is then modeled by

1
𝑐

𝜕𝐼 𝑓

𝜕𝑡 − ∇ ⋅ (𝜅𝑓∇𝐼 𝑓) + 𝜇𝑓
𝑎𝐼 𝑓 = 𝑄(r, 𝑡) in 𝛺 × (0, 𝑇],

𝐼 𝑓(r, 0) = 0 in 𝛺, (3.7)

𝐼 𝑓 + 𝛼𝑓𝜅𝑓 𝜕𝐼 𝑓

𝜕𝑛 = 0 on 𝜕𝛺,

where 𝜅𝑓 denotes the diffusion coefficient and 𝜇𝑓
𝑎 denotes the absorption coefficient at the exciting

wavelength. Here, the emission of fluorescent light is due to the excited interior fluorescence
source

𝑄(r, 𝑡) = 𝜒(r)ℎ(r) ∫
𝑡

0
𝑒−(𝑡−𝑡′)/𝜏(r)𝐼𝑒(r, 𝑡′)𝑑𝑡′, (3.8)

where 𝜒(r) is an indicator function for the sparse spatial distribution of the fluorophores, ℎ(r) is
the fluorophore concentration, and 𝜏(r) is the fluorescence lifetime (see [10] for details).

The measurements, 𝑢(r, 𝑡), of scattered light leaving the boundary of the domain are modeled
using

𝑢(r, 𝑡) = −𝜅𝑓 𝜕𝐼 𝑓

𝜕𝑛 = 1
𝛼𝑓 𝐼

𝑓 on 𝜕𝛺 × (0, 𝑇] (3.9)

using the boundary condition in (3.7). In our approach, we make use of time-averaged
measurements defined by

̄𝑢(r) = 1
𝛼𝑓

̄𝐼 𝑓(r) = 1
𝛼𝑓

1
𝑇 ∫

𝑇

0
𝐼 𝑓(r, 𝑡)d𝑡 on 𝜕𝛺. (3.10)

The steady-state optical fluence rate for emission light, ̄𝐼 𝑓, satisfies the steady-state diffusion
equation

−𝜅𝑓∇2 ̄𝐼 𝑓 + 𝜇𝑎 ̄𝐼 𝑓 = �̄� in 𝛺, (3.11)
̄𝐼 𝑓 + 𝛼𝑓𝜅𝑓𝜕𝑛 ̄𝐼 𝑓 = 0 on 𝜕𝛺.

Assuming that the location of the fluorophores do not vary temporally, we can estimate the support
of the fluorophores from these time-averaged data.

Inverse Problem

At 𝑀 distinct locations denoted by r𝑚 ∈ 𝜕𝛺 for 𝑚 = 1, ⋯ , 𝑀, we take CCD measurements of
the scattered light leaving the boundary of the domain. Furthermore, we take 𝑁 samples of these
measurements in time, which are collected with sampling rate 𝛥𝑡 = 𝑇/𝑁. We denote the observed
collection of data by the vector u ∈ ℝ𝑀𝑁 with u = [𝑢(r1, 𝑡1), ⋯ , 𝑢(r𝑀, 𝑡1), 𝑢(r1, 𝑡2), ⋯ , 𝑢(r𝑀, 𝑡𝑁)].
The objective of the inverse problem is to recover the sparse spatial distribution of fluorescence
lifetime 𝑄(r, 𝑡) in (3.8) from the set of noisy measurements u given by (3.9).

3.3.2 Fluorescence Source Recovery
In this section, we describe our numerical approach for recovering the parameters that define

the fluorescence source 𝑄(r, 𝑡), namely its support 𝜒(r, 𝑡), concentration ℎ(r), and lifetime 𝜏(r).
We assume that the fluorophores are concentrated only in a small area (i.e., the spatial support
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Figure 3.3: A schematic diagram of our time-dependent fluorescence lifetime imaging microscopy
setup. Here a fluorophore within the interior of the domain 𝛺 is excited by a pulse of light from a
source 𝑆(r, 𝑡). CCD measurements 𝑢(r, 𝑡) of the time-resolved fluorescence from a fluorophore
source 𝑄(r, 𝑡) are obtained along the boundary 𝜕𝛺.

𝜒(r, 𝑡) is small) and that the fluorophore locations do not vary in time (see [66]). Furthermore, we
assume that the optical properties of the medium for excitation and emission (i.e., the constants
𝜅𝑒, 𝜅𝑓, 𝜇𝑒

𝑎, and 𝜇𝑓
𝑎) are known. Finally, we assume that we are in a photon-limited regime, where

the number of photons hitting the detector is relatively low.
Rather than recovering 𝜒(r, 𝑡), ℎ(r), and 𝜏(r) simultaneously (which is computationally

prohibitive), we make use of the following 3-stage approach for recovering 𝑄(r, 𝑡).
Stage I: Recover 𝜒(r, 𝑡). In this stage, we determine the locations at which 𝑄(r, 𝑡) is non-zero,

i.e., the support of the characteristic function 𝜒(r, 𝑡). Since the fluorophore locations do not
vary in time, we exploit this a priori information by using the time-averaged observations,
which dramatically reduces the problem size.

Stage II: Determine the values of 𝑄(r, 𝑡) at specific locations r and times 𝑡. We recover
𝑄(r, 𝑡) by restricting the solution to the support 𝜒(r) from Stage I. This restriction allows us
to concentrate our reconstruction efforts to regions in the medium that directly produce the
measurements.

Stage III: Recover ℎ(r) and 𝜏(r). Having computed from Stage II the values of 𝑄(r, 𝑡) at specific
locations r and times 𝑡, we recover ℎ(r) and 𝜏(r) using (3.8) and a nonlinear fitting algorithm.

Related Methods

We note that this work is similar to the approach we had proposed previously [2]. The primary
difference is that the new approach allows us to incorporate known bounds on the signal in Stage 2
using a bounded Poisson recovery algorithm. Previous work for solving Poisson inverse problems
include statistical multiscale modeling and analysis frameworks [52], nonparametric estimators
using wavelet decompositions [8], and combination expectation-maximization algorithms with
a total variation-based regularization [58]. The approach in [27] offers a different approach
for minimizing Poisson log-likelihood functions using the alternating direction method of
multipliers. For a recent review article on inverse problems with Poisson data, see [63] and all the
references therein. Our approach is different from existing methods through our use of (i) a 𝑝-norm
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(a) True Support (b) Reconstructed support

Figure 3.4: 2D signal support. (a) True fluorophore locations r1 and r2. (b) Reconstructed support
provided by thresholding and computing the mode of the reconstructions for the five excitation
sources.

regularization to promote sparsity in the reconstruction, (ii) a multi-stage approach to handle the
high-dimensional time-dependent measurements, and (iii) constraints to exploit known bounds on
the signals.

3.3.3 Numerical Approach
Finite Difference Discretization

In our setting, we solve the initial-boundary value problems (3.6) and (3.7) at equally-spaced
nodes using the Crank-Nicolson method [48]. We note that the size of the spatial and temporal
discretization depends on available computational resources since the total size of the problem is
𝑁𝑥𝑁𝑦𝑁, where 𝑁𝑥 and 𝑁𝑦 are the number of nodes in each spatial dimension and 𝑁 is the number
of time-level samples, which can easily become prohibitively very large. As defined in (3.9), in the
discrete setting, the measurements are obtained by restricting the numerical solution of emission
light, say I𝑓, to the boundary:

u = 1
𝛼𝑓 RI𝑓 = 1

𝛼𝑓 RL−1 ̃Q, (3.12)

where R is a boundary restriction operator, L is the finite difference operator and Q̃ is the averaged
value of 𝑄 between consecutive time steps. We denote the matrix product of operators 1

𝛼𝑓 RL−1

by the system matrix A for the inverse algorithm. Note that the system matrix A is not computed
explicitly; rather we implicitly compute the action A(x) and A𝑇(x) on-the-fly using the forward
and backward substitution techniques. The actions of the steady-state boundary value problem in
(3.11) and (3.12) are similarly defined.
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Photon-Limited Recovery Method

Because we are assuming that we are in a photon-limited regime, we model the arrival of
photons at the detector using Poisson statistics as outlined by (3.2). As in (3.5), we formulate the
Poisson reconstruction problem as a constrained optimization formulation. This is accomplished
using the negative log likelihood function in (3.3) given by

𝐹(f) = 1
𝑇Af −

𝑚
∑
𝑖=1

𝑦𝑖 log(e𝑇
𝑖 Af).

The associated constrained Poisson reconstruction problem is given by the following

f̂ = arg min
f∈ℝ𝑛

𝛷(f) ≡ 𝐹(f) + 𝛽 ‖f‖𝑝
𝑝

subject to bL ⪯ f ⪯ bU. (3.13)

where ‖f‖𝑝
𝑝 (0 ≤ 𝑝 < 1) is a penalty function that promotes sparsity in our solution, 𝛽 > 0 is

a scalar regularization parameter, and bL and bU are vectors of known lower and upper bounds,
respectively, on the true signal. Typically, bL is a vector of zeros since it ensures that the solution,
which corresponds to the fluorescence sources, is nonnegative. Our optimization problem
formulation is different from the more commonly used least-squares minimization problem
[10] in three ways: (1) we use a negative log-likelihood function, instead of the widely used
least-squares data-fidelity term, to model the noise statistics more accurately; (2) instead of using
sparsity-promoting ℓ1-norm, we use a non-convex 𝑝-norm, where 0 ≤ 𝑝 < 1, to bridge the convex
ℓ1-norm and the ℓ0 counting semi-norm; and (3) we enforce known bound constraints on our
solution.
In Stage I, we are more interested in estimating the support of 𝜒(r, 𝑡). Enforcing the bounds in
(3.13) at each iteration slows down the algorithm computationally, so we relax the bounds to
simple non-negativity constraints.
The function 𝛷(𝑓 ) is nonconvex due to the nonconvexity of the 𝑝-norm penalty term. Although the
SPIRAL-ℓ𝑝 algorithm is not guaranteed to converge to a global solution, it can be shown that any
accumulation point of the algorithm will be a critical point [1].
Having obtained the support 𝜒(r) from Stage I, we define bL and bU. Specifically, in the known
locations 𝑖 where the signal f is zero, we enforce (bL)𝑖 = (bU)𝑖 = 0. In Stage II, we solve (3.13)
using B-SPIRAL-ℓ1, a method we previously developed [3]. We use a negligible regularization
parameter 𝛽 and the conventional ℓ1-norm, i.e., 𝑝 = 1, since the sparsity of the solution is already
known. In this stage, we solve a sequence of quadratic subproblems of the form

f𝑘+1 = arg min
f∈ℝ𝑛

1
2 ∥ f − s𝑘 ∥2

2

subject to bL ⪯ f ⪯ bU,

where s𝑘 = f𝑘 − 1
𝛼𝑘

∇𝐹(f𝑘). Here, 𝛼𝑘 refers to the step size in the direction of the gradient which
is chosen by a modified Barzilai-Borwein (BB) method [13]. These subproblems are significantly
easier to solve than (3.13).

3.3.4 Numerical Experiments
In this section, we implement the previously discussed three-stage reconstruction method in

order to solve the 2D fluorescence lifetime imaging problem. The simulations are performed in
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(a)

(b)

Figure 3.5: Experiment measurements: (a) Time-dependent measurements u (from Eq. (3.9))
corrupted by 7.5% Poisson noise. (b) Time-averaged measurements u (from Eq. (3.10)).
Measurements are taken from 72 boundary detectors per exterior source.

MATLAB using a unit square domain 𝛺 = (0, 1) × (0, 1) in conjunction with the following
non-dimensionalized optical properties: the absorption coefficient 𝜇𝑎 = 0.05 and the diffusion
coefficient 𝜅 = 0.0476 [7]. The experiments required 𝑁 = 200 time-level samples with the
sampling rate △𝑡 = 0.05 recorded by 𝑀 = 72 boundary detectors using 5 exterior near-infrared
source points. The fluorescence-lifetime and fluorophore concentration are set to 5.7 and 2000,
respectively [64]. MATLAB’s poissrnd function is used to corrupt the simulated boundary
measurements with Poisson noise. The noise level(%) is computed by 100 ∗ ‖Af∗ − y‖2/‖y‖2. The
SPIRAL-ℓ𝑝 algorithm used in Stages I and II are initialized using A𝑇y. The termination criteria for
the algorithm is triggered if the relative objective values do not produce a significant change, i.e.,
|𝛷(f𝑘+1) − 𝛷(f𝑘)|/|𝛷(f𝑘)| < 10−8. The regularization parameters (𝛽 and 𝑝) are manually optimized
to get the minimum RMSE (RMSE(%) = 100 ⋅ ‖ ̂f − f∗‖2/‖f∗‖2, where ̂f is an estimate of f∗).

This work considers an experiment which consists of a two fluorophore point source
fluorescence-lifetime reconstruction problem (see Fig. 3.4a) with 5 exterior sources. The time
dependent observations u are corrupted by Poisson Noise (see Fig. 3.5a). In Step 1 of our
approach, we use the time averaged measurements u to recover an estimate of the fluorophore
support for each of the 5 exterior sources. Exploiting the fact that the location of the fluorophores
is the same for each of the sources, the final support reconstruction is obtained by thresholding
and computing the mode of the SPIRAL-ℓ𝑝 reconstruction (see Fig. 3.4). Using the recovered
support estimation from Step 1, we reconstruct Q̃ in (3.12) using B-SPIRAL-ℓ1, where the upper
bound on the fluorescence is bU = 1.6 × 104, which we assume is known for each fluorophore (see
Fig. 3.6). The reconstruction requires negligible regularization as the support has been identified
and the sparsity of the support is reflected in the lower and upper bounds bL and bU, respectively.
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Figure 3.6: (Top) Approximations (in log scale) of the fluorescence lifetime from each of the five
excitation sources. (Bottom) Time-dependent fluorescence reconstruction Q̃ for each of the five
excitation sources.

Finally, in Step 3 we use the integrated MATLAB nonlinear least squares function lsqnonlin
to compute the estimate for the fluorophore concentration ℎ̂ at the two source locations as well as
the fluorescence-lifetime �̂�. The estimates are computed using the initial concentration value of
ℎ̂0=1.0 for both locations and �̂� = 1.0 for the initial fluorescence lifetime value. The results are
presented in Table 1.

Ground Truth Estimate
ℎ(𝑟1) 2.00 × 103 2.08 × 103

ℎ(𝑟2) 2.00 × 103 1.95 × 103

𝜏 5.70 5.63

Table 3.1: The comparison between the true and computed concentrations and fluorescence
lifetimes. Fluorophore concentrations are denoted by ℎ at locations 𝑟1 and 𝑟2. The fluorescence
lifetimes are given by 𝜏.

3.3.5 Conclusion
In this work, we used a three-stage method to solve the fluorescence lifetime imaging problem

from Poisson noise corrupted boundary measurements. This imaging problem required us to
model signal measurements through the solutions of a coupled initial-boundary value problem for
light scattering and absorption inside our simulated tissue sample. Furthermore, as an alternative
to the typical Gaussian model, we explicitly model Poisson noise in the inverse problem and use
a non-convex sparse recovery method (SPIRAL-ℓ𝑝) to determine the support of the fluorophores
and promote sparsity in the signal recovery. To improve on the accuracy of our reconstruction,
we incorporate known bounds on the signal as constraints in the optimization formulation of
the problem. A numerical experiment for a small scale problem demonstrates that the proposed
method accurately solves the FLIM problem.
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3.4 Non-Convex Shannon Entropy for Photon-Limited
Imaging

The work described in this section is based on the paper by Adhikari, Baikejiang, DeGuchy,
and Marcia [6]. We again address sparse signal reconstruction in a photon-limited regime.
As stated in Section 3.1, if the signal f∗ is known to only have a few non-zero components, a
sparsity-promoting penalty term, e.g., ℓ1-norm [27, 33] (see Fig. 3.7(a)) or ℓ𝑝-norm [4] (see
Fig. 3.7(b)) can be used to regularize the Poisson log-likelihood to recover f∗. In this work, we
propose to regularize the Poisson log-likelihood by the generalized nonconvex Shannon entropy
function:

𝐻𝑝(f) =
𝑛

∑
𝑖=1

𝜓𝑖(f), where 𝜓𝑖(f) =
⎧{{
⎨{{⎩

− |𝑓𝑖|𝑝

‖f‖𝑝
𝑝

log ( |𝑓𝑖|𝑝

‖f‖𝑝
𝑝

) if 𝑓𝑖 ≠ 0

0 otherwise
, (3.14)

where 𝑝 > 0 (see Fig. 3.7(c)). Recently, this function 𝐻𝑝(f) in (3.14) was proposed by Huang et
al. [38] as a sparsity-promoting regularizer in the Gaussian noise context, where data fidelity is
imposed using a least-squares objective function. The Shannon entropy function has been used
in various applications as well. For instance, a Bayesian image reconstruction method based on a
Shannon entropy form [59] has been studied by Nunez et al. [53] for the Hubble space telescope
data. Skilling et al. [60] maximized the Shannon entropy

𝑆(f) = −
𝑛

∑
𝑗=1

𝑝𝑗 log(𝑝𝑗), where 𝑝𝑗 =
𝑓𝑗

∑𝑛
𝑖=1 𝑓𝑖

,

for image recovery in astronomy. Moreover, Donoho et al. [23] recovered nearly-black objects
by minimizing the Shannon entopy regularized least-squares function. Our approach is novel in
regularizing the Poisson log-likelihood using the sparsity promoting generalized Shannon entropy
function (3.14) within a photon-limited context.

(a) (b) (c)

Figure 3.7: Penalties in 2D space for promoting sparsity. (a) Convex ℓ1 norm, (b) 𝑝 norm, where
0 < 𝑝 < 1, and (c) the generalized nonconvex Shannon entropy function 𝐻𝑝(f).
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3.4.1 Shannon Poisson Intensity Reconstruction
The generalized Shannon sparsity-promoting Poisson intensity reconstruction problem has the

following constrained minimization form

̂f = arg min
f∈ℝ𝑛

𝛷(f) ≡ 𝐹(f) + 𝜏𝐻𝑝(f) (3.15)

subject to f ⪰ 0,

where
𝐹(f) = 1

⊤Af −
𝑚

∑
𝑖=1

𝑦𝑖 log(𝑒⊤
𝑖 Af + 𝛽) (3.16)

is the negative Poisson log-likelihood function, where 1 is an 𝑚-vector of ones, 𝑒𝑖 is the 𝑖th
canonical basis unit vector, and 𝛽 > 0 (where typically 𝛽 ≪ 1). In this work, we follow the Sparse
Poisson Intensity Reconstruction ALgorithm (SPIRAL) framework [33] and the regularization
technique from the Entropy Minimization approach by Huang et al. [38]. Specifically, we define a
sequence of quadratic subproblems of the form

f𝑘+1 = arg min
f∈ℝ𝑛

𝛷𝑘(f) ≡ 𝐹𝑘(f) + 𝜏𝐻𝑘
𝑝(f) (3.17)

subject to f ⪰ 0,

that have closed-form solutions so that the sequence of iterates {f𝑘} are easily obtained. We define
𝛷𝑘(f) as follows.

The first term, 𝐹𝑘(f), is obtained using the second-order Taylor series approximation 𝐹𝑘(f) to
𝐹(f) around the current iterate f𝑘:

𝐹(f) ≈ 𝐹(f𝑘) + (f − f𝑘)⊤∇𝐹(f𝑘) + 1
2(f − f𝑘)⊤∇2𝐹(f𝑘)(f − f𝑘). (3.18)

A further simplification can be made by approximating the Hessian matrix ∇2𝐹(f𝑘) with a scalar
multiple of the identity, 𝛼𝑘I, where 𝛼𝑘 is chosen by the modified Barzilai-Borwein method [12] as

𝛼𝑘 =
∥√y ⋅ (A𝛿𝑘)/(Af𝑘 + 𝛽 1)∥

2

2
∥ 𝛿𝑘 ∥2

2
,

where 𝛿𝑘 = f𝑘 − f𝑘−1 and the operators √⋅, ⋅, and / are understood to be component-wise operators.
This Hessian approximation yields

𝐹𝑘(f) = 𝐹(f𝑘) + (f − f𝑘)⊤∇𝐹(f𝑘) + 𝛼𝑘
2 ∥ f − f𝑘 ∥2

2 . (3.19)

Note that

𝐹𝑘(f) = 𝐹(f𝑘) + 𝛼2
2 ∥f − (f𝑘 − 1

𝛼𝑘
∇𝐹(f𝑘))∥

2

2
− 2

𝛼𝑘
‖∇𝐹(f𝑘)‖2

2 = 𝛼𝑘
2 ∥f𝑘 − s𝑘∥2

2 + 𝑐𝑘,

where s𝑘 = f𝑘 − 1
𝛼𝑘

∇𝐹(f𝑘) and 𝑐𝑘 = 𝐹(f𝑘) − 2
𝛼𝑘

‖∇𝐹(f𝑘)‖2
2 is a constant.

The second term, 𝐻𝑘
𝑝(f), is obtained by linearizing 𝐻𝑝(f) at the current iterate f𝑘, i.e., using its

first-order Taylor series approximation:

𝐻𝑘
𝑝(f) ≡ 𝐻𝑝(f𝑘) + ∇𝐻𝑝(f𝑘)⊤(f − f𝑘)
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where the gradient of 𝐻𝑘
𝑝(f) is given by

∇𝐻𝑝(f) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜕𝐻𝑝(f)
𝜕|𝑓1|

𝜕𝐻𝑝(f)
𝜕|𝑓2|

⋮
𝜕𝐻𝑝(f)

𝜕|𝑓𝑛|

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where
𝜕𝐻𝑝(f)

𝜕|𝑓𝑖|
= −𝑝|𝑓𝑖|𝑝−1

‖f‖𝑝
𝑝

log |𝑓𝑖|𝑝 + 𝑝|𝑓𝑖|𝑝−1

‖f‖2𝑝
𝑝

𝑛
∑
ℓ=1

|𝑓ℓ|𝑝 log |𝑓ℓ|𝑝, for 𝑖 = 1 … 𝑛.

Manipulating these approximations and ignoring constant terms yield a sequence of subproblems
of the form

f𝑘+1 = arg min
f⪰0

𝛼𝑘
2

𝑛
∑
𝑖=1

(𝑓𝑖 − 𝑠𝑘
𝑖 )2 +

𝑛
∑
𝑖=1

𝜏(∇𝐻𝑝(f𝑘))𝑖𝑓𝑖, (3.20)

where 𝑠𝑘
𝑖 is the 𝑖th element of the vector s𝑘. Note that we can uncouple (3.20) into scalar

minimization problems that have quadratic objective functions with non-negativity constraint.
Thus, we can compute the minimizer f𝑘+1 analytically. In particular, the minimizer f𝑘+1 can be
computed by solving each scalar function of the form

𝑓 ∗ = arg min
𝑓 ≥0

1
2(𝑓 − 𝑠)2 + 𝛾 𝑓 , (3.21)

where 𝑓 and 𝑠 denote 𝑖-th element of the vectors f and s𝑘 respectively and 𝛾 = 𝜏
𝛼𝑘

(∇𝐻𝑝(f𝑘))𝑖. Then
the minimum of (3.21) is given by

𝑓 ∗ = [𝑠 − 𝛾]+,

where a thresholding operator [ ⋅ ]+ = max{0, ⋅} is employed to get a nonnegative solution.
We call this proposed approach SPIRAL-Shannon method. We note that unlike the SPIRAL-ℓ𝑝
subproblem solution, which is obtained iteratively, the proposed SPIRAL-Shannon approach has a
closed-form subproblem solution.

3.4.2 Numerical Experiments
In this study, we investigate the effectiveness and efficiency of the proposed method in two

different experiments.

Experiment I

We compare our proposed method (SPIRAL-Shannon) to the existing SPIRAL-ℓ1 [33] and
SPIRAL-ℓ𝑝 [4] methods on a one-dimensional signal. Here, our goal is to recover the true signal
f of length 1.0 × 105 consisting of 1, 500 nonzero entries of intensity 1.5 × 104, i.e., f has 1.5%
sparsity (see Fig. 3.8(a)). The locations of the nonzero entries were randomly generated. The
observation y is of length 4 × 104 (see Fig. 3.8(b)) and is corrupted with 16% Poisson noise (see
Fig. 3.8(c)). The system matrix A is a 40, 000×100, 000 matrix obtained from the SPIRAL toolbox
[32]. All algorithms are initialized with A⊤(y) and terminate if the relative change in the iterates
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(a)

(b)

(c)

Figure 3.8: (a) The true signal f. (b) The true detector intensity Af. (c) One realization of the
observed photon count y.

Figure 3.9: SPIRAL-Shannon reconstruction for 𝑝 = 0.2.
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(a) (b)

Figure 3.10: (a) Number of nonzeros in the reconstructions of ℓ𝑝-norm method and the proposed
SPIRAL-Shannon over the 𝑝-values.(b) Computation time of the ℓ𝑝-norm method and
SPIRAL-Shannon over the 𝑝-values.

falls below a tolerance of 1.0 × 10−8. We ran this simulation 10 times with different Poisson
noise realizations and investigated the performance of the existing SPIRAL-ℓ𝑝 method with our
proposed SPIRAL-Shannon approach.

Analysis

The SPIRAL-Shannon reconstruction is shown in Fig. 3.9. The number of nonzeros in the
reconstruction of SPIRAL-Shannon (see Fig. 6.19(a)) decreases drastically after 𝑝 < 1 and recover
the exact sparsity (i.e., 1, 500) at 𝑝 = 0.2. Even though the SPIRAL-ℓ𝑝 converges monotonically
to the exact sparsity at 𝑝 = 0.3, it requires more computational effort than the SPIRAL-Shannon
method (see Fig. 6.19(b)). On average, SPIRAL-Shannon and SPIRAL-ℓ𝑝 methods recover the
true signal with root mean square error 0.059, where the root mean square error (RMSE) is given
by RMSE= ‖ ̂f − f‖2/‖f‖2, where ̂f is an estimate of the true signal f.

Experiment II

The next application of the SPIRAL-Shannon algorithm is performed within the regime
of Positron Emission Tomography (PET) image reconstruction. PET is an in vivo imaging
tool that allows the user to record spacial and dynamical biological processes [11]. Images
are reconstructed by recording rapid changes in radio labelled tracers. The quality of these
observations is limited by the resolution of the detector as well as the low photon count density
that is inherent to the PET projection data [11, 57, 67]. The result is an ill-posed inverse problem
where in the arrival of photons at the detectors are more appropriately modeled by Poisson
statistics. The quality of PET images have been greatly improved by using penalized maximum
likelihood functions [57, 67].

In this experiment, PET scans were simulated for a General Electric Discovery Seek and
Treat (GE DST) whole-body PET scanner using a Zubal head phantom with 111 × 111 pixels
in the axial plane and a 1mm isotropic pixel size [72]. The 2D sinogram contains 249 radial
bins and 210 angular projections. The PET phantom image was forward projected using the
system matrix provided by the Michigan Image Reconstruction Toolbox (MIRT) to generate
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Number of iterations CPU Time (sec.)
EM Algorithm 84 1.03

SPIRAL-ℓ𝑝 386 6.83
SPIRAL-Shannon 565 10.42

Table 3.2: A comparison of the number of iterations and the total CPU time required to converge
to the results in Fig. 3.11.

the noise-free projection data [26]. A uniform sinogram with a value equal to 20% of the
mean of the noise-free sinogram was added to simulate background events (i.e., randoms and
scatters). Along with brain tissue matter the Zubal phantom includes a 15mm diameter tumor (Fig.
3.11a). Finally, a noisy realization was generated by introducing Poisson noise to the sinogram
with the expected total number of events set to 200 thousand. We show the effectiveness of
SPIRAL-Shannon by comparing it to the previously mentioned SPIRAL-ℓ𝑝 and the conventional
Expectation-Maximization (EM) algorithm, which is an iterative method that is suited to emission
and transmission image reconstruction under the assumption of a Poisson statistic [47]. Our metric
for comparison is the Mean Squared Error (MSE) = ‖ ̂f − f‖2

2/𝑛, where ̂f is an estimate of f and
𝑛 = 12, 321 is the number of elements in f.

Analysis

In order to obtain reconstructions for the SPIRAL-ℓ𝑝 and SPIRAL-Shannon method it is
necessary to tune 𝜏 and 𝑝 to obtain the optimum MSE. For the SPIRAL-ℓ𝑝 method 𝜏 = 1 × 10−6

and 𝑝 = 0.84 produced the results in Fig. 3.11c. The SPIRAL-Shannon method required values
of 𝜏 = 0.001 and 𝑝 = 1.99 to produce the results in Fig. 3.11d. Comparing the previously
mentioned algorithms with the commonly used EM algorithm (Fig. 3.11b), the SPIRAL-ℓ𝑝 and
the SPIRAL-Shannon algorithms were more effective at reconstructing the truth. The images
also show that SPIRAL-Shannon is comparable to the SPIRAL-ℓ𝑝 method. Table 3.2 shows a
comparison of the efficiency of the algorithms. Although the EM Algorithm converges at a faster
rate when compared to the other two algorithms, it appears to be less accurate than the SPIRAL
algorithms.

3.4.3 Conclusion
In this work, we proposed a novel Poisson intensity reconstruction method by introducing a

sparsity promoting Shannon entropy penalizer to the photon-limited imaging problem. Unlike
previous nonconvex methods, the proposed method has a closed-form expression for the
subproblem solution. The proposed SPIRAL-Shannon algorithm demonstrated its accuracy in
solving a 1D signal and a 2D PET image reconstruction problem. Its performance is comparable to
recent methods.
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(d) SPIRAL-Shannon Reconstruction

Figure 3.11: Reconstructions of the simulated PET scan data. The Truth is taken as the Zubal head
phantom (Fig. 3.11a). The reconstructions for each respective algorithm are shown in Fig. 3.11b -
Fig. 3.11d along with the Mean Squared Error (MSE).
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3.5 Parameter Tuning Using Asynchronous Parallel
Pattern Search in Sparse Signal Reconstruction

As we have seen in sections 3.3 and 3.4, parameter tuning in signal recovery problems involves
the judicious selection of parameters that influence not only the problem model, but the solution
as well. For example, in compressed sensing and in general sparse signal recovery problems,
regularization parameters balance least-squares data fidelity terms with sparsity-promoting penalty
terms. More recently, there has been evidence that non-convex ℓ𝑝 quasi-norm minimization, where
0 < 𝑝 < 1, leads to an improvement in reconstruction over existing methods that use convex
regularization. In this work, we propose a computationally efficient method for parameter tuning
in a parallel but asynchronous environment using derivative-free optimization. To demonstrate
its effectiveness, we apply the proposed approach to existing methods for photon-limited imaging.
This work is based on the paper by DeGuchy and Marcia [19].

Related Methods

The problem of estimating multiple parameters arises in many other fields. For example,
kernel parameters of a support vector machine often have to be estimated [18, 34, 69].
Hyper-parameter tuning arises in stochastic gradient descent (SGD) methods for machine learning
[24, 41, 71]. Automatic parameter selection methods have been previously proposed [43, 49, 70],
and pattern search methods are well-known in literature [21, 35, 45, 51, 65]. This work explores
asynchronous parallel derivative-free approaches for parameter tuning.

3.5.1 Poisson Problem Formulation
In this section we will motivate the need for parameter tuning within the context of

photon-limited imaging. Specifically, we will review the formulation of the Poisson reconstruction
problem summarized in Section 3.2 as the ℓ𝑝-norm penalized Poisson log-likelihood function.
This will provide the bases for the SPIRAL-ℓ𝑝 algorithm [4].

We begin with the inhomogeneous Poisson process

y ∼ Poisson(Af∗),

where y ∈ ℤ𝑚
+ , f∗ ∈ ℝ𝑛

+ is the true signal and A𝑚×𝑛
+ is the system matrix projecting the true signal

to the detector space [61]. Our interest is in the recovery of f∗ and since the Poisson parameter
is unknown, we use the maximum likelihood principle to maximize the probability of observing
the vector y. Specifically, if f∗ is known to contain a few non-zero entries, we can use a sparsity
promoting penalty term to regularize the Poisson likelihood. The introduction of a penalty term
such as the ℓ1-norm [33] or the ℓ𝑝-norm [4] requires the tuning of parameters prior to optimization
in order to control the severity of the sparsity. The generalized ℓ𝑝-norm sparsity-promoting
Poisson reconstruction problem can be written as the following constrained minimization problem:

f̂ = arg min
f∈ℝ𝑛

𝛷(f) ≡ 𝐹(f) + 𝜏‖f‖𝑝
𝑝 (3.22)

subject to f ⪰ 0,

where
𝐹(f) = 1

⊤Af −
𝑚

∑
𝑖=1

𝑦𝑖 log(𝑒⊤
𝑖 Af + 𝛽) (3.23)
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is the negative Poisson log-likelihood function, 1 is the 𝑚-vector of ones, e𝑖 is the i-th column of
the 𝑚 × 𝑚 identity matrix and 𝛽 > 0 (typically 𝛽 ≪ 1). We take particular note of the penalty term
in (3.22). Here the parameter 𝜏 > 0 serves to control the weight of the penalty and 0 < 𝑝 < 1 acts
as a bridge from the ℓ0 counting norm to the convex ℓ1-norm. The solution to (3.22) is computed
from a sequence of quadratic models using a second-order Taylor approximation to 𝐹(f) at each
iteration [4]. However, the authors assume that 𝑝 and 𝜏 are known a priori.

3.5.2 Cross-Validation
In order to determine the pair of parameters 𝑝 and 𝜏 which return the optimal ̂f that well

approximates f∗, it is necessary to define the criteria by which the optimal pair is chosen. This is
difficult in the absence of information about the true signal f∗. Typically the observation vector
y ∈ ℝ𝑚 and the system matrix A ∈ ℝ𝑚×𝑛 are known elements of the problem. Our approach
partitions y and A in the following manner:

y
𝑚×1

= [ytrain
ytest

]}𝑟

}𝑚−𝑟
and A𝑚×𝑛 = [Atrain

Atest
]}𝑟

}𝑚−𝑟

where ytrain ∈ ℝ𝑟, ytest ∈ ℝ𝑚−𝑟, Atrain ∈ ℝ𝑟×𝑛 and Atest ∈ ℝ(𝑚−𝑟)×𝑛, with 𝑟 < 𝑚. For a candidate
pair of parameters (𝑝, 𝜏), we use ytrain and Atrain to compute ̂ftest ∈ ℝ𝑛 using the SPIRAL-ℓ𝑝
algorithm. The signal reconstruction is then used to compute ŷtest = Atest ̂ftest. Finally, we compute

RMSEtest =
‖ ̂ytest − ytest‖2

‖ytest‖2
.

The choice of RMSEtest as a metric for choosing the parameters 𝑝 and 𝜏 is motivated by the
fact that it behaves similarly to the RMSE( ̂f) describing the difference between the true signal
f∗ and the reconstruction ̂f (see Fig. 3.12). We formulate the parameter search as the following
constrained optimization problem:

minimize
𝑝,𝜏∈ℝ

RMSEtest(𝑝, 𝜏)

subject to 0 < 𝑝 < 1, (3.24)
𝑏𝐿 ≤ 𝜏 ≤ 𝑏𝑈,

where RMSEtest(𝑝, 𝜏) is computed as previously stated for a given parameter pair and 0 < 𝑏𝐿 < 𝑏𝑈
are reasonable lower(𝑏𝐿) and upper bounds(𝑏𝑈) for the regularization parameter 𝜏. This approach
is based on cross-validation techniques used in statistical inference and machine learning to
test how well a predictive model performs [42]. Typically the data set used in these regimes is
randomly divided into a test set and a validation set. In the Poisson reconstruction model we must
maintain the structure of the data y limiting the random nature of traditional cross-validation.
These techniques also involve input data used to train the model and output data used to test the
model. Our problem uses the observation vector y as both the input data and the output data.

3.5.3 Asynchronous Parallel Pattern Search
Solving (3.24) using fast gradient-based optimization techniques is not practical because how

to compute (or even estimate) the gradient of RMSEtest(𝑝, 𝜏) is not clear. Instead, we propose
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(a) (b)

Figure 3.12: A comparison of the behavior of (a) the RMSE for ŷtest (RMSEtest) and (b) the RMSE
for ̂f (RMSE( ̂f)) for various combinations of the parameters 𝑝 and 𝜏. Note the near-consistent
agreement between RMSEtest and RMSE( ̂f).

using a derivative-free approach to minimizing the problem. Instead of an exhaustive grid-search
approach or even standard derivative-free methods, we take advantage of the availability of
multiple processors that asynchornously searches for the optimal parameters. Initially we create
a coarse grid of possible values for 𝑝 and 𝜏 [37]. As an alternative to computing RMSEtest(𝑝, 𝜏)
for every possible combination on the grid (which can be computationally exhaustive) we
randomly sample a percentage of combinations from the original grid (see Fig. 3.13) and compute
RMSEtest(𝑝, 𝜏) for the resultant candidates [40]. We compare the RMSEtest values and choose the
pairs (𝑝,𝜏) with the lowest associated values. The number of pairs chosen is based on the order of
magnitude of the RMSEtest with a minimum of 5 pairs and a maximum of 10. These candidates
will be further refined as they form the initialization points for the HOPSPACK framework, which
we explain next.

HOPSPACK (Hybrid Optimization Parallel Search PACKage) [55] is an open source frame
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Figure 3.13: Grid of potential parameter pairs (𝑝,𝜏). (a) The full grid of 190 potential parameter
values where 0 < 𝑝 < 1 and 10−8 ≤ 𝜏 ≤ 10. (b) The reduction of candidates by randomly choosing
50% of the initial pairs.
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Figure 3.14: An illustration of an asynchronous parallel search implementation of the Generating
Set Search method. (a) An initial (parent) point 𝑎 and points ({𝑏, 𝑐, 𝑑, 𝑒}) within a trial step along
the standard basis directions are generated. (b). Suppose 𝑏 and 𝑒 required less time to evaluate
than 𝑐 and 𝑑 and both 𝑏 and 𝑒 did not improve the objective function value at 𝑎, then the trial step
is decreased and new trial points 𝑓 and 𝑔 are generated while 𝑐 and 𝑑 continue to be evaluated. (c)
From the contour plots, the objective value at 𝑔 is lower than at 𝑎; therefore 𝑔 becomes the new
parent and new trial points are generated based on the current trial step.

work that enables users to implement derivative-free algorithms in parallel [30, 31, 36, 44]. This
work takes advantage of its asynchronous pattern search implementation of GSS (Generating
Set Search) [45]. The GSS algorithm begins with an initial point and step size and generates
trial points along the available axes in the negative and positive direction. The trial points are
evaluated with two possible outcomes. If a trial point improves upon the value returned by the
parent (current best point), then it becomes the parent and the process is reimplemented. If a
trial point does worse, then the step size is decreased and a new trial point is determined. The
algorithm terminates when the step size in all directions has reached a user defined step tolerance.
(See Fig. 3.14 for an illustration.)

Implementing GSS with the HOPSPACK framework provides us with two advantages. The
first is that the implementation is asynchronous, meaning that for a given iteration it does not
wait for all of the trial point evaluations to be completed. HOPSPACK allows the algorithm
to continue testing trial points with a partial set of results from the previous iteration. This
characteristic makes the implementation ideal for parallelism and beneficial in the case where
function evaluations in certain regions take longer. The latter is of significant interest when
computing RMSEtest as the SPIRAL-ℓ𝑝 algorithm computational time may vary based on the
choice of 𝑝 and 𝜏. The implementation will then continue to search for better trial points in
the faster region while the slower region computes its value. The second advantage is that the
asynchronous implementation of GSS inherits the properties of convergence of the synchronous
implementation [45].

Using the previously computed candidates from the randomized grid search as initial points in
the HOPSPACK implementation of GSS, we further refine our choice of parameters until we have
the optimal pair (𝑝, 𝜏). The pair is then used along with y and A in the SPIRAL-ℓ𝑝 algorithm to
compute the signal reconstruction ̂f.
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3.5.4 Numerical Experiments
In this section we implement the previously discussed method for finding the optimal

parameter pair (𝑝, 𝜏). We perform 10 similar experiments where we generated measurements from
10 different signals and 10 different noise realizations for each signal. In each experiment, the true
signal f∗ has a length of 100,000 with 1,500 nonzero entries and a mean intensity of 15,000. The
observation vector y has a length of 40,000 with a mean intensity much lower than that of f∗ (see
Fig. 3.15 for an example of one Poisson realization of one particular signal).

The goal of each experiment is to construct the best approximation of the true signal f∗ from
the observation vector y. Specifically we seek to capture the support (number of non zeros and
their location) of f∗ without any prior information on f∗. We initialize the method by creating the
vector ytrain using 90% of the length of y. This results in the vector ytrain having a length of 36,000
and ytest having a length of 4,000. The initial coarse grid was created using the bounds 0 < 𝑝 < 1
and 1.0 × 10−8 < 𝜏 < 1.0 × 103. The grid points of 𝑝 values were uniformly spaced in increments
of .05 while the 𝜏 values were logarithmically spaced. The result was a grid of 285 possible
combinations. Fifty percent of the combinations were then randomly chosen. All computations
were performed on the MERCED Cluster which consists of 84 compute nodes with a total of 1876
cores at 2301 MHz with a total capacity of approximately 60 TFLOPS. The RMSEtest values
were computed using the MATLAB implementation of the SPIRAL-ℓ𝑝 algorithm. The best
candidates from the coarse grid search were chosen by finding the pairs with lowest RMSEtest
values. The pairs with the same initial two significant digits were chosen resulting in a group of
5-10 candidates that were used to initialize the HOPSPACK framework. Searches were performed
around each parameter pair by the HOPSPACK multi-threaded executable. Each computation was
implemented on a cluster node across 20 cores. The function calls (computation of RMSEtest)
were passed to MATLAB and the evaluations were parsed by the HOPSPACK framework. On
average each node took approximately 10-20 minutes of CPU time to perform approximately
70-90 function evaluations before converging to a solution. Finally, the optimal pair from all nodes
was determined and used to calculate ̂f.

In all 100 experiments the true support or location of the nonzero elements (1500) were
recovered. In some of the experiments slightly more nonzero elements than the support were also
recovered. These extra entries are reflected in the averages shown in Table 1. In the most extreme
case 1510 nonzero entries were recovered while most reconstructions captured the true support
exactly. This consistency was exhibited across different realizations as well as across different
signals. Table 1 also shows the range of average RMSE values for ̂f. These values are consistent
with those presented in literature [4] where the true signal f∗ was used to tune the parameters.
We also present in Table 1 the average computational times and the average number of pair (𝑝, 𝜏)
evaluations per experiment.

3.5.5 Conclusion
In this work, we created the metric RMSEtest as a means for validating the parameter choice

in the ℓ𝑝-norm Poisson reconstruction problem. The creation of RMSEtest is particularly useful in
that it assumes that nothing is known about the true signal f∗. This measure of parameter choice
coupled with the asynchronous parallelization of GSS implemented by HOPSPACK, accurately,
efficiently and consistently produced the support of the true signal and RMSE values comparable
to those produced by manual tuning where information about the true signal is known.
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Figure 3.15: Experimental setup: (a) True signal f∗ of size 100,000 with a mean intensity of
15,000. (b) Observation vector y of size 40,000 corrupted with Poisson noise. (c) The first 200
entries of f∗. (d) The first 200 entries of y.

Exp. RMSE Non-zeros CPU Evals.
1 0.0600 1501.0 842.48 164.91
2 0.0602 1500.4 595.03 144.42
3 0.0602 1500.4 708.59 167.74
4 0.0602 1501.7 483.54 92.48
5 0.0604 1501.7 484.32 138.31
6 0.0611 1501.7 382.20 116.71
7 0.0597 1501.1 397.94 108.62
8 0.0600 1500.6 433.11 121.29
9 0.0602 1500.5 315.77 96.01
10 0.0600 1500.9 326.40 100.22

Table 3.3: Average RMSE (‖f∗ − ̂f‖2/‖f∗‖), number of non-zeros, CPU time (in seconds), and
number of pairs (𝑝, 𝜏) evaluated for 10 different realizations of 10 different signals.

3.6 Summary of Contribution
In this chapter, we proposed three novel algorithms addressing sparse signal recovery in the

context of photon-limited imaging: (1) An approach to fluorescence lifetime imaging where in
we use aprori knowledge about the sparsity and intensity of the intended signal in order to speed
up and improve signal estimation, (2) A non-convex Shannon entropy regularization method.
This work introduced the weighted Shannon Entropy function in order to promote sparsity in
the reconstructed signal, (3) an asynchronous parallel pattern search method in order to tune the
hyperparamters involved in the photon-limited recovery problem. The objective of the pattern
search was to find the optimal parameter 𝑝 for the 𝑝-norm being used as well as the intensity of the
sparsity controlled by 𝜏.



Bibliography

[1] L. Adhikari. “Nonconvex Sparse Recovery Methods.” UC Merced: Applied
Mathematics http://escholarship.org/uc/item/2099g1s6 (2017).

[2] L. Adhikari, A. D. Kim, and R. F. Marcia. “Sparse reconstruction for fluorescence
lifetime imaging microscopy with Poisson noise”. 2016 IEEE Global Conference
on Signal and Information Processing (GlobalSIP). Dec. 2016, pp. 262–266. doi:
10.1109/GlobalSIP.2016.7905844.

[3] L. Adhikari and R. F. Marcia. “Bounded sparse photon-limited image recovery”.
2016 IEEE International Conference on Image Processing (ICIP). Sept. 2016,
pp. 3508–3512.

[4] L. Adhikari and R. F. Marcia. “Nonconvex relaxation for Poisson intensity
reconstruction”. 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 2015, pp. 1483–1487.

[5] L. Adhikari. “Nonconvex sparse recovery methods”. PhD thesis. UC Merced,
2017.

[6] L. Adhikari et al. “Non-convex Shannon entropy for photon-limited imaging”.
Wavelets and Sparsity XVII. Vol. 10394. International Society for Optics and
Photonics. 2017, p. 103940L.

[7] D. Álvarez, P. Medina, and M. Moscoso. “Fluorescence lifetime imaging from
time resolved measurements using a shape-based approach”. Opt. Express 17.11
(May 2009), pp. 8843–8855.

[8] A. Antoniadis and J. Bigot. “Poisson inverse problems”. The Annals of Statistics
(2006), pp. 2132–2158.

[9] S. R. Arridge. “Optical tomography in medical imaging”. Inverse Problems 15.2
(1999), R41.

[10] S. R. Arridge and J. C. Schotland. “Optical tomography: forward and inverse
problems”. Inverse Problems 25.12 (2009), p. 123010.

[11] B. Bai, Q. Li, and R. M. Leahy. “Magnetic resonance-guided positron emission
tomography image reconstruction”. Seminars Nucl Med. (2013), pp. 30–44.

[12] J. Barzilai and J. M. Borwein. “Two-Point Step Size Gradient Methods”. IMA J.
Numeri. Anal 8.1 (1988), pp. 141–148.

58

https://doi.org/10.1109/GlobalSIP.2016.7905844


59

[13] J. Barzilai and J. M. Borwein. “Two-point step size gradient methods.” IMA J.
Numeri. Anal (1988), 8(1):141–148.

[14] C. R. Berger et al. “Application of compressive sensing to sparse channel
estimation”. IEEE Communications Magazine 48.11 (2010), pp. 164–174.

[15] S. Bloch et al. “Whole-body fluorescence lifetime imaging of a tumor-targeted
near-infrared molecular probe in mice”. Journal of Biomedical Optics 10.5 (2005),
pp. 054003-054003-8.

[16] R. E. Carrillo, J. D. McEwen, and Y. Wiaux. “PURIFY: a new approach to
radio-interferometric imaging”. Monthly Notices of the Royal Astronomical
Society 439.4 (2014), pp. 3591–3604.

[17] R. E. Carrillo et al. “Robust compressive sensing of sparse signals: a review”.
EURASIP Journal on Advances in Signal Processing 2016.1 (2016), p. 108.

[18] O. Chapelle et al. “Choosing multiple parameters for support vector machines”.
Machine Learning 46.1 (2002), pp. 131–159.

[19] O. DeGuchy and R. F. Marcia. “Parameter tuning using asynchronous parallel
pattern search in sparse signal reconstruction”. Wavelets and Sparsity XVIII.
Vol. 11138. International Society for Optics and Photonics. 2019, p. 111381I.

[20] O. DeGuchy et al. “Photon-Limited fluorescence lifetime imaging microscopy
signal recovery with known bounds”. 2017 IEEE 7th International Workshop on
Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). IEEE.
2017, pp. 1–5.

[21] J. E. Dennis Jr and V. Torczon. “Direct search methods on parallel machines.”
SIAM Journal on Optimization 1.4 (1991), pp. 448–474.

[22] D. L. Donoho. “Compressed sensing”. IEEE Transactions on information theory
52.4 (2006), pp. 1289–1306.

[23] D. L. Donoho et al. “Maximum entropy and the nearly black object”. Journal of
the Royal Statistical Society. Series B (Methodological) (1992), pp. 41–81.

[24] J. C. Duchi, E. Hazan, and Y. Singer. “Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization”. Journal of Machine Learning Research
12 (2011), pp. 2121–2159. url:
http://dl.acm.org/citation.cfm?id=2021068.

[25] M. Elangovan, R. N. Day, and A. Periasamy. “Nanosecond fluorescence resonance
energy transfer-fluorescence lifetime imaging microscopy to localize the protein
interactions in a single living cell”. Journal of Microscopy 205.1 (2002),
pp. 3–14.

[26] J. Fessler. Michigan Image Reconstruction Toolbox.
https://web.eecs.umich.edu/~fessler/code/.

http://dl.acm.org/citation.cfm?id=2021068
https://web.eecs.umich.edu/~fessler/code/


60

[27] M. A. T. Figueiredo and J. M. Bioucas-Dias. “Restoration of Poissonian images
using alternating direction optimization”. IEEE transactions on Image Processing
19.12 (2010), pp. 3133–3145.

[28] M. Figueiredo and et al. “Gradient Projection for Sparse Reconstruction”. IEEE J.
of Selected Top.in Sig. Proc. 1.4 (2007), pp. 586–597.

[29] T. W. J. Gadella, T. M. Jovin, and R. M. Clegg. “Fluorescence lifetime imaging
microscopy (FLIM): spatial resolution of microstructures on the nanosecond time
scale”. Biophysical chemistry 48.2 (1993), pp. 221–239.

[30] G. A. Gray and T. G. Kolda. “Algorithm 856: APPSPACK 4.0: Asynchronous
parallel pattern search for derivative-free optimization”. ACM Transactions on
Mathematical Software (TOMS) 32.3 (2006), pp. 485–507.

[31] J. D. Griffin, T. G. Kolda, and R. M. Lewis. “Asynchronous parallel generating set
search for linearly-constrained optimization”. SIAM Journal on Scientific
Computing 30 (2008), pp. 1892–1924.

[32] Z. T. Harmany, R. F. Marcia, and R. M. Willett. The Sparse Poisson Intensity
Reconstruction ALgorithms (SPIRAL) Toolbox.
http://drz.ac/code/spiraltap/.

[33] Z. T. Harmany, R. F. Marcia, and R. M. Willett. “This is SPIRAL-TAP: Sparse
Poisson Intensity Reconstruction ALgorithms; Theory and Practice”. IEEE Trans.
on Image Processing 21.3 (2012), pp. 1084–1096.

[34] T. Hastie et al. “The entire regularization path for the support vector machine”.
Journal of Machine Learning Research 5.Oct (2004), pp. 1391–1415.

[35] R. Hooke and T. A. Jeeves. ““Direct Search” Solutiton of Numerical and
Statistical Problems”. Journal of the ACM 8.2 (2010), pp. 212–229.

[36] P. D. Hough, T. G. Kolda, and V. J. Torczon. “Asynchronous parallel pattern
search for nonlinear optimization”. SIAM Journal on Scientific Computing 23.1
(2001), pp. 134–156.

[37] C. Hsu, C. Chang, and C. Lin. A practical guide to support vector classification.
Tech. rep. Department of Computer Science, National Taiwan University, 2003.

[38] S. Huang, D. N. Tran, and T. D. Tran. “Sparse signal recovery based on
nonconvex entropy minimization”. 2016 IEEE International Conference on Image
Processing (ICIP). IEEE. 2016, pp. 3867–3871.

[39] H. Ishikawa-Ankerhold, R. Ankerhold, and G. Drummen. “Advanced
Fluorescence Microscopy Techniques – FRAP, FLIP, FLAP, FRET and FLIM”.
Molecules 17.4 (2012), p. 4047.

[40] J. Bergstra and Y. Bengio. “Random search for hyper-paramter optimization”.
Journal of Machine Learning Research 9 (2012), pp. 281–305.

[41] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. CoRR
abs/1412.6980 (2014). url: http://arxiv.org/abs/1412.6980.

http://drz.ac/code/spiraltap/
http://arxiv.org/abs/1412.6980


61

[42] R. Kohavi. “A Study of Cross-validation and Bootstrap for Accuracy Estimation
and Model Selection”. Proceedings of the 14th International Joint Conference on
Articial Intelligence - Volume 2. Aug. 1995, pp. 1137–1143.

[43] R. Kohavi and G. H. John. “Automatic parameter selection by minimizing
estimated error”. Machine Learning Proceedings 1995. 1995, pp. 304–312.

[44] T. G. Kolda. “Revisiting asynchronous parallel pattern search for nonlinear
optimization”. SIAM Journal on Optimization 16.2 (2005), pp. 563–586.

[45] T. G. Kolda, R. M. Lewis, and V. Torczon. “Optimization by direct search: New
perspectives on some classical and modern methods”. SIAM Review 45.3 (2003),
pp. 385–482.

[46] J. R. Lakowicz. Principles of fluorescence spectroscopy. Springer Science &
Business Media, 2013.

[47] K. Lange and R. Carson. “EM reconstruction algorithms for emission and
transmission tomography”. Journal of Computer Assisted Tomography 8 (1984),
pp. 306–316.

[48] R. LeVeque. Finite Difference Methods for Ordinary and Partial Differential
Equations: Steady-State and Time-Dependent Problems. Classics in Applied
Mathematics. SIAM, Society for Industrial and Applied Mathematics, July 2007.
isbn: 9780898716290.

[49] W.-Y. Loh. “Classification and regression trees”. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 1.1 (2011), pp. 14–23.

[50] M. Lustig, D. Donoho, and J. M. Pauly. “Sparse MRI: The application of
compressed sensing for rapid MR imaging”. Magnetic Resonance in Medicine: An
Official Journal of the International Society for Magnetic Resonance in Medicine
58.6 (2007), pp. 1182–1195.

[51] J. A. Nelder and R. Mead. “A simplex method for function minimization”. The
Computer Journal 7.4 (1965), pp. 308–313.

[52] R. D. Nowak and E. D. Kolaczyk. “A statistical multiscale framework for Poisson
inverse problems”. IEEE Transactions on Information Theory 46.5 (Aug. 2000),
pp. 1811–1825. issn: 0018-9448. doi: 10.1109/18.857793.

[53] J. Nunez and J. Llacer. “A general Bayesian image reconstruction algorithm with
entropy prior. Preliminary application to HST data”. Publications of the
Astronomical Society of the Pacific 105.692 (1993), p. 1192.

[54] T. Oida, Y. Sako, and A. Kusumi. “Fluorescence lifetime imaging microscopy
(flimscopy). Methodology development and application to studies of endosome
fusion in single cells”. Biophysical Journal 64.3 (1993), pp. 676–685.

[55] T. D. Plantenga. HOPSPACK 2.0 User Manual. Tech. rep. SAND2009-6265.
Sandia National Laboratories, Albuquerque, NM and Livermore, CA, Oct. 2009.

https://doi.org/10.1109/18.857793


62

[56] L. C. Potter et al. “Sparsity and compressed sensing in radar imaging”.
Proceedings of the IEEE 98.6 (2010), pp. 1006–1020.

[57] J. Qi and R. Leahy. “Iterative reconstruction techniques in emission computed
tomography”. Physics in Medicine and Biology (2006), R541–R578.

[58] A. Sawatzky et al. “EM-TV methods for inverse problems with Poisson noise”.
Level Set and PDE Based Reconstruction Methods in Imaging. Springer, 2013,
pp. 71–142.

[59] C. E. Shannon. “A mathematical theory of communication”. Bell system technical
journal 27 (1948).

[60] J. Skilling and R. K. Bryan. “Maximum entropy image reconstruction: general
algorithm”. Monthly notices of the royal astronomical society 211.1 (1984),
pp. 111–124.

[61] D. L. Snyder and M. Miller. Random Point Processes in Time and Space.
Springer, 1991.

[62] S. R. Swift and L. Trinkle-Mulcahy. “Basic principles of FRAP, FLIM and
FRET”. Proc R Microsc Soc. 39 (2004), pp. 3–10.

[63] T. Hohage and F. Werner. “Inverse problems with Poisson data: statistical
regularization theory, applications and algorithms”. Inverse Problems 32.9 (2016),
p. 093001. url: http://stacks.iop.org/0266-5611/32/i=9/a=093001.

[64] E. Terpetschnig and D. M. Jameson. “Fluorescence lifetime”. ISS Technical Note
(2005).

[65] V. Torczon. “On the Convergence of Pattern Search Algorithms”. SIAM Journal
on Optimization 7.1 (1997), pp. 1–25. doi: 10.1137/S1052623493250780. url:
https://doi.org/10.1137/S1052623493250780.

[66] P. J. Verveer, A. Squire, and P. I. H. Bastiaens. “Global analysis of fluorescence
lifetime imaging microscopy data”. Biophysical Journal 78.4 (2000),
pp. 2127–2137.

[67] G. Wang and J. Qi. “PET image reconstruction using kernal method”. IEEE
transactions on medical imaging 34.1. IEEE. 2015, pp. 61–71.

[68] L. V. Wang and H. Wu. Biomedical Optics: Principles and Imaging. John Wiley
& Sons, 2012.

[69] K.-P. Wu and S.-D. Wang. “Choosing the kernel parameters for support vector
machines by the inter-cluster distance in the feature space”. Pattern Recognition
42.5 (2009), pp. 710–717.

[70] L. Yu and H. Liu. “Feature selection for high-dimensional data: A fast
correlation-based filter solution”. Proceedings of the 20th International
Conference on Machine Learning (ICML-03). 2003, pp. 856–863.

http://stacks.iop.org/0266-5611/32/i=9/a=093001
https://doi.org/10.1137/S1052623493250780
https://doi.org/10.1137/S1052623493250780


63

[71] S. Zhang, A. E. Choromanska, and Y. LeCun. “Deep learning with elastic
averaging SGD”. Advances in Neural Information Processing Systems. 2015,
pp. 685–693.

[72] I. Zubal et al. “Computerized three-dimensional segmented human anatomy”.
Medical Physics 21 (1994), pp. 299–302.



Chapter 4

Deep Learning

The algorithms presented in previous chapters rely on a priori knowledge of the signal being
processed e.g. sparsity and Poisson noise. This motivated the formulation of the associated
optimization problem as a means of signal recovery. In the remaining chapters we deviate from
this regime and look towards machine learning algorithms as a recovery method. While we will
revisit the photon-limited imaging problem in Chapter 6, using machine learning techniques opens
the scope of usability to a variety of problems in signal processing. In the following chapters
we will present models suited to different types of signals and applications as well as numerical
optimization algorithms that aid in the implementation of those models.

While the definition of machine learning can be subjective, a generalized understanding is that
the field of machine learning seeks to leverage the power of computers in order to learn from data
[5]. The field itself is as broad as the definition, including statistical models, regression algorithms,
decision tree algorithms, etc [4, 17]. In this chapter we will mainly be focusing on the subsection
of machine learning known as deep learning. We will define deep learning, as well as establish
the building blocks involved in creating deep learning algorithms. Most of the explanations in this
section is established by Goodfellow et al. in [6].

4.1 Feedforward Neural Network
Deep learning techniques use a combination of mathematical operations and optimization

routines in order to learn internal parameters with the intent of extracting features from large data
sets and drawing inference from data [10]. These models have already been established as the state
of the art in computer vision and natural language processing applications [7, 9]. At the heart
of deep learning algorithms is the feed forward neural network or multilayer perceptron (MLP).
The goal of the MLP is to infer an unknown function 𝑓, based on a series of inputs 𝑥𝑖 and outputs
𝑦𝑖. The process can be described mathematically as 𝑦 = ̂𝑓 (𝑥, 𝑊) where 𝑊 is a set of learned
parameters that define the mapping from 𝑥 to 𝑦. The complexity or depth of an MLP is defined by
chaining together successive functions, each containing their own set of parameters. For example,
the most basic MLP contains three functions or layers. The process is described by the equation

̂𝑓 = ̂𝑓 (3)( ̂𝑓 (2)( ̂𝑓 (1)(𝑥))), (4.1)

where ̂𝑓 (1) is referred to as the input layer starting the forward process [6]. The last layer, known
as the output layer, provides the intended output of the inference. In a classification application
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Figure 4.1: Multi-layer fully connected network

this could be a binary indicator or in a regression setting this could be an approximate value. In
(4.1) we note that the output of ̂𝑓 (2) remains “hidden”, as such, these types of layers are known
as hidden layers. Deep learning models typically contain multiple hidden layers giving them the
notion of depth, motivating the name deep learning. Each layer in a “vanilla” or simple neural
network has a user defined number of neurons (this will be discussed in the following section),
thus there is a notion of depth (the number of hidden layers) versus width (the number of neurons).
The universal approximation theorem states that these types of networks can approximate any
continuous function on a closed and bounded subset of ℝ𝕟 given that there is at least one hidden
layer with an activation function and that there are enough neurons present in the network [3]. The
idea of having enough neurons in this layer allows the possibility of having an intractable amount
of units. To reduce the number of necessary neurons in any given layer, it is common practice
to increase the depth of the network [20]. Now that we have the general framework for a deep
feedforward network, we can explain the building blocks of a given network’s architecture.

4.2 Fully Connected Layers
In section 4.1 we referred to an MLP as a series of chained functions that approximate the

mapping 𝑓. In this section we describe the most basic block of the MLP, the perceptron also
known as a fully connected layer [15]. In order to discuss this piece of architecture, we follow
the forward process through the network shown in figure 4.1. The input layer contains the input
𝑥 ∈ ℝ𝑛. In an application where your data is tabular this would be a row of features. In a computer
vision type of classification problem this would be a vectorization of an image in your data set. We
define the following hidden layers as the transformation ℎ𝑖 = 𝑔(𝑊𝑇

𝑖 ℎ𝑖−1 + 𝑏𝑖) where 𝑊𝑖 ∈ ℝ𝑛×𝑚

is a weight matrix of trainable parameters corresponding to the number of neurons in that layer,
𝑏𝑖 ∈ ℝ𝑚 is a bias term and g is an activation function adding non-linearity to the output of the
layer. The output of the current layer is ℎ𝑖 while the input ℎ𝑖−1 is from the previous layer. We can
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(a) (b) (c)

Figure 4.2: Behavior of activation functions used in neural networks (a) sigmoidal function, (b)
hyperbolic tangent and (c) rectified linear unit (ReLU).

then describe the network in figure 4.1 as the following series of equations

ℎ1 = 𝑔(𝑊𝑇
1 𝑥 + 𝑏1), (4.2)

ℎ2 = 𝑔(𝑊𝑇
2 ℎ1 + 𝑏2),

𝑦 = 𝑠(𝑊𝑇
𝑜 ℎ2 + 𝑏𝑜).

There are a few things to note about this system. The first, is that the dimension of the output
of each hidden layer need not be the same dimension for all 𝑖. Depending on the application, it
may be beneficial to have smaller hidden layers in the center of the network. This means that it is
necessary to have weight matrices 𝑊𝑖 and biases 𝑏𝑖 of different dimensions corresponding to the
intended dimension of the input and output of those layers. Furthermore, in (4.2) the activation
functions are noted as 𝑔 and 𝑠 where 𝑔 corresponds to the activation function of the hidden layers
and 𝑠 corresponds to the activation of the final layer. Typically the same activation function is used
for all hidden layers, but this is not a necessary restriction. The activation function of the final
layer or output layer is typically different than that of the hidden layers.

4.2.1 Activation Functions
Until now we have only referred to the activation functions in name. These non-linear

functions are crucial to a neural network’s ability of function estimation. This is not only stated
by the universal approximation theorem, but intuition would tell us that without the activation
function we would only be able to produce a linear representation of our inputs. In this section
we define two of the most commonly used activation functions which will be used in applications
in Chapters 5 & 6. These functions are not the only ones available to those building neural
networks. This is an active field of research and we guide the reader to the following references
for alternatives [2, 8, 22].

Rectified Linear Unit

The rectified linear unit or ReLU activation function is the most commonly used activation
function and is defined by the function 𝑔(𝑧) = max{0, 𝑧} where 𝑧 = 𝑊𝑇𝑥 + 𝑏 is the linear
transformation defined in section 4.2 [13]. The function is pictured in figure 4.2 (c). The choice
of the rectified linear unit is motivated by the empirical evidence presented in Krizhevsky et al. in
[9]. In addition, the rectified linear unit also promotes sparsity in the number of active units. In
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half of its domain the activation outputs zero and the other half of the domain is linear. This keeps
the derivatives consistent that are necessary for optimization during the learning process.

Hyperbolic Tangent

An alternative to the ReLU activation function is the hyperbolic tangent function seen in figure
4.2 (b). The use of the function is an alternative to the logistic sigmoid function (see Fig. 4.2 (a))
which was used quite heavily before ReLU. The function is given as

𝜎(𝑧) = 1
1 + exp(−𝑧) . (4.3)

The sigmoid function maps to values between (0, 1) which can be viewed as a probability that the
input belongs to a labeled class. However, the output is not zero centered, making the optimization
step during training difficult. For this reason the sigmoid function is typically relegated to
the output layer. Instead the hyperbolic tangent tanh(𝑧) is typically used as an activation. The
hyperbolic tangent seen in figure 4.2 (b) resembles a linear model close to 0 which aids in the
learning process [14].

4.3 Convolutional Layers
Introduced by Yann LeCun and his team in [12] and later brought back in the spotlight by the

success of AlexNet [9] in the field of computer vision, the convolutional layer can be thought of as
an alternative to the fully connected layer. Convolutional layers are typically used in a feedforward
network much like the fully connected layers of the previous section. The input is processed by
the convolution and then an elementwise activation function is applied to the output. These types
of networks, which consist of at least one convolutional layer are known as convolutional neural
networks (CNNs). While fully connected layers rely on dense connections represented by large
weight matrices, each layer of a CNN has a few parameters which are shared over each input. Each
layer consists of an input 𝐼 from a previous layer or the raw data itself, the kernal or filter 𝐾 with
𝐾 ≪ 𝐼 and the output or feature map 𝑆. The dimensions of these components may vary based on
the application, but in general we are convolving the kernal with the image in order to create the
feature map, see Fig. 4.3 (a). The operation that is actually implemented by most neural network
libraries is described for the two dimensional case as

𝑆(𝑖, 𝑗) = ∑
𝑚

∑
𝑛

𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚, 𝑛), (4.4)

where 𝑚 and 𝑛 denote the size of your kernal [6]. If we describe the input as a tensor of
dimensions 𝐷 × 𝑊 × 𝐻, then (4.4) considers an input with a channel of 1 (consider for example
a grayscale image). Typically in CNNs, the filter must be described in three dimensions, with
the third dimension matching the depth of your data see Fig.4.3(b). In order to acheive the
desired depth 𝐷 of your output, 𝐷 kernals are applied in parallel to the input. For example, in
an image classification problem where the images have a dimension of 32 × 32, if the images
are 3-channel images, red, green, blue (RGB), then the depth of your kernal must be 3. The
remaining dimensions 𝐻 and 𝑊 of the feature map are controlled by using padding (see Fig.4.3
(a)), manipulating stride and choosing the appropriate kernal size. These features are particular to
the application and will be discussed in later sections. As mentioned before, one major advantage
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(a) (b)

Figure 4.3: Behavior of the convolutional layer. (a) Using padding to obtain the same dimensions
of output (H × W) as the input. (b) The convolutional filter considers all channels in the input and
reduces the information to a single channel in the output.

Figure 4.4: Max pooling layer applied to the output of the convolutional layer. The filter is a 2 × 2
filter with a stride of 2.

that CNNs have over their fully connected layer counterparts are the decrease in the number of
trainable parameters. By creating kernals or filters that are substantially smaller than their inputs,
the architecture can still detect subtle features while cutting down on training expense. One thing
to note is that CNNs typically still incorporate fully connected layers into their architecture. In fact,
this is necessary when performing classification using CNNs in that the feature map of the last
convolutional layer is vectorized and processed through fully connected layers in order to arrive at
the probability that the input belongs to a certain class.

Max Pooling

We have seen that the convolutional layer is similar to the fully connected layer in that we
provide a transformation on the input to the layer and then provide a non-linearity to the output
of that transformation. The convolutional layer goes one step beyond and adds a pooling layer
to the resultant feature map. The pooling layer, in particular a max pooling layer, significantly
improves the performance of convolutions in object recognition applications [18]. The maximum
pooling layer reports the maximum number within a certain window. This window is similar
to that of the kernal in the convolution except that the there are no learned parameters. The
motivation behind this layer is that by performing this pooling, the output is invariant or less
sensitive to perturbations in the input. This is helpful in the learning and inference process in that
the architecture will see many instances of the same type of data under slight translations, pooling
helps the architecture identify the same features during this process [6].
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4.4 Parameter Learning
In previous sections, we discussed the building blocks for the architectures we will use in

the next few chapters. Whether it be a fully connected layer network or a CNN, in either case the
network relies on a combination of learned parameters from each layer in order to approximate the
intended function. The key here is that the parameters are learned and not provided by the user. In
this section we will discuss the process by which these parameters are learned using gradient based
learning. First, we will define the different metrics that are commonly used for most applications
in deep learning and then we will discuss the learning or training process.

4.4.1 Cost Functions
The cost function, sometimes referred to as the loss function, is part of a feedback loop that

indicates how well your model is performing during the learning process. The training procedure
involves subsampling a portion of your data, running it through the network and then comparing
the output of the model to the true corresponding data. This process is known as supervised
learning [1] and requires a metric to determine the performance of your model. It should be no
surprise that the application influences the choice of the cost function. The applications in this
work will fall under two categories: (1) classification and (2) image reconstruction. This will limit
our choice of cost function to a cross entropy function or the mean squared error (MSE).

Cross Entropy Loss Function

The most basic case of utilizing deep neural networks (DNNs) for classification is being able
to discern if, given some information about a data point e.g. features, image, etc., the instance
belongs to a class or not. This is known as a binary classification problem. Under this scenario, the
output layer of neural network produces a single scaler value. Furthermore, by using the sigmoid
activation function in equation (4.3) we can assure that the value of the output lies between 0
and 1. The value then acts as a probability of the point being in the class or excluding it from the
class. If we let 𝜃 represent the trainable parameters of our neural network and 𝑝(𝑦𝑖) represent the
probability of 𝑦𝑖 belonging to the positive class (𝑦 = 1) given input 𝑥𝑖 and 𝜃, then the cost function
over 𝑚 instances is

L(𝜃) = − 1
𝑚

𝑚
∑
𝑖=1

𝑦𝑖 log(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖) ⋅ log(1 − 𝑝(𝑦𝑖)). (4.5)

Equation (4.5) often called the binary cross entropy function and is designed to increase the cost
when the probability estimate is close to zero and the truth is close to one as well as if the truth
is close to zero and the probability estimate is close to one [5]. Our goal then becomes to tune
the parameters 𝜃 in order to minimize the function in (4.5). We will talk about the optimization
routines that are typically used to accomplish this in the next chapter, but as this is a convex
function we can use variants of gradient descent in order to find a minima.

In many cases we are interested in problems with more than one class. In these cases, the
output from the final layer is a vector 𝑧 ∈ ℝ𝐾 where 𝐾 corresponds to the number of classes. The
neural network assigns a raw score to each class and by using the softmax function

̂𝑝𝑘 = exp(𝑧𝑘)
∑𝐾

𝑗=1 exp(𝑧𝑗)
, (4.6)
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we can convert the 𝑘-th raw score into ̂𝑝𝑘 the probability that the instance belongs to the 𝑘-th class.
The denominator in (4.6) is performing a normalization across all values and thus the probabilities
in ̂𝑝 ∈ ℝ𝐾 add up to one. As an extension to (4.5) and drawing on the cross entropy function
originating in information theory [19], the cross entropy cost function is given by

L(𝜃) = − 1
𝑚

𝑚
∑
𝑖=1

𝐾
∑
𝑘=1

𝑦(𝑖)𝑘 log( ̂𝑝(𝑖)𝑘), (4.7)

where 𝑦(𝑖)𝑘 is the 𝑘-th component of the 𝑖-th instance. The vector 𝑦𝑖 is a one-hot encoding of
the target where the 𝑘-th component is equal to 1 if the instance belongs to the 𝑘-th class and
zero everywhere else. In equations (4.5) & (4.7) we seek to minimize the cost function over the
parameters in order to improve classification.

Mean Squared Error

In Chapters 2 & 3 we used the mean squared error or MSE to evaluate the reconstruction of
our signal. In the context of deep learning the MSE is also used as the cost function

L(𝜃) = 1
𝑚 ( ̂𝑦𝑖 − 𝑦𝑖)

2 , (4.8)

where ̂𝑦𝑖 is the estimate of 𝑦𝑖. Unlike applications in classification, the estimate and target typically
refer to an image or a vector. In chapter 6 we will see that MSE will be used to train the neural
network to perform our signal reconstruction tasks as well as a metric to evaluate how well the
algorithm has performed the intended task. In a similar manner to the cross entropy cost functions,
we seek to minimize the MSE with respect to the model parameters 𝜃.

4.4.2 Back-Propagation Algorithm
In this section we draw the connection between the cost function and the training of the neural

network’s parameters. In order to do so we provide a high-level overview of the back-propagation
algorithm. We refer the reader to [6] for a more thorough explanation.

Although the back-propagation algorithm was developed years earlier, the algorithm made a
resurgence in the 1980s appearing in papers as research in neural networks began to bloom [21, 16,
11]. The algorithm addresses the increase in the number of layers incorporated in a deep learning
architecture and the problem presented with trying to minimize the cost function in relation to
weights or parameters in earlier layers. In order to explain the learning process (also known as
the training process) of a feed forward network, let us consider a simple binary classificaion
problem where (𝑥𝑖, 𝑦𝑖) are a data pair from our data set. In the first stage we feed the input 𝑥𝑖
into our model and receive the probability estimate 𝑝(𝑦𝑖), this is known as the forward pass. We
evaluate the output using the cost function L(𝜃), in this case (4.5). Back-propagation or backprop
allows us to use this information in order to compute the gradient ∇𝜃L(𝜃) where the parameters
𝜃 are dispersed among the layers. The algorithm amounts to applying the chain rule recursively
in order to obtain gradients with respect to all parameters. With the gradients calculated, an
optimization routine (discussed in chapter 5) is used to tune or learn the correct parameters. The
process is repeated over many data points until the algorithm learns the correct parameters and an
approximation to the underlying function is made.
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Chapter 5

Optimization for Deep Learning
Applications

In chapter 4 we established an overview of the components that compose a deep learning
model. In particular, we discussed the parameters that are an essential component of a network’s
ability to provide an inference of some kind. The obvious question becomes how do we “learn”
these parameters? We briefly touched on the fact that backprop in section 4.4.2 calculates the
gradients of the loss function with respect to the parameters. In this chapter, we will discuss
the method by which the loss function is minimized using those gradients. Initially, we will
summarize two of the most commonly used techniques in the field of deep learning, stochastic
gradient descent (SGD) and Adam, a derivative of SGD. In the following sections, we propose
two novel algorithms for the training of a deep neural network. The first algorithm uses a
quasi-Newton approximation in a trust-region setting, while the second algorithm uses an efficient
computation of the second derivative in order to provide curvature information in the descent
process.

5.1 Related Methods
First-derivative or gradient-based algorithms have emerged as the standard optimization

techniques used for training deep neural networks [4, 29, 31, 34]. They are preferred for their
ease of implementation and their relatively low computational costs. Many of these methods are
based on a variant of gradient descent known as stochastic gradient descent (SGD). This method
differs from a classic gradient descent approach in that the gradient is replaced by an estimation
calculated from a subset of the data as opposed to the entire dataset. This lends itself to the
training of deep neural networks in that we typically process only a few instances of a data set at
a time in a subsample known as a batch. This reduces the computational efforts involved in the
forward pass at a cost of the quality of the solutions [5].

If we continue to describe the parameters of our network as 𝜃 and we recognize that the values
of 𝜃 evolve during the training process, at iteration 𝑘, a sample batch 𝑆𝑘 ∈ {1, 2, … , 𝑛} is randomly
chosen and the current iterate 𝜃𝑘 is updated using

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘
1

|𝑆𝑘| ∑
𝑗∈𝑆𝑘

∇L𝑗(𝜃𝑘),
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where 𝛼𝑘 is a step length parameter (known as the learning rate). In SGD methods, an
approximate gradient, ∑𝑗∈𝑆𝑘

∇L𝑗(𝜃𝑘), is used instead of the full gradient, ∇L(𝜃𝑘), because
evaluating the full gradient is computationally expensive, especially for large data sets, i.e., when 𝑛
is very large.

However, these methods are not without their drawbacks. Although they are easily
implemented, gradient decent-based methods are extremely sensitive to weight initialization and
parameter tuning. As such, they require hyperparamter tuning schedules which can be expensive in
terms of time and computational resources. Due to the highly non-convex nature of the objective
function associated with training neural networks and the stochastic behavior of these techniques,
it is likely that the algorithm will rest at local minima for sometime before continuing to ascend.
One way researchers have tried to address these issues is by developing adaptive algorithms
in which the learning rate is adjusted during the training process [31, 32]. By far, the most
popular evolution of SGD is Adam [14]. Adam seeks to improve on SGD by integrating features
from a few other SGD algorithms into a single algorithm. For starters it takes advantage of an
adaptive learning rate method featured in AdaGrad [10] which computes different learning rates
for different parameters. It determines the learning rates by using the mean and variance of the
gradient of the cost function. The cost function can be thought of as a random variable because it
is being calculated using batches. It also incorporates a feature of Root Mean Square Propagation
(RMSProp) [32] which keeps an average of the magnitude of the gradients. Although Adam tries
to address these issues, it is still beholden to the shortcomings of gradient descent. Mainly that
they are using first order information. In the next chapters we propose methods which either use
first derivative information to approximate curvature or second derivative information itself.

5.2 Quasi-Newton Trust-Region Method
While architecture and computational resources play an important role in the effectiveness

of neural networks, the methodology used in training these networks leaves an opportunity
to increase efficiency. As we have seen in Section 5.1, gradient based optimization methods
are used in order to minimize what is commonly referred to as the loss function. The goal
here is to minimize the disparity between the outcome provided by the neural network and the
intended result. In this section we propose the Trust-Region Minimization Algorithm for Training
Responses (TRMinATR) as an alternative to gradient descent methods. This work is based on the
paper by Rafati, DeGuchy, and Marcia [27].

Looking towards quasi-Newton methods as an alternative to gradient decent is an active area
of research. Limited memory quasi-Newton algorithms with line search have been implemented in
a deep learning setting [15]. These methods approximate second derivative information improving
the quality of each training iteration and circumvent the need for application specific parameter
tuning. The novelty of TRMinATR is in the use of the L-BFGS quasi-Newton method in a
trust-region setting to train deep neural networks. TRMinATR solves the associated trust-region
subproblem, which can be computationally intensive in large scale problems, by efficiently
computing a closed form solution at each iteration.
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Figure 5.1: A LeNet deep learning network inspired by the architecture found in [16] . The neural
network is used in the classification of the MNIST dataset of hand written digits. The
convolutional neural network (CNN) uses convolutions followed by pooling layers for feature
extraction. The final layer transforms the information into the required probability distribution.

5.2.1 Training Deep Neural Networks
In this section we briefly review the formulation of the optimization problem presented in

Chapter 4 that must be solved in order to train a neural network. We present the architecture as
a general framework where each layer of a feed forward network is defined as ℎ𝑖 = 𝑔(𝑊𝑖, ℎ𝑖−1)
, where 𝑊𝑖 represents the trainable parameters of the layer, ℎ𝑖−1 is the input from the previous
layer and 𝑔 is an activation function. This differs with the notation provided in section 4.1 in that
the layer is allowed to be either convolutional or fully connected. During training of the neural
network we pass the input ℎ(0) = 𝑥 through the layers and obtain the network’s approximation
of the desired output ℎ(𝑛) = ̂𝑦 where n is the number of layers in the neural network. We seek to
adjust the weights 𝑊 (𝑖) in order to improve the quality of the approximate output ℎ(𝑛). Learning is
accomplished by minimizing the loss function L(ℎ, ℎ(𝑛)) where ℎ = 𝑦 is the true response for the
input x. The output ℎ(𝑛) is in fact a function of the parameters 𝑊 = (𝑊 (1), 𝑊 (2), … , 𝑊 (𝑛)), thus we
seek to

min
𝑊

L(ℎ, ℎ(𝑛)). (5.1)

5.2.2 Methods
In this section, we outline two methods used to solve the following unconstrained optimization

problem

min
𝑥∈ℝ𝑛

𝛷(𝑥). (5.2)

Both methods seek to minimize the objective function 𝛷(𝑥) by defining a sequence of iterates {𝑥𝑘}
which are governed by the search direction 𝑝𝑘. Each respective method is defined by its approach
to computing the search direction 𝑝𝑘 with minimizing the quadratic model of the objective
function defined by

𝑞𝑘(𝑝) ≜ 𝑔𝑇
𝑘 𝑝 + 1

2𝑝𝑇𝐵𝑘𝑝, (5.3)

where 𝑔𝑘 ≜ ∇𝛷(𝑥𝑘) and 𝐵𝑘 is an approximation to ∇2𝛷(𝑥𝑘).
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Algorithm 5: Line search method pseudo-code.

Input: starting point 𝑥0, tolerance 𝜖 > 0
𝑘 ← 0
repeat

compute 𝑔𝑘 = ∇𝛷(𝑥𝑘)
update L-BFGS matrix 𝐵𝑘
compute search direction 𝑝𝑘 by solving (5.4)
find 𝛼𝑘 that satisfies Wolfe Conditions in (5.6)
𝑘 ← 𝑘 + 1

until ‖𝑔‖ < 𝜖 or 𝑘 reached to max number of iterations

Line Search Method

Each iteration of the line search method computes search direction 𝑝𝑘 by solving optimization
subproblem

𝑝𝑘 = arg min
𝑝∈ℝ𝑛

𝑞𝑘(𝑝), (5.4)

and then decides how far to move along 𝑝𝑘 by choosing a step length 𝛼𝑘. The iteration 𝑥𝑘 updates
by following relation:

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘. (5.5)

Usually 𝑝𝑘 is required to be a descent direction and 𝛼𝑘 ∈ (0, 1] is chosen to satisfy the sufficient
decrease and curvature conditions, e.g. Wolfe conditions [23]:

𝛷(𝑥𝑘 + 𝛼𝑘𝑝𝑘) ≤ 𝛷(𝑥𝑘) + 𝑐1𝛼𝑘∇𝛷𝑇
𝑘 𝑝𝑘, (5.6a)

∇𝛷(𝑥𝑘 + 𝛼𝑘𝑝𝑘)𝑇𝑝𝑘 ≥ 𝑐2∇𝛷(𝑥𝑘)𝑇𝑝𝑘, (5.6b)

with 0 < 𝑐1 < 𝑐2 < 1. The general pseudo-code for line search method is given in Algorithm 5 (see
[23] for details).

Trust-Region Method

The trust-region method solves (5.2) using the localized quadratic approximation of the
objective function 𝑞𝑘 defined in (5.3) at each iteration.

𝑝𝑘 = arg min
𝑝∈ℝ𝑛

𝑞𝑘(𝑝) subject to ‖𝑝‖2 ≤ 𝛿𝑘, (5.7)

where 𝛿𝑘 denotes the radius of the trust region. There is a computational bottleneck associated
with solving (5.7) in large-scale optimization. This is the type of problem associated with training
neural networks. These computational costs will be addressed in a later section.

Solving the trust-region subproblem to high accuracy requires consideration of the problem’s
optimality conditions for a global solution. Methods such as those presented in [12, 22, 8] make
use of the following theorem:



77

Algorithm 6: Trust region method pseudo-code.

Input: starting point 𝑥0, tolerance 𝜖 > 0, ̂𝛿 > 0,
𝛿0 ∈ (0, ̂𝛿), 𝜂 ∈ [0, 1/4)

𝑘 ← 0
repeat

compute 𝑔𝑘 = ∇𝛷(𝑥𝑘)
update L-BFGS matrix 𝐵𝑘
compute search direction 𝑝𝑘 by solving (5.7)
𝜌𝑘 ← (𝛷(𝑥𝑘) − 𝛷(𝑥𝑘 + 𝑝𝑘))/(𝑞𝑘(0) − 𝑞𝑘(𝑝𝑘))
update trust-region radius 𝛿𝑘
if 𝜌𝑘 > 𝜂 then

𝑥𝑘+1 = 𝑥𝑘 + 𝑝𝑘
else

𝑥𝑘+1 = 𝑥𝑘
end if
𝑘 ← 𝑘 + 1

until ‖𝑔𝑘‖ < 𝜖 or 𝑘 reached to max number of iterations

Theorem 2. Let 𝛿 be a positive constant. A vector 𝑝∗ is a global solution of the trust-region
subproblem (5.7) if and only if ‖𝑝∗‖2 ≤ 𝛿 and there exists a unique 𝜎∗ ≥ 0 such that 𝐵 + 𝜎∗𝐼 is
positive semidefinite and

(𝐵 + 𝜎∗𝐼)𝑝∗ = −𝑔 and 𝜎∗(𝛿 − ‖𝑝∗‖2) = 0. (5.8)

Moreover, if 𝐵 + 𝜎∗𝐼 is positive definite, then the global minimizer is unique.
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Figure 5.2: An illustration of trust-region methods. For indefinite matrices, the Newton step (in
red) leads to a saddle point. The global minimizer (in blue) is characterized by the conditions in
Eq. (5.8) with 𝐵 + 𝜎∗𝐼 positive semidefinite. In contrast, local minimizers (in green) satisfy Eq.
(5.8) with 𝐵 + 𝜎∗𝐼 not positive semidefinite.

The general pseudo-code for trust region method is given in Algorithm 6. (see [8, 23] for details).
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Quasi-Newton Methods

Methods that use 𝐵𝑘 = ∇2𝛷(𝑥𝑘) for the Hessian in the quadratic model in (5.3) typically
exhibit quadratic rates of convergence. However, there are several assumptions needed to ensure
this approach is computationally feasible. First, solves with the matrix ∇2𝛷(𝑥𝑘) must be done
efficiently. For large-scale problems, unless ∇2𝛷(𝑥𝑘) has structure that can easily be exploited,
this is generally not the case. Second, ∇2𝛷(𝑥𝑘) must have the positive eigenvalues so that the
resulting search direction 𝑝𝑘 is guaranteed to be a descent direction. Third, ∇2𝛷(𝑥𝑘) must be
computationally available. In applications such as inverse problems, computing ∇2𝛷(𝑥𝑘) requires
solving a system of partial differential equations, which may or may not have an expression for the
Hessian. In cases where using the Hessian matrix ∇2𝛷(𝑥𝑘) is not practical, quasi-Newton methods
are viable alternatives because they exhibit superlinear convergence rates while maintaining
memory and computational efficiency.

Perhaps the most well-known among all of the quasi-Newton methods is the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) update [19, 23], given by

𝐵𝑘+1 = 𝐵𝑘 − 1
𝑠𝑇
𝑘 𝐵𝑘𝑠𝑘

𝐵𝑘𝑠𝑘𝑠𝑇
𝑘 𝐵𝑘 + 1

𝑦𝑇
𝑘 𝑠𝑘

𝑦𝑘𝑦𝑇
𝑘 , (5.9)

where 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘 and 𝑦𝑘 = ∇𝛷(𝑥𝑘+1) − ∇𝛷(𝑥𝑘). The matrices are defined recursively with
the initial 𝐵0 taken to be a 𝐵0 = 𝛾𝐼, where the scalar 𝛾 > 0. In practice, only the 𝑚 most-recently
computed pairs {(𝑠𝑘, 𝑦𝑘)} are stored, where 𝑚 ≪ 𝑛, typically 𝑚 ≤ 100 for very large problems.
This approach is often referred to as limited-memory BFGS, or L-BFGS. Because these updates
are low-rank, the matrix 𝐵𝑘+1 can be compactly represented as 𝐵𝑘+1 = 𝐵0 + 𝛹𝑘𝑀𝑘𝛹𝑇

𝑘 , for some
𝛹𝑘 ∈ ℜ𝑛×2(𝑘+1) and 𝑀𝑘 ∈ ℜ2(𝑘+1)×2(𝑘+1). In particular,

𝛹𝑘 = [𝐵0𝑆𝑘 𝑌𝑘] and 𝑀𝑘 = − [𝑆𝑇
𝑘 𝐵0𝑆𝑘 𝐿𝑘
𝐿𝑇

𝑘 −𝐷𝑘
]

−1

,

where 𝑆𝑘 = [ 𝑠0 𝑠1 𝑠2 ⋯ 𝑠𝑘 ] ∈ ℜ𝑛×(𝑘+1), and 𝑌𝑘 = [ 𝑦0 𝑦1 𝑦2 ⋯ 𝑦𝑘 ] ∈ ℜ𝑛×(𝑘+1), and 𝐿𝑘 is
the strictly lower triangular part and 𝐷𝑘 is the diagonal part of the matrix 𝑆𝑇

𝑘 𝑌𝑘 ∈ ℜ(𝑘+1)×(𝑘+1), i.e.,
𝑆𝑇

𝑘 𝑌𝑘 = 𝐿𝑘 + 𝐷𝑘 + 𝑈𝑘, where 𝑈𝑘 is a strictly upper triangular matrix (see [6] for details).
Given the compact representation of 𝐵𝑘+1, then both the line search problem (5.4) and

the trust-region subproblem (5.7) can be efficiently solved when the L-BFGS matrix is
used as the Hessian approximation. In particular, the solution to (5.3) is given by 𝑝∗

𝑘 =
− 1

𝛾 [𝐼 − 𝛹𝑘(𝛾𝑀−1
𝑘 + 𝛹𝑇

𝑘 𝛹𝑘)−1𝛹𝑇
𝑘 ] 𝑔𝑘, using the well-known Sherman-Morrison-Woodbury

formula. Similarly, the solution to the trust-region subproblem is obtained efficiently. First, the QR
factorization of 𝛹𝑘 = 𝑄𝑅 is formed. Then the eigendecomposition of the 2(𝑘 + 1) × 2(𝑘 + 1) matrix
𝑅𝑀𝑘𝑅𝑇 = 𝑉𝛬𝑉𝑇 is computed so that the partial eigendecomposition of 𝐵𝑘+1 = 𝛾𝐼 + 𝑄𝑉𝛬𝑉𝑇𝑄𝑇 is
obtained. This allows for a change in variables in (5.7) that yields a closed form expression for the
solution 𝑝∗

𝑘 (see Algorithm 1 in [1] for details).

5.2.3 Numerical Experiments
In this section we compare the line search L-BFGS optimization method with our proposed

Trust-Region Minimization Algorithm for Training Responses (TRMinATR). The goal of the
experiment is to perform the optimization necessary for neural network training. Both methods
are implemented to train the LeNet-5 architecture with the purpose of image classification of the
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Table 5.1: Structure of the LeNet5 convolutional neural network trained on the MNIST dataset.

LeNet-5
Layer NVIDIAConnectivity

0: input 28 × 28 image
1 convolutional, 20 5 × 5 filters (stride=1),

total 11520 neurons, followed by ReLU
2 max pool, 2 × 2 window (stride=2),

total 2280 neurons
3 convolutional, 50 5 × 5 filters (stride=1),

total 3200 neurons, followed by ReLU
4 max pool, 2 × 2 window (stride=2),

total 800 neurons
5 fully connected, 500 neurons without dropout

followed by ReLU
6: output fully connected, 10 neurons without dropout

followed by softmax
total of 431080 trainable parameters

MNIST dataset. All simulations were performed on an AWS EC2 p2.xlarge instance with 1 Tesla
K80 GPU, 64 GiB memory, and 4 Intel 2.7 GHz Broadwell processors. For the scalars 𝑐1 and 𝑐2 in
the Wolfe line search condition, we used the typical values of 𝑐1 = 10−4 and 𝑐2 = 0.9 [23].

LeNet-5

The convolutional neural network known as LeNet-5 was mainly used for character
recognition tasks such as reading zip codes and digits [16]. The architecture is given in Table 5.1.
The convolutional layers extract features from the input image and preserve spatial relationships
between pixels using the learned information.

MNIST Dataset

The convolutional neural network was trained and tested using the MNIST Dataset [17].
The dataset consists of 70,000 examples of handwritten digits with 60,000 examples used as a
training set and 10,000 examples used as a test set. The digits range from 0 - 9 and their sizes
have been normalized to 28x28 pixel images. The images include labels describing their intended
classification.

5.2.4 Results
The line search algorithm and TRMinATR perform comparably in terms of loss and accuracy.

This remains consistent with different choices of the memory parameter 𝑚 (see Fig. 5.4). The
more interesting comparison is that of the training accuracy and the test accuracy, the two metrics
follow each other closely. This is unlike the typical results using common gradient descent based
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Figure 5.3: We compare the loop time for 200 iterations of the line-search and trust-region
quasi-Newton algorithms for different batch sizes. As the number of multi batches increase, the
size of each batch decreases. Both methods were tested using different values of the memory
parameter 𝑚.

optimization. Typically the test accuracy is delayed in achieving the same results as the train
accuracy. This would suggest that the model has a better chance of being generalized beyond the
training data.

We also report that the TRMinATR significantly improves on the computational efficiency of
the line-search method when using larger batch sizes. This could be the result of the line-search
method’s need to satisfy certain wolfe conditions at each iteration. There is also an associated
computational cost when verifying that the conditions for sufficient decrease are being met. When
the batch size decreases, the trust-region method continues to outperform the line-search method.
This is especially true when less information is used in the Hessian approximation (see Fig. 5.3).

5.2.5 Conclusion
In this work we presented the limited memory quasi-Newton method known as L-BFGS as

an alternative to the gradient descent methods used to train deep neural networks. In particular
we develop the algorithm known as TRMinATR which minimizes the cost function of the neural
network by efficiently solving a sequence of trust-region subproblems using low-rank Hessian
approximations. The benefit of the method is that the algorithm is free from the constraints of
data specific parameters seen in traditionally used methods. TRMinATR also improves on the
computational efficiency of a similar line search implementation.

5.3 Second-Order Trust-Region Method
In section 5.2 we presented an algorithm which addressed the need to solve the optimization

problem presented in (5.1). The problem is motivated by the need to minimize the cost function
during training of the neural network. The algorithm extended beyond the typically used gradient
descent method and approximated second derivative information in order to improve the quality
of the decent direction. In this work, based on the paper by Ranganath, DeGuchy, Marcia, and
Singhal [28], we provide a solution to the aforementioned problem by exploiting second-derivative
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Figure 5.4: The behavior of the loss and accuracy for the training and test sets. (a) Training and
testing using the full training set as a batch size. (b) Training using batch sizes that are half of the
size of the full set. Results are shown using typical memory settings (𝑚 = 15 and 𝑚 = 20) in an
L-BFGS setting.

information to improve the predictive capabilities of artificial neural networks for data-hungry
inference. The novelty in our method combines the efficient computation of a true Hessian-vector
product and a trust region setting, thus allowing us to solve the trust-region subproblem using a
conjugate based method.

5.3.1 Related Methods
Quasi-Newton Methods

As stated before, quasi-Newton methods have been explored as a possible alternative to
gradient descent based algorithms for training neural networks [3, 7, 9, 15]. In section 5.2
we presented an algorithm using the L-BFGS in a trust-region setting. Although they are an
improvement on traditional gradient-descent methods, quasi-Newton methods are still only
approximations of the second derivative; as such they are beholden to certain complications.
The L-BFGS method makes the assumption that the underlying Hessian is always positive
definite, which given the non-convexity of the objective function, we know is not always the
case [35]. Recently the SR-1 update has been shown to provide more accurate representations of
second derivative information in a machine learning context [11]. In either case, the methods are
still limited by the amount of data in the training set, particularly in a stochastic setting. Finite
difference approximations have also been proposed as a way to approximate second derivative
information, but these methods have undesirable qualities in that they can be unstable and still
require special attention when the Hessian approximation is not positive definite [20].
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Figure 5.5: Illustration of the CG-Steihaug approach in two dimensions. (a) When Q𝑘(𝑝) is convex
and its unconstrained minimizer lies within the trust-region radius, then the CG iterates will
converge to the unconstrained minimizer. (b) When Q𝑘(𝑝) is convex but its unconstrained
minimizer is outside the trust region, then the minimizer 𝑝𝑘 is defined where the CG iterate crosses
the boundary. (c) When Q𝑘(𝑝) is not convex, i.e., 𝐻𝑘 is not positive definite, then the CG-Steihaug
method terminates when a direction of curvature is detected and the minimizer 𝑝𝑘 is defined where
Q𝑘(𝑝) is minimized along the last computed CG iterate.

Hessian-Free Methods

Like quasi-Newton methods, Hessian-free methods look to improve on gradient descent-based
algorithms by capitalizing on approximations of second-derivative information or in some cases
using the true Hessian itself. In either regime, the explicit storage of the associated matrix can be
quite expensive when considering the large-scale optimization problem associated with training a
neural network. In order to minimize this cost, Hessian-free methods focus on the matrix vector
product of the Hessian or Hessian approximation (𝐻) and an 𝑛-dimensional vector (𝑑). In [20], the
Hessian-free optimization method is implemented using the finite difference approximation of the
matrix vector product:

𝐻𝑑 = lim
𝜖→0

∇𝑓 (𝑥 + 𝜖𝑑) − ∇𝑓 (𝑥)
𝜖 , (5.10)

where the operation is used in a conjugate gradient (CG) setting in order to provide the descent
direction to the next iterate. The method presented in [25] improves on the finite difference
approximation and computes the actual Hessian vector product as

𝐻𝑑 = 𝜕
𝜕𝜖∇𝑓 (𝑥 + 𝜖𝑑)∣

𝜖=0
. (5.11)

To calculate 𝐻𝑑 for a simple backpropagation network, see [33, 21], and for recurrent
backpropagation networks, see [26, 2].

One requirement when using either operation in the context of typical CG methods is that 𝐻
be positive definite. This is a requirement to ensure that the CG method or any linesearch methods
result in a descent direction. As they are stated, the matrix-vector products in (5.10) and (5.11) do
not provide any guarantees that the matrix 𝐻 is positive definite. One commonly used technique
to guarantee to avoid the problems associated with an indefinite matrix is to shift or “dampen” the
eigenvalues of 𝐻 as 𝐵 = 𝐻 + 𝜆𝐼, where 𝜆 ≥ 0. The Hessian-vector product is now expressed as
𝐵𝑑 = 𝐻𝑑 + 𝜆𝑑, where 𝐻𝑑 is evaluated using the previously described techniques.
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Gauss-Newton approximations have also been proposed as an alternative to the previous
two methods. The Gauss-Newton approximation, 𝐺, also known as the squared Jacobian, is an
outer product of the Hessian, typically used in least-squares problems. In [30], they extend the
approximation for use with a cross-entropy loss using a similar framework to that presented in [25].
The author notes that as long as 𝐺 is positive semi-definite, descent is guaranteed, but to overcome
the possibility of indefiniteness, a similar dampening approach must be taken. In later sections, we
will make use of Pearlmutter’s method while relaxing the requirement that the Hessian be positive
definite.

5.3.2 Proposed Approach
The proposed method presents a novel optimization routine designed to minimize the loss

function. Unlike the previous methods described, the goal is computing fast Hessian-vector
products within a trust-region setting. This allows us to approximately solve the trust-region
subproblem using CG while allowing for negative curvature. By incorporating second-derivative
information, we improve the impact of each iteration and avoid certain local minima and saddle
points. The increase in the quality of the optimization routine will increase the value of each
data point and allow us to reach better optima with fewer training instances. In the following
subsections we describe the proposed approach in more detail.

Fast Exact Hessian-Vector Products

As stated in the previous section, computing the second-derivative or Hessian can be
computationally intensive. Furthermore, in the context of neural networks, storing the Hessian can
be infeasible. Using exact second derivative information allows us to create an accurate localized
model of the true objective function which is used in the trust-region setting described in the next
section. At the same time we require this information to be available for use in the CG method
outlined later in this section. In both cases, a Hessian-vector multiplication is required, and so we
chose to use Pearlmutter’s algorithm, commonly referred to as Rop [25]. While we are not the first
to use Rop in a CG setting, our approach is novel in that we no longer require dampening of the
Hessian to guarantee positive definiteness.

The motivation for avoiding damped Hessian approximations comes in two parts. The first is
that it requires the choice of another hyperparameter, 𝜆. The choice of 𝜆 can greatly affect the
convergence of the optimization routine and should be chosen for each update of the Hessian
vector product. The second motivation is that the perturbation to the true Hessian imposed by 𝜆
results in an approximation of the second derivative and thus less accurate curvature information.
The proposed algorithm relaxes the requirement of the Hessian to be positive-definite and
compensates for the possibility of negative curvature by using a trust-region setting.

Trust-Region Subproblem

Trust-region methods are alternative approaches to line-search methods for solving
optimization problems. While line-search methods first compute a search direction and then
determine a step length along that direction at each iteration, trust-region methods determine
a quadratic model to the true objective function and a corresponding region over which the
quadratic model can be trusted to be accurate. Specifically, trust-region methods solve a sequence
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Algorithm 7 CG-Steihaug
Given: Tolerance 𝜖𝑘 > 0
Set: 𝑝0 = 0, 𝑟0 = 𝑔𝑘, 𝑑0 = −𝑟0 = −𝑔𝑘
if ∥𝑟0∥2 < 𝜖𝑘 then

return 𝑝𝑘 = 𝑧0 = 0
end if
for 𝑗 ∈ 0,1,2,3,4.. do

if 𝑑⊤
𝑗 𝐻𝑘𝑑𝑗 ≤ 0 then
Find 𝜏 such that 𝑝𝑘 = 𝑧𝑗 + 𝜏𝑑𝑗 minimizes

Q𝑘(𝑝) in (5.12) with ‖𝑝𝑘‖2 = 𝛥𝑘
return 𝑝𝑘

end if
Set 𝛼𝑗 = 𝑟⊤

𝑗 𝑟𝑗/ 𝑑⊤
𝑗 𝐻𝑘𝑑𝑗

Set 𝑧𝑗+1 = 𝑧𝑗 + 𝛼𝑗𝑑𝑗
if ∥𝑧𝑗+1∥ ≥ 𝛥𝑘 then

Find 𝜏 ≥ 0 such that 𝑝𝑘 = 𝑧𝑗 + 𝜏𝑑𝑗 satisfies
∥𝑝𝑘∥2 = 𝛥𝑘

return 𝑝𝑘
end if
Set 𝑟𝑗+1 = 𝑟𝑗 + 𝛼𝑗𝐻𝑘𝑑𝑗
if ∥𝑟𝑗+1∥2 < 𝜖𝑘 then

return 𝑝𝑘 = 𝑧𝑗+1
end if
Set 𝛽𝑗+1 = 𝑟⊤

𝑗+1𝑟𝑗+1/𝑟⊤
𝑗 𝑟𝑗

Set 𝑑𝑗+1 = −𝑟𝑗+1 + 𝛽𝑗+1𝑑𝑗
end for

of quadratic subproblems with a single constraint of the following form:

𝑝𝑘 = arg min
𝑝∈ℜ𝑚

Q𝑘(𝑝) ≡ 𝑔⊤
𝑘𝑝 + 1

2𝑝⊤𝐻𝑘𝑝 (5.12)

subject to ‖𝑝‖2 ≤ 𝛥𝑘

where 𝑔𝑘 = ∇𝑓 (𝑤𝑘) is the gradient of 𝑓 at the current iterate 𝑤𝑘, 𝐻𝑘 = ∇2𝑓 (𝑤𝑘) is the Hessian of 𝑓
(or an approximation), and 𝛥𝑘 is a scalar parameter referred to as the trust-region radius.

Conjugate Gradient (CG)-Steihaug Approach

The final component of the algorithm facilitates solving the trust-region subproblem in
(5.12) in order to provide the directional step 𝑝𝑘 to the next iteration. In a similar approach to
[20] we use a conjugate gradient method in concert with the fast exact Hessian-vector product in
(5.11). Our algorithm uses a modified CG method known as the CG-Steihaug approach [24], or
as the Steihaug-Toint truncated conjugate gradient method [8], which is outlined in Algorithm
1. Typically used to solve linear systems, CG requires that the system matrix be positive definite.
Steihaug’s implementation uses a predefined trust region as a means to accommodate non positive
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definiteness of the Hessian. If the minimizer lies within the trust-region radius, then the CG
iterates converge to the unconstrained minimizer. If the minimizer is outside of the trust region,
then the minimizer is located at the point where the iterate crosses the boundary. Finally, if the
Hessian is not positive definite, then CG-Steihaug terminates the algorithm and the minimizer
is detected at the boundary of the trust region in the direction of the last computed CG iterate
(see Fig. 5.5). Once again it is important to re-iterate that the proposed method does not require
the Hessian to be positive definite. We can therefore use the exact Hessian and no longer have to
choose the dampening scalar 𝜆. As a result, the method allows directions of negative curvature
to be detected and used to avoid saddle points. We note that the final iterate 𝑝𝑘 in Algorithm 1
satisfies the following decrease in the quadratic model:

Q𝑘(0) − Q𝑘(𝑝𝑘) ≥ 𝑐1‖𝑔𝑘‖2 min (𝛥𝑘, ‖𝑔𝑘‖2
‖𝐻𝑘‖2

) , (5.13)

where 𝑐1 is a constant with 𝑐1 ∈ (0, 1]. Also, we note that the direction 𝑝𝑘 satisfies the trust-region
constraint, i.e.,

‖𝑝𝑘‖2 ≤ 𝛥𝑘, (5.14)

which will be used for convergence results.

Summary of Proposed Approach

In summary the proposed approach has three major components: We use (1) a trust-region
method (outlined in Algorithm 2), which allows for indefinite Hessians and Hessian
approximations and defines iterates that avoid saddle points; (2) a fast and exact Hessian-vector
product which efficiently provides true second-derivative information at the current iterate (cf.
(5.11)); and (3) the CG-Steihaug approach, which solves the trust-region subproblem without
storing the Hessian matrix. In order to guarantee that the search direction provided by the
CG-Steihaug method sufficiently decreases the value of the quadratic subproblem, we implement
a Wolfe line search in the direction of 𝑝𝑘 [24]. Furthermore, we evaluate the accuracy of the
quadratic model of the objective function within the trust region using the Levenberg-Marquardt
ratio to determine whether the update is acceptable or not. The trust region is then relaxed if the
step is acceptable and constricted if the step is not acceptable. The result is an algorithm that
considers second derivative information and allows for the possibility of negative curvature. As
such, the impact of each iteration is more valuable when compared to those of first-order methods.

We conclude with the following convergence guarantee, which can be found in [24]. We
first define the level set 𝑆 = {𝑤∶ 𝑓 (𝑤) ≤ 𝑓 (𝑤0)}, where 𝑤0 is the initial point, and an open
neighborhood of 𝑆 by 𝑆(𝑅0) = {𝑤∶ ‖𝑤 − 𝑦‖ < 𝑅0 for some 𝑦 ∈ 𝑆}, where 𝑅0 is a positive constant.
Then we have the following result.

Theorem. Let 𝜂 = 0 in Algorithm 2. Suppose that ‖𝐻𝑘‖ ≤ 𝛽 for some constant 𝛽 > 0,
that 𝑓 (𝑤) is bounded below on the level set 𝑆 and Lipschitz continuously differentiable in the
neighborhood 𝑆(𝑅0) for some 𝑅0 > 0, and that all solutions 𝑝𝑘 of (5.12) satisify (5.13) and (5.14).
Then we have

lim inf
𝑘→∞

‖𝑔𝑘‖2 = 0.

For proof, see Theorem 4.5 in [24].
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Algorithm 8 Proposed second-order trust-region method

Given: For some 𝛥max > 0, 𝛥0 ∈ (0, 𝛥max), 𝜂 ∈ [0, 1
4), 𝜖 > 0

while ‖∇𝑓 (𝑤𝑘)‖2 > 𝜖 do
Obtain 𝑝𝑘 from CG-Steihaug
Perform line search using Wolfe conditions
Evaluate the Levenberg-Marquardt ratio given by

𝜌𝑘 = (𝑓 (𝑤𝑘) − 𝑓 (𝑤𝑘+1))/(Q𝑘(0) − Q𝑘(𝑝𝑘))
if 𝜌𝑘 < 1

4 then
𝛥𝑘+1 = 1

4𝛥𝑘
else if 𝜌𝑘 > 3

4 and ∥𝑝𝑘∥2 = 𝛥𝑘 then
𝛥𝑘+1 = min(2𝛥𝑘, 𝛥max)

else
𝛥𝑘+1 = 𝛥𝑘

end if
if 𝜌 > 𝜂: then

𝑤𝑘+1 = 𝑤𝑘 + 𝑝𝑘
else

𝑤𝑘+1 = 𝑤𝑘
end if

end while

5.3.3 Experimental Setup
In order to validate the effectiveness of the proposed algorithm, we implemented the

optimization routine with the intent to train a neural network to perform a well established
classification task. However, we imposed a limitation on the amount of data available for training
in order to simulate data-starvation. The following section provides the guidelines under which we
performed the associated experiments.

Neural Network Architecture

In each of these experiments, we use a Multi-Layer Perceptron (MLP). MLPs are a class of
feed-forward artificial neural networks with the ability to separate data with a non-linear decision
boundary [13].

The MLP used for experimentation was implemented using the deep learning package Theano
and consisted of three layers of nodes/neurons. The input layer consisted of the vectorized version
of the input image (784 nodes), where each node corresponds to each pixel in the sample image.
The hidden layer contained 500 neurons and was followed by the non-linear hyperbolic tangent
function (tanh) used as a non-linear activation on the output of the layer. Finally, the output layer
consisted of 10 neurons corresponding to the 10 classes present in the the dataset. This layer
was also followed by the same activation function as the previous layer. Finally, the softmax
activation function was applied to the output of the neural network in order to provide a probability
distribution of the possible classes. The probability distribution was compared to the true one-hot
encoding of the target class using a cross entropy loss function. The architecture was kept simple
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Figure 5.6: The architecture used to test the proposed method. First, the MNIST image is reshaped
into a vector of 782 × 1. The hidden layer consists of 500 neurons and the output consists of a layer
of 10 neurons.

to demonstrate the effectiveness of the optimization method on the intended task rather than the
complexity of the MLP (see Fig. 5.6).

Dataset

The dataset used for these experiments is known as the MNIST dataset, which consists of
rasterized 28 × 28 pixel images of handwritten digits from 0-9 (10 classes). The collection of
images is partitioned in a training set of 60,000 images and a test set of 10,000 images. It is a
subset of a larger set available from NIST [18].

Hardware

Experiments were carried out on GPUs housed in a high-performance cluster. The cluster
consists of 95 computer nodes with a total of 2116 cores and 2301 Mhz processing power. The
GPUs include 4 NVIDIA Tesla K20 graphics cards and 2 Nvidia p100s with a total operating
capacity of 62 TFLOPS.

Testing Procedure

The goal of our experiments is to show that the proposed approach can improve on SGD
when training a neural network with limited data. The 70,000 images in the MNIST dataset
were partitioned in the following manner: 50,000 images in the training set, 10,000 images in the
validation set and 10,000 images in the testing set. From the training set, we randomly sampled
subsets with sizes of 20, 100, 500, 1000 and 10,000 images. When implementing our algorithm,
the entire subset is used in a single batch over a single epoch. The algorithm terminates when
the norm of the gradient of the objective function reaches a sufficient tolerance (in our case, this
was set to 10−5). When using SGD, we approached training using the standard practice of using
minibatches. We chose a minibatch size of 20 images for all data subsets and tried various run
times for the algorithm.
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Figure 5.7: A comparison of our method to Stocastic Gradient Descent (SGD) with limited
datasets. Here we report the accuracy error for datasets of 20, 100, 500, 1000 and 10000 images.
Results are also shown for various numbers of epochs. The proposed approach was only trained for
1 epoch while SGD was allowed to run for 1 epoch, 100 epochs, 1500 epochs and what is referred
to as SGD Max. SGD Max refers to the number of epochs of SGD allowed to run within the time
our proposed method runs 1 epoch.

5.3.4 Results
Fig. 5.7 displays the results of our experiments. It is clear that when compared to SGD for

various training times and various dataset sizes, the proposed method improves on the accuracy
of the classification task. In particular, after a single pass (1 epoch) through the available data the
proposed method is almost twice as accurate as SGD. This confirms the notion that the iterations
of the proposed method have a greater impact than that of the first order method. As we continued
to allow the network to train we can see that after almost 1500 epochs of SGD (which may be
considered overtraining) we do not see a great improvement in the level of accuracy. In fact,
we even allowed the SGD algorithm to run in the same GPU time as our method, we still
improve on the performance of SGD. The results in Table 1 show that the improvement on
SGD in the case of a 20 image dataset is less than 2%. It appears that in this case 20 images
might approach the lower limit on the minimum size of the data set you need in order for the
network to learn. We can see that as we increase the number of images in the dataset, SGD still
underperforms in comparison to our method.

5.3.5 Conclusion
In this work we propose a novel algorithm for training neural networks using second order

information for data-hungry inference. In particular, our algorithm improves on first order methods
by allowing the use of curvature information in order to improve the quality of each iteration in the
optimization method. This is accomplished by using a fast exact Hessian operation, which allows
us to efficiently compute matrix-vector multiplication with the exact second derivative matrix.
Unlike previous algorithms that have used this type of algorithm in a conjugate gradient setting,
by using the CG-Steihaug approach in a trust-region setting it allows us to relax the requirement
that the Hessian be positive definite. This allows the algorithm to consider negative curvature
information and avoid saddle points. We proved and provided numerical results in a standard
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Percent Error
Dataset SGD SGD SGD SGD Proposed

size 1 epoch 100 epochs 1500 epochs Max Method
20 79.39 58.45 44.45 44.01 43.68
100 69.49 33.50 32.17 32.12 25.58
500 41.10 16.70 16.23 16.23 14.23
1000 31.98 13.01 13.71 13.57 11.64
10000 16.35 6.57 4.21 3.97 3.38

Table 5.2: Error table corresponding to the testing error/loss of the neural network for our
proposed method in comparison to SGD over various epochs and for different dataset sizes. For
our proposed method, the dataset is fed as a batch to the network. For SGD, the data are fed in
minibatches of 20 images. SGD Max corresponds to SGD trained over the same GPU run time as
our proposed algorithm.

implementation of an MLP classification problem where the training dataset was limited. In
all cases, the proposed method improved on a standard implementation of Stochastic Gradient
Descent trained over various epochs.

5.4 Summary of Contribution
In this chapter we focused on the extension of optimization methods for training neural

networks beyond gradient descent methods. We proposed two new algorithms incorporating
curvature information about the objective function being minimized: (1) A Quasi-Newton
method where we approximate second derivative information using using the gradient within
a trust-region method. The trust region method improves our approximation of the objective
function and promotes generality of the network to data outside of the training set, (2) a method
which incorporates second derivative information without explicitly storing or computing the
hessian. This was also presented in a trust-region setting where the associated subproblem was
solved using a conjugate based method. The benefit of the method is that the quality of the
optimization is improved and requires less iterations and less data to train the neural network.



Bibliography

[1] L. Adhikari et al. “Limited-memory trust-region methods for sparse relaxation”.
Proc.SPIE. Vol. 10394. 2017, pp. 10394 - 10394 - 8. doi: 10.1117/12.2271369.
url: https://doi.org/10.1117/12.2271369.

[2] L. B. Almeida. “A learning rule for asynchronous perceptrons with feedback in a
combinatorial environment”. Artificial neural networks: concept learning. IEEE
Press, 1990, pp. 102–111.

[3] L. Bottou, F. Curtis, and J. Nocedal. “Optimization Methods for Large-Scale
Machine Learning”. SIAM Review 60.2 (2018), pp. 223–311. doi:
10.1137/16M1080173.

[4] L. Bottou. “Large-scale machine learning with stochastic gradient descent”.
Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[5] L. Bottou and O. Bousquet. “The tradeoffs of large scale learning”. Advances in
neural information processing systems. 2008, pp. 161–168.

[6] R. H. Byrd, J. Nocedal, and R. B. Schnabel. “Representations of quasi-Newton
matrices and their use in limited-memory methods”. Math. Program. 63 (1994),
pp. 129–156.

[7] R. H. Byrd et al. “A stochastic quasi-Newton method for large-scale optimization”.
SIAM Journal on Optimization 26.2 (2016), pp. 1008–1031.

[8] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust-Region Methods. Philadelphia,
PA: Society for Industrial and Applied Mathematics (SIAM), 2000, pp. xx+959.
isbn: 0-89871-460-5.

[9] F. Curtis. “A Self-Correcting Variable-Metric Algorithm for Stochastic
Optimization”. Proceedings of The 33rd International Conference on Machine
Learning. 2016, pp. 632–641.

[10] J. Duchi, E. Hazan, and Y. Singer. “Adaptive subgradient methods for online
learning and stochastic optimization”. Journal of machine learning research
12.Jul (2011), pp. 2121–2159.

[11] J. B. Erway et al. “Trust-region algorithms for training responses: machine
learning methods using indefinite Hessian approximations”. Optimization
Methods and Software 0.0 (2019), pp. 1–28. doi:
10.1080/10556788.2019.1624747.

90

https://doi.org/10.1117/12.2271369
https://doi.org/10.1117/12.2271369
https://doi.org/10.1137/16M1080173
https://doi.org/10.1080/10556788.2019.1624747


91

[12] D. M. Gay. “Computing optimal locally constrained steps”. SIAM Journal on
Scientific and Statistical Computing 2.2 (1981), pp. 186–197.

[13] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT press
Cambridge, 2016.

[14] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”. arXiv
preprint arXiv:1412.6980 (2014).

[15] Q. V. Le et al. “On optimization methods for deep learning”. Proceedings of the
28th International Conference on International Conference on Machine Learning.
Omnipress. 2011, pp. 265–272.

[16] Y. LeCun et al. “LeNet-5, convolutional neural networks”. URL: http://yann.
lecun. com/exdb/lenet (2015), p. 20.

[17] Y. LeCun. “The MNIST database of handwritten digits”. http://yann. lecun.
com/exdb/mnist/ (1998).

[18] Y. LeCun, C. Cortes, and C. Burges. “MNIST handwritten digit database”. AT&T
Labs [Online]. Available: http://yann. lecun. com/exdb/mnist 2 (2010), p. 18.

[19] D. C. Liu and J. Nocedal. “On the limited memory BFGS method for large scale
optimization”. Math. Program. 45 (1989), pp. 503–528.

[20] J. Martens. “Deep learning via Hessian-free optimization.” ICML. Vol. 27. 2010,
pp. 735–742.

[21] M. F. Møller. “Exact calculation of the product of the hessian matrix of
feed-forward network error functions and a vector in 𝑂(𝑛) time”. DAIMI Report
Series 432 (1993).

[22] J. J. Moré and D. C. Sorensen. “Computing a trust region step”. SIAM Journal on
Scientific and Statistical Computing 4.3 (1983), pp. 553–572.

[23] J. Nocedal and S. J. Wright. Numerical Optimization. 2nd. New York: Springer,
2006.

[24] J. Nocedal and S. Wright. Numerical Optimization. Springer Science & Business
Media, 2006.

[25] B. A. Pearlmutter. “Fast exact multiplication by the Hessian”. Neural computation
6.1 (1994), pp. 147–160.

[26] F. J. Pineda. “Generalization of back-propagation to recurrent neural networks”.
Physical Review Letters 59.19 (1987), p. 2229.

[27] J. Rafati, O. DeGuchy, and R. F. Marcia. “Trust-Region Minimization Algorithm
for Training Responses (TRMinATR): The Rise of Machine Learning
Techniques”. 2018 26th European Signal Processing Conference (EUSIPCO).
IEEE. 2018, pp. 2015–2019.

[28] A. Ranganath et al. “Second-Order Helping: A Hessian-Free Approach for
Data-Hungry Inference”. Submitted (2020).



92

[29] B. Recht et al. “Hogwild: A lock-free approach to parallelizing stochastic gradient
descent”. Advances in neural information processing systems. 2011, pp. 693–701.

[30] N. N. Schraudolph. “Fast curvature matrix-vector products for second-order
gradient descent”. Neural computation 14.7 (2002), pp. 1723–1738.

[31] I. Sutskever et al. “On the importance of initialization and momentum in deep
learning”. International conference on machine learning. 2013, pp. 1139–1147.

[32] T. Tieleman and G. Hinton. “Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude”. COURSERA: Neural networks for
machine learning 4.2 (2012), pp. 26–31.

[33] P. Werbos. “Backpropagation: Past and future”. Proceedings of the Second
International Conference on Neural Network. Vol. 1. IEEE. 1988, pp. 343–353.

[34] T. Zhang. “Solving large scale linear prediction problems using stochastic
gradient descent algorithms”. Proceedings of the twenty-first international
conference on Machine learning. ACM. 2004, p. 116.

[35] C. Zhu et al. “Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale
bound-constrained optimization”. ACM Transactions on Mathematical Software
(TOMS) 23.4 (1997), pp. 550–560.



Chapter 6

Applications in Deep Learning

In this Chapter, we use the ideas presented in Chapter 4 in order to create deep neural
networks for signal recovery in a variety of applications. We revisit an application explored in
Chapter 3 in the context of using neural networks as opposed to classical optimization techniques.
We also include models which solve problems in blind source separation, remote sensing and
genomics. The common characteristic in all of these applications is that we are interested in
recovering signals using neural networks.

6.1 Deep Neural Networks for Low-Resolution
Photon-Limited Imaging

In this section we revisit the photon-limited problem presented in chapter 3. Under the
process of photon-limited imaging, we seek to reconstruct signals from noisy low-dimensional
observations. These signals – often sparse in some basis – allows for the use of penalty based
algorithms to promote sparsity in its reconstruction [37, 64]. The key characteristic of this
modality is that the observations contain low photon or light levels. This type of imaging
process is typically found in applications such as medical imaging and night vision where
measurements at the photon detector are corrupted by Poisson noise and thus modeled using
the Poisson distribution [87]. Previous methods for solving the signal reconstruction problem
include its reformulation into an optimization problem and use iterative methods in order to
arrive at a solution [42, 38, 43, 49, 2, 13]. Deep neural network architectures have been used to
effectively extract features from similar signals through the use of autoencoders and convolutional
neural networks (CNN) [krizhevsky2012imagenet, 92, 85]. In this work, based on the paper by
DeGuchy, Santiago, Banuelos and Marcia [36], we explore the use of various architectures in deep
learning techniques as applied to the area of compressed sensing and establish their effectiveness
in the field of photon-limited imaging.

6.1.1 Problem Formulation
In the context of photon limited imaging, the arrival of photons at the detector are modeled by

the following inhomogeneous Poisson process

y ∼ Poisson(Af∗),
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where y ∈ ℤ𝑚
+ is the observation vector whose entries consists of photon counts, f∗ ∈ ℝ𝑛

+ is the
true signal and A𝑚×𝑛

+ is the system matrix projecting the true signal to the observation space with
𝑚 ≪ 𝑛. Our interest is in recovering the higher dimensional signal f∗ given the lower dimensional
observation vector y. Existing recovery methods use the maximum likelihood principle to
maximize the probability of observing the vector y. Furthermore, under the assumption that f∗

is sparse, a sparsity promoting penalty term is incorporated in the reconstruction ̂f. These iterative
algorithms require tuning parameters associated with the choice and enforcement of penalties and
also require a substantial number of iterations to recover the signal [48, 66, 11].

We seek to avoid the complications associated with the current iterative optimization methods
by solving the sparsity-promoting Poisson reconstruction problem using a variety of deep learning
architectures. We accomplish this by training neural networks to process the low dimensional
input y and provide a reconstruction of the true signal f∗. Recently, deep learning techniques have
been implemented separately for image reconstruction from downsampled observations and for
Poisson denoising problems [75, 74, 81]. The novelty of the proposed architecture is that it solves
both problems simultaneously as is required in many photon-limited applications.

6.1.2 Deep Learning Architectures
We propose three different neural network configurations with the purpose of recovering data

from noisy low dimensional observations. One architecture employs the use of a convolution
neural network (CNN) while the other two take advantage of the structure of autoencoders. As is
common in these types of networks, all three implementations were trained using backpropagation
and the mean squared error (MSE) was used as a loss function.

Poisson Inverting ConvolutionS (PICS)

The first implementation is a CNN based on the neural network known as DeepInverse [74].
The DeepInverse architecture was not intended to denoise the signal, but rather recover signals
from compression. In [74] the disparity between the dimension of the observation and the true
signal is circumvented by the use of the proxy signal ̂𝑥 = A𝑇𝑦. The proxy is fed into the neural
network and padding is used to keep the signal dimension consistence throughout. Instead of
assuming explicit access to a measurement matrix, we added an extra fully connected layer in
place of the proxy signal. This transformation serves two purposes. First, it increases the size of
the observation vector y to the dimensions of the original signal. Secondly, it allows us to learn the
transformation to the compressed space. There are three primary layers to this CNN architecture.
The first consists of 64 filters of size 11 × 11 × 1 with the last dimension pertaining to the depth
of the filter . The next layer consists of 32 filters each with a dimension of 11 × 11 × 64. The final
layer consists of one 11 × 11 × 32 filter to output the original image. After each layer a ReLU
nonlinearity is applied to the output. The network was originally trained in the literature using
64×64 natural images and the preliminary results showed that this method was not accommodating
to our database. Alternatively, the structure was modified using 2 × 2 filters while the number
of filters was modified to reflect the scale of the input data and the required final output. This
resulted in a slightly different architecture that was allowed to scale with the size of the input
vector. Because these changes were not reflected in the literature, we will refer to the modified
network as Poisson Inverting ConvolutionS (PICS).
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Figure 6.1: Our proposed Poisson Autoencoder Inverting Network (PAIN). Each encoder and
decoder consists of two layers. This framework also incorporates the sigmoidal activation function
T = 1/(1 + 𝑒−𝑥).

Stacked Denoising Autoencoders (SDA)

The authors in [75] use stacked denoising autoencoders to learn and recover the structure of
sparse signals, again the intention of the method did not include a denoising component. This type
of architecture was introduced in [93] as a way to make the learning capabilities more robust by
introducing noise to the input before each autoencoding layer. The architecture involves stacking
a decoder before encoding and decoding once again to arrive at the dimension of the true signal.
Layers are differentiated by the dimensions of the weight matrix and bias vectors. After the
dimension has been increased or decreased, the sigmoid function is applied to the output. The
Stacked Denoising Autoencoder (SDA) structure implicitly resolves the increase in dimension
eliminating the need for modifications.

Poisson Autoencoder Inverting Network (PAIN)

The final architecture we propose in this work is Poisson Autoencoder Inverting Network
(PAIN). Similar networks have been effective in the application of image compression [8]. The
architecture is similar to SDA, the difference being that each decoding and encoding layer consists
of multiple layers. Under this structure, compression and decompression is done gradually. The
intuition is that the image must past through more layers and therefore the compression is refined
at each layer, making the encoding more impervious to noise. In order to adapt the architecture
to the sparse Poisson reconstruction problem, we required two modifications. The first change
involves initializing the weight matrix using a truncated normal distribution instead of random
samples from a normal distribution. The truncated normal initialization eliminates values more
than 2 standard deviations from the mean. This immediately improved the architecture’s ability to
denoise the given signal. The network also utilizes a single layer decoder to initialize the process.
The network starts with a layer that boosts the dimension of the observation to the dimension of
the true signal. The next layer is a double encoder that reduces the dimension of the true signal to
a length of 256 and then to the dimension of the observation. The dual layer decoder then brings
the dimension back to 256 and finally to the dimension of the true signal (see Fig. 6.1).
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Figure 6.2: The evolution of the MSE versus CPU runtime for PAIN (our proposed method, in
blue), PICS (in orange), and SDA (in green) on a log-log scale for the purpose of reconstructing
28 × 28 images from (a) 28 × 28, (b) 14 × 14, (c) 7 × 7, and (d) 4 × 4 Poisson realizations. All CPU
time is recorded in seconds.

6.1.3 Results
The proposed architectures PICS, PAIN and SDA were all implemented using the open source

machine learning language Tensorflow. Training and testing of the neural networks was performed
using a quad core Intel i7-6700 CPU on a local PC with 64 GB of ram. The networks were trained
using the stochastic gradient descent method known as RMSprop [82, 83].

MNIST Dataset

The MNIST data set first used in [65] was altered in order to create pairs of signals to fit the
Poisson model. The dataset consists of 70,000 28 × 28 images of handwritten numbers from 0-9
and their associated classification labels. From this dataset, 60,000 examples are used for training
and 10,000 examples are used for testing. The reconstruction problem does not make use of the
labels because we are not concerned with classification. For the purposes of this work, we consider
the original 28 × 28 image as the true signal f∗. The associated observation vectors are created by
taking the mean average of blocks of pixels, taking care that the size of the blocks reduce the size
of the image without the need for padding. We then impose Poisson noise on the downsampled
signal. Data sets were created by pairing true signals with observational signals of varying size.
Under this structure the neural network is expected to train on a set of noisy observations with a
fixed dimension (𝑛 × 𝑛 with 𝑛 ∈ {4, 7, 14, 28}) and reconstruct the full image (28 × 28).

Performance

The proposed architectures were able to perform suitable reconstructions of the test data sets.
Both the MSE and the CPU runtime were used to quantify the effectiveness of the architectures
during training (Fig. 6.2). Both PICS and PAIN achieved a lower MSE over the training sets than
the SDA architecture for observation vectors in all dimensions. Furthermore, PICS completed
10,000 iterations (10,000 iterations are reported since the MSE does not show significant
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Figure 6.3: Boxplots comparing mean squared error (MSE) computed using the MNIST validation
images (5,000) and their reconstructions for the three architectures proposed (SDA, PAIN, and
PICS). We observe that all three architectures behave similarly in terms of their MSE as the
amount of compression increases.

improvement after this number) in the same computational time required for 45,000 iterations
of PAIN and SDA. This is expected as PICS is a CNN and is therefore a more computationally
intensive process than the other two methods. Although the PICS architecture takes longer to
complete a given number of training iterations, it reaches a lower MSE faster than SDA or PAIN.
This can been seen in the restoration of 28 × 28 and 14 × 14 images. This shows that PICS is
learning at a faster rate, making each training step more valuable when compared to the other
architectures. While the CNN structure is initially more accurate than the autoencoder structures,
a decrease in input dimension results in competitive MSE from the less complex PAIN structure.
The output for a set of input digits is displayed in Fig. 6.9. As the amount of compression
increases, the quality of the reconstruction decreases for all three types of architecture. The PAIN
and PICS architectures clearly outperform the SDA when it comes to the 4 × 4 compression. The
surprising observation is that PAIN seems to have a higher intensity and smoothing effect when
it comes to recreating the initial image. This is counterintuitive considering that we expect higher
intensity from PICS since it uses the ReLU activation function.

The models were also tested on the 5,000 entries of the MNIST validation set. All MSE scores
comparing the original signal and the reconstructed signal were computed and the results are
presented in Fig. 6.3. We note that the MSE for all three architectures is skewed towards a lower
MSE value. Also, we observe that as the amount of compression increases, the SDA and PAIN
architectures become comparable to the more computationally intensive PICS architecture.
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Figure 6.4: The first row is comprised of 16 original MNIST images and their corresponding
downsampled Poisson realizations. Given these input images, we present the reconstructions using
Stacked Denoising Autoencoders (SDA), our proposed methods Poisson Autoencoder Inverting
Network (PAIN) and Poisson Inverting ConvolutionS (PICS) for each dimension of images.
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6.1.4 Conclusion
In this work we implemented three deep learning architectures to solve the Poisson inverse

problem. These neural networks have proven to be very effective in the reconstruction of images
under the same modality. The first two networks involved modified autoencoders, while the third
used a convolutional neural network. The results show that the stacked denoising autoencoder
did not perform as well as the PAIN and PICS networks during training using the Mean Squared
Error (MSE) as a performance metric. PAIN also has the benefit of being less computationally
intensive, which could suggest that it will scale better with larger image sizes. Furthermore, PAIN
has a smoothing characteristic in the reconstructions which is not reflected in the MSE. While the
image smoothing could negatively effect the MSE, this property could have advantages during
classification.

6.2 Image Disambiguation with Deep Neural Networks
Applications such as blind source separation [32] and multiplexed imaging [89] involve

measurement data that are composed of multiple signals that have been observed simultaneously
and combined at the detector stage. For example, in blind source separation settings, a microphone
might pick up several conversations concurrently, or perhaps there might be one predominant
signal mixed with ambient or latent sounds. In multiplexed imaging, optical systems might
utilize beam splitters and mirrors to superimpose different scene components onto a single
focal plane array (FPA). This type of architecture is particularly useful in settings where a wide
field-of-view is needed but the FPA size is limited. The main challenge in these applications is to
separate the combined measurements into distinct signals or perhaps simply isolate a particular
signal. These problems are highly underdetermined and ill-posed, and, as such, they require
sophisticated numerical methods. The methods we propose in this work use machine learning
techniques,specifically autoencoders, and is based on the paper by DeGuchy, Ho, and Marcia [35].

Related Methods

The blind source separation problem has been well studied [32] and has been analyzed from
a statistical perspective [16, 21]. Algorithms include leveraging sparse decomposition [100]
and on-line learning [5]. Multiplexed optical systems have been physically implemented [22,
91, 53, 84], and algorithms for multiplexed imaging include those that use nonnegative matrix
factorization [30] and those that exploit a priori knowledge about the multiplexed images, such
as sparse representation [18, 70]. In contrast, the approaches proposed in this work incorporate
existing datasets to train deep neural networks for disambiguating the superimposed images.

6.2.1 Methods
Neural Network Architecture

We propose the following neural network configuration for the purpose of recovering
two images from a mixed signal measurement. The architecture is based on the deep learning
building block known as an autoencoder [93]. In its simplest form, an autoencoder is composed
of two parts. The first is the encoder whose objective is to reduce the dimensionality of the
input by providing a latent space representation of the most pertinent information. The second
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(a) (b) (c) (d)

Figure 6.5: Image disambiguation setup. Two 28 × 28 pixel images (a) and (b) are randomly
chosen from the MNIST dataset. Images (a) and (b) are superimposed to yield measurement image
(c). Image (d) is the result of superimposing images (a) and (b) with image (b) at 25% intensity.

element, referred to as a decoder, is tasked with interpreting the resultant latent space variable
and ultimately recovering the original input [47]. In practice, more complex evolutions of the
autoencoder such as the variational autoencoder and stacked denoising autoencoders are typically
implemented [59, 92]. Beyond modifications of the overall structure of the autoencoder, there is
also a choice between the commonly used fully connected layer and the convolutional layer as
the basis of the encoder and decoder substructures [47, 71]. The method presented in this work
utilizes stacked denoising autoencoders composed of fully connected layers. The motivation for
this implementation is two fold. Stacked denoising autoencoders (SDAs) have been successfully
implemented in a variety of other image processing tasks [68, 75, 94, 96, 97]. As an extension
to their autoencoder ancestor, SDAs continually encode and decode the information until the
intended output is obtained. The intuition is that as they are forced to compress and decompress
the input, they become impervious to noise during the process (see Fig. 6.6). Our intent was
to take advantage of this property during the image extracting process, resulting in smoother,
noiseless reconstructions. Fully connected layers were chosen based on the configuration of the
problem. Because the goal of the application is multiple image extraction from a single source,
the architecture needs to be accommodating to an output of two images. Initially, convolutional
layers were tested with a single channel input image and a dual channel output tensor. The network
often returned the same image for both channels. As an alternative, the images were vectorized
necessitating the use of fully connected layers. This allowed the network to produce a single vector
containing both reconstructions.

Network Parameters

The network used in this work begins by reshaping the single channel 𝑛 × 𝑛 combined images
into the vector 𝑝 = [𝑝1 𝑝2 𝑝3 … 𝑝𝑛2] where 𝑝𝑖 represents the pixel intensity at a given location
(see Fig. 6.6). The input layer is followed by 3 stacked autoencoders where the input from the
previous layer is either compressed to length 𝑚 or decompressed to the size 𝑛2. The dimension of
compression (𝑚) is a hyperparameter which requires tuning, but the dimension 𝑛 is constrained to
the size of the image being processed. The final layer produces the vector 𝑜 = [𝑜1 𝑜2 𝑜3 … 𝑜2𝑛2]
containing the separated images. The two images are recovered by dissociating the output vector
into the components ̃𝑝1 = [𝑜1 … 𝑜𝑛2] and ̃𝑝2 = [𝑜𝑛2+1 … 𝑜2𝑛2] and reshaping each vector
into the original 𝑛 × 𝑛 dimensions. After all but the final layer, the rectified linear unit (ReLU)
activation function was applied to the output before being passed as the input of the next layer.
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Figure 6.6: Deep neural network for image disambiguation. The network processes the 𝑛2 input 𝑝
through six fully connected layers 𝑧(1) − 𝑧(6). The output layer 𝑜 doubles the size of the input to
allow for the extraction of the two images.

After the output layer the, sigmoidal activiation function is applied to ensure that the output pixel
intensities are within the range 0 to 1. The network was implemented using two different cost
functions which will be discussed in a later section. In either case the network was trained using
the backpropagation algorithm.

6.2.2 Numerical Experiments
The architecture was developed using the open source machine learning library for Python,

PyTorch. Training and testing were done using an NVIDIA Tesla P100 PCI-E GPU on the
MERCED cluster. The loss functions were minimized using the PyTorch implementation of the
Adam optimizer [60].

MNIST Dataset

The dataset used to test and train the proposed architecture is a modified form of the original
MNIST data set [65]. The data set consists of 70,000 28 × 28 images of handwritten numbers
from 0-9. The data is then partitioned into 60,000 training examples and 10,000 testing examples.
For the purposes of this work, classification is not the intended objective and therefore all of the
labels were disregarded. Each training and testing sample were created by first randomly selecting
two images from the dataset without replacement. The images were normalized to assure that the
pixel intensities ranged from 0 to 1 and then converted to a single channel tensor. The two tensors
were then added together and the result was normalized and paired with the original images
creating a triplet consisting of a combined image and its two sources (see Fig. 6.5). Because of
the nature of the previously described image selection, the new training set consisted of 30,000
training instances and 5,000 testing images where both the combinations and the individual images
are unique. Multiple datasets were created following a similar protocol, the difference being the
intensity of one of the two target images was reduced to 75%, 50% or 25%. When describing these
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Figure 6.7: Boxplots of the Mean Squared Error (MSE) for 5,000 MNIST test images using the
Dual Image Recovery method with the Binary Cross Entropy (BCE) [in blue] and the MSE [in
red] loss functions. The MSEs are reported for both Images A and B under varying intensities of
Image B in the measurements. As the intensity of Image B weakens, the accuracy of its recovery
naturally worsens while the accuracy of Image A’s recovery improves.

data sets the image with the full intensity is noted as Image A and the image with the reduced
intensity will be known as Image B.

6.2.3 Performance
The proposed architecture was tested for a variety of configurations. In what will be referred

to as the Single Image Recovery experiment, the intent was to recover only one of the two images.
The image target was chosen randomly from the two potential candidates and the output layer in
Fig. 6.6 was removed so that 𝑧(6) would provide an extraction of the appropriate size. The ReLU
activation function implemented in 𝑧(6) was also substituted for the sigmoidal activation function.
The Dual Image Recovery Experiment seeks to extract both images using the architecture
described in Sec. 6.2.1. In both experiments, the dimension of the latent space was chosen to be
𝑚 = 256 after hyperparameter tuning revealed this to be the optimal setting. All test images were
compared to their targets using the Mean Squared Error (MSE) after the model was trained.

The normalization of the pixel intensities within a range of 0 to 1 allows us to use the Binary
Cross Entropy (BCE) function as a loss function during training. Experiments were performed
to determine if there was an advantage in the choice of using either the BCE or the MSE in a
learning capacity. The performance of the two loss functions are comparable when using the
MSE as a metric of validation on the test set (see Fig. 6.7). The reconstructions using the BCE
had a slightly sharper appearance. This is to be expected as the MSE tends to average the pixel
intensities resulting in a smoother image. For the remainder of this work we present only the
results using the BCE loss function. The Dual Image Recovery experiment indicates that image
extraction of both images are comparable when they are at full intensity. As the image intensity
of Image B decreases, the architecture improves on its ability to extract Image A at the cost of
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Figure 6.8: Boxplots comparing the Dual and Single Image Recovery methods to recover Image A
using the Binary Cross Entropy (BCE) loss function. The MSE is reported for the recovered Image
A from measurements with varying intensities of Image B.

an accurate reconstruction of Image B (see Fig. 6.7). This is to be expected as the intensity of
Image B is weaker. The Single Image Recovery approach underperforms in comparison to Dual
Image Recovery approach when both images have the same intensity. The Single Image Recovery
approach is prone to recovering more elements from Image B. As the intensity of Image B
decreases, the extraction of Image A improves, ultimately outperforming the Dual Image Recovery
method (see Fig. 6.8). It is under the previously stated conditions that the Single Image Recovery
approach views Image B as noise and performs its intended task as that of denoising.

6.2.4 Conclusion
In this work we implemented a deep neural network in order to solve the ill-posed image

separation problem. By relying on the denoising properties of the stacked autoencoder structure,
we have shown that these types of networks can be effective in the recovery of two superimposed
images. While the choice of the loss function between the mean squared error and the binary
cross entropy function is negligible in terms of MSE validation, the binary cross entropy function
provides a slightly sharper advantage. The results show that when the objective is the recovery of
both images, the reconstruction of the secondary image with a weaker intensity (Image B) slightly
suffers while the recovery of the primary image (Image A) improves. By shifting the focus to a
single image extraction the quality of the reconstruction of the primary image improves on the dual
image extraction method.
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Observed Superimposed Images
100% 75% 50% 25%

Primary Single Image Recovery

Primary Dual Image Recovery

Secondary

Figure 6.9: The first row contains the superimposed images which are composed of the primary
and secondary images. They vary in that the intensity of the secondary image was altered to the
percentage noted above. Given these input images, we present the reconstructions for the dual
image recovery experiments and the single image recovery experiments.
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6.3 Machine Learning for Direct and Inverse Scattering
in Synthetic Aperture Radar

When considering the success of deep learning in applications such as image classification
[63], segmentation [46] and object detection [67], it is no surprise that it has also made its way in
remote sensing applications. We refer to [99] and references therein for a recent overview on the
subject.

Typically, the primary use of deep learning in remote sensing has been for image classification.
In this work, based on the paper by DeGuchy, Kim, Marcia, and Tsogka [34], we follow a different
perspective and consider machine learning for solving the forward and inverse scattering problems
associated with the remote sensing application of synthetic aperture radar (SAR). The inverse
scattering problem consists in recovering the unknown reflectivity by probing the imaging scene
with several excitations. Using deep learning in this context has been considered in [98] where the
deep network plays the role of a non-linear forward model that captures the process that transforms
reflectivities to measurements. Moreover, in [98] a recurrent auto-encoder is designed using a
recurrent neural network (RNN) architecture that allows for image reconstruction. The proposed
architecture uses the data directly and does not require any ground truth image knowledge. It
assumes however partial knowledge about the imaging system. Specifically, the passive SAR
problem is considered where the illuminations are opportunistic and assumed unknown while the
receiver flight path and characteristics are known.

In a different setting with applications in seismic imaging, Switchnet was designed in [58].
This is a neural network that was specifically designed for solving forward and inverse scattering
problems for the Helmholtz equation. Building on certain low-rank property that arises in the
linearized operators, the network desinged in [58] replaces the use of fully-connected layers by a
low complexity switch layer. Supervised learning assuming a large number of ground truth data
was used to train Switchnet and good reconstruction results for noise free data were reported in
[58].

The approach that we follow here is based on the observation that in most applications the
forward map that transforms reflectivities to measurements can be accurately represented using a
linearized single scattering model. This allows us to restrict the network architecture and simplify
the learning process. More precisely, the first step in our approach consists in formulating the
inverse problem as a linear system of the form

𝐴𝜚 = 𝑑

where 𝑑 is the measured data, 𝜚 the unknown reflectivity and 𝐴 is the sensing matrix that depends
on the characteristics of the imaging system, such as the measurement process, the excitations
used and the geometric configuration of the imaging scene. In all generality the sensing matrix is
unknown and the reflectivity is reconstructed by solving instead the system

𝐴𝑚𝜚 = 𝑑 + 𝛿𝑑

where 𝛿𝑑 is the noise and 𝐴𝑚 is our model for the sensing matrix. The quality of the
reconstruction depends of course on the noise level but it also depends critically on how close
the model sensing matrix is to the true one. The idea that we pursue in this work is to use machine
learning so as to recover the sensing matrix 𝐴 or its inverse from a set of data corresponding to
known reflectivities. To keep the machine learning algorithm simple and interpretable we use a
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Figure 6.10: Setup for synthetic aperture radar imaging.

single, multiple connected layer. This way the weights of the network correspond to the matrix 𝐴
or its inverse that we seek to recover. We show with numerical simulations using CIFAR-10 data
set [62] that the learned version of the sensing matrix is close to the true one while its learned
inverse leads to very good reconstructions of the reflectivity. Moreover the performance is robust
over a large range of SNR values.

In this work, we assume that ground truth is known for a quite large set of images while
nothing is known about the imaging system. In the future we need to consider the interplay
between increasing our knowledge about the imaging system while decreasing the available data
set of ground truth images.

6.3.1 Synthetic Aperture Radar
In this section we introduce the synthetic aperture radar (SAR) imaging problem. In SAR

typically a single transmitter/receiver is used to collect the scattered electromagnetic field over a
synthetic aperture that is created by a moving platform [27, 28, 72]. At each measurement location
the transmitter emits a broadband pulse 𝑓 (𝑡) and the corresponding echoes are recorded. The SAR
data 𝑑(𝑠, 𝑡) depend on the slow time 𝑠 that parametrizes the location ⃗𝑟(𝑠) of the platform at time 𝑠
and the fast time 𝑡 in which the round-trip travel time between the platform and the imaging scene
on the ground is measured.

Although SAR uses a single transmit/receive element, high resolution images of the probed
scene can be obtained because the data are coherently processed over a large synthetic aperture
created by the moving platform. As illustrated in Figure 6.10, the platform is moving along a
trajectory probing the imaging scene by sending a pulse 𝑓 (𝑡) and collecting the corresponding
echoes. We call range the direction that is obtained by projecting on the imaging plane the vector
that connects the center of the imaging region to the central platform location. Cross-range is the
direction that is orthogonal to the range. Denoting by 𝑎 the length of the synthetic aperture and by
𝐵 the available bandwidth, the typical resolution of the imaging system is 𝑐/𝐵 in range and 𝜆𝐿/𝑎
in cross-range. Here 𝑐 is the speed of light and 𝜆 the wavelength corresponding to the central
frequency while 𝐿 denotes the distance between the platform and the imaging region.

The start-stop approximation is typically made in SAR which consists in neglecting the targets’
and the platfrom’s displacement during the travel time between the emission and the reception
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of the echoes. This approximation is true in radar since the speed of light is orders of magnitude
larger than the speed of the targets and the platform.

Direct Scattering Problem

Denoting by 𝜚( ⃗𝑦) the unknown reflectivity of the imaging scene, we use the following scalar
wave equation model to describe the SAR data in the frequency domain,

𝑑(𝑠, 𝜔) = 𝑓 (𝜔) ∫ 𝑑 ⃗𝑦 𝜚( ⃗𝑦) 𝑒2𝑖𝜔𝜏(𝑠,�⃗�)

(4𝜋| ⃗𝑟(𝑠) − ⃗𝑦|)2 . (6.1)

Here 𝑑(𝑠, 𝜔) and 𝑓 (𝜔) denote the Fourier transform of 𝑑(𝑠, 𝑡) and 𝑓 (𝑡) respectively. The following
definition for the Fourier transform of any finite energy signal 𝑔(𝑡) is used

𝑔(𝑡) = ∫ 𝑑𝜔
2𝜋𝑔(𝜔)𝑒−𝑖𝜔𝑡, (6.2)

where 𝜔 is the angular frequency. In (6.1), 𝜏(𝑠, ⃗𝑦) is the travel time between the platform and the
point ⃗𝑦, at slow time 𝑠

𝜏(𝑠, ⃗𝑦) = | ⃗𝑟(𝑠) − ⃗𝑦|
𝑐 . (6.3)

The model (6.1) is derived under the Born approximation and neglects multiple scattering. It
assumes that the reflectivity is isotropic and frequency independent. Although quite simple, this
scalar wave equation model is frequently used in SAR [28, 20] since it captures the main features
of the scattering problem. To estimate the reflectivity, a discretization of the imaging window (IW)
is considered, composed of the grid points ⃗𝑦𝑗, 𝑗 = 1, … , 𝐾. By discretizing (6.1), the SAR imaging
problem reduces to solving the following linear system of equations,

𝐴𝜚 = 𝑑. (6.4)

Inverse Scattering Problem

The goal for the inverse scattering problem is to recover the reflectivity vector 𝜚 ∈ ℂ𝐾 whose
components are the values of the reflectivity on the grid points 𝜚( ⃗𝑦𝑗), 𝑗 = 1, … , 𝐾. By discretizing
the SAR data 𝑑(𝑠, 𝜔) we form the vector 𝑑 ∈ ℂ𝑁 defined as

𝑑 = (𝑑𝑖)𝑖=1,…,𝑁 = (𝑑(𝑠𝑚, 𝜔𝑙))𝑚=1,…𝑁𝑠,𝑙=1,…,𝑁𝜔
, (6.5)

𝑖 = 𝑖(𝑚, 𝑙) = (𝑙 − 1)𝑁𝑠 + 𝑚, 𝑁 = 𝑁𝑠𝑁𝜔, (6.6)

with 𝑠𝑚, 𝑚 = 1, … , 𝑁𝑠 the slow time samples and 𝜔𝑙, 𝑙 = 1, … , 𝑁𝜔 the frequencies in the available
bandwidth. The entries of the sensing matrix 𝐴 ∈ ℂ𝑁×𝐾 follow from (6.1) using (6.6)

𝐴𝑖𝑗 = 𝑓 (𝜔𝑙)
𝑒2𝑖𝜔𝑙𝜏(𝑠𝑚,�⃗�𝑗)

(4𝜋| ⃗𝑟(𝑠𝑚) − ⃗𝑦𝑗|)2 , (6.7)

for 𝑖 = 1, … , 𝑁 with 𝑖 = 𝑖(𝑚, 𝑙) as defined in (6.6) and 𝑗 = 1, … , 𝐾.
In SAR the system (6.4) is usually overdetermined with 𝑁 ≫ 𝐾, and the least squares solution

can be obtained as
̂𝜚ℓ2

= 𝐵𝑑, (6.8)
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with 𝐵 denoting the pseudo-inverse of 𝐴, defined as 𝐵 = (𝐴𝐻𝐴)−1𝐴𝐻, when 𝐴 is full column rank
and where 𝐴𝐻 denotes the complex conjugate transpose of 𝐴. It is well known that the choice of
the discretization of the IW plays an important role in the inversion of (6.4). The common choice
consists in discretizing the IW in steps of the order of the expected resolution of the imaging
system (cf. [20]). In this case the matrix 𝐴𝐻𝐴 is close to a diagonal matrix which justifies the SAR
inversion formula,

�̂�SAR = 𝐴𝐻𝑑. (6.9)

When the reflectivity is sparse, i.e., the imaging scene consists of a small number of localized
scatterers, a better estimate of 𝜚 can be obtained using ℓ1 optimization. We refer to [14, 41, 79] for
studies of SAR imaging with ℓ1 optimization. We also refer to [20] where an ℓ1 formulation for a
frequency and direction dependent reflectivity was proposed.

6.3.2 Machine Learning for Synthetic Aperture Radar
The exact sensing matrix 𝐴 appearing in (6.4) for the direct scattering problem in SAR

and in (6.8) and (6.9) for the inverse scattering problem in SAR is not known in general. The
expression in (6.7) is a physical model that is commonly used in SAR applications (cf. [28,
98]). Nonetheless, it gives only an approximation of the sensing matrix based on the Born
approximation. Alternatively, we consider here using machine learning to recover 𝐴 from training
data.

In what follows, we assume a flat imaging scene on the ground. Suppose that we have a set of
reflectivities {𝜚𝑝} and associated measurements {𝑑𝑝} corresponding to the same imaging system
and settings. Assuming that there exists a linear mapping from each 𝜚𝑝 to the corresponding 𝑑𝑝,
we use machine learning methods to recover an approximation of the sensing matrix, which we
denote here by 𝐴𝐿. With that learned sensing matrix, we form images using measurements outside
of this training set by replacing 𝐴 in (6.9) with 𝐴𝐿. Alternatively, using the same machine learning
methodology, we can recover an approximate “inverse,” which we denote by 𝐵𝐿, by seeking a
linear mapping from each 𝑑𝑝 to the corresponding 𝜚𝑝 in the training set. This approximate inverse
can then be used to form images using measurements outside of this training set. We give the
details of this procedure below.

SAR Sensing Matrix

We give below the precise parameters used for the model matrix 𝐴 in the numerical
simulations. The flight path follows a circular trajectory with radius 𝑅 = 7.1km at height 𝐻 =
7.3km. The platform is moving with a speed of 70m/s and the total length covered is 𝑎 = 325.5m
corresponding to a slow time interval of 4.65s. The probing pulse has a flat spectrum over the
available bandwidth of 1.2GHz and a central frequency of 9.6GHz. These parameters result to an
imaging system with resolution of 0.24m in range and 0.97m in cross-range. The image dimension
is 32 × 32 pixels with a pixel size of 25cm ×25cm. The matrix 𝐴 is square with 𝐾 = 𝑁 = 1024
corresponding to data for 𝑁𝑠 = 32 slow time samples and 𝑁𝜔 = 32 frequencies in the available
bandwidth.
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Figure 6.11: The network configuration used to recover the mapping between the reflectivity data
̃𝜚𝑝 and the measurement data d̃𝑝 is a single, fully connected layer network. When ̃𝜚𝑝 is the input

data, i.e. 𝑋𝑝 = �̃�𝑝 and d̃𝑝 is the output data, i.e. 𝑌𝑝 = ̃d𝑝, then the learned weights in W correspond
to the sensing matrix 𝐴𝐿. When 𝑋𝑝 = ̃d𝑝 and 𝑌𝑝 = �̃�𝑝, W corresponds to the approximate inverse
𝐵𝐿.

Training Setup

Using machine learning to recover the sensing matrix and its inverse, is a somewhat unusual
application. The objective here is to evaluate the potential use of machine learning to solve the
direct and inverse scattering problems in SAR. In doing so, we develop a fully data-driven method
without explicit knowledge about the imaging system (i.e., bandwidth, platform trajectory and
pulse). Thus, it is important that we are able to interpret each and all aspects of the results from
the machine learning methods. For this reason, we restrict our attention to a neural network
arranged as a single, fully-connected layer.

We use images from the CIFAR-10 dataset [62] as the set of reflectivity data {𝜚𝑝} used for
training. The CIFAR-10 dataset consists of 60,000 images which we partitioned into a training set
of 50,000 images and a test set of 10,000 images. Each image is 32 × 32 pixels which is vectorized
so that 𝜚𝑝 ∈ ℝ𝐾, where 𝐾 = 1024. We generate the set of SAR data {𝑑𝑝}, with 𝑑𝑝 ∈ ℂ𝐾,
corresponding to these reflectivities using the model matrix 𝐴 in (6.7). To accommodate for the
complex-valued entries of the SAR data in the neural network training regime, we rewrite (6.7) as
the equivalent real 2 × 2 block linear system:

[𝐴Re −𝐴Im
𝐴Im 𝐴Re

]
⏟⏟⏟⏟⏟⏟⏟

̃A

[𝜚Re
𝜚Im

]
⏟

̃𝜚

= [𝑑Re
𝑑Im

]
⏟

̃d

, (6.10)

where 𝐴 = 𝐴Re + i𝐴Im, 𝜚 = 𝜚Re + i𝜚Im, and 𝑑 = 𝑑Re + i𝑑Im are written in terms of their real and
imaginary parts. In (6.10), Ã ∈ ℝ2𝐾×2𝐾 and ̃𝜚, ̃d ∈ ℝ2𝐾. Note that since the reflectivity data are
real, 𝜚Im = 0. We will denote the real 2 × 2 block matrices corresponding to 𝐴𝐿 and 𝐵𝐿 by ̃A𝐿 and
B̃𝐿, respectively.

Each of the SAR data 𝑑𝑝 is corrupted with additive Gaussian white noise using MATLAB’s
awgn function to obtain a desired signal-to-noise ratio (SNR). These data were then imported into
a Python coding environment where we used PyTorch, a Python deep learning platform built on
the torch library [31] and requiring the NVIDIA platform, CUDA for GPU processing [77].
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We denote the input data in the training by 𝑋𝑝 ∈ ℝ2𝐾 and the output data by 𝑌𝑝 ∈ ℝ2𝐾, and
the neural network produces a square weight matrix W ∈ ℝ2𝐾×2𝐾 that maps 𝑋𝑝 to 𝑌𝑝 (see Fig.
6.11). During the training process the 50,000 inputs are partitioned into non-overlapping batches
B, each containing 32 images. The inputs are passed through the layer with a weight matrix of
initial values drawn randomly from a zero-mean Gaussian distribution, resulting in 32 output data.
Each output is compared to the target using the loss function defined by the mean squared error
(MSE) given by

MSEB = 1
|B| ∑

𝑝∈B
{ 1

2𝐾 ‖𝑌𝑝 − W𝑋𝑝‖2
2} .

The MSE is then used to adjust the values of the weight matrix using the Adam optimization
routine (a form of stochastic gradient descent – see [60] for details) in the torch package. Our
results are presented using a learning rate of either 0.001 or 0.0001. Training continues until all
50,000 images are evaluated in batches of 32. Each iteration is one epoch, and the network was
trained for 500 epochs.

Learning the SAR Sensing Matrix 𝐴𝐿

To recover 𝐴𝐿, we use the set of reflectivity data {𝜚𝑝} as the input data to the neural network
and the corresponding SAR data {𝑑𝑝} as the target data. As stated previously, the algorithm
uses a simple neural network consisting of a single layer. The network is created using the fully
connected torch nn.Linear() network component. Both the input and output dimensions are
2048. The layer bias is turned off and no activation function is applied to the output. Under this
configuration, the fully connected layer amounts to a left multiply by a square weight matrix.

Here we do not worry about over-trainning since we know that for this SAR system, the
transform is linear and will be reflected in the weight matrix. This differs from traditional machine
learning methods in that our goal is the recovery of the transformation matrix and not just the
output of the network. Once training is complete we can detach the weight matrix from the
network and store it as a Python numpy array. Because the input and target vectors are separated
into their real and imaginary components, the recovered matrix has a 2 × 2 block matrix structure.
The upper left corner of the matrix corresponds to (𝐴𝐿)Re and the lower left corner corresponds to
(𝐴𝐿)Im. We test the effectiveness of the recovered SAR matrix’s ability to recover the reflectivity
from the measurements by scaling the learned forward transformation 𝐴𝐿 by a factor of 1/𝐾,
taking its Hermitian, and performing left multiplication with the measurements {𝑑𝑝} from the
test set. We then take the upper half of the resultant vector corresponding to the real values
and reshape the vector in order to compare it to the original image. We denote the reflectivity
recovered using this approach by

̂𝜚𝐿 = 1
𝐾𝐴𝐻

𝐿 𝑑, (6.11)

where 𝐴𝐿 = (𝐴𝐿)Re + 𝑖(𝐴𝐿)Im and the matrices (𝐴𝐿)Re and (𝐴𝐿)Im are from the learned real 2 × 2
block matrix ̃A𝐿.

Learning the Approximate “Inverse” 𝐵𝐿

The method to learn the approximate “inverse” 𝐵𝐿 is similar to that used for learning the
forward sensing matrix 𝐴𝐿. The network is composed identically to that in the forward direction.
The inverse training regime also uses a learning rate of 0.0001 in the optimization routine for
500 epochs with a batch size of 32. Unlike the forward training regime, recovering the inverse
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Figure 6.12: An example of the noisy realization used in our numerical experiments. (a) The
measurement data ̃d ∈ ℝ2𝐾. (b) A particular region of d̃ magnified. Different noise levels
(c)-(e)-(g) are added to ̃d to achieve the desired SNR in (d)-(f)-(h). Here, residual =
‖ ̃dnoisy − d̃‖1/‖ ̃d‖1.

matrix requires different inputs and targets. In this case the inputs are the measurements {𝑑𝑝} and
the targets are the set of reflectivities {𝜚𝑝}. In addition to switching the inputs and targets, the
inputs are also multiplied by a scaling factor of 1/𝐾. The scaling term improves the robustness
of the optimization routine and results in a more accurate representation of the inverse. Once the
inverse weight matrix is recovered the testing process involves multiplying the weight matrix by
the scaling factor of 1/𝐾 performing a left multiply on the measurements. The real values again
are extracted from the result and the vector is reshaped and compared to the original image. We
denote the reflectivity recovered using this approach by

̂𝜚𝐼 = 1
𝐾𝐵𝐿𝑑, (6.12)

where 𝐵𝐿 = (𝐵𝐿)Re + 𝑖(𝐵𝐿)Im and the matrices (𝐵𝐿)Re and (𝐵𝐿)Im are from the learned real 2 × 2
block matrix ̃B𝐿.

6.3.3 Results
We present three numerical experiments to demonstrate our proposed approach. In our

numerical experiments, we consider measurements {𝑑𝑝} with three different noise levels
in addition to the noiseless measurements. Fig. 6.12 depicts an example of different noisy
realizations of the measurement data {d̃𝑝}. In Experiment I, we show how well we recover the
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Table 6.1: The mean squared error (MSE) of the learned sensing matrix 𝐴𝐿 trained on the
CIFAR-10 dataset with varying signal-to-noise (SNR) levels. Here, MSE = 1

4𝐾2 ‖Ã − ̃A𝐿‖2
𝐹.

SNR MSE
5dB 5.232e-01

10dB 1.639e-01
20dB 4.333e-02

Noiseless 6.000e-09

sensing matrix from the measurement data. In Experiment II, we reconstruct the reflectivity data
from measurement data with noise level at 20dB. In Experiment III, we present results from the
reflectivity reconstructions at the three different noise levels.

Experiment I

We first show results of the matrices recovered using the machine learning procedure
described above. Because of the 2 × 2 block structure of the matrix in (6.10), we only present
the upper half heat map representations of the recovered matrices. We show the upper half heat
map representations of ̃A

𝐻
in Fig. 6.13(a), of ̃A

𝐻
𝐿 recovered from noiseless data in Fig. 6.13(b),

of Ã
𝐻
𝐿 recovered from noisy data with SNR = 20dB in Fig. 6.13(c), and of ̃B𝐿 also recovered

from noisy data with SNR = 20dB in Fig. 6.13(d). The results shown in Fig. 6.13 show that
the learned matrices possess a qualitatively similar structure to ̃A

𝐻
. In Table 6.1, we present the

accuracy of the learned matrices quantitatively using the mean squared error (MSE = 1
𝐾2 (‖𝐴Re −

(𝐴𝐿)Re‖2
𝐹 + ‖𝐴Im − (𝐴𝐿)Im‖2

𝐹). We did not quantitatively compare 𝐵𝐿 to 𝐴𝐻 since that comparison is
not necessarily interpretable.

Experiment II

Next, we use the learned matrices to reconstruct images of reflectivities for data in the testing
set (i.e. those not used for training). Fig. 6.14 shows three different example reconstructions for
SNR = 20dB. The left column of Fig. 6.14 shows the target image representing “ground truth.”
The second column of images in Fig. 6.14 are the reconstructions ̂𝜚S𝐴𝑅 from using the Hermitian
𝐴𝐻 of the exact known SAR matrix 𝐴 given in (6.7). The third column of images in Fig. 6.14 are
the reconstructions �̂�𝐿 from using 𝐴𝐻

𝐿 , with 𝐴𝐿 denoting the learned sensing matrix. The fourth
column of images in Fig. 6.14 are reconstructions using 𝐵𝐿, the learned approximate “inverse” of
the sensing matrix. The corresponding MSE for each of these reconstructions appears below the
image.

The reconstructions appearing in Fig. 6.14 are reasonable estimates of the target image. The
results from using 𝐴𝐻 and 𝐴𝐻

𝐿 are comparable, but qualitatively, the reconstructions from using
𝐴𝐻 appear to have less imaging artifacts. The learned inverse 𝐵𝐿 gives the best qualitative and
quantitative reconstructions. For the three examples shown here, the learned inverse yields MSE’s
that are two orders of magnitude smaller. Moreover, those reconstructions appear to be less
adversely affected by noise corruption in the measurement data.
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(a) Ã
𝐻

(b) Ã
𝐻
𝐿

(c) ̃A
𝐻
𝐿 (SNR = 20dB) (d) B̃𝐿 (SNR = 20dB)

Figure 6.13: Comparison of the mappings from the measurements 𝑑 to the reflectivity estimates ̃𝜚.
(a) The upper half of the Hermitian Ã

𝐻
of the exact sensing matrix. (b) The upper half of the

Hermitian of the learned sensing matrix from noiseless measurements. (c) The upper half of the
Hermitian of the learned sensing matrix from noisy measurements with SNR = 20dB. (d) The
upper half of the learned approximate “inverse” of 𝐴 from noisy measurements with SNR = 20dB.
Note that we present only the upper half of each mapping because that is only what is needed in
(6.10) to estimate ̃𝜚 = ̃𝜚Re.
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Target Image �̃�SAR �̃�𝐿 �̃�𝐼

MSE = 0.16698 MSE = 0.17129 MSE = 0.00142

MSE = 0.11813 MSE = 0.12182 MSE = 0.00075

MSE = 0.08009 MSE = 0.08254 MSE = 0.00097
(a) (b) (c) (d)

Figure 6.14: Numerical experiments using images from the CIFAR-10 dataset. Gaussian noise was
added to the measurements so that {𝑑𝑝} have SNR = 20dB. (a) Ground truth. (b) Reconstruction

̃𝜚SAR from (6.9) using the SAR inversion formula. (c) Reconstruction ̃𝜚𝐿 from (6.11) using the
learned SAR sensing matrix 𝐴𝐿. (d) Reconstruction �̃�𝐼 from (6.12) using the learned approximate
“inverse” 𝐵𝐿. The mean squared error (MSE) is reported for each reconstruction. Note the
significant improvement in MSE from using 𝐵𝐿 to recover the target images over the SAR
inversion formula. The slight decrease in the performance of using 𝐴𝐿 compared to the SAR
inversion formula may be attributed to the training on noisy data.
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Figure 6.15: Image reconstructions for various SNR levels. (a) Ground truth target image.
Reconstructions ̂𝜚SAR using the Hessian of the exact SAR sensing matrix 𝐴𝐻 from noisy
measurements with SNR = 20db, 10db, and 5db are presented in (b), (d) and (f), respectively with
corresponding MSEs. Reconstructions �̂�𝐼 using the learned approximate “inverse” sensing matrix
𝐵𝐿 from noisy measurements with SNR = 20db, 10db, and 5db are presented in (c), (e) and (g),
respectively with corresponding MSEs.
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Figure 6.16: Performance of the reconstruction methods on the 10,000 CIFAR-10 images making
up test set. These box and whisker plots show the MSE for each of the reconstruction methods as
well as each of the SNR values.

Experiment III

To study how our image reconstruction approach is affected by noise, we show in Fig. 6.15
reconstructions of a target image (Fig. 6.15(a)) with different SNR levels. The left column of
reconstructions ̂𝜚S𝐴𝑅 use the Hermitian 𝐴𝐻 of the exact SAR matrix and the right column of
reconstructions ̂𝜚𝐼 use the learned approximate “inverse” 𝐵𝐿. Figs. 6.15(b) and 6.15(c) are for
SNR = 20dB, Figs. 6.15(d) and 6.15(e) are for SNR = 10dB, and Figs. 6.15(f) and 6.15(g) are for
SNR = 5dB.

Overall, we find the reconstructions that used 𝐵𝐿 to be better than those that used 𝐴𝐻. The
reconstructions using 𝐵𝐿 appear to have an inherent low-pass filtering operation that smooths the
images and reduces imaging artifacts. In contrast, the images reconstructed using 𝐴𝐻 suffer from
significant reconstructions artifacts, especially as the SNR decreases.

To summarize the quantitative errors we have found in using 𝐴𝐻, 𝐴𝐻
𝐿 and 𝐵𝐿 for image

reconstructions, we show in Fig. 6.16 the MSE statistics computed for all image reconstructions
for the 10,000 images making up the test set. These box and whisker plots show the sample
distribution of MSE values computed for the different reconstruction methods at different SNRs.
These statistics clearly show that reconstructions using 𝐵𝐿 yield substantially lower MSEs in
comparison to reconstructions using 𝐴𝐻 and 𝐴𝐻

𝐿 . The reconstructions using 𝐴𝐻 and 𝐴𝐻
𝐿 are

comparable except for low SNR in which the reconstructions using 𝐴𝐻 yield slightly lower MSEs.

6.3.4 Conclusion
We have used a simple neural network consisting of a single, fully-connected layer to learn

the sensing matrix and its inverse from a training set of data comprised of reflectivities and their
corresponding measurements computed using a standard model in SAR. This simple machine
learning setup has allowed us to evaluate the potential of a fully data-driven method for solving
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the direct and inverse scattering problems in SAR. By computing image reconstructions for an
out-of-sample set of test data using these learned matrices, we evaluate the effectiveness of this
approach.

Our results show that the learned inverse of the sensing matrix, denoted here by 𝐵𝐿
outperforms the standard SAR inversion formula (6.9). These results are rather remarkable given
the fact that the training and test data sets are generated using the sensing matrix, 𝐴. Overall, we
have found that images reconstructed using this learned inverse are qualitatively better and yield
a substantially smaller MSE than those computed using the standard SAR inverse formula (6.9).
These results are consistent over the large range of SNR we have considered here.

These results strongly indicate the potential use of machine learning methods to solve the
direct and inverse scattering problems in SAR. The key is to provide this machine learning
algorithm a meaningful set of training data. Provided such data are available, this method opens
the possibility of developing fully data-driven methods that do not require explicit consideration
or knowledge of the physical setting or details of the imaging system. Here ground truth is
assumed known for a quite large set of images. To be able to develop machine learning methods
for practical SAR imaging systems, we will need to consider that ground truth is known for a
smaller set of data, assuming eventually some knowledge about the imaging system (pulse form
and/or flight path). Evaluating the performance of the algorithm and modifying it accordingly to
account for this interplay between available ground truth data and knowledge about the sensing
system is a challenging problem and will be considered in a forthcoming work.

Even though this work is an initial study of the use of machine learning for solving direct
and inverse scattering for SAR, we have found the proposed approach to be remarkably effective.
Because this method presents an initial indication for a fully data-driven method, it should be very
useful for SAR imaging. Moreover, the proposed methodology has the capacity to be extended to a
broad variety of other inverse scattering problems.

6.4 Image Classification in Synthetic Aperture Radar
Using Reconstruction from Learned Inverse
Scattering

In this section we extend our work in the domain of synthetic aperture radar and machine
learning. As opposed to the application in section 6.3, we are interested in the capabilities of deep
learning algorithms in the field of computer vision. Specifically, we are interested in classifying
targets within the modality of synthetic aperture radar (SAR). Typically, classification of SAR
images requires that they are reconstructed from noisy measurements. Thus, the quality of
reconstruction will affect the classification of each image. We investigate the effect of the quality
of image reconstruction in relation to the accuracy of classification of SAR images. We do this
using different data acquisitions as well as different deep learning architectures. This work is based
on the paper by Alvarez, DeGuchy, and Marcia [3].

Related Work

Automatic target recognition applications have traditionally relied on SAR data to make
informed decisions. With the emmergence of deep learning algorithms as the state of the art in
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Figure 6.17: Convolutional Neural Network (CNN) for SAR image classification. The input to the
the network is either a single channel grayscale reconstructed image or SAR data represented as a
two channel tensor where each channel contains the real and imaginary components of the
complex SAR data 𝑑.

computer vision, there is a natural extension of neural networks in the field of automatic target
recognition. SAR image classification requires that the reflectivity from SAR data be recovered for
use as inputs in a deep learning regime [24, 73, 23].

6.4.1 Problem Formulation
In this section, we review the SAR remote sensing modality explained in Section 6.3. SAR

uses a single transmitter/receiver in concert with a moving platform to create a synthetic aperture.
The process involves the emission of a broadband pulse and the collection of the corresponding
echoes in the form of SAR data 𝑑 at various points along the path of the platform. (For an
overview, see [27, 28, 72]). The SAR data is dependent on two time scales: (1) the slow time that
parameterize the location of the platform, and (2) the fast times which measures the round-trip
travel time between the platform and the reflectivity window on the ground. The goal is to recover
the unknown reflectivity of interest 𝜚 in the imaging window.

The SAR process can be modeled using a scalar wave equation, which in turn is discretized,
reducing the SAR imaging problem to the following system of equations:

𝐴𝜚 = 𝑑, (6.13)

where 𝐴 ∈ ℂ𝑁×𝐾 is the sensing matrix which maps the reflectivity vector 𝜚 ∈ ℂ𝐾 to the SAR
measurement 𝑑 ∈ ℂ𝑁 (see [34] for further details). Recent improvements on traditional reflectivity
recovery in [34] provide an opportunity to increase the quality of the data used in training neural
networks for classification. We posit that the increase in image quality will translate to an increase
in classification accuracy. Here we present two possible reconstruction methods.

Kirchoff Migration

In general, the SAR system is overdetermined with 𝑁 ≫ 𝐾 such that 𝑁 is the number of points
on the moving platform and 𝐾 is the number of grid points in the imaging window. A least-squares
solution may be obtained as ̂𝜚ℓ2

= 𝐵𝑑 with 𝐵 as the pseuso-inverse of 𝐴 where 𝐵 = (𝐴𝐻𝐴)†𝐴𝐻

such that 𝐴 is full column rank and 𝐴𝐻 denotes the complex conjugate-transpose of 𝐴. A common
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choice in discretizing the imaging window leads to the matrix 𝐴𝐻𝐴 being close to diagonal [20],
which justifies the SAR inversion formula, �̂�SAR = 𝐴𝐻𝑑 (see [19] for details).

Learned Inverse

Reconstruction of the reflectivity can also be achieved using a machine learning framework.
The network configuration used to recover the mapping between the SAR measurements 𝑑 and the
true reflectivities 𝜚 is a single, fully-connected layer without a bias or an activation function [34].
The inputs to the network are the SAR measurements and the output are approximations of the
reflectivities. As the network is trained, the matrix of weights associated with the fully-connected
layer converge to an approximate inverse of the SAR linear system. Our reconstruction is then
governed by �̂�𝐼 = 𝐵𝐿𝑑, where 𝐵𝐿 is the final weight matrix from the previously described network.

6.4.2 Proposed Approach
Current methods for classifiying SAR images require that they be reconstructed from the

measurements before classification takes place. In this section, we introduce three methods for
classifying SAR images. In addtition, we also describe the two different architectures used in the
next section.

Proposed Methods

The three proposed methods begin with SAR measurements. However Methods II and III
reconstruct the images from the measurements.

Method I:

We consider classifying using the raw SAR measurements as input data. These measurements
are composed of complex values, i.e., real and imaginary parts. We take the real and imaginary
components and consider them as separate channels of an image.

Method II:

We reconstruct the images from the SAR measurements using Kirchoff migration which
is descibed in Section 6.4.1. In practice, the sensing matrix is unknown. For the purpose of
this project we have access to the true sensing matrix, thus we use the exact Hermitian for
reconstruction.

Method III:

We reconstruct the images using the learned approximate inverse described in Sec. 6.4.1. We
could also reconstruct the images using the Hermitian of a learned sensing matrix, however the
learned approximate inverse achieves better quality reconstructions [34].
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Architectures

As mentioned in the previous section, we have multiple data inputs. The two reconstructions
are images, thus they are easily used in a deep neural network. However, the SAR data is
composed of complex values which are not easily used in deep neural networks. We must consider
the real and imaginary parts separately. Thus, we consider two approaches to structure the data,
each using a different classification architecture, the first being a multi-layer perceptron and second
a convolutional neural network based on [90].

A. Multi-Layer Perceptron.

For the multi-layer perceptron (MLP) architecture, the input is a vector. Thus, for each data
input mentioned above we restructure the data as vectors. However, the main concern is how to
handle the complex values of the SAR data. In this case, we stack the real and imaginary values
in a vector with real above imaginary. This results with a vector that is doubled in dimension
compared to the reconstructions. The neural network is composed of three fully-connected layers,
each using dropout.

B. Convolutional Neural Network.

For the convolutional neural network (CNN), the inputs are three-dimensional arrays, typically
images, where the last dimension refers to the number of channels an image has. For the two
reconstruction types we only have one channel. However in the case of the SAR data, we have
two channels such that the first channel contains the real elements of the SAR measurements
and the second channel contains the imaginary elements. The neural network, depicted in
Fig. 6.21, is composed of three convolutional layers, each followed by a maxpool layer, then three
fully-connected layers at the end.

6.4.3 Numerical Experiments
In this section, we present the dataset and the experimental setup.

Dataset

We use the CIFAR-10 dataset as the reflectivity data. The CIFAR-10 dataset is comprised of
60,000 images, which are partitioned into 50,000 images for training and 10,000 for testing. The
dataset includes 10 classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.
Each image is 32 × 32 pixels and is grayscale, resulting in one channel. The SAR measurement
data is then generated by applying the sensing model used in [34]. Gaussian noise was added to
the SAR measurements, 𝑑, to have signal-to-noise ratios (SNR) of 20db, 10db and 5db.

Architecture Parameters

The MLP and CNN were both trained using the three methods from Sec. 6.4.2 applied to the
CIFAR-10 dataset with varying SNR levels and noiseless data. In both architectures, each output
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Figure 6.18: Method I uses raw SAR data, which consist of complex frequenices. Pictured above
is the magnitude of the SAR data for an image of an automobile. Method II uses reconstructions of
the SAR data using Kirchoff migration. Method III also uses reconstructions of the SAR data, but
using the learned approximate inverse.

label is measured against the target label using a loss function described by cross entropy (see [50]
for details).

For the MLP, the 50,000 inputs are partitioned into batches each containing 32 images. We
utilize the ADAM optimizer, which is a form of stochastic gradient descent, with a learning rate of
0.0001 to update the weights at each iteration. One iteration includes the evaluation of each batch.
This network was trained for 300 epochs. Additionally, a validation set was used during training
to track progress. The validation set contains 5,000 of the images from the original test set. As a
result, the test set used was composed of the remaining 5,000 images.

For the CNN, the 50,000 inputs were partitioned into batches containing 4 images. However,
stochastic gradient descent was used with a learning rate of 0.001 and momentum set to 0.9.
Here, we trained the network for 20 epochs. As a baseline, this network was trained on the true
reflectivities using color and grayscale images. When the network was trained on the original
3-channel images the accuracy rate was 75% [90]. Due to a loss of information in the number of
channels, training on greyscale images lowers our baseline to an accuracy of 67.5%.
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(a) Accuracy using a multi-layer perceptron

(b) Accuracy using a convolutional neural network

Figure 6.19: Classification performance comparison between the proposed methods (Methods I, II,
and III) using two different architectures ((a) MLPs and (b) CNNs) on data with four different
noise levels.

6.4.4 Results
We present results from our numerical experiments to compare the classification accuracy

between Methods I, II, and III using the two different architectures (MLP and CNN). All cases
consider data with varying noise levels: noiseless, 20db, 10db, and 5db.

The results using an MLP for classifying SAR images show that the learned approximate
inverse provides a higher classification accuracy than that of the Krichhoff migration or raw
SAR data. This holds true even as we increase the noise on the images, which is depicted in
Fig. 6.19(a). In the case of using a CNN, the results are similar and show that the learned
approximate inverse provides the highest classification accuracy. In the case of noiseless data,
the results are comparable to using the original images which had an accuracy of 67.50%. These
results are shown in Fig. 6.19(b). We note that using a CNN architecture achieves a much higher
classification than using an MLP.

6.4.5 Conclusion
In this work, we compared three methods for classifying SAR images using two different

machine learning architectures. The first method uses raw SAR measurement data, which consist
of complex frequencies. The other two methods are reconstructions of the SAR data using
Kirchoff migration and a more recent machine learning based reconstruction. Futhermore, we
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considered two deep learning architectures, namely a multi-layer perceptron and convolutional
neural network. The results show that using the learned approximate inverse (Method III) on
both network architectures classifies the images with the highest accuracy. This holds true
when using data of varying noise levels. We note that Method II produces classification results
better than those from using raw SAR data (Method I), it cannot be directly applicable when the
sensing matrix 𝐴 is not available. In contrast, Method III provides the best classification results
without explicitly knowing the SAR sensing matrix. These results support that using the learned
approximate inverse aids in achieving higher classification accuracy of SAR images. Furthermore,
combined with a more sophisticated machine learning architecture (CNN), the proposed methods
can improve classification accuracy over standard MLP architectures.

6.5 Signal Variation Detection in Genome Data
The genome, the complete DNA sequence, of an organism is a long sequence of nucleotides

represented by the letters {A,C,G,T}. For mammals, the length of the genome is approximately
3 billion letters whereas for the single celled yeast (S. cerevisiae), the length is around 12 million
letters. Most individuals within the same species have highly-similar genomes, and differences
between the genome of two individuals in the same species are characterized by their lengths.
Single-nucleotide variants (SNVs) correspond to a single letter difference. In addition, there are
also short regions where multiple letters are inserted or deleted termed In/Dels (≤ 50 letters).
Structural variants (SVs) are genomic regions (> 50bp) that vary between members of the same
species. SVs may be insertions, deletions, inversions or more general and complex exchanges of
DNA segments between regions of the genome [51, 95].

While DNA sequencing costs continue to decline, it is still cost prohibitive to determine
the complete DNA sequence for humans. However, because we have a high-quality reference
genome for humans and a variety of other species, genomic variants can detected by comparing
samples of DNA sequence to the reference. It is far easier to assess the presence of single-letter
differences (SNVs) than SVs. Indeed, such technology is readily available to the general public
from companies like Ancestry [6] or 23andMe [1]. The dominant method of SV detection is to
take samples (fragments) of DNA from an unknown genome and compare them to a high-quality
reference. The resulting configuration of mapped fragments is analyzed, and structural differences
between the unknown and reference genome should conform to arrangements of mappings that are
discordant (with respect to order, length, orientation, etc) or regions of the reference with higher
or lower than expected numbers of fragments [51]. For example, a fragment that has portions
matching two distant regions of the reference genome, a split-alignment, indicates a potential SV.
The problem of SV detection is complicated by errors in the sequencing and mapping process
which can create observations that look like true SVs.

One approach to improve SV detection is to simply take more samples from the test genome
to separate the true from false predictions, but this approach will result in an increase in cost.
An alternative approach is to make better predictors which explicitly incorporate known biases
and multiple signals from related individuals [80, 86]. We follow in this spirit; but rather than
predefining the signals or features of interest, we use a deep-learning approach by building a
feed-forward neural network. Machine-learning approaches are becoming more common in
genomics and have been previously used for variant detection [69, 76, 7, 4]. However, our work
is distinguished from these methods by the fact that we consider the ability of simultaneously
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Figure 6.20: Size distribution of 500 simulated deletions, which is based on deletion sizes from the
Database of Genomic Variants. We note that the majority of deletions will be less than 1000bp in
length.

considering sequencing data from a parent and a child. Because the de novo formation rate of
SVs is low, all but a very small minority of variants present in a child’s genome will have been
inherited from the parent. We have previously used parent-child trios to improve SV detection but
not in a deep-learning framework (see e.g., [88]).

In this work, we propose two different approaches for reducing the number of false positive
SV predictions from a popular SV tool delly [80]. For simplicity, we focus on deletions (see Fig.
6.20 for the estimated size distribution of these variants in humans). We compare the performance
of each method on both simulated and real parent-child sequencing data. Our results on both
simulated and real data demonstrate that deep-learning and gradient boosting are powerful tools
for SV detection but that including related individuals in the data set greatly boost the ability to
recover true SVs. This work is based on the paper by Banuelos, DeGuchy, Sindi, and Marcia [12].

6.5.1 Methods
In this section we describe the two machine learning approaches implemented for SV

detection. The first method uses a feed forward neural network of fully connected layers. While
well established as the state of the art in the world of computer vision, neural networks are
emerging as powerful tools for processing tabular data [10, 17, 57]. Unlike images, time series,
or text datasets, tabular data consists of a columnar format where each column contains variable
information for a given number of data points. The second method, XGBoost, has already been
established as a workhorse for classification applications in the tabular data domain. XGBoost is
an ensemble method that uses decision-trees in concert with gradient descent in order to improve
performance. In the following section we describe the parameters as well as the preprocessing to
the data for each method.
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Figure 6.21: Neural network architecture used for identifying structural variation in genomic data.
The inputs 𝑥1 … 𝑥10 represent the features corresponding to the delly deletion calls. Each entry of
the output 𝑦 ∈ ℝ2 is the probability corresponding to the absence or presence of a signal variation.

Neural Network

We adopt the same framework for a feedforward network established in Chapter 4. Since our
network consists of fully connected layers, the process can be described by the equation

ℎ𝑖 = 𝑔(𝑊𝑇
𝑖 ℎ𝑖−1 + 𝑏𝑖),

where ℎ𝑖−1 ∈ ℝ𝑚 is the output of the previous layer and ℎ𝑖 ∈ ℝ𝑛 is the output of the current. Each
data pair can be described as (𝑋𝑗, 𝑦𝑗) for 𝑗 = 1 … 𝑞, where 𝑞 is the number of training points. The
input 𝑋𝑗 ∈ ℝ10 consists of the features provided by delly and the target 𝑦𝑗 ∈ ℝ is the true binary
label indicating the absence (0) or presence (1) of a structural variant. The architecture consists of
one input layer ℎ0 = 𝑔(𝑊𝑇

0 𝑋𝑗+𝑏𝑜), five hidden layers ℎ1 … ℎ5 and an output layer 𝑜 = 𝑠(𝑊𝑇
𝑜 ℎ4+𝑏𝑜).

All hidden layers contain 120 neurons and use the ReLU activation function with the exception of
the output layer which consists of two neurons and uses a log softmax activation function [44].
Before each layer we apply batch normalization to improve the performance and stability of our
network [55].

Given the two possible classes (the presence or absence of an SV), the output of the neural
network is a distribution of probabilities ̂𝑝𝑘 with 𝑘 = 1 … 𝐾 with 𝐾 equal to the number classes (in
this case 𝐾 = 2). We seek to minimize the Cross Entropy cost function

L(𝑊) = − 1
𝑚

𝑚
∑
𝑖=1

𝐾
∑
𝑘=1

𝑦(𝑖)𝑘 log( ̂𝑝(𝑖)𝑘), (6.14)

where 𝑦(𝑖)𝑘 is the true binary label of the 𝑘𝑡ℎ class and m is the number of training samples for
a given batch [45]. We use the Adam optimization algorithm to minimize (6.14) with a batch size
of 16 over 100 epochs. Before training and testing, the data is normalized so that all columns of
the features have zero mean and unit variance.

6.5.2 XGBoost
Extreme gradient boosting or XGBoost is an optimized implementation of the Gradient

Boosting Trees Algorithm. It has been shown to be highly effective in classification problems
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Simulated Data Experiment
Parameter Value
Estimators 800
Min. Child Weight 0.5
Max. Depth 7
Gamma 1
Subsample Ratio 1.0
Column Subsampling 1.0
Platinum Genomes Data Experiment
Parameter Value
Estimators 400
Min. Child Weight 20
Max. Depth 3
Gamma 0.5
Subsample Ratio 0.8
Column Subsampling 0.6

Table 6.2: Parameters used for training XGBoost Algorithm.

across a variety of disciplines [26, 9, 40]. XGBoost is an ensemble machine learning algorithm
built using decision trees. Given our data set 𝑋𝑗, 𝑦𝑗, XGBoost creates an ensemble of 𝐾 additive
Classification and Regression Trees (CART) which we express as 𝑇1(𝑋𝑖, 𝑦𝑖) … 𝑇𝐾(𝑋𝑖, 𝑦𝑖) in order
to predict the class label 𝑦𝑖. The prediction scores for each CART are summed up as a final score
expressed by the equation

̂𝑦𝑖 =
𝐾

∑
𝑘=1

𝑓𝑘(𝑋𝑖), 𝑓𝑘 ∈ 𝐹 (6.15)

where 𝑓𝑘 is a tree structure and 𝐹 is the space of all trees [25, 9]. Given the final score, we seek to
minimize the cost function

𝐽(𝛩) =
𝑛

∑
𝑖

𝑙(𝑦𝑖, ̂𝑦𝑖) +
𝐾

∑
𝑘

𝛺(𝑓𝑘) (6.16)

where the first term 𝑙 in (6.16) is a data fidelity term between the prediction ̂𝑦𝑖 and the target 𝑦𝑖.
The regularization term 𝛺 penalizes the model complexity to avoid overfitting. We refer the
reader to [25] for the optimization routine for (6.16) which cannot be optimized using traditional
optimization methods in Euclidean space.

Hyperparameter tuning is as essential to XGBoost as it is to the neural networks. We use grid
search methods in order to perform parameter sweeps using k fold cross validation in order to find
the optimal model parameters. The optimal hyperparameters for both models are shown in Table
6.2. In either case the learning rate was set to 0.02 and a binary logistic objective function was
used as a cost function. All parameters not listed in Table 6.2 were set to the default values. Both
datasets were preprocessed using a min-max normalization.

6.5.3 Numerical Experiment
Simulated Data

Using the first twelve chromosomes of the hg19 build of the human reference genome, we
introduced 500 deletions using RSVSim [33, 54, 15]. We simulated corresponding reads with
read lengths 𝐿 = 75bp and 𝐿 = 150bp using dwgsim and aligned reads with speedseq [52, 29].
We follow a similar approach to simulate 2 different individuals, one offspring derived from the
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Features Description
Chr Chromosome
Start Predicted start position of deletion
End Predicted end position of deletion
FILTER PE/SR support < 3 or mapping quality < 20
IMPRECISE SR support > 0
PE Number of paired-end reads supporting deletion
MAPQ Median mapping quality of paired-ends
CIPOS Paired-end confidence interval around Start
CIEND Paired-end confidence interval around End
SR Number of split-reads supporting deletion

Table 6.3: Features corresponding to the delly deletion calls and a description of each feature.

Table 6.4: Performance metrics for both experiments.

Simulated Data
Method Precision Recall F1 AUC
Neural Network 0.66 0.67 0.65 0.75
XGBoost 0.76 0.77 0.75 0.85
Platinum Genomes Data
Method Precision Recall F1 AUC
Neural Network 0.59 0.50 0.48 0.78
XGBoost 0.65 0.53 0.53 0.853

Table 6.5: Performance metrics for both experiments.

mutated parent and one unrelated individual. Since the rate of de novo variations is less than one
per generation, the offspring only had 3 novel deletions not present in the parent [61, 56].

To obtain candidate genomic variant locations, we call deletions with delly [80]. We
incorporated variant call format (vcf) files into our Python workflow using cyvcf2 to extract a
total of 10 features corresponding to the delly deletion calls [78]. We summarize these in Table
6.3. Since we know the truth signal for each individual, we apply our proposed methods to reduce
the number of false positives predicted by delly. For both methods, we use the mutated parent as
the training data, and the offspring as the testing data.

Platinum Genomes Data

Following a similar framework as the simulated data, we apply our proposed methods to
delly calls for individual NA12878 (child) and NA12891 (mother) from the CEU population [39].
Both individuals are from a 17-member pedigree, where the true genomic variants have been
experimentally validated. We filter out deletions smaller than 50bp from the truth set. From the
catalogued true variations, we create the truth signal ⃗𝑦 corresponding to the delly predictions. In
this case, we use NA12891 as the training data and NA12878 as testing set.

6.5.4 Results
The proposed methods were able to significantly reduce the number of false positive

classifications identified by the delly SV caller. In Table 6.5 we report a variety of metrics to
evaluate performance of the methods on both datasets. It is clear from both Table 6.5 and the AUC
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Figure 6.22: Receiver operating characteristic curve (ROC) for the simulated data offspring signal.
We also report the area under the curve (AUC) for each method.

Figure 6.23: Receiver operating characteristic curve (ROC) for the Platinum Genomes NA12878
offspring signal. We also report the area under the curve (AUC) for each method.

curves in Figures 6.22 and 6.23 that XGBoost is clearly outperforming the Neural Network. Even
though the ensemble method improves on the scores of the Deep Learning method, the authors
feel that the results are promising and warrant further exploration. We are also encouraged by that
fact that the AUC for both the simulated dataset and the real dataset behaved similarly under both
methods.

For the simulated data, using an unrelated individual for the training data yields less
predictive power for the offspring (results not shown). Although the simulated data reflects
biologically-informed deletion sizes, the training and testing set resulted in balanced number of
observations for each class. In contrast, for the Platinum Genomes data, we find less than one in
five delly predictions to be true deletions. This imbalance may account for less improvement in
precision and recall than in the simulated data tests. Including more related individuals across
multiple generations may also improve the reduction of false positives in SV callers.
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6.5.5 Conclusion
We present a supervised learning framework that incorporates relatedness information to

reduce the number of false positives in SV-callers, like delly. Although we present our results in
the context of deletions, our framework can be adapted for predicting other classes of structural
variants. In the context of applying such methods, we also find that population-level supervised
learning techniques may be more appropriate in refining variant predictions than an approach that
does not consider differences in ancestry.

6.6 Summary of Contributions
In this chapter we presented deep learning as a method for a variety of applications in signal

recovery. In Section 6.1 we implemented deep neural networks to address the photon-limited
imaging problem originally presented in Chapter 3. We compared fully connected layers to
convolutional layers and found that the performance of fully connected layers was robust to various
levels of noise and compression. In Section 6.2 we proposed two architectures to perform image
disambiguation. This signal retrieval problem, often referred to as blind source separation, is
particularly ill-posed. Our network was able to disambiguate two super imposed images and in
some cases viewed weaker images as noise, while extracting the other image. We then switched
modalities to an application in remote sensing. We presented a neural network architecture which
allowed us to capture the physics of the SAR sensing system. The same architecture can be used to
recover an inverse, thus allowing us to solve the linear system associated with recovering the target
of interest. We then extended this technique in Section 6.4 to the problem of target recognition.
We showed that the quality of the reconstruction is of great importance when it comes to object
detection. Furthermore, we were able to display that our method improves on a regime in which
nothing is known about the imaging system. Finally in Section 6.5, we applied deep learning to the
world of genomics. For this application we leveraged the output of current techniques in order to
reduce the number of false signals when detecting structural variants in the human genome. While
neural networks performed less than favorable when compared to an ensemble method, it shows
promise when applied to the problem while exhibiting consistency from synthetic data to human
genome data.
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Chapter 7

Conclusion

7.1 Summary
Signals appear in a diverse number of forms including images, sounds, time series, etc. These

signals are constantly being captured by the increasingly complex technology available in our lives
for a variety of applications. In many cases we are required to recover these signals from corrupt
or low quality data, leaving much of the work to the algorithms used for reconstruction. In most
compressive sensing algorithms we rely on optimization techniques to minimize an objective
function providing us with some semblance of a reconstruction. Often, this requires large scale
optimization techniques to handle the increased dimensions of the signals. In this work, we
explored optimization techniques for large scale sparse signal recovery. We also focused on the
photon-limited regime, which increases the difficulty of the problem in that the noise is no longer
additive as in a Gaussian model. The problem becomes highly non-linear and non-convex. While
numerical optimization has been the standard approach for signal recovery. This works attempts
to draw on experience in optimization and in signal recovery in order to apply deep learning
techniques as an alternative to standard methods.

The following summarizes my contributions of the dissertation towards data driven signal
processing algorithms:

• We proposed a novel approach for solving the sparse ℓ2-ℓ1 problem in a trust-region setting.
By using an approximation of second-derivative information known as the L-BFGS update
we improve the quality of the optimization routine and provide improved reconstructions
from noisy observations.

• We extended the formulation of the compact representation typically used to compute
the L-BFGS to include the Full Broyden class of quasi-Newton updates allowing the
quasi-Newton method to update at each iteration. We demonstrate the ability to accurately
and efficiently use the formulation to solve large scale linear systems often involved in
solving large scale optimization problems.

• We proposed an approach to fluorescence lifetime imaging where in we use aprori
knowledge about the sparsity and intensity of the intended signal in order to speed up and
improve signal estimation. We were required to model the imaging process and formulate
the bounded optimization problem for signal recovery.
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• We proposed a non-convex Shannon entropy regularization method in order to promote
sparsity in the context of photon limited imaging. We introduced the weighted Shannon
Entropy function as an alternative to ℓ1 based approaches.

• We proposed an asynchronous parallel pattern search method in order to tune the
hyperparamters involved in the photon-limited recovery problem. The objective of the
pattern search was to find the optimal parameter 𝑝 for the 𝑝-norm being used as well as the
intensity of the sparsity controlled by 𝜏. These parameters have a significant impact on the
quality of the reconstruction and had previously been chosen through trial and error. The
method achieves favorable results without any a priori information about the signal.

• We proposed a Quasi-Newton based method as an alternative to the gradient descent
based methods typically used to train neural networks. We approximate second derivative
information using the gradient within a trust-region setting. The trust region method
improves our approximation of the objective function and promotes generality of the
network to data outside of the training set.

• We proposed a method which incorporates second derivative information without explicitly
storing or computing the hessian. This was also presented in a trust-region setting where
the associated subproblem was solved using a conjugate based method. The benefit of the
method is that the quality of the optimization is improved and requires less iterations and
less data to train the neural network.

• We implemented deep neural networks to address the photon-limited imaging problem
originally addressed as a constrained optimization problem. By using a deep neural
network, the method is completely data driven. Furthermore we no longer have to make
any assumptions on the nature of the signal. We compared fully connected layers to
convolutional layers and found that the performance of fully connected layers was robust
to various levels of noise and compression.

• We proposed neural networks to perform image disambiguation. The signal retrieval
problem, often referred to as blind source separation, is particularly ill-posed. Our network
was able to disambiguate two super imposed images and in some cases viewed weaker
images as noise, while extracting the other image.

• We proposed the use of a simplified neural network in the application of remote sensing.
The neural network architecture allowed us to capture the physics of the SAR sensing
system. The same architecture can be used to recover an inverse, thus allowing us to solve
the linear system associated with recovering the target of interest.

• We extended the SAR recovery technique to the problem of target recognition. We showed
that the quality of the reconstruction is of great importance when it comes to object
detection. Furthermore, we were able to display that our method improves on a regime in
which nothing is known about the imaging system.

• Recently we applied deep learning to the world of genomics. For this application we
leveraged the output of current techniques in order to reduce the number of false signals
when detecting structural variants in the human genome. While neural networks performed
less than favorable when compared to an ensemble method, it shows promise when applied
to the problem while exhibiting consistency from synthetic data to human genome data.
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7.2 Future Work
We believe that the use of deep learning techniques for digital signal recovery is still in

its early stages. In particular, when it comes to denoising applications there is still room for
compelling advancements. Therefore, to further extend some of the applications we would like
to propose the following future work:

• More advanced architectures such as generative adversarial networks (GANs) [1] or
variational autoencoders [2] have shown a tremendous amount of promise in applications
of inpainting and super resolution. While these methods have been explored for the standard
Gaussian noise model, the photon-limited regime would benefit from these types of
techniques.

• We have been focused on applications in the photon-limited regime and thus our work has
been determined by the Poisson model. We would like to explore different types of noise,
particularly what is known as speckle [3]. Our interest in speckle is motivated in the fact
that it is often found in synthetic aperture radar data.

• Recurrent neural networks (RNNs) have been shown to be powerful tools when it comes
to time-dependent or sequential data such as speech recognition [4]. We would like to
formulate the signal recovery process as a time-dependent process in order to leverage the
RNN architecture.

As we look towards the future we hope to continue to leverage our experience in optimization
to improve the algorithms used to train neural networks. We also look forward to incorporating
problem specific information into architectures which could improve the quality of the signal
reconstruction.
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