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Abstract

This study aims to investigate the microtopographic controls that dictate the 
heterogeneity of plant communities in a mountainous floodplain‐hillslope 
system, using remote sensing and surface geophysical techniques. Working 
within a lower montane floodplain‐hillslope study site (750 m × 750 m) in the
Upper Colorado River Basin, we developed a new data fusion framework, 
based on machine learning and feature engineering, that exploits remote 
sensing optical and light detection and ranging (LiDAR) data to estimate the 
distribution of key plant meadow communities at submeter resolution. We 
collected surface electrical resistivity tomography data to explore the 
variability in soil properties along a floodplain‐hillslope transect at 0.50‐m 
resolution and extracted LiDAR‐derived metrics to model the rapid change in 
microtopography. We then investigated the covariability among the 
estimated plant community distributions, soil information, and topographic 
metrics. Results show that our framework estimated the distribution of nine 
plant communities with higher accuracy (87% versus 80% overall; 85% 
versus 60% for shrubs) compared to conventional classification approaches. 
Analysis of the covariabilities reveals a strong correlation between plant 
community distribution, soil electric conductivity, and slope, indicating that 
soil moisture is a primary control on heterogeneous spatial distribution. At 
the same time, microtopography plays an important role in creating 
particular ecosystem niches for some of the communities. Such relationships 
could be exploited to provide information about the spatial variability of soil 
properties. This highly transferable framework can be employed within long‐
term monitoring to capture community‐specific physiological responses to 
perturbations, offering the possibility of bridging local plot‐scale observations
with large landscape monitoring.

Plain Language Summary

In this study, we aim to understand how soil and topographic properties 
influence the spatial distribution of plant communities within a floodplain‐
hillslope system, located in a mountainous East River watershed in Colorado.



Watersheds are vulnerable to environmental change, including earlier 
snowmelt, changes in precipitation, and temperature trends, all of which can 
alter plant communities and associated water and nutrient cycles within the 
watershed. However, tractable yet accurate quantification of plant 
communities is challenging to do at a scale that also permits investigations 
of the key controls on the distribution. Here we developed a framework that 
uses a new approach to estimate plant distributions, one which exploits both 
remote sensing (satellite) images and surface geophysical data. Joint 
consideration of the aboveground‐and‐belowground data sets allows us to 
characterize both plant and soil properties at high spatial resolution and to 
identify the main environmental controls for plant distribution. In our 
analysis, we found that soil moisture and microtopography characteristics 
influence how plant communities are spatially distributed. Considering that 
each community responds to external perturbation in a different way, this 
method can be used within a multitemporal framework to characterize, 
temporally, the environmental heterogeneity at local scale and capture plant
responses caused by climate‐related perturbations.

1 Introduction

Mountainous watersheds are critical for water resources and essential to 
both ecosystems and human activities (Rangwala et al., 2013; Viviroli et al., 
2007). High‐elevation regions are known to be more vulnerable to climate 
change, particularly owing to amplified temperature increases compared to 
lower elevation regions (Mountain Research Initiative EDW Working Group, 
2015; Wang et al., 2014). Studies have shown that a rise in temperature 
decreases the amount of snow‐water equivalent and changes the timing of 
snowmelt (Ernakovich et al., 2014), both of which have a dramatic effect on 
ecosystem functioning, including plant phenology, community distribution, 
and primary productivity (Harte et al., 1995; Ohmura, 2012; Sloat et al., 
2015). Changes in vegetation in turn influence both watershed water 
budgets (due to their substantial influence on evapotranspiration—Maxwell &
Condon, 2016) and nutrient cycling (Hinckley et al., 2014; Hobbie, 2015).

In the Rocky Mountain regions of the United States where the ecosystem is 
often water limited, observations have detected changes in the species 
abundance of mountainous meadow plant communities, with shrubs in 
particular becoming more dominant (Spasojevic et al., 2013). Long‐term plot‐
scale studies have shown that early snowmelt—both naturally occurring and 
artificially induced—has led to the shifts from forbs to woody species (Harte 
et al., 1995, 2015). In the same region, modeling studies have predicted that
the changes in plant species from grassland to shrubland will amplify 
streamflow reduction as a result of the warming climate and early snowmelt 
(Pribulick et al., 2016). The challenge is that it is often difficult to upscale 
findings obtained from localized plot‐scale studies to the watershed and/or 
regional scale. This scaling difficulty arises from the complex terrain and 
extreme heterogeneity that are often typical in mountainous regions.



To gain a predictive understanding of how the plant community will respond 
to climate change over space, it is important to understand key 
environmental factors controlling their spatial arrangement (Zimmermann & 
Kienast, 1999). Several research efforts have recognized a significant 
topographical effect—particularly the slope aspect (i.e., slope orientation; 
Pelletier et al., 2018)—on hydrological (Allen‐Diaz, 1991; Webb et al., 2018) 
and pedological (Collins et al., 2004; Marston, 2010) processes. Such 
processes, on the other hand, have a significant impact on the local 
biogeochemistry activity (Amundson et al., 2015; Collins et al., 2004; 
Marston, 2010), leading to a heterogeneous composition of plant 
communities (Allen‐Diaz, 1991; Zimmermann & Kienast, 1999). In these 
studies, the advances in optical remote sensing have allowed researchers to 
map vegetation traits, discriminate among plant species and functional 
types, and monitor ecosystem disturbances (Brown et al., 2016; Govender et
al., 2009; Hame et al., 2015; Roth et al., 2015).

At the same time, improvements in geophysics have allowed researchers to 
capture subsurface physical and hydrological processes at high resolution 
over space (Binley et al., 2015; Rubin & Hubbard, 2005) and to investigate 
the interactions between the aboveground and belowground compartments 
of ecosystems. In mountainous regions, where soil salinity and soil 
temperature do not vary significantly at the local scale, soil electrical 
conductivity (soil EC) is often an indicator of the spatial variability of soil 
thickness, clay content, water content, or some combination of these 
characteristics (Binley et al., 2015; Miller et al., 2008; Rubin & Hubbard, 
2005). Because of the strong influence of these characteristics on plant 
physiology, studies have found significant correlations between soil EC 
patterns and leaf area index (LAI; Rudolph et al., 2015), plant photosynthetic 
activity and growth (von Hebel et al., 2018), and vegetation vigor (Dafflon et 
al., 2017). The spatially extensive nature of geophysical data allows 
exploration of how soil properties vary spatially with characteristics such as 
plant species and dynamics.

Important but as yet unexplored in these studies is the impact of 
microtopography on meadow plant communities within hillslopes. 
Microtopography is the topographic variation on the order of submeters to 
several meters, which can be characterized mainly through airborne light 
detection and ranging (LiDAR) data. Recent studies conducted in Arctic 
regions—using high‐resolution geophysical and remote sensing data—have 
revealed that microtopography could produce significant spatial 
heterogeneity in soil moisture and plant community distributions at several‐
meter or submeter scales (S. S. Hubbard et al., 2013; Dafflon et al., 2017; H. 
M. Wainwright et al., 2015). While the slope aspect of the hillslopes can be 
considered as a first‐order large‐scale control (Pelletier et al., 2018; Yetemen
et al., 2015), the controlling factors within each hillslope have not yet to the 
authors' knowledge been investigated. Given that soil moisture is very 



sensitive to microtopography, it could be an important factor governing the 
spatial organization of the ecosystem in a water‐limited region.

Characterizing meadow plant communities at high‐resolution is a challenge 
on its own, since they tend to have similar spectral signatures in optical 
remote sensing. Although LiDAR has been extensively used for quantifying 
plant structural information and for forest characterization (Dalponte et al., 
2012; Gonzalez et al., 2010; Palace et al., 2015; Paris & Bruzzone, 2015; 
Sullivan et al., 2017), few studies have explored the joint use of optical 
remote sensing and LiDAR for characterizing mountainous meadow 
communities at a relatively high (few meters) resolution (Dirnböck et al., 
2006; Hoersch et al., 2002; Nijland et al., 2015). In most of these studies, 
LiDAR‐derived products were used as ancillary data for the identification of 
different habitats, even though the spectral and structural information could 
improve the discrimination of plant communities with similar spectral 
response and different structure. Moreover, the analysis of the contextual 
information (i.e., the correlation between adjacent pixels) is often neglected 
in the remote sensing‐based meadow characterization studies. The use of 
contextual information (Benediktsson et al., 2018) is necessary to account 
for the spectral variability that increases owing to the high‐geometrical 
detail, which can lead to a subsequent decrease in prediction performance. 
There is therefore a need to improve the information extraction from such 
rich data to achieve a better mapping of plant communities that share 
similar spectral and/or structural properties.

Recognizing the need to improve our understanding of microtopographic 
controls on meadow plant species distribution, this study aims to investigate 
the covariability among soil properties, microtopography, and plant 
community distributions within hillslopes. Specifically, we aim to (1) improve 
high‐resolution mapping of meadow plant communities at submeter 
resolution, using a novel remote‐sensing data‐fusion framework; (2) 
characterize soil and land surface properties at similarly high resolution; and 
(3) use the high‐resolution information to quantify the key environmental 
controls on the heterogeneous spatial distribution of the plant community.

We hypothesize that microtopography has a significant control over the 
spatial distribution of a plant community within hillslopes, because of its 
influence on near‐surface soil hydrological and physical properties (Price, 
2011). If topographic metrics are identified as key controls on plant 
community and soil property distributions, topography could potentially be 
used to easily estimate these properties over larger scales. To achieve this, 
first we develop a data‐fusion framework based on machine learning that 
integrates spectral, structural, and contextual information from high‐
resolution optical remote sensing and LiDAR to estimate the distribution of 
plant communities in high resolution (0.5 m by 0.5 m). In this framework, the
contextual information is modeled by spatial features that describe patterns 
such as shape and texture. The spatial features are computed by using a 
spatial feature engineering procedure that performs a multiscale image 



filtering, the product of which is used as input to the machine learning 
algorithm. The use of the spatial information allows us to capture the spatial 
variability that characterizes each community and therefore to improve their 
discrimination (Falco et al., 2015). We then explore the relationships among 
the meadow plant community map, soil and land surface properties 
computed at a similar resolution from surface geophysics, and the LiDAR 
digital elevation model (DEM). This procedure allows us to evaluate the 
covariability among the estimated plant communities, soil bulk EC, and 
topographic properties—and then assess the information value of 
topographic properties for soil and vegetation spatial characterization.

We demonstrate our approach in a montane floodplain‐hillslope system of 
the East River watershed in Colorado, considered to be a representative 
headwater catchment in the Upper Colorado River Basin (Markstrom et al., 
2012). The proposed framework is expected to be useful as a tool for high‐
resolution characterization, providing spatially explicit information (such as 
species distribution) necessary to populate vegetation models (Franklin et 
al., 2016). The characterization of the spatial organization of plant 
communities becomes of critical importance when evaluating the physiology 
as a response to external stress, which varies in both intensity and timing for
each specific community. In these terms, the framework could be potentially 
used within a multitemporal monitoring procedure to capture plant dynamics
(i.e., phenology, diversity, and abundance) and responses to disturbances, 
such as early snowmelt and drought. At the same time, the framework offers
the possibility of creating a bridge between plot‐scale observations (at very 
small scale) and watershed scale monitoring, without losing the scale factor 
that governs aboveground and belowground processes.

2 Site and Data Description

2.1 Description of the Study Area

This study focuses on a lower montane floodplain‐hillslope system located in 
the East River watershed, northeast of the town of Crested Butte, Colorado 
(38°55′N, 106°56′W; Figure 1a), as part of the Department of Energy 
Watershed Function Scientific Focus Area project. The Watershed Function 
Scientific Focus Area project (Susan S. Hubbard et al., 2018) aims to develop 
a predictive understanding of mountainous watershed function, its response 
to perturbations, and implications for downgradient water availability and 
water quality.



The floodplain‐hillslope study site (Figure 1b) is located at ~2,760‐m 
elevation and ranges from an extensive riparian zone characterized by 
multiple meanders to a northeast‐facing lower montane hillslope, covering a 
750‐ × 750‐m area. This site presents a diverse assortment of plant species 
and associated spatial distributions. The riparian zone is characterized by the
presence of dwarf shrubs, such as american dwarf birch, mountain willow, 
and potentilla, divided internally by patches and narrow corridors of 
grassland. The floodplain‐hillslope study area includes a variety of meadow 
plants, including veratrum, frasera, larkspur (delphinium), graminoids, 
dandelion, potentialla gracilis, lupine, and sagebrush (artemisia; Harte et al., 
1995).



Meteorological data obtained from the SNOTEL station located in Butte 
(38°53′N, 106°54′W) show a high snow accumulation in fall and winter 
seasons (October‐March), with snowmelt occurring in the spring season 
(April‐June) and the peak of snow‐water‐equivalent in mid‐April. The area's 
average temperature varies from ‐4.4°C in winter (December‐March) to 
13.5°C in summer (July‐September), with average precipitation of 150.6 mm 
in summer and 200.8 mm in winter.

2.2 Data Collection and Preprocessing

2.2.1 Satellite Multispectral Data

An optical satellite image was acquired by the WorldView‐2 (WV‐2), high‐
resolution commercial imaging satellite operated by DigitalGlobe 
(Westminster, Colorado, USA) on 24 September 2015. The WV‐2 system 
provides a panchromatic image at a spatial resolution of 0.5 m, as well as a 
multispectral image of eight bands at a spatial resolution of 2.0 m in the 
visible and the near‐infrared regions (coastal, blue, green, yellow, red, red 
edge, NIR1, and NIR2).

Radiometric and sensor corrections were performed prior to 
orthorectification. In addition, we performed a pan‐sharpening procedure to 
fuse the spectral information of the multispectral data set with the high 
geometrical detail of the panchromatic. We used the Gram Schmidt method 
(Laben & Brower, 2000) implemented in the software ENVI 5.3. Compared to 
several other algorithms available, this method yielded the best performance
in preserving local spectral properties in this complex terrain. The 
geometrical resolution of the multispectral image was improved from 2 m 
per pixel to 0.5 m per pixel.

2.2.2 Airborne LiDAR Data

Airborne LiDAR data were acquired over the study area on 10 August 2015, 
using a Riegl Q1560 dual‐channel LiDAR system mounted on a Piper Navajo 
(H. Wainwright & Williams, 2017). The survey was performed by Quantum 
Spatial, Inc. in collaboration with Eagle Mapping Ltd. The data comply with 
the U.S. Geological Survey QL1 standard (Heideman, 2014), with a point 
density of more than 8 pulse/m2. From the LiDAR point cloud, we computed 
high‐resolution DEMs: a digital surface model, representing the top‐of‐
canopy elevation, and a digital terrain model (DTM), representing the bare‐
ground elevation, at the spatial resolution of 0.5 m (Figure 1d). The DEMs 
were compared with the real‐time kinematic Global Positioning System 
measurements (the positioning accuracy of which is within a few 
centimeters) in a vegetated region within the hillslope to find that the root‐
mean‐square error of the DEMs was less than 0.15 m.

2.2.3 In Situ Electrical Resistivity Tomography

Electrical resistivity tomography (ERT) data were acquired along a 158.75‐m‐
long transect spanning the hillslope topographical gradient with 1.25‐m 



electrode spacing (Figure 1c). The transect defined by the ERT line was used 
to investigate the connection between the variability in soil physical 
properties and the diversity of plants that characterize the topographical 
gradient. The data were collected in October 2016 using an MPT DAS‐1 
electrical impedance tomography system and a dipole‐dipole array 
configuration. The acquired resistance data served to reconstruct a 2‐D 
model of depth‐discrete soil bulk EC (or resistivity) along the transect, using 
a smoothness‐constraint inversion code named “boundless electrical 
resistivity tomography” (BERT; Rücker et al., 2006a, 2006b). The obtained 
tomography shows a smoothed image of the soil EC spatial distribution, with 
a vertical resolution of roughly a third to a half of the electrode spacing near 
the surface. The data were resampled in a grid with cell size of a third of a 
meter and are reported in [S/m]. Additionally, we applied a log10 
transformation to the soil EC data to decrease the skewness and facilitate 
the multivariate analysis. The detected range of values is between 0 and 
0.03 S/m. By applying the log‐transformation, the range of values results 
negative, with the highest negative value corresponding to the lowest soil 
EC. From this point forward, with soil EC we will refer to the log‐transformed 
soil EC (Figure 2).

The soil EC is generally influenced by subsurface properties such as water 
content, porosity, fluid EC, grain surface conductivity, soil cementation, and 
soil temperature (Archie, 1942; Friedman, 2005; Revil et al., 1998). In this 
study, we consider only the near‐surface 0‐ to 0.5‐m‐depth interval, which is 
an important zone for plant‐soil interactions. In environments where fluid EC 
(i.e., salinity) does not vary extensively (as is the case along this transect), 
the spatial variations in soil EC can be connected primarily to changes in soil 
moisture content (S. S. Hubbard et al., 2013) and soil characteristics (i.e., 
porosity, soil cementation, and grain surface conductivity, amount of clay in 
the soil). Since soil texture and soil moisture often covary, ERT can provide a 
spatially smoothed and “continuous” proxy for soil moisture compared to 



direct, point‐scale soil moisture measurements (Dafflon et al., 2017; 
Robinson et al., 2008). We also measured soil moisture along the transect 
using a soil‐moisture‐trase‐system time domain reflectometer (TDR, 20‐cm 
probe length) and performed a correlation analysis between the soil moisture
and soil EC (Figure 3). The inferred correlation coefficient between soil EC 
and the soil moisture data was 0.69, suggesting that at this site, soil EC is 
significantly influenced by soil moisture. Because the volume sensed by the 
TDR is relatively superficial (top 20 cm) and measurements are spatially 
sparse, the TDR soil moisture data were not used for further analysis.

2.2.4 Reference Data and Plant Community Distribution

We used a supervised machine‐learning‐based approach to estimate the 
plant community distribution. This method requires ground‐truth information 
of the various communities, which is used to train the learning algorithm, 
validate the prediction, and ensure accuracy. Ground‐truth data were 
collected using an real‐time kinematic Differential Global Positioning Systems
to accurately determine the spatial location of the different plant 
communities. The collected data were successively used to create spatial 
polygons as reference data for the supervised image classification. In our 



analysis, we defined the following nine vegetation classes: deciduous forest, 
evergreen forest, riparian shrubland, sagebrush, shrubland, lupine meadow, 
veratrum, bunchgrass meadow, and forb. We also defined five nonvegetation
classes: river, lake, man‐made, bare area, and shadow. The vegetation 
classes were determined based on their spatial dominance and special 
characteristics. For example, sagebrush was distinguished from the more 
general shrubland classification because of its abundance across the 
hillslope. Veratrum has a unique structure with a tall canopy, presenting a 
quite homogeneous spatial coverage structure. Lupine, being a N‐fixing 
plant, is important for nitrogen cycling (Myrold & Huss‐Danell, 2003) and has 
been observed to be a dominant species in this lower montane floodplain‐
hillslope. Other vegetation classes, such as shrubland, bunchgrass meadow, 
and forb, presented a mixture of several species that together contributed to
the particular class's spectral signature.

3 Methodology

To address our research hypothesis of coupled soil, topography, and plant 
variability, our methodology includes two components. First, we develop the 
high‐resolution, remote‐sensing, data‐fusion framework, which enables us to 
delineate plant distribution at a sufficiently high resolution. Second, we 
present a statistical approach to quantify the high‐resolution covariability 
between the plant communities, soil, and topographical properties to identify
key controls of the plant community spatial distribution.

3.1 Image Classification for the Plant Community Mapping

We have developed a data‐fusion framework that integrates multisource 
remotely sensed data to map plant communities over a floodplain‐hillslope 
system (see scheme in Figure 4). Specifically, the goal is to estimate plant 
class at each pixel, based on multiple predictors (i.e., features) extracted 
from multispectral and LiDAR data. Although previous studies have mostly 
focused on single pixel information (Nijland et al., 2015; Roth et al., 2015), 
our framework takes into account the pixel spatial arrangement, which refers
to the spatial relations between pixels and their neighborhood, such as 
shape characteristics, texture, and spatial coverage (Li et al., 2014) of the 
structures presented. In this approach, which is defined as spectral‐spatial 
(Falco et al., 2015), each pixel has both direct data values—such as LiDAR‐
derived plant height or spectral reflectance—and other attributes from a 
contextual analysis. These predictors are then used as inputs to a supervised
learning algorithm to predict plant communities' distributions and produce 
the final classification map.



In this study, the contextual analysis is performed using a multilevel filtering 
procedure based on morphological operators (Matheron, 1975; Najman & 
Talbot, 2010; Serra, 1982; Soille, 2004) denoted as self‐dual‐attribute filters. 
These operators are defined as edge‐preserving filters and are used to 
partition an image into spatially smooth regions (i.e., spatial clusters) 
according to a predefined homogeneity constraint. The extraction of spatially
homogeneous regions minimizes the within‐class spectral variability 
introduced by the high geometrical detail (Bruzzone & Demir, 2014), so that 
the classification map is less affected by “salt‐and‐pepper” noise.

We exploit these morphological operators within a recently developed 
analytical construct (Cavallaro et al., 2017) to perform an automatic 
multilevel contextual analysis by extracting spatial features (i.e., filtered 
images) at different scales to better characterize the different plant 
communities. (Here scale is the filter parameter and represents the number 
of pixels composing homogeneous regions.) The multiscale contextual 
analysis results in a stack of filtered images, one for each filtering step. The 
stack is denoted as a morphological self‐dual attribute profile (SDAP), in 
which regions having similar properties at different scales are preserved or 
merged to their surroundings according to a set of scale parameters (similar 
to a hierarchical segmentation procedure). This strategy provides a way to 
capture large‐scale spatial variability and local‐scale trends in heterogeneity.
(More details with graphical examples are reported in the supplemental 
material).

We performed the multiscale contextual analysis to build SDAPs for both the 
plant's height map and the multispectral data set. In the case of the height 
map, the procedure was applied directly to the map, identifying three 
thresholds and creating a stack of four images: the original map and a set of 
three images filtered using the three identified thresholds. Morphological 
operators are in general nonlinear transformations computed on an ordered 
set of values. Therefore, any extension to multivariate values is an ill‐posed 
problem. In the case of the multispectral data set, which is composed of 
eight spectral bands, the direct application of morphological filtering is thus 
not possible. A common strategy is to apply the morphological operator to 



each spectral band and stack the resulting filtered images together. 
However, this procedure would increase the dimensionality, with the 
resulting introduction of redundant information. In this work, we applied 
principal component analysis (PCA) to extract the first principal component, 
which accounts for most of the data's variance, and use it as input to the 
multiscale analysis. The obtained SDAP is composed of four images (an 
example of which is depicted in Figure S1 in the supporting information). A 
feature level fusion (Lahat et al., 2015) via image concatenation was then 
applied to the various stacks of images (i.e., the original spectral data set 
and the two SDAPs), whose combination gave an image vector composed of 
16 images. Such a vector was then used as input into the machine‐learning 
algorithm.

To perform the image classification, we used a support vector machine (SVM)
classifier with a radial basis function kernel as a supervised learning 
algorithm. The algorithm is based on the LIBSVM (Chang & Lin, 2011) library 
developed for the MATLAB environment, using a one‐against‐one multiclass 
strategy. SVM has been commonly used in the remote‐sensing‐based land‐
cover classification. The algorithm requires the estimation of the 
regularization parameter, C, and the kernel parameter, gamma. We 
performed a cross validation based on a grid‐search approach. Specifically, 
we considered exponentially growing sequences of C and gamma, with C = 
10−2, 10−1, … , 104, and gamma = 2−3, 2−2, … , 24.

In our analysis, we considered 250 training samples randomly selected from 
each single class, with the remaining samples as the test set. Statistical 
analysis was then performed over a 20‐fold cross‐validation procedure, in 
which training and test sets were randomly selected and mutually exclusive. 
The performance of the algorithm was evaluated by computing the confusion
matrix, which is a table that shows how well each plant community was 
predicted by the model. The table also provides information on possible 
errors of omission (false negative) and commission (false positive). In 
particular, from the confusion matrix we derived single‐class accuracies, 
which provide information on how a single plant community has been 
predicted, and the overall accuracy, which is computed as the sum of the 
number of correctly classified values, divided by the total number of values. 
Such quantities are computed for each n‐fold iteration, and therefore, we 
report here the average accuracies and relative standard deviations. The 
standard deviation would provide information on the stability of the model. 
We also computed the Cohen's Kappa coefficients, which provide a measure 
of overall classification quality, by comparing the agreement against the 
performance expected by chance. The possible values range from +1 
(perfect agreement) to 0 (no agreement above that expected by chance) to ‐
1 (complete disagreement).

3.2 Identifying Controls for Plant Community Distribution



We derived topographic metrics that are considered as proxies for 
hydrological processes, such as slope gradient, profile curvature, 
topographic position index (TPI), topographic wetness index (TWI; Gillin et 
al., 2015), and flow accumulation (FA; Tarboton, 1997). Slope gradient 
represents the degree of inclination of the surface, while the profile 
curvature provides information on how rapidly the slope changes, as well as 
convex or concave features of microtopography. TPI is defined as the 
deviation from the moving average of DEM (at the scale of 5 m), 
representing microtopography (de Reu et al., 2013; Weiss, 2001). In the case
of positive TPI values, the sample is located on a ridge, whereas for negative 
values, the sample is located in a depression; for values close to zero, the 
sample location is within flat areas. FA represents for each cell the upslope 
drainage area computed as the number of cells that drain to it. Cells having 
low values of FA (meaning there are no other cells flowing to them) generally
correspond to the pattern of ridges (Jenson & Domingue, 1988). TWI is an 
index computed as ln (FA/slope) and is based on the assumption that 
topography controls the spatial pattern of soil moisture (Beven & Kirkby, 
1979; Schmidt & Persson, 2003).

High TWI values indicate areas with converging terrain, whereas low values 
indicate areas with steep, diverging terrain. As mentioned in Schmidt and 
Persson (2003), TWI is highly dependent on a main flow line that can only be 
one pixel wide. This implies that TWI assumes no water redistribution around
a topographical low point. Moreover, TWI does not provide reliable values in 
a flat environment (such as in a floodplain) because of the many sinks and 
relatively flat ground (slow flow). In such conditions, TWI has to be 
considered as wetness that could be added to soil due to direct income of 
upstream water on a specific cell. These topographic metrics were computed
by using the MATLAB TopoToolbox ver. 2.2 software (Schwanghart & 
Scherler, 2014). In addition, near‐surface (0‐ to 0.5‐m depth) soil EC were 
computed as described in section 2.2.3 along the ERT line.

We first investigated the contribution of each metric to the spatial 
distribution of each plant community through statistical graphical methods, 
including boxplots. We then explored their intercorrelations using biplots 
constructed through PCA. PCA is a method for dimensionality reduction and 
can be used to transform an original set of correlated variables into a set of 
uncorrelated ones, namely, principal components that are a linear 
combination of the original ones. The linear transformation identifies those 
components that maximize the variance of the original multivariate data. By 
selecting the components that account for most of the variance, it is possible
to express the main information in a lower dimensional data space. Biplots of
principal components have been widely exploited as an effective way to 
visualize correlations between observations and variables, graphically 
described as points and vectors (Greenacre, 2010). In our study, variables 
have different units; therefore, data values were scaled using the mean and 
variance prior to PCA.



Statistical analysis was computed over a larger portion of the floodplain‐
hillslope site (see Figure 1b). The area includes the ERT transect, which was 
exploited for the analysis of the soil EC and its relations with the plant 
community distribution.

4 Results

4.1 Estimation of Plant Community Distributions

The multisource data used in our analysis are displayed in Figure 1. 
Specifically, Figure 1b shows a true color RGB composition of the WV‐2 
multispectral pan‐sharpened optical data. The image depicts those classes 
that have a strong color characterization, such as bare areas, forest, and 
veratrum. However, the classes related to different plant communities, such 
as bunchgrass and shrubland, are more difficult to differentiate. Figure 1d 
shows the DTM capturing microtopography. The DTM is used for computing 
several topographic metrics, and also for computing the plant height map 
(i.e., the DTM is subtracted from the digital surface model), which is shown in
Figure 1e. The height map reveals a certain variability within the floodplain‐
hillslope system, allowing the identification of three main regions with similar
characteristics:

1. Riparian area, characterized by tall shrubs, ranging between 0.5 and 2 
m.

2. Forest area, with the presence of both deciduous and evergreen trees, 
ranging from 10 m to a maximum of 23 m.

3. Open area along the hillslope, characterized by meadow and shrubs, 
with a plant height ranging between a few centimeters and 1 m.

The estimated plant community classification, based on the proposed 
method, is shown in Figure 5. The plant classes, which were not evident on 
the RGB composition (Figure 1b), are well delineated by our data‐fusion 
technique. The map reveals a strong heterogeneity in the plant community 
distribution, as well as a general spatial organization within this floodplain‐
hillslope subsystem. Veratrum is, for example, present at the toeslope near 
the riparian zones as well as above the outcrop area (summit of the hillslope,
in slightly concave areas), where we expect groundwater seepage. Forbs and
shrubs can be found at the backslope, that is, the upper part of the hillslope, 
while lupine is dominant in the footslope, representing the middle area of the
hillslope.



To quantify the performance of the new approach (which includes spectral, 
structural, and contextual information) relative to conventional methods for 
estimating plant types, we performed a validation experiment. We compared
the performance of the proposed technique to those obtained by two 
standard strategies, in which the contextual information analysis was not 
included: (a) a classification approach that exploits spectral information only 
and (b) a classification approach that used both optical and LiDAR data. 
Table 1 shows class accuracies, overall accuracies, and kappa coefficients 
averaged over 20 folds, with relative standard deviations. The comparison 
quantitatively confirms the effectiveness of the proposed framework in 
accurately predicting the plant community distributions, showing the 
improvement when contextual analysis is included within the classification 
process. Fusing contextual, structural, and spectral information has 
significantly improved the delineation of vegetation classes. In the case of 
riparian shrubland, lupine meadow, shrubland, forb, and bunchgrass 
meadow, the new classification approach resulted in accuracies that are 14 
percentage points (on average) higher than the standard approach. In order 
to test the statistical significance, we performed a t test between the result 
obtained with the standard method and the one obtained with the proposed 
framework. The p value resulted in ≪0.05 (p value ≈ 1.7011e−30), 
indicating that we can safely reject the null hypothesis (the null hypothesis 
that samples of the 20 folds for both classifications are extracted from the 
same distribution). The heat map depicted in Figure 6 represents the 
averaged confusion matrix over 20 folds obtained considering the proposed 
method. As previously mentioned, this metric provides a description of the 
classification performance for each single class, including the 



misclassification error. Insights derived by this metric are discussed in‐depth 
in Section 5.



4.2 Covariability of Plant Community, Soil Moisture, and Topographic Metrics

The relationships between the topographic metrics and plant communities 
over the floodplain‐hillslope system (orange box in Figure 1b) are examined 
in Figure 7. The boxplot in Figure 7a shows in plant community as a function 
of slope, with the presence of nearly level (0.85°) to moderate steep areas 
(<30°; see Jahn et al., 2006, for slope categorization). The boxplot shows 
that sagebrush and forb are mainly located in high slope areas, while riparian
shrubland and veratrum are located in low slope areas. Although the 
difference in curvature among the classes is minor (Figure 7b), sagebrush is 
found in relatively convex areas (e.g., small hills), while veratrum is located 
in concave areas (e.g., troughs).



In addition, the high TPI values (Figure 7c) correspond to the areas populated
by sagebrush (indicating the presence of sagebrush in microtopographic 
hills), and low values with those populated by veratrum (indicating the 
presence of veratrum in microtopographic depressions). In terms of FA 
(Figure 7d), lupine, veratrum, and forb tend to grow in high FA areas. The 
TWI shown in Figure 7e provides observations similar to both curvature and 
TPI, such that sagebrush is located in areas characterized by low TWI, while 
veratrum is located in areas with high TWI. The boxplot in Figure 7f shows 
how the plant types vary with shallow soil EC computed along the ERT 



transect. Soil EC is strongly influenced by lateral variations in soil moisture 
(Figure 3). Plant species such as veratrum and riparian shrubland are mostly 
associated with high soil EC (i.e., wetter soils), while sagebrush is associated 
with low soil EC.

The PCA‐based biplot, shown in Figure 8, visualizes the covariability among 
the metrics, and clustering depending on the plant community types, 
computed along the ERT transect. The biplot is constructed by considering 
the first two principal components. The first component accounts for 39.6% 
of the total variance, while the second one accounts for 29.9%. The biplot 
shows that most plant communities have distinct clusters along two main 
gradients. The first gradient is described by the anticorrelated variables of 
soil EC and slope. Along this gradient, we can identify a series of clusters 
composed of sagebrush, forb, and lupine meadow, positively correlated with 
the slope and negatively correlated with soil EC. The second gradient, in 
direction of TWI and TPI, separates the clusters of veratrum and riparian 
shrubland, positively correlated with soil EC and negatively correlated with 
slope, and a third cluster composed of bunchgrass meadow located close to 
the center and tending toward more wet areas.



The analysis reveals particular trends among different plants communities, 
especially for veratrum and sagebrush, whose spatial distributions are more 
localized with respect to the other communities. Veratrum grows in areas 
characterized by a quasi‐flat terrain corresponding to areas located in 
depressions with high soil EC (negative TPI and high TWI). Similarly, riparian 
shrubland is located in quite flat areas with high soil EC and low slope. 
However, it is characterized by an alternating of depressions and ridges. On 
the other hand, sagebrush and forb seem to occupy similar areas 
characterized by a moderate slope and low soil EC, while sagebrush is 
spatially located along ridges or steep areas (positive TPI and low TWI).

5 Discussion

The proposed remote sensing data fusion framework obtained higher 
classification performance compared to both standard approaches and 
represents the first‐time application for the meadow plants. Considering the 
classification results obtained by the two standard approaches, we notice 
that the use of the plant height map contributed to improving the estimation 
of several communities. In particular, the estimation of the riparian 
shrubland, which resulted in it being misclassified as deciduous forest, was 
improved by 15 percentage points. The class shrubland was improved by 7 
percentage points. On the other hand, the presence of plant height brought a
limited improvement to the more challenging meadow classes (lupine and 
bunchgrass meadows) and forbs, providing only a slightly higher predicting 
accuracy compared to the standard case. Including the spatial context can 
greatly improve the final estimation, increasing the prediction accuracy of 
shrubland (from 70.82% and 78.01% to 85.61%), lupine meadow (from 
62.92% and 63.02% to 73.41%), bunchgrass meadow (from 64.88% and 
65.69% to 79.33%), and forb (from 63.32% and 64.64% to 78.29%). In this 
case, the use of features that account for the spatial characterization 
between neighboring pixels allowed us to minimize the within‐class spectral 
variability of the meadow communities, and at the same time, to better 
identify boundaries between them.

Despite this high performance, small misclassification errors were still 
present between the meadow classes. In particular, the confusion matrix 
depicted in Figure 6 shows that lupine meadow was sometimes classified as 
forb or bunchgrass meadow. Such misclassification error was due to lupine 
being present in most of the meadow and forb areas as a nondominant 
species, leading to mixed pixels. This in part results from the spatial 
resolution of 0.5 m not allowing for a single plant‐signal recognition. 
Therefore, the relative confusion between these communities is expected, as
these classes indeed manifest similar spectral and structural characteristics, 
and their coverage boundaries are often not clearly defined, slightly affecting
the final estimation. Although their estimation represented a substantial 
challenge, the misclassification error was small compared to the error in the 
standard algorithms.



The use of high‐resolution data allowed us to better observe the impact of 
microtopography on plant spatial coverage and diversity. Microtopography is
known to play an important role in controlling the local hydrological patterns 
(Gillin et al., 2015; Moeslund et al., 2013; H. M. Wainwright et al., 2015), 
allowing plant communities to identify their own specific niche. In our 
analysis, microtopographic features were quantified in terms of slope, 
curvature, TWI, and TPI (Figures 7 and 9), which have shown the ability to 
differentiate depressions (which are often saturated with water during early 
growing season) from ridges (which are less moist). Such local features 
perturb soil moisture, soil type, nutrient cycling and availability (Duncan et 
al., 2013; Gillin et al., 2015), and water flow and drainage, with a direct 
impact on biological activity (Pei et al., 2010). By comparing the spatial 
aggregation of the plant communities from the community map (Figure 5) 
with the related TPI/TWI values, we can see that specific communities, and in
some cases species, have a preferred microenvironment. Veratrum, for 
instance, is present in high‐density patches located in depressions 
characterized by high soil moisture. Sagebrush is located on ridges or close 
to outcrop areas, which, in general, present a low soil‐moisture 
concentration. The effect of microtopography can be observed also in the 
PCA‐based biplot (Figure 8), where TWI, TPI, and curvature represent the 
second main environmental control. Differences in microtopography allow us 
to further characterize plant communities that grow in areas of similar soil 
moisture but different microtopography, such as veratrum and riparian 
shrubland, as well as sagebrush and forb.



In addition, the strong anticorrelation between soil EC and slope observed in 
the multivariate PCA analysis was further investigated. Figure 9 shows a 
Pearson's correlation = ‐0.81 between the two metrics. This anticorrelation 
indicates that such topographic metrics could potentially be used to explain 
the spatial distribution of the plant communities and inform on the soil 
properties from the geophysical transect to a larger scale.

Envisioning such behavior, we further investigated the predictive capabilities
of the topographic metrics and plant community map in estimating the soil 
EC along the ERT transect by using a random forest regression (Breiman, 
2001). We defined training and test sets as nonoverlapping sets whose 
samples were randomly selected. The model produced a Pearson's 
correlation of 0.93 (Figure 10a). We investigated the predictive power of 
each variable and ranked them in terms of importance by permutating out‐
of‐bag observations. The analysis identified the slope as the most important 
predictor, followed by the plant community distribution (PFT), and TPI (Figure
10b). We then extended the estimation of soil EC over the larger area (Figure
1b) by using the random forest model trained and validated along the ERT 
transect. The analysis, which is presented here in a qualitative form (Figure 
10c), obtained results that are in line with those observed along the ERT 
transect. For instance, by comparing the estimated soil EC with the plant 
community map (Figure 5), areas with higher soil EC values are identified in 
the floodplain and in those areas populated mainly by veratrum. Low soil EC 



values are estimated in those areas populated by sagebrush and forbs, 
characterized by a higher slope. These promising results are the starting 
point for our future investigations on the use of different proxies, such as 
topography and plant communities, to provide an extended estimation of the
spatial variability of near‐surface soil EC.

Given that soil moisture is the key control of spatial distribution, our results 
could provide insights on areas where plant‐communities could be more 
susceptible to external disturbances within the hillslope. For example, 
increasing early snowmelt has been observed in this region, with a 
consequent reduction in soil moisture during the growing season (Sloat et al.,
2015). Our results have shown that soil moisture is strongly varying along 
the hillslope and affected by the slope, suggesting that the physiological 
response of the different plant communities due to possible water limitation 
might not be spatially uniform but heterogeneous. Harte et al. (2015) have 
reported the transition from forbs to sagebrush, and we found that these two
communities occupy a similar range in the topographic metrics and soil EC. 
This may suggest that forbs at this hillslope may be particularly susceptible 
to the shift. Previously, the modeling study by Pribulick et al. (2016) 
assumed a uniform change of the meadow to shrubs to predict the impact of 
climate change on ecohydrology. Therefore, it would be important to include 
a spatial metric that accounts for species susceptibility, which could be quite 
heterogeneous among the communities.



The proposed framework represents an improvement in the ability of our 
monitoring capabilities to provide high‐resolution and spatially extensive 
information. The response to external perturbations can vary in both 
intensity and timing between plant communities. It is therefore of significant 
importance to characterize the spatial organization of plant communities 
when evaluating such heterogenous physiological behavior. Finally, the 
proposed framework can potentially be useful for long‐term monitoring of 
meadow ecosystems. Understanding that functional groups can vary their 
response to plant encroachments, and that the nature of these interactions 
varies across environmental gradients (Kopp & Cleland, 2018), we can use 
accurate vegetation maps at high resolution to assess the local diversity and 
track the effect of plant encroachments—such as shifts and/or changes in 
community distribution due to disturbances such as early snowmelt and 
drought or associated with other perturbations (e.g., fire, logging). We also 
envision that this framework would serve as a bridge from plot‐scale 
experiments to watershed‐scale characterization without losing the natural 
spatial resolution at which interactions are observed. Additionally, the 
provided characterization could be used to guide sampling of soil 
biogeochemical investigations, which are sensitive to both plant community 
and soil properties.

6 Conclusion

In this study, we investigated the covariability among plant communities, soil
EC, and several topographical metrics to assess the spatial organization of 
meadow plants along an intensive hillslope transect.

Results show that our framework estimated the spatial distribution of nine 
key plant communities with higher predictive accuracy (87% versus 80% 
overall; 85% versus 60% for shrubs) compared to conventional classification 
approaches. In particular, the inclusion of the contextual information allowed
us to significantly improve the mapping of meadow plant communities—
which are usually hard to separate because of their mixed spectral 
characteristics and/or similar structure. The joint use of high‐resolution 
remote sensing (optical and LiDAR data) and geophysical measurements 
allowed us to characterize soil properties and land‐surface variability at 
similarly resolution of 0.50 m, enabling the possibility to investigate the 
relationships between microtopography, soil properties, and plant spatial 
distribution at their native resolution.

Our analysis of the covariability showed that the heterogeneous plant 
community distribution is correlated with soil moisture, indicated by slope 
and soil EC data obtained from geophysical measurements, suggesting that 
soil moisture exerts a control on plant communities, which is consistent with 
previous studies at plot scale (Harte et al., 2015; Sloat et al., 2015). We 
observed the effect of microtopography on the spatial distribution of some of
the plant communities. Microtopographic variability was measured in terms 
of curvature, TPI, and TWI, which are known to have a direct effect on soil 



organic content (Pei et al., 2010), soil types (Gillin et al., 2015), and nutrients
(Duncan et al., 2013) at local scale. Such metrics could explain the spatial 
distribution of particular plants communities located in areas with similar soil
EC and slope but with different microtopographic reliefs. Along this line, the 
quantitative analysis of the estimation of soil EC along the ERT transect 
showed that slope is the most important predictor, followed by the plant 
community distribution and the microtopographic metrics (i.e., TPI, TWI, and 
curvature) in predicating soil EC values, producing a Pearson correlation of 
0.93.

The classification and spatial covariance approach presented here 
demonstrates the potential of the proposed framework for effective 
integration of multisource data, including remote sensing and geophysical 
data, for accurately characterizing plant communities with high resolution 
and high fidelity. This highly transferable approach also allows the 
identification of potential interactions between subsurface and surface 
properties with plant communities. The high‐fidelity estimates of plant 
community distribution can be an important means by which to populate 
high‐resolution models seeking to describe water flows within vegetated 
systems, including variations in snow accumulation, runoff, evaporation (e.g.,
shading), and transpiration. With the increasing use of autonomous 
geophysical data and ease of collecting remote sensing information using 
various platforms, we expect that the developed approach will be 
transformational for monitoring plant dynamics in high resolution, and for 
revealing interactions between aboveground and belowground processes, 
from subsystem to entire watershed scales.
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