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Abstract

The results reported here empirically show the benefit of decision tree size
biases as a function of concept distribution. First, it is shown how concept
distribution complexity (the number of internal nodes in the smallest decision
tree consistent with the example space) affects the benefit of minimum size
and maximum size decision tree biases. Second, a policy is described that
defines what a learner should do given knowledge of the complexity of the
distribution of concepts. Third, explanations for why the distribution of
concepts seen in practice is amenable to the minimum size decision tree bias
are given and evaluated empirically.
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1 Introduction

Top down induction of decision trees has been significantly studied by a

number of researchers, e.g. (Breiman, Friedman, Olshen, & Stone, 1984)

and (Quinlan, 1986). The majority of the algorithms that construct decision

trees from examples use splitting heuristics that aim to minimize the size of

the induced decision trees. Empirical evidence (Buntine, 1992) has suggested

that, for real world problems, the bias for small trees tends to be useful for

increasing predictive accuracy.

Unfortunately, there has been little explanation for why the distribution

of concepts, seen in practice, is amenable to the bias of choosing the minimum

sized decision tree. Why not choose from the largest trees? Why does size

matter?

In the following, the conditions under which the minimum size and maxi

mum size biases are beneficial will be shown. Also, explanations will be given

for why the minimum size bias appears to be beneficial in practice.

The approach used in this research differs markedly from the approach

used in previous research by the author, (Murphy & Pazzani, 1994). In the

earlier research, a more detailed analysis of the effect of size biases on a

small number of concepts was presented. In this research, the analysis is

over distributions of concepts.

In Section 2, the experimental methodology used to form the results of

this paper will be described; in Section 3, it will be shown under which

concept distributions the decision tree size biases are beneficial and harmful;

and in Section 4, explanations and supporting results will be presented that

show why the minimum size bias appears to be beneficial in practice.



2 Experimental Methodology

For each experiment, a random sample of a specific distribution of concepts^

was generated and then evaluated (relative to a specific training set size).

For all experiments, each concept had five boolean features and was formed

over an example space of either 16 or 32 unique examples.

Given a specific distribution to draw concepts from and a training set

size, concepts were generated and evaluated in the following manner.

1. Draw a concept from the specific distribution.

2. Determine the concept's complexity (number of internal nodes in the

smallest decision tree consistent with the example space).

3. Generate a single random train/test partition of the example space as

specified by the training set size.

4. Generate all decision trees^ consistent with the training set.

5. Record the size (number of internal nodes) and the number of errors

on the test set for each consistent tree.

6. Partition the set of consistent trees by size.

7. Calculate the mean number of errors of all trees in each partition.

3 Bias Benefit Concept Distribution

The experiments in this section will demonstrate under which concept dis

tributions decision tree size biases are beneficial and harmful.

^Each sample contained at leeist 20,000 concepts.
^The generation of all consistent decision trees was done as described in (Murphy &

Pazzani, 1994).



3.1 Bias Benefit Evaluation

The benefit of decision tree minimum and maximum size biases were eval

uated relative to the approach of selecting the decision tree size randomly^.

For each sample of concepts, two measures of benefit were calculated.

The first measure, "percent benefit", is the percentage of concepts for

which the mean error of trees with the minimum (maximum) size was lower

than the mean error of trees of a randomly selected size. Ties counted one

half towards each approach. When using percent benefit, a value near 50%

means that there is no benefit in using the size bias over the random approach.

When the value is above (below) 50%, the size bias is beneficial (harmful)

relative to the random approach.

The second measure, "accuracy benefit", is the difference in mean ac

curacy between using the minimum (maximum) size bias and the random

approach. When using accuracy benefit, a value near zero means that there

is no benefit in using the size bias over using the random approach. When

the value is above (below) zero, the size bias is beneficial (harmful) relative

to the random approach.

3.2 Concept Distribution Complexity

This section will show some conditions under which the minimum (maximum)

size bias is of benefit to a learner. For this result, four samples of concepts,

all drawn from the uniform distribution and each with a different training

set size, were generated and evaluated. Uniform distribution concepts were

generated by randomly assigning a true or a false value to the class attribute

for each example in the example space of 32 examples. Each sample was

then partitioned by concept complexity and the two benefit measures were

calculated for each partition.

^It is assumed that once a learner has chosen a size from which to select a decision tree,
the selection of that decision tree, from among all consistent decision trees of that size, is

' done randomly.
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Figure 1: (Top) Percent benefit of the minimum and maximum size decision
tree biases as a function of concept complexity. (Middle) Accuracy benefit of
the minimum and maximum size decision tree biases as a function of concept
complexity. (Bottom) Numberof concepts generated as a function of concept

•complexity, when concepts are drawn for the uniform distribution.



Figure 1 (top) plots the percent benefit of the two size biases as a function

of concept complexity"^. Figure 1 (middle) plots the accuracy benefit of the

two size biases as a function of concept complexity. For each measure of

benefit, when concept complexity is small, the minimum size bias is most

beneficial, and when concept complexity is large, the minimum size bias is

most harmful. The opposite is true for the maximum size bias. Between

complexities 14 and 15, neither bias has any benefit®. Note, the results

presented in Figure 1 are based on the sample formed with a training set size

of 20. The results were similar for the other training set sizes.

Figure 1 (bottom) plots the number of concepts used to form the benefit

measures at the various complexities. This graph shows how rare very simple

and very complex concepts are when generated uniformly.

3.3 Generalization Performance

At first glance, the results presented in Figure 1 might imply a policy that

a learner could take, given knowledge of the complexities of the distribution

of concept. For example,

• When the complexity of the distribution is small use the minimum size

decision tree bias.

• When the complexity of the distribution is large, use the maximum size

decision tree bias.

However, the results presented in Figure 1 are somewhat misleading.

In (Schaffer, 1994), the benefit of the bias used by a learner (generaliza

tion performance) is defined as the difference between the mean accuracy of

the learner and the mean accuracy of a random guesser (0.5 for two class

problems). A value near zero means that the learner does no different than

''Even though a few concepts with complexities below 8 and above 21 were randomly
generated, the benefit measures for those complexities were not included. There were too
few concepts to form accurate benefit measurements for those complexities.

^Empirically, 14.6 was the mean complexity for each of the four samples.
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Figure 2: Generalization performance for the minimum, random and maxi
mum size biases as function of concept complexity.

chance, and a value above (below) zero means that the learner does better

(worse) than chance.

The reason the results presented in Figure 1 are misleading is because

the approach that the minimum and maximum size biases were compared

against, the approach of choosing the size of the decision tree randomly, is

not a random guesser. This random approach is better described as a bias

for "medium sized" trees®.

Figure 2 presents generalization performance for the three biases as a

function of concept distribution complexity. When the complexity of the dis

tribution is low, the minimum size bias is more accurate than the random (or

medium size) bias, and the random bias is more accurate than the maximum

size bias. The reverse is true when the complexity of the distribution is large.

However, only when the complexity of the distribution is low, do any of

the biases have positive generalization performance. When the complexity

of the distribution is high, the generalization performance of the biases is

negative. Therefore, a better strategy that a learner could take, when the

complexity of the distribution of concepts is high, is to guess randomly.

®Actually, the random bias is a bias against extreme tree sizes.



4 Concept Distributions Benefited by the

Minimum Size Bias

The results of Section 3 showed that when concepts are simple, the use of the

minimum size decision tree bias is beneficial. Because this bias is successful in

practice, it may be that the distribution of concepts that practical problems

are being drawn from is, in some manner, simple.

One explanation for simple concept distributions may be that we are

expecting our learners to remove irrelevant features. For example, when

we as the knowledge engineers decide on the set of features that our learners

use, we tend to err in favor of retaining irrelevant attributes. "Let the learner

select the relevant features," we say to ourselves. Another explanation may

he, that we, as a legacy from statistics, are using features that are highly

correlated with the class attribute. We expect our learners to combine the

features into an accurate model. The following two sections will show that

the presence of irrelevant features or class correlated features do lead to

simple concept distributions, under which the minimum size decision tree

bias is beneficial. Note, percent benefit is used as the benefit measure in this

section.

4.1 Irrelevant Features

The results in this section will show that when concepts, drawn from a uni

form distribution, are given irrelevant attributes, the minimum size decision

tree bias becomes beneficial. Under the uniform distribution, concepts with

irrelevant features are very unlikely, only 1 in for d feature concepts (1

in 2^® for concepts with 5 features).

In Section 3, concepts were generated by randomly associating each ex

ample in the five boolean feature example space to either the true class or the

false class. For this result, uniformly generated concepts were formed over

a subset of the features with the remaining features added as irrelevant fea-



Training Number of Irrelevant Features
Set Size 0 1 2

5 50.4 52.8 56.9

10 49.8 64.5 77.3

15 50.3 77.1 89.5

20 49.7 86.0 93.9

Table 1: Benefit of the minimum size decision tree bias as a function of both

the training set size and the number of irrelevant features used to create each
concept distribution.

Number of
Irrelevant Features

0

1

2

Mean Concept
Complexity

IT6
7.42

3.66

Table 2: Mean concept distribution complexity as a function of the number
of irrelevant features used to create each concept distribution.

tures. Note, all concept distribution samples generated for this experiment

have five boolean features and an example space of 32 unique examples.

Table 1 presents the benefit of the minimum size decision tree bias as a

function of the both the training set size and the number of irrelevant fea

tures used to create each concept distribution. When there are no irrelevant

features, the minimum size bias has no benefit (all values are near 50%) be

cause the concepts are drawn from a uniform distribution. As the number

of irrelevant features increases, the benefit of the minimum size decision tree

bias increases. In addition, from Table 2 (which presents mean concept dis

tribution complexity as a function of the number of irrelevant features), as

concept distribution complexity decreases, the benefit of the minimum size

decision tree bias increases. This later result is consistent with the results

shown in Figure 1.



Difference: Complexity - Minimum Size

Figure 3: Mean number of errors for the smallest trees as a function of the
difference between the complexity and the size of the smallest trees.

Also, when there are irrelevant features, as the number of training exam

ples increases, the benefit of the minimum size decision tree bias increases.

This can be understood by recognizing that small training sets typically gen

erate small minimum size decision trees, and the farther the minimum size

decision tree is from the complexity of the concept, the less accurate it tends

to be. Figure 3 provides empirical evidence for this claim.

Figure 3 was created by partitioning concepts, from a particular distri

bution and training set size, by the difference between the complexity of the

concept and the size of the smallest trees consistent with the training exam

ples. After partitioning, a mean of the mean number of errors of the smallest

tree sizes for the concepts in each group were calculated. Figure 3 plots the

means (and 95% confidence intervals) as a function of the differences^.

4.2 Class Correlated Features

The results in this section will show that the minimum size decision tree bias

becomes beneficial when concepts, drawn from a uniform distribution, are

'̂ This curve was formed from concepts generated with one irrelevant feature and 10
training examples. Results were similar for other concept distributions with irrelevant
features.



Correlation (%) Mean Concept Minimum

Complexity Size Bias (%)
50 6.73 50.0

75 5.83 56.5

100 1.00 92.0

Table 3: Mean concept complexity and minimum size decision tree bias ben
efit as a function of the correlation of the added feature used to form the

concept distribution.

given a feature that is highly correlated with the class attribute.

For these results, a fifth correlated feature was added to randomly gener

ated concepts over four boolean features (an example space of 16 examples).

The mean correlation of the correlated feature was varied to form three dif

ferent concept distribution samples. Correlation is defined as the percentage

of examples in the example space where the correlated feature's value was

the same as the class value®. Note, all concept distribution samples gener

ated for these results have five boolean features and an example space of 16

unique examples.

Table 3 presents mean concept distribution complexity and the benefit of

the minimum size decision tree bias as a function of the mean correlation of

the added feature. As the mean correlation of the added feature increases,

the mean complexity of the concept distribution decreases, and the benefit

of the minimum size decision tree bias increases. Note, because there were

only 16 examples in the example space, the maximum complexity for this

distribution is 15.

®For uniformly distributed concepts over a boolean feature space, the mean correlation
between any attribute and the class attribute is 50%.



5 Conclusion

Through a sampling of the space of uniformly distributed concepts of specific

complexities (number of internal nodes in the smallest decision tree consistent

with the example space), it is shown that the bias for small decision trees

is beneficial. It is also shown, that while larger trees perform better than

smaller trees when the complexity of the distribution of concepts is high, it

is better to guess randomly than to use a size-based bias.

Explanations for why the distribution of concepts seen in practice are

simple and amenable to the minimum size decision tree bias were given and

evaluated empirically. It was shown that the use of highly class correlated

features or the presence of irrelevant features can cause simpler concept dis

tributions, under which the minimum size decision tree bias is beneficial.
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