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ABSTRACT OF THE THESIS 

 

Wikipedia Infobox Temporal RDF Knowledge Base and Indices 

 

by 

 

Aige Song  

 

 

Master of Science in Computer Science  

University of California, Los Angeles, 2015 

Professor Carlo Zaniolo, Chair 

 

As real world evolves, Infoboxes for Wikipedia subjects are updated to reflect the information 

changes in the real world, and there is a growing interest in the evolution history of subjects in 

the Wikipedia. Thus, the management of historical information and the efficiencies of queries for 

these temporal information have become the major concern.  

In this paper, we introduce the Wikipedia Infobox temporal RDF knowledge base that 

constructed from the Wikipedia Infobox history dump, and evaluate the efficiencies of temporal 

queries based on the temporal knowledge base. Specifically, we evaluate temporal selection and 

temporal join queries based on different database systems with different indices, including 

MySQL B+ Tree, PostgreSQL B-Tree, and Interval Tree.  
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1. Introduction 

As there is a growing interest in today’s large knowledge bases, the entity information in 

these knowledge bases are updated frequently as the real world evolves. Thus, the evolution 

history of information in these knowledge bases has been brought into people’s concerns. What 

are the previous properties the entities had? When did the change occur? How to manage those 

historical information? How to query those historical information effectively and efficiently? 

These are the problems that are of great interest to users. Thus, the management of the historical 

information has become more and more crucial in the large scale knowledge bases.  

Wikipedia, for example, as one of the most popular large scale knowledge base in the 

world, experiences a great amount of updates every day. The history of Infobox of an entity 

clearly describes how the entity’s properties have been evolved. Thus, the Wikipedia Infobox 

history becomes an excellent dataset to study the management of historical information. The 

entity, along with the parameters and values in the Infobox fit into the RDF model. In this paper, 

we collect the evolution history of Wikipedia Infobox from Wikipedia history dump and store 

them in temporal RDF model. We first analyze the data generating process. Then we evaluate the 

efficiency of the queries with time dimension involved. We use different databases and data 

structures to store the temporal RDF triples, including MySQL, PostgreSQL, and Interval Tree. 

By comparing the temporal query time with different indices, MySQL B+ Tree, PostgreSQL B-

Tree, and Interval Tree, we also evaluate how these indices can help optimizing the performance 

of temporal queries. 
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2. Overview 

Previous work on temporal Wikipedia Infobox is very sparse. Most of the work focuses 

on current Infobox Information instead of Infobox history. No complete dataset of Wikipedia 

Infobox history knowledge base exists. However, the Wikipedia Infobox history is, in fact, very 

useful to study the evolution history of information. Thus, in this paper, we introduce our 

complete Wikipedia Infobox knowledge base built on Wikipedia Infobox history dump based on 

temporal RDF structure. In later sections, we will discuss the temporal RDF data model for the 

Wikipedia Infobox history, and will also present the data collecting and generating processes.  

In their paper, Gao and Chen et al. [11] introduce SPARQLT which extends SPARQL 

with a point-based explicit time model that eliminated the need for time coalescing. They also 

introduce their user friendly interface[2] for queries. However, they speed up the query using in 

memory Multi-Version B+ Tree (MVBT) [12] indices only.  This paper is based on Gao et al.’s 

research, but we further explore the performances of Postgres SQL B-Tree, MySQL B+Tree, and 

Interval Tree to support temporal RDF queries in more details. Specifically, we compare the 

creation time of these indices, how much storage to store the indices, and measure their query 

run time for eleven queries, including traditional and temporal selection, and temporal and 

hybrid join queries.  

3. Background 

3.1 Temporal RDF 

The Resource Description Framework (RDF) is a metadata model from World Wide Web 

Consortium (W3C) that has become more and more popular today. RDF models the data into 
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triples <s, p, o>, where s is the subject, p is the predicate, and o is the object. The predicate 

refers to the property of a subject, and the object is the value that the property p has for that 

given subject. For example, the statement “Jennifer Lawrence’s profession is an actress” can be 

converted into a triple where the subject is “Jennifer Lawrence”, the predicate is “profession” 

and the object is “actress”.  

As real-world information changes over the time, many values in RDF triples can have 

temporal annotations associated with them. Temporal RDF[6] is a RDF model with temporal 

context, which allows navigating data across time. Besides traditional RDF with <s,p,o>, 

temporal RDF triples contains the start time and the end time when the triple exists. The triple 

format for interval based temporal RDF is <s,p,o>: st-ed. For example, the following interval 

based temporal RDF triples can be used to record the population of San Diego between 

12/19/2012 to 05/21/2015: 

• <San Diego, population, 1322553>: 12/19/2012 - 10/01/2013 

•  <San Diego, population, 1307402>: 10/02/2013 - 04/29/2014 

•  <San Diego, population, 1345895>: 04/30/2014 -05/21/2015 

 

3.3 SPARQLT 

SPARQLT [11] is an extension of SPARQL based on a point-based explicit time model 

that supporting time coalescing. In SPARQLT, temporal RDF is constructed by adding an 

additional temporal column to RDF, in <s,p,o>:t format. The basic granularity for the time in [2] 

is DAY. For example, the interval-based temporal RDF triple  

<San Diego, population, 1307402>: 10/02/2013 - 04/29/2014 

can be expressed as following:  
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<San Diego, population, 1307402>: 10/02/2013  

<San Diego, population, 1307402>: 10/03/2013 

… 

<San Diego, population, 1307402>: 04/29/2014 

 

In SPARQLT, Gao et al. expresses the constraints on the RDF graph pattern as ?s ?p[?t] ?o, 

where ?t is the explicit time point binding for the triples. Since SPARQLT uses a point-based 

explicit time model, it eliminates the need for temporal coalescing.  

In[2], Gao et al. introduce their user-friendly query interface that solves Usability 

problem for knowledge base queries. They addressed this problem by extending the By-Example 

Structured Query(BEStQ)[14]. The interface they implemented supports (i) querying the current 

knowledge base and entities’ histories and (ii) browsing the history of entities and properties. The 

interface enables queries by allowing users to enter conditions into Wikipedia pages with 

extended temporal fields. Figure 1 is an example for the query interface.  

 
Figure 1. Query Interface 
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4. Wikipedia Infobox temporal RDF knowledge base 

4.1 Data Generating Process 

This section describes the process to generate the. The follow figure (Figure 1) shows the 

workflow for data generating. The pseudo codes for generating process are attached in 

Appendix.  

 
Figure 1. Data Generating Process Flowchart 

 

4.1.1 Extract Infobox and timestamp 

The Wikipedia Infobox temporal RDF triples are generated from the Wikipedia history 

dumps, which are in XML format. After downloading the history dump from the Wikipedia 

Server, we first scan through each of the entity in the dump, and extract the Infoboxes and their 

timestamps. Incomplete Infoboxes and Infoboxes with bad formats are dropped during 

processing. Figure 2 is a sample Infobox for Jennifer Lawrence in the Wikihistory dump.  
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4.1.2 Construct Temporal RDF Triples  

Before we construct the triples, we first clean the data to remove unnecessary 

information. These information include reference to other articles, file links, image links, urls to 

other websites, and unnecessary formatting tags.  

The Infobox starts with keyword “Infobox” and is followed by the template name for that 

entity. An Infobox contain several key - value pairs, where the key must match with the key 

specified in the Wkipedia template. When converting these key-value pairs into RDF triples, the 

entity name maps to the subject, the key maps to the predicate, and the value maps to the object.  

For each triples in the Infoboxes we extracted for a particular entity, we first check whether the 

key exists before. If the key is a new key, we initialize an entry for that key, and set its initial 

value with a timestamp starting with the timestamp for that Infobox and ending with a timestamp 

of ‘9999-12-31 23:59:59’. If the key exists, we then compare the value with the latest value for 

that key in the system. If the values match, then there is no need to update the value and 

{{Infobox person 
| name         = Jennifer Lawrence 
| image        = Jennifer Lawrence SDCC 2015 X-Men.jpg 
| caption      = Lawrence at the 2015 [[San Diego Comic-Con International]] 
| birth_name   = Jennifer Shrader Lawrence 
| birth_date   = {{birth date and age|1990|8|15}} 
| birth_place  = [[Louisville, Kentucky]], U.S. 
|residence = [[Beverly Hills, California]], U.S.<ref>{{cite web|url=http://variety.com/2014/dirt/real-
estalker/jennifer-lawrence-snags-celebrity-pedigreed-pad-in-beverly-hills-
1201337732/|title=Jennifer Lawrence Snags Celebrity Pedigreed Pad in Beverly 
Hills|accessdate=April 25, 2015|date=October 23, 2014|work= [[Variety 
(magazine)|Variety]]}}</ref> 
| occupation   = Actress 
| years_active = 2006–present}} 

Figure 2. Wikipedia Infobox Sample 
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timestamps for this key. If they do not match, then we set the end time of the latest value to the 

timestamp of current Infobox and create a new value entry for that key with a starting timestamp 

equal to the current Infobox timestamp and an ending timestamp of ‘9999-12-31 23:59:59’. 

4.1.3 Handle Piped Links and Templates  

The next step is to retrieve the contents for piped links and templates in the triples. Piped 

links[15] in Wikipedia are the hyperlinks whose text displayed is different to the title of the page 

it links to. For example, [[train station|station]] links to a page with title “train station”, but the 

link displays as “station” on the page. Templates[16] in Wikipedia are texts in the content page 

that contains a reference to the target. For example, "{{birth date and age|1990|8|15}}” actually 

refers to the “birth date and age template” and is displayed as “(1990-08-15) August 15, 1990 

(age 25)” on the webpage. We use MediaWiki API[7] to retrieve the real content that is 

displayed on the page for piped links and templates.  

4.1.4 Data Clean Up  

The last step is data cleaning. The data has to be cleaned up because most of the 

Wikipedia pages have been edited by normal users, resulting in a lot of noisy data. Final data 

cleaning includes removing consecutive duplicate triples, removing triples with inconsistent 

starting and ending timestamps, and fill in the gap between the consecutive triples with the same 

subject and key but are not continuous in their timestamps.   

     Another challenge that we faced during data clean-up is that when two users modifying 

the Infobox at the same time, the Wikidump alternatively records the two versions of Infobox 

repeatedly until one user finishes editing. This results in the case that the history of Infobox 

alternatively shows the two triples, and transaction time for each triple only lasts for a short time. 

Below is an example for this problem.  
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Table 1. Repeated Triples Sample 

Subject Key Value Starttime Endtime 

Hunnic language fam1 possibly Altaic languages 2010-06-30 11:16:58 2010-11-26 13:22:56 

Hunnic language fam1 Altaic 2010-11-26 13:22:56 2010-11-26 16:09:31 

Hunnic language fam1 possibly Altaic languages 2010-11-26 16:09:31 2011-01-31 00:32:50 

Hunnic language fam1 Altaic 2011-01-31 00:32:50 2011-01-31 07:23:16 

Hunnic language fam1 possibly Altaic languages 2011-01-31 07:23:16 2011-01-31 10:50:40 

Hunnic language fam1 Altaic 2011-01-31 10:50:40 2011-01-31 10:53:13 

Hunnic language fam1 possibly Altaic languages 2011-01-31 10:53:13 2011-01-31 17:33:34 

 
In order to solve this issue, we set a threshold for the occurrence of the repeated triples. If 

that pattern occurs more than 3 times consecutively, we pick the last triple as the valid triple and 

change its start time to the start time of the first triple where the repeated triples start.  

Due to the large amount of data in Wikipedia history dump, in order to maximize CPU and 

memory utilization, we used parallel programming in the whole process. Table 2 is part of RDF 

triples extracted from Jennifer Lawrence’s Infoboxes.  

Table 2. Infobox Temporal RDF Triples Sample 

Subject Key Value Starttime Endtime 

Jennifer 
Lawrence 

location Louisville, Kentucky 2007-08-08 23:45:12 9999-12-31 12:59:59 

Jennifer 
Lawrence 

birth_name Jennifer Shrader 
Lawrence 

2012-09-20 02:08:00 2013-01-10 19:58:34 

Jennifer 
Lawrence 

birth_name  2013-01-10 19:58:34 2013-01-10 20:22:58 

Jennifer 
Lawrence 

birth_name Jennifer Shrader 
Lawrence 

2013-01-10 20:22:58 2013-10-20 10:48:47 

Jennifer 
Lawrence 

birth_name Jennifer BrookeScott 
Lawrence 

2013-10-20 10:48:47 2013-10-20 11:05:27 

Jennifer 
Lawrence 

birth_name Jennifer Shrader 
Lawrence 

2013-10-20 11:05:27 9999-12-31 12:59:59 
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Jennifer 
Lawrence 

other name Jenn 2011-05-05 01:43:20 2011-05-22 14:12:32 

Jennifer 
Lawrence 

other name Jen 2011-05-22 14:12:32 2011-07-16 01:39:22 

Jennifer 
Lawrence 

other name  2011-07-16 01:39:22 2011-07-16 02:13:52 

Jennifer 
Lawrence 

other name Jen 2011-07-16 02:13:52 9999-12-31 12:59:59 

Jennifer 
Lawrence 

home_town Louisville, Kentucky 2012-09-20 02:08:00 2014-01-26 17:31:01 

Jennifer 
Lawrence 

home_town Louisville, Kentucky, 
U.S. 

2014-01-26 17:31:01 9999-12-31 12:59:59 

 

 

4.2 Statistics  

Wikipedia Infobox Temporal RDF Knowledge Base contains 170,941,613 temporal 

triples in total with a temporal range from 01/2004 to 08/2015. Figure 3 shows the number of 

updates of Wikipedia Infobox for each month between 01/2004 and 08/2015. From the chart, we 

can see that the number of update starts to grow significantly starting from 2006, and reaches its 

peak on 07/2011 with a maximum amount of 3,220,921.  

 

Figure 3. Wikihistory Dump Number of Updates per month 
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5. Temporal Databases  

5.1 Data Insertion  

Due to the memory limitation of the server, we randomly selected 29,966,700 triples 

from the Wikipedia Infobox Temporal RDF Knowledge Base as our test dataset. We used 

MySQL and PostgreSQL databases for query evaluation. The following statement is used to 

create table in both MySQL and PostgreSQL: 

s, p, and o refers to subject, predicate and object in RDF, and ts and te are the start time 

and end time for each triple. Table 3 is the data insertion time for MySQL and PostgreSQL with 

29,966,700 triples.  It shows that the insertion time for MySQL is about half of the insertion time 

of PostgreSQL.  

 
Table 3. Insertion Time (PostgreSQL vs. MySQL) 

 Insertion Time  

MySQL 5m 54s 727ms 

PostgreSQL  13m 13s 681ms 

 

5.2 Index 

5.2.1 B+ Tree and B-Tree 

B+ Tree is the default index method in MySQL, and B-Tree is the default index method 

in PostgreSQL. The difference of B+ Tree and B-Tree is that the internal nodes in B+ Tree store 

key and pointers only, and leaf nodes store data, while B-Tree store keys and data in internal 

CREATE TABLE dataset (s VARCHAR(128), p VARCHAR(128), o VARCHAR(128), ts TIMESTAMP, te 
TIMESTAMP);  
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nodes. The leaf nodes in B+ Tree are linked, so a full scan through the leaf nodes would be 

faster.  

In PostgreSQL and MySQL, we created six indices on subject, predicate and object. They 

are spo, pso, osp, ops, pos, and sop. These indices are created for different combinations of 

conditions. Two more indices ts and te are created for the start and end timestamps 

individually.  The index creation time for the two databases are shown in Table 4.  

 
Table 4. Index Creation Time (PostgreSQL vs. MySQL) 

Index  PostgreSQL  MySQL  

spo 3m 51s 217ms 12m 8s 180ms 

pso 4m 38s 652ms 11m 30s 250ms 

osp 5m 39s 755ms 12m 21s 480ms 
ops 7m 17s 637ms 12m 41s 900ms 

pos 5m 11s 339ms 13m 28s 540ms 

sop 4m 52s 842ms 14m 21s 800ms 

ts 5m 25s 471ms 5m 16s 410ms 

te 1m 25s 981ms 3m 31s 310ms 
 

 
Figure 4. Index Creation Time Comparison (PostgreSQL vs. MySQL) 
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Figure 4 is a comparison chart for the two databases according to Table 4. Overall, 

PostgreSQL creates indices much faster than MySQL, except for ts, which takes about the same 

time to create the index as MySQL. In addition, the creation time for B+ index on multiple 

attributes in MySQL is much slower than index on single attribute.  Table 5 below is are disk 

storages the two databases use.  Apparently, PostgreSQL uses more storage that MySQL in total. 

The storages to store all the triples are very similar, but the B- tree index size for PostgreSQL is 

around 1.3GB larger than MySQL.  

 
Table 5. Disk Storages (PostgreSQL vs. MySQL) 

 Total Table Size with 
Indices (GB) 

Table Size (GB) Index Size (GB) 

MySQL 16 2.939 13.71 
PostgreSQL  18 3.055 15 

 

5.2.2 Interval Tree  

Interval Tree is a binary tree structure that holds intervals. It optimizes the query that finds 

the intervals that overlaps with any given point or intervals. Its leaf nodes contain the elementary 

intervals. Each of its internal node stores:  

• a center point as its key, that separates the intervals in its left and right subtrees (usually 

median value is used).  

• a pointer pointing to its left subtree, which stores all the intervals that are smaller than the 

center point. 

• a pointer pointing to its right subtree, which stores all the intervals that are larger than the 

center point. 

• a sorted list of intervals that overlap with the center point. 
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  To construct an Interval Tree, we start from taking in the whole range of all the interval 

and get the median value of that interval. A node is created for the median value.We sort all the 

intervals before the median value to the left set of the node, and all the intervals after the median 

value to the right set of the node. The left and right set are divided in the same manner. All the 

intervals that overlap with the median value is stored in a sorted list belong to the node. 

The interval tree is constructed based on the time intervals of the triples. In order to 

support RDF, leaf nodes in the interval tree is modified so that they can store (subject, predicate, 

object) pairs. Each internal node contains the median value of the time interval as its key. The 

left subtree of an internal node contains all the time intervals before the key of the current node, 

and its right subtree contains all the time intervals after the key of the current node. 

Since interval tree stores all the triples in its leaf nodes and interval indices in its internal 

nodes, memory usage increases significantly as the number of triples inserted increases. Due to 

the memory limitation, our server can only support an interval tree with maximum number of 

triples of 29,966,700 in memory, and triples are inserted iteratively instead of recursively to 

avoid stack overflow issue. Figure 5 and 6 are the construction time of interval tree and memory 

used as the number of triples increases.  
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Figure 5. Interval Tree Construction Time 

 

 

Figure 6. Interval Tree Memory 
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To construct an interval tree with 29,966,700 triples, it takes about 10.387 GB in 

memory, including data and indices. From Figure 6, we can see that the size of the interval trees 

almost grows linearly, since the interval tree contains exactly one leaf node for each triple. 

Comparing with the B+ Tree with PostgreSQL and MySQL, Interval Tree takes fewer storage in 

memory. However, the time to build index is much slower than the other two structures.  

 

5.3 Query Evaluation  

Queries on Wikipedia Infobox temporal RDF knowledge base includes filtering of time 

interval, subject, predicate and object. We classify the queries on the Wikipedia Infobox 

temporal RDF knowledge base into four scenarios: traditional selection, which only compares 

non-temporal fields (subject, predicate, object); temporal selection, which filters the temporal 

fields (starttime, endtime); temporal join, which joins the tables on the temporal fields; and 

hybrid join, which joins on both non-temporal and temporal fields. In this section, we listed the 

SQL query implementation for PostgreSQL and MySQL. Queries in Interval Tree are 

implemented in Java.  

Scenario 1. Traditional Selection  

Traditional selection matches the attributes with specific value. In RDF model, traditional 

selection only consider the value condition of subject, predicate and object. For example, Q1 

returns the results that match the conditions of subject and predicate.  
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Scenario 2. Temporal Selection  

Temporal selection queries are the queries whose predicates involve temporal conditions. 

To satisfy temporal selection query, the results have to meet the value conditions if exist and the 

temporal conditions. The temporal conditions usually fall into two categories:  

1. Point overlapping.  Check whether the time interval overlaps with a point in time. In 

our paper, the point granularity is DAY. (Q2,Q3)  

2. Time interval overlapping. Check whether the time interval overlaps with another time 

interval. (Q4, Q5)  

We design the Interval Tree to first retrieve all the triples that meet the temporal 

conditions since Interval Tree only stores intervals, and scan through the result set to find the 

triples that meet the non-temporal conditions. For example, in Q2, the Interval Tree first retrieve 

all the triples that overlap with 2011-12-31, and scan through those triples to find if their subject 

is ‘Japan’ and predicate is ‘GDP_PPP’.  

However, this can be a problem for Interval Tree because the size of the result set is 

unknown. For a given time interval, the triples that overlaps that interval might be very large. In 

that case, it might cost more time to filter the temporal condition first than to filter the non-

temporal conditions with B+ Tree first. For instance, in Q2, triples whose subject is ‘Japan’ and 

key is ‘GDP_PPP’ might be a smaller set than triples that overlap with 2011-12-31, which means 

that using B+ Tree would be faster than Interval Tree.  

Q1. Find the total number of students at University of California, San Diego during each period 
PostgreSQL & MySQL 
select distinct * from dataset  
where subject='University of California, San Diego'  
 
Interval Tree (Pseudo) 
This query is completed with B+ Tree.  
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Overlap In Time Point  

 
 
Q3. Who are the key people at Bloomberg L.P. on 2010-10-01 
PostgreSQL & MySQL 
select distinct value from dataset  
where subject='Bloomberg L.P.' and key='key_people'  
and starttime<=timestamp'2010-10-01 00:00:00' and endtime>=timestamp'2010-10-01 
00:00:00'; 
 
Interval Tree(Pseudo) 
Input: (I) where I is the Interval Tree 
Initialize Resultset, Finalresult that stores triples.  
Resultset=query (“2010-10-01 00:00:00”) in I 
For each triple t in Resultset 
 If t.subject=”Bloomberg L.P.”  and t.predicate=”key_people” 
  Add t to Finalresult 
Return Finalresult  
 
 
 

Q2.Find the total GDP of Japan on 2011-12-31 
PostgreSQL & MySQL 
select distinct * from dataset  
where subject='Japan' and key='GDP_PPP'  
and starttime<=timestamp'2011-12-31' and endtime>='2011-12-31'; 
 
Interval Tree(Pseudo) 
Input: (I) where I is the Interval Tree 
Initialize Resultset, Finalresult that stores triples.  
Resultset=query (“2011-12-31 00:00:00”) in I 
For each triple t in Resultset 
 If t.subject=”Japan” and t.predicate=”GDP_PPP” 
  Add t to Finalresult 
Return Finalresult  

17 
 



Overlap in Time Interval  

  

Q4. Find companies that are owned by Time Warner before 2009 
PostgreSQL & MySQL 
select distinct subject from dataset  
where key='owner' and value='Time Warner'  
and starttime<=timestamp'2009-01-01 00:00:00'; 
 
Interval Tree(Pseudo) 
Input: (I) where I is the Interval Tree 
Initialize Resultset, Finalresult that stores triples.  
Resultset=query interval (“2004-01-01 00:00:00”, “2009-01-01 00:00:00”) in I 
For each triple t in Resultset 
 If t.predicate=”owner”  and t.value=”Time Warner” 
  Add t to Finalresult 
Return Finalresult  

Q5. Find the governor of Missouri between 2010-01-01 and 2010-05-01 
PostgreSQL & MySQL 
select distinct * from dataset  
where subject='Missouri' and key='Governor'  
and (starttime, endtime) overlaps  
(timestamp'2010-01-01 00:00:00', timestamp'2010-05-01 00:00:00'); 
 
Interval Tree(Pseudo) 
Input: (I) where I is the Interval Tree 
Initialize Resultset, Finalresult that stores triples.  
Resultset=query interval (“2010-01-01 00:00:00”, “2010-05-01 00:00:00”) in I 
For each triple t in Resultset 
 If t.subject='Missouri' and t.predicate='Governor' 
  Add t to Finalresult 
Return Finalresult  
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Scenario 3. Temporal Join  

A temporal join query performs join on both value and temporal attribute. In addition to 

the value condition in traditional query, time dimension is added so that the two tables have to 

match in value and have to overlap in time. For example, following conditions exist in Q6: 

1. Value conditions in Table A’s predicate, value, and Table B’s predicate. 

2. Table A’s subject matches B’s subject. 

3. Table A’s time interval overlaps B’s time interval and overlaps 2007. 

 

Q6. Find the players who were at Los Angeles Lakers during 2012 and their positions when they 
were at Los Angeles Lakers.  
PostgreSQL 
Select distinct A.subject from dataset as A, dataset as B  
where (A.starttime, A.endtime) OVERLAPS (B.starttime, B.endtime)  
and (B.starttime, B.endtime) OVERLAPS  
(timestamp'2010-01-01 00:00:00', timestamp'2010-12-31 23:59:59')  
and A.subject=B.subject and B.key='team' and B.value='Los Angeles Lakers' and A.key='position'; 
 
MySQL 
Select distinct A.s from dataset as A, dataset as B  
where ((A.st between B.st and B.ed) or (A.ed between B.st and B.ed)  
or (B.st between A.st and A.ed))  
and ((B.st between timestamp'2010-01-01 00:00:00' and timestamp'2010-12-31 23:59:59')  
or (B.ed between timestamp'2010-01-01 00:00:00' and timestamp'2010-12-31 23:59:59')  
or( timestamp'2010-01-01 00:00:00' between B.st and B.ed))  
and A.s=B.s and B.p='team' and B.o='Los Angeles Lakers' and A.p='position'; 
 
IntervalTree(pseudo) 
Input: (I) where I is the Interval Tree 
Initialize Resultset1, Resultset2, Finalresult that stores triples  
Resultset1 = query interval ('2010-01-01 00:00:00', '2010-12-31 23:59:59')  in I 
For each triple t in Resultset1 
 If t.predicate=’team’ and t.value=’Los Angeles Lakers’ 
  Let st=t.starttime, ed=t.endtime, subject=t.subject 
  Resultset2= query interval (st, ed) 
  For each triple r in Resultset2 
   If r.subject=subject and r.predicate=’position’ 
    Add r to Finalresult  
Return Finalresult  
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Q8. Find population in Los Angeles when Eric Garcetti is the Mayor of Los Angeles 
PostgreSQL 
Select distinct A.value from dataset as A, dataset as B  
where A.subject='Los Angeles' and B.subject=A.subject  
and B.key='leader_name' and B.value='Eric Garcetti' and A.key='population_total' 
and (A.starttime, A.endtime) OVERLAPS (B.starttime, B.endtime); 
 
MySQL 
Select distinct A.o from dataset as A, dataset as B  
where A.s='Los Angeles' and B.s=A.s and B.p='leader_name'  
and B.o='Eric Garcetti' and A.p='population_total'   
and ((A.st between B.st and B.ed) or (A.ed between B.st and B.ed)  
or (B.st between A.st and A.ed))  
 
IntervalTree(pseudo) 
Input: (I, PV) where I is the Interval Tree, PV is the B+ Tree built on (predicate, value) 

Q7. Find team name and the owner of the team Brandon Jennings belongs to when he is at that team 
PostgreSQL 
Select distinct B.subject, B.value from dataset as A , dataset as B  
where A.subject='Brandon Jennings' and A.key='team'  
and A.value=B.subject and B.key='owner'  
and (A.starttime, A.endtime) OVERLAPS (B.starttime, B.endtime);  
 
MySQL 
Select distinct B.s, B.o from dataset as A , dataset as B  
where A.s='Brandon Jennings' and A.p='team' and A.o=B.s and B.p='owner'  
and ((A.st between B.st and B.ed) or (A.ed between B.st and B.ed)  
or (B.st between A.st and A.ed))  
 
IntervalTree(pseudo) 
Input: (I, SP) where I is the Interval Tree, SP is the B+ Tree built on (subject, predicate) 
Initialize Resultset1, Resultset2, Finalresult that stores triples  
Resultset1 = query (subject=”Brandon Jennings” and predicate=”team”) in SP 
For each triple t in Resultset1 
 Let teamname=t.value, st=t.starttime and ed=t.endtime  
 Resultset2= query interval(st, ed) in I  
 For each triple r in Resultset2 
  If r.subject=teamname and r.predicate=owner 
   Add r to Finalresult  
Return Finalresult  
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Initialize Resultset1, Resultset2, Finalresult that stores triples  
Resultset1 = query (predicate=”leader_name” and value=” Eric Garcetti”) in PV 
For each triple t in Resultset1 
 Let st=t.starttime and ed=t.endtime  
 Resultset2= query interval(st, ed) in I  
 For each triple r in Resultset2 
  If r.subject=”Los Angeles” and r.predicate=”population” 
   Add r to Finalresult  
Return Finalresult  
 
 

Scenario 4. Hybrid Join  

The results for hybrid join has to match its value conditions and temporal attribute binds 

to a specific time point or time range. The two tables have to be joined by their attribute value 

conditions and their time intervals have to overlap with specific time ranges. For example, 

following conditions exist in Q9: 

1. Table A’s subject matches Table B’s subject. 

2. Value conditions in Table A’s predicate, value, and Table B’s predicate, value.  

3. Time condition for Table B’s start time. 

This kind of join queries are completed by first finding the triples within the query time 

range using Interval Tree and the triples that meet the value conditions using B+ Tree, and then 

get the intersection set of these triple results. For instance, in order to find resultset for Q9, we 

first use Interval Tree to filter out all the records that are before 2012 with key equals to 

‘location_city’ and ‘value’ equals to ‘New York’. Then we use B+ Tree to find all the companies 

that have financial service as its industry. Finally, we take the intersection of these two result 

sets.  

 
Q9. Find financial services companies whose headquarters are in New York before 2012.  
PostgreSQL 
Select distinct A.subject from dataset as A, dataset as B  
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where A.key='industry' and A.value like '%Financial services%'  
and B.key='location_city' and B.value like '%New York%'  
and A.subject=B.subject and B.starttime<timestamp'2012-01-01 00:00:00'; 
 
MySQL  
Select distinct A.s from dataset as A, dataset as B  
where A.p='industry' and A.o like '%Financial services%'  
and B.p='location_city' and B.o like '%New York%' and A.s=B.s  
and B.st<timestamp'2012-01-01 00:00:00'; 
 
IntervalTree(pseudo) 
Input: (I, PV) where I is the Interval Tree, PV is the B+ Tree built on (predicate, value) 
Initialize Resultset1, Resultset2, Tempset, Finalresult that stores triples  
Resultset1 = query interval (“2004-01-01 00:00:00”, “2012-01-01 00:00:00) in I 
For each triple t in Resultset1 
 If t.predicate=”location_city” and t.value contains “New York” 
  Add t to Tempset 
Resultset2= query (predicate=”industry”, value=”Financial services”) in PV 
For each triple r in Resultset2 
           For each triple t in Tempset 
  If r.subject=t.subject 
   Add r to Finalresult  
Return Finalresult  
  
 
 
Q10. Find distributor of the film directed by Peter Jackson before 2010 
PostgreSQL 
Select distinct A.subject, A.value from dataset as A, dataset as B  
where A.subject=B.subject and B.key='director' and B.value='Peter Jackson'  
and A.key='distributor' and B.starttime<timestamp'2010-01-01 00:00:00'; 
 
MySQL 
Select distinct A.s, A.o from dataset as A, dataset as B where A.s=B.s and B.p='director' and 
B.o='Peter Jackson' and A.p='distributor' and B.st<timestamp'2010-01-01 00:00:00'; 
 
IntervalTree(pseudo) 
Input: (I, SP) where I is the Interval Tree, SP is the B+ Tree built on (subject, predicate) 
Initialize Resultset1, Resultset2, Finalresult that stores triples  
Resultset1 = query interval (“2004-01-01 00:00:00”, “2010-01-01 00:00:00) in I 
For each triple t in Resultset1 
 If t.value=”Peter Jackson” and t.predicate=”director” 
 Let film=t.subject 
 Resultset2= query (subject=film, predicate=”distributor”) in SP 
 For each triple r in Resultset2 
  Add r to Finalresult  
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Return Finalresult  
 
 
 
Q11. Find all albums produced by a rock singer released in 2013 
PostgreSQL 
Select distinct A.subject, B.subject from dataset as A, dataset as B  
where B.key='genre' and B.value like '%rock%' and A.value=B.subject  
and A.key='Artist' and (A.starttime, A.endtime)  
OVERLAPS(timestamp'2013-01-01 00:00:00', timestamp'2013-12-31 23:59:59');  
 
MySQL  
Select distinct A.s, B.s from dataset as A, dataset as B  
where B.p='genre' and B.o like '%rock%' and A.o=B.s and A.p='Artist'  
and ((B.st between timestamp'2013-01-01 00:00:00' and timestamp'2013-12-31 23:59:59')  
or (B.ed between timestamp'2013-01-01 00:00:00' and timestamp'2013-12-31 23:59:59')  
or( timestamp'2013-01-01 00:00:00' between B.st and B.ed)) 
 
IntervalTree(pseudo) 
Input: (I, PV) where I is the Interval Tree, PV is the B+ Tree built on (predicate, value) 
Initialize Resultset1, Resultset2, Tempset, Finalresult that stores triples  
Resultset1 = query interval (“2013-01-01 00:00:00”, “2013-12-31 23:59:59) in I 
For each triple t in Resultset1 
 If t.predicate=”Artist” 
  Add t to Tempset 
Resultset2= query (predicate=”genre”, value contains “rock”) in PV 
For each triple r in Resultset2 
 For each triple t in Tempset 
  If r.subject=t.subject  
   Add r to Finalset 
Return Finalresult 
 

6. Experiments 

We executed queries Q1-11 on PostgreSQL, MySQL and Interval Tree. Since Interval 

Tree only stores interval values, for queries that do not involve any time interval, an exhaustive 

search has to be performed, which is very time-consuming. In order to support traditional 

selection queries, we built a B+ tree on s,p, and o attributes before building Interval Trees to 

speed up queries that involve comparing other non-temporal fields.  
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Below are the runtime results for each scenario.  

Scenario 1. Traditional Selection (Q1) 

 

Scenario 2. Temporal Selection (Q2-Q5) 
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Scenario 3. Temporal Join  

 

 

Scenario 4. Hybrid Join 
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Overall, Interval Tree is significantly slower than the other two indices. As explained 

earlier, for queries that have both temporal and non-temporal conditions, Interval Tree might be 

very inefficient if the result set for the triples that overlap with the temporal conditions are very 

large.  

In addition, since Interval Tree are built in memory, the index has already taken a lot of 

memory. The memory limitation also affects the query time of Interval Tree. In addition, the 

implementation of temporal queries for Interval Tree is a lot more complicated than temporal 

queries for PostgreSQL and MySQL.  

Apparently, for selection queries, PostgreSQL is faster than MySQL. But for join queries, 

the query time for PostgreSQl and MySQL are very similar, and sometimes, in fact, MySQL is 

slightly faster than PostgreSQL.  

7. Previous Work  

Previous work on temporal RDF data model and queries are very sparse. In [6], Gutierrez et 

al. presents the temporal RDF graphs, which incorporate temporal labels into RDF. It gives a 

very robust temporal RDF model. There are several approaches that have been proposed to 

support temporal RDF queries. Pugliese and Udrea et al. [1] propose tGRIN, which is a 

specialized balanced tree built on the temporal RDF triples based on undirected RDF graph 

distance and temporal distances. They use traditional databases but use extended indices to 

support temporal queries. [3] and [4] introduce t-SPARQL and SPARQL-st, which store 

temporal RDF in RDBMS and convert the temporal queries into SPARQL. These two 

approaches use explicit time model and interval operators to construct simple temporal selection 
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and join queries. However, most of these approaches either are not able to support complex 

queries, or have performance issues.  

8. Future Work 

There are some challenges we met that may need future works.  

• While parsing the Wikipedia history dump, due to the large size of the dump, reading 

dump was a very significant bottleneck that slows down the performance. Even though 

multi-thread was implemented, the limit of threads was not able to improve the 

performance significantly.  

• While parsing Infoboxes, we found that some of the keys in Wikipedia History dump are 

not the same as what are shown on the Wikipedia website, even though they refer to the 

same thing. For example, the key “mayor” on Wikipedia website shows as “leader_name” 

in the Wikidump. This is because Wikidump is in XML format, and Wikipedia has an 

internal method (expand template) to convert the key to the presented key on the website. 

Thus, we will need to develop a method to convert these keys to their presented key on 

the website to avoid inconsistency of triples in the knowledge base with the website 

contents.  

• As mentioned earlier, the noise of Wikihistory dump is a very large issue during data 

processing. Many of the Infoboxes are incomplete, and the formats are very random. This 

makes it hard to determine the start and end pattern of the Infoboxes and the pattern of 

the triples. Triples that are repeated alternatively are also a big problem for data clean-up. 
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We need to a better way to eliminate the Infoboxes with bad format, and further work is 

required to more accurate data clean-up to improve the data quality.  

• Since we used parallel programming to speed up Wikidump processing, the limitation of 

the memory makes it very hard to process the large volume of data. Processing all the 

Wikihistory dump took around 3 weeks. If we can expand the memory, it would be a lot 

easier to process all the Wikihistory dump and will save more time.  

• Due to the memory limitation, we are not able to build Interval Tree on the whole 

Infobox knowledge base. If we can expand memory, in memory Interval Tree would be 

more efficient and we would be able to test Interval Tree on the whole Wikipedia Infobox 

history dataset.  

 

9. Conclusion  

In this paper, we have introduced the Wikipedia Infobox temporal knowledge base built on 

Wikipedia history dump using temporal RDF model. The knowledge base contains 170,941,613 

temporal triples. We then selected around 30M triples for query testing. We created indices 

including PostgreSQL B-Tree, MySQL B+Tree, and in-memory Interval Tree. Overall, 

PostgeSQL had the fastest index creation time, and Interval Tree was the slowest. MySQL took 

the fewest storage to store the B+ Tree index.  Four kinds of queries were used to measure the 

query run time with the three indices: traditional selection, temporal selection, temporal join, and 

hybrid join.  For traditional and temporal selection, PostgreSQL B- Tree showed the best 

performance, while Interval Tree was the slowest among all. However, for temporal join and 
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hybrid join, the performances for PostgreSQL B-Tree and MySQL B+Tree were very similar, 

where PostgreSQL B- Tree was sometimes a little bit slower than MySQL B+Tree.  

Future work such as improving the data quality in the knowledge base and increase the memory 

for Interval Tree can improve the performance of the queries.  
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Appendix 

Wikiparser  
Wikiparser parse the wikihistory dump and extract the Infoboxes. It then 
parse each line in the Infobox into (key,value,time interval) and construct 
triple for that entity. 
 
* Below are very high level pseudocodes 
 
Function Main() 
 
Input: Wikidump file 
Output: parsed file 
 
Initiate entitycontent as String 
While not reaching end of file 
 Readline l 
 If l contains entity end tag 
  Append l to entitycontent  
  Create new thread for entitycontent 
  Empty entitycontent 
 Else: 
  Append l to entitycontent 
 
 
Function thread.run() 
 
Input: entitycontent, sbjset (hashset that store triples and time values for 
that entity) 
 
Initiate enterInfobox=false 
For each line in entitycontent  
 /*Infoboxes in bad formats are removed in this process*/ 
 If line contains <title> 
  title= extract entity title from line 
 If line contains <timestamp> 
  timestamp= extract timestamp from line 
 If line contains <Infobox> 
  enterInfobox=true 
 If enterInfobox is true  
  Call attrparser(sbjset, line, timestamp) 
Write sbjset to outputfile 
 
 
Function attrparser() 
 
Input: sbjset (hashset that store triples and time values), line, timestamp 
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Parse line into key and value: 
 key= Content between “|” and “=” 
 value= Content after “=” is  
If sbjset does not contain key 
 starttime=timestamp 
 endtime=’9999-12-31 12:59:59’ 

Insert triple (key, value, starttime, endtime) 
Else 
 Retrieve the last triple t inserted for that key 
 If t.value is not the same as value  
  starttime=timestamp 
  endtime=’9999-12-31 12:59:59’ 
  Update t.endtime=starttime 

 Insert triple (key, value, starttime, endtime) 
  
 
Wikicleaner 
Wikicleaner send requests to MediaWiki API to parse the templates and 
pipelines in the triples.  
 
Function main() 
 
Input: parsed file  
Output: final file 
 
Open HTTP connection  
While not reaching end of file 
 Readline l 
 Send “parse text” request to MediaWiki API along with l.  
 /*This parses the templates and pipelink in the triples*/ 
 Retrieve response from MediaWiki API in JSON format 
 Write cleaned line to final file.  
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