
UCLA
UCLA Electronic Theses and Dissertations

Title
Wikipedia Infobox Temporal RDF Knowledge Base and Indices

Permalink
https://escholarship.org/uc/item/7kc476n9

Author
Song, Aige

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7kc476n9
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Wikipedia Infobox Temporal RDF Knowledge Base and Indices

A thesis submitted in partial satisfaction

of the requirements for the degree Master of Science

in Computer Science

by

Aige Song

2015

Copyright by

Aige Song

2015

ABSTRACT OF THE THESIS

Wikipedia Infobox Temporal RDF Knowledge Base and Indices

by

Aige Song

Master of Science in Computer Science

University of California, Los Angeles, 2015

Professor Carlo Zaniolo, Chair

As real world evolves, Infoboxes for Wikipedia subjects are updated to reflect the information

changes in the real world, and there is a growing interest in the evolution history of subjects in

the Wikipedia. Thus, the management of historical information and the efficiencies of queries for

these temporal information have become the major concern.

In this paper, we introduce the Wikipedia Infobox temporal RDF knowledge base that

constructed from the Wikipedia Infobox history dump, and evaluate the efficiencies of temporal

queries based on the temporal knowledge base. Specifically, we evaluate temporal selection and

temporal join queries based on different database systems with different indices, including

MySQL B+ Tree, PostgreSQL B-Tree, and Interval Tree.

ii

The thesis of Aige Song is approved.

Junghoo Cho

Douglas S. Parker

Carlo Zaniolo, Committee Chair

University of California, Los Angeles

2015

iii

Table of Contents

1. Introduction ... 1

2. Overview ... 2

3. Background ... 2
3.1 Temporal RDF .. 2

3.3 SPARQLT .. 3

4. Wikipedia Infobox temporal RDF knowledge base .. 5
4.1 Data Generating Process ... 5

4.2 Statistics .. 9

5. Temporal Databases .. 10
5.1 Data Insertion .. 10

5.2 Index ... 10

5.3 Query Evaluation .. 15
6. Experiments .. 23

7. Previous Work .. 26

8. Future Work .. 27
9. Conclusion .. 28

10. Acknowledgements ... 29

References ... 30
Appendix ... 31

iv

1. Introduction

As there is a growing interest in today’s large knowledge bases, the entity information in

these knowledge bases are updated frequently as the real world evolves. Thus, the evolution

history of information in these knowledge bases has been brought into people’s concerns. What

are the previous properties the entities had? When did the change occur? How to manage those

historical information? How to query those historical information effectively and efficiently?

These are the problems that are of great interest to users. Thus, the management of the historical

information has become more and more crucial in the large scale knowledge bases.

Wikipedia, for example, as one of the most popular large scale knowledge base in the

world, experiences a great amount of updates every day. The history of Infobox of an entity

clearly describes how the entity’s properties have been evolved. Thus, the Wikipedia Infobox

history becomes an excellent dataset to study the management of historical information. The

entity, along with the parameters and values in the Infobox fit into the RDF model. In this paper,

we collect the evolution history of Wikipedia Infobox from Wikipedia history dump and store

them in temporal RDF model. We first analyze the data generating process. Then we evaluate the

efficiency of the queries with time dimension involved. We use different databases and data

structures to store the temporal RDF triples, including MySQL, PostgreSQL, and Interval Tree.

By comparing the temporal query time with different indices, MySQL B+ Tree, PostgreSQL B-

Tree, and Interval Tree, we also evaluate how these indices can help optimizing the performance

of temporal queries.

1

2. Overview

Previous work on temporal Wikipedia Infobox is very sparse. Most of the work focuses

on current Infobox Information instead of Infobox history. No complete dataset of Wikipedia

Infobox history knowledge base exists. However, the Wikipedia Infobox history is, in fact, very

useful to study the evolution history of information. Thus, in this paper, we introduce our

complete Wikipedia Infobox knowledge base built on Wikipedia Infobox history dump based on

temporal RDF structure. In later sections, we will discuss the temporal RDF data model for the

Wikipedia Infobox history, and will also present the data collecting and generating processes.

In their paper, Gao and Chen et al. [11] introduce SPARQLT which extends SPARQL

with a point-based explicit time model that eliminated the need for time coalescing. They also

introduce their user friendly interface[2] for queries. However, they speed up the query using in

memory Multi-Version B+ Tree (MVBT) [12] indices only. This paper is based on Gao et al.’s

research, but we further explore the performances of Postgres SQL B-Tree, MySQL B+Tree, and

Interval Tree to support temporal RDF queries in more details. Specifically, we compare the

creation time of these indices, how much storage to store the indices, and measure their query

run time for eleven queries, including traditional and temporal selection, and temporal and

hybrid join queries.

3. Background

3.1 Temporal RDF

The Resource Description Framework (RDF) is a metadata model from World Wide Web

Consortium (W3C) that has become more and more popular today. RDF models the data into

2

triples <s, p, o>, where s is the subject, p is the predicate, and o is the object. The predicate

refers to the property of a subject, and the object is the value that the property p has for that

given subject. For example, the statement “Jennifer Lawrence’s profession is an actress” can be

converted into a triple where the subject is “Jennifer Lawrence”, the predicate is “profession”

and the object is “actress”.

As real-world information changes over the time, many values in RDF triples can have

temporal annotations associated with them. Temporal RDF[6] is a RDF model with temporal

context, which allows navigating data across time. Besides traditional RDF with <s,p,o>,

temporal RDF triples contains the start time and the end time when the triple exists. The triple

format for interval based temporal RDF is <s,p,o>: st-ed. For example, the following interval

based temporal RDF triples can be used to record the population of San Diego between

12/19/2012 to 05/21/2015:

• <San Diego, population, 1322553>: 12/19/2012 - 10/01/2013

• <San Diego, population, 1307402>: 10/02/2013 - 04/29/2014

• <San Diego, population, 1345895>: 04/30/2014 -05/21/2015

3.3 SPARQLT

SPARQLT [11] is an extension of SPARQL based on a point-based explicit time model

that supporting time coalescing. In SPARQLT, temporal RDF is constructed by adding an

additional temporal column to RDF, in <s,p,o>:t format. The basic granularity for the time in [2]

is DAY. For example, the interval-based temporal RDF triple

<San Diego, population, 1307402>: 10/02/2013 - 04/29/2014

can be expressed as following:

3

<San Diego, population, 1307402>: 10/02/2013

<San Diego, population, 1307402>: 10/03/2013

…

<San Diego, population, 1307402>: 04/29/2014

In SPARQLT, Gao et al. expresses the constraints on the RDF graph pattern as ?s ?p[?t] ?o,

where ?t is the explicit time point binding for the triples. Since SPARQLT uses a point-based

explicit time model, it eliminates the need for temporal coalescing.

In[2], Gao et al. introduce their user-friendly query interface that solves Usability

problem for knowledge base queries. They addressed this problem by extending the By-Example

Structured Query(BEStQ)[14]. The interface they implemented supports (i) querying the current

knowledge base and entities’ histories and (ii) browsing the history of entities and properties. The

interface enables queries by allowing users to enter conditions into Wikipedia pages with

extended temporal fields. Figure 1 is an example for the query interface.

Figure 1. Query Interface

4

4. Wikipedia Infobox temporal RDF knowledge base

4.1 Data Generating Process

This section describes the process to generate the. The follow figure (Figure 1) shows the

workflow for data generating. The pseudo codes for generating process are attached in

Appendix.

Figure 1. Data Generating Process Flowchart

4.1.1 Extract Infobox and timestamp

The Wikipedia Infobox temporal RDF triples are generated from the Wikipedia history

dumps, which are in XML format. After downloading the history dump from the Wikipedia

Server, we first scan through each of the entity in the dump, and extract the Infoboxes and their

timestamps. Incomplete Infoboxes and Infoboxes with bad formats are dropped during

processing. Figure 2 is a sample Infobox for Jennifer Lawrence in the Wikihistory dump.

5

4.1.2 Construct Temporal RDF Triples

Before we construct the triples, we first clean the data to remove unnecessary

information. These information include reference to other articles, file links, image links, urls to

other websites, and unnecessary formatting tags.

The Infobox starts with keyword “Infobox” and is followed by the template name for that

entity. An Infobox contain several key - value pairs, where the key must match with the key

specified in the Wkipedia template. When converting these key-value pairs into RDF triples, the

entity name maps to the subject, the key maps to the predicate, and the value maps to the object.

For each triples in the Infoboxes we extracted for a particular entity, we first check whether the

key exists before. If the key is a new key, we initialize an entry for that key, and set its initial

value with a timestamp starting with the timestamp for that Infobox and ending with a timestamp

of ‘9999-12-31 23:59:59’. If the key exists, we then compare the value with the latest value for

that key in the system. If the values match, then there is no need to update the value and

{{Infobox person
| name = Jennifer Lawrence
| image = Jennifer Lawrence SDCC 2015 X-Men.jpg
| caption = Lawrence at the 2015 [[San Diego Comic-Con International]]
| birth_name = Jennifer Shrader Lawrence
| birth_date = {{birth date and age|1990|8|15}}
| birth_place = [[Louisville, Kentucky]], U.S.
|residence = [[Beverly Hills, California]], U.S.<ref>{{cite web|url=http://variety.com/2014/dirt/real-
estalker/jennifer-lawrence-snags-celebrity-pedigreed-pad-in-beverly-hills-
1201337732/|title=Jennifer Lawrence Snags Celebrity Pedigreed Pad in Beverly
Hills|accessdate=April 25, 2015|date=October 23, 2014|work= [[Variety
(magazine)|Variety]]}}</ref>
| occupation = Actress
| years_active = 2006–present}}

Figure 2. Wikipedia Infobox Sample

6

timestamps for this key. If they do not match, then we set the end time of the latest value to the

timestamp of current Infobox and create a new value entry for that key with a starting timestamp

equal to the current Infobox timestamp and an ending timestamp of ‘9999-12-31 23:59:59’.

4.1.3 Handle Piped Links and Templates

The next step is to retrieve the contents for piped links and templates in the triples. Piped

links[15] in Wikipedia are the hyperlinks whose text displayed is different to the title of the page

it links to. For example, [[train station|station]] links to a page with title “train station”, but the

link displays as “station” on the page. Templates[16] in Wikipedia are texts in the content page

that contains a reference to the target. For example, "{{birth date and age|1990|8|15}}” actually

refers to the “birth date and age template” and is displayed as “(1990-08-15) August 15, 1990

(age 25)” on the webpage. We use MediaWiki API[7] to retrieve the real content that is

displayed on the page for piped links and templates.

4.1.4 Data Clean Up

The last step is data cleaning. The data has to be cleaned up because most of the

Wikipedia pages have been edited by normal users, resulting in a lot of noisy data. Final data

cleaning includes removing consecutive duplicate triples, removing triples with inconsistent

starting and ending timestamps, and fill in the gap between the consecutive triples with the same

subject and key but are not continuous in their timestamps.

 Another challenge that we faced during data clean-up is that when two users modifying

the Infobox at the same time, the Wikidump alternatively records the two versions of Infobox

repeatedly until one user finishes editing. This results in the case that the history of Infobox

alternatively shows the two triples, and transaction time for each triple only lasts for a short time.

Below is an example for this problem.
7

Table 1. Repeated Triples Sample

Subject Key Value Starttime Endtime

Hunnic language fam1 possibly Altaic languages 2010-06-30 11:16:58 2010-11-26 13:22:56

Hunnic language fam1 Altaic 2010-11-26 13:22:56 2010-11-26 16:09:31

Hunnic language fam1 possibly Altaic languages 2010-11-26 16:09:31 2011-01-31 00:32:50

Hunnic language fam1 Altaic 2011-01-31 00:32:50 2011-01-31 07:23:16

Hunnic language fam1 possibly Altaic languages 2011-01-31 07:23:16 2011-01-31 10:50:40

Hunnic language fam1 Altaic 2011-01-31 10:50:40 2011-01-31 10:53:13

Hunnic language fam1 possibly Altaic languages 2011-01-31 10:53:13 2011-01-31 17:33:34

In order to solve this issue, we set a threshold for the occurrence of the repeated triples. If

that pattern occurs more than 3 times consecutively, we pick the last triple as the valid triple and

change its start time to the start time of the first triple where the repeated triples start.

Due to the large amount of data in Wikipedia history dump, in order to maximize CPU and

memory utilization, we used parallel programming in the whole process. Table 2 is part of RDF

triples extracted from Jennifer Lawrence’s Infoboxes.

Table 2. Infobox Temporal RDF Triples Sample

Subject Key Value Starttime Endtime

Jennifer
Lawrence

location Louisville, Kentucky 2007-08-08 23:45:12 9999-12-31 12:59:59

Jennifer
Lawrence

birth_name Jennifer Shrader
Lawrence

2012-09-20 02:08:00 2013-01-10 19:58:34

Jennifer
Lawrence

birth_name 2013-01-10 19:58:34 2013-01-10 20:22:58

Jennifer
Lawrence

birth_name Jennifer Shrader
Lawrence

2013-01-10 20:22:58 2013-10-20 10:48:47

Jennifer
Lawrence

birth_name Jennifer BrookeScott
Lawrence

2013-10-20 10:48:47 2013-10-20 11:05:27

Jennifer
Lawrence

birth_name Jennifer Shrader
Lawrence

2013-10-20 11:05:27 9999-12-31 12:59:59

8

Jennifer
Lawrence

other name Jenn 2011-05-05 01:43:20 2011-05-22 14:12:32

Jennifer
Lawrence

other name Jen 2011-05-22 14:12:32 2011-07-16 01:39:22

Jennifer
Lawrence

other name 2011-07-16 01:39:22 2011-07-16 02:13:52

Jennifer
Lawrence

other name Jen 2011-07-16 02:13:52 9999-12-31 12:59:59

Jennifer
Lawrence

home_town Louisville, Kentucky 2012-09-20 02:08:00 2014-01-26 17:31:01

Jennifer
Lawrence

home_town Louisville, Kentucky,
U.S.

2014-01-26 17:31:01 9999-12-31 12:59:59

4.2 Statistics

Wikipedia Infobox Temporal RDF Knowledge Base contains 170,941,613 temporal

triples in total with a temporal range from 01/2004 to 08/2015. Figure 3 shows the number of

updates of Wikipedia Infobox for each month between 01/2004 and 08/2015. From the chart, we

can see that the number of update starts to grow significantly starting from 2006, and reaches its

peak on 07/2011 with a maximum amount of 3,220,921.

Figure 3. Wikihistory Dump Number of Updates per month

9

5. Temporal Databases

5.1 Data Insertion

Due to the memory limitation of the server, we randomly selected 29,966,700 triples

from the Wikipedia Infobox Temporal RDF Knowledge Base as our test dataset. We used

MySQL and PostgreSQL databases for query evaluation. The following statement is used to

create table in both MySQL and PostgreSQL:

s, p, and o refers to subject, predicate and object in RDF, and ts and te are the start time

and end time for each triple. Table 3 is the data insertion time for MySQL and PostgreSQL with

29,966,700 triples. It shows that the insertion time for MySQL is about half of the insertion time

of PostgreSQL.

Table 3. Insertion Time (PostgreSQL vs. MySQL)

 Insertion Time

MySQL 5m 54s 727ms

PostgreSQL 13m 13s 681ms

5.2 Index

5.2.1 B+ Tree and B-Tree

B+ Tree is the default index method in MySQL, and B-Tree is the default index method

in PostgreSQL. The difference of B+ Tree and B-Tree is that the internal nodes in B+ Tree store

key and pointers only, and leaf nodes store data, while B-Tree store keys and data in internal

CREATE TABLE dataset (s VARCHAR(128), p VARCHAR(128), o VARCHAR(128), ts TIMESTAMP, te
TIMESTAMP);

10

nodes. The leaf nodes in B+ Tree are linked, so a full scan through the leaf nodes would be

faster.

In PostgreSQL and MySQL, we created six indices on subject, predicate and object. They

are spo, pso, osp, ops, pos, and sop. These indices are created for different combinations of

conditions. Two more indices ts and te are created for the start and end timestamps

individually. The index creation time for the two databases are shown in Table 4.

Table 4. Index Creation Time (PostgreSQL vs. MySQL)

Index PostgreSQL MySQL

spo 3m 51s 217ms 12m 8s 180ms

pso 4m 38s 652ms 11m 30s 250ms

osp 5m 39s 755ms 12m 21s 480ms
ops 7m 17s 637ms 12m 41s 900ms

pos 5m 11s 339ms 13m 28s 540ms

sop 4m 52s 842ms 14m 21s 800ms

ts 5m 25s 471ms 5m 16s 410ms

te 1m 25s 981ms 3m 31s 310ms

Figure 4. Index Creation Time Comparison (PostgreSQL vs. MySQL)

11

Figure 4 is a comparison chart for the two databases according to Table 4. Overall,

PostgreSQL creates indices much faster than MySQL, except for ts, which takes about the same

time to create the index as MySQL. In addition, the creation time for B+ index on multiple

attributes in MySQL is much slower than index on single attribute. Table 5 below is are disk

storages the two databases use. Apparently, PostgreSQL uses more storage that MySQL in total.

The storages to store all the triples are very similar, but the B- tree index size for PostgreSQL is

around 1.3GB larger than MySQL.

Table 5. Disk Storages (PostgreSQL vs. MySQL)

 Total Table Size with
Indices (GB)

Table Size (GB) Index Size (GB)

MySQL 16 2.939 13.71
PostgreSQL 18 3.055 15

5.2.2 Interval Tree

Interval Tree is a binary tree structure that holds intervals. It optimizes the query that finds

the intervals that overlaps with any given point or intervals. Its leaf nodes contain the elementary

intervals. Each of its internal node stores:

• a center point as its key, that separates the intervals in its left and right subtrees (usually

median value is used).

• a pointer pointing to its left subtree, which stores all the intervals that are smaller than the

center point.

• a pointer pointing to its right subtree, which stores all the intervals that are larger than the

center point.

• a sorted list of intervals that overlap with the center point.

12

 To construct an Interval Tree, we start from taking in the whole range of all the interval

and get the median value of that interval. A node is created for the median value.We sort all the

intervals before the median value to the left set of the node, and all the intervals after the median

value to the right set of the node. The left and right set are divided in the same manner. All the

intervals that overlap with the median value is stored in a sorted list belong to the node.

The interval tree is constructed based on the time intervals of the triples. In order to

support RDF, leaf nodes in the interval tree is modified so that they can store (subject, predicate,

object) pairs. Each internal node contains the median value of the time interval as its key. The

left subtree of an internal node contains all the time intervals before the key of the current node,

and its right subtree contains all the time intervals after the key of the current node.

Since interval tree stores all the triples in its leaf nodes and interval indices in its internal

nodes, memory usage increases significantly as the number of triples inserted increases. Due to

the memory limitation, our server can only support an interval tree with maximum number of

triples of 29,966,700 in memory, and triples are inserted iteratively instead of recursively to

avoid stack overflow issue. Figure 5 and 6 are the construction time of interval tree and memory

used as the number of triples increases.

13

Figure 5. Interval Tree Construction Time

Figure 6. Interval Tree Memory

14

To construct an interval tree with 29,966,700 triples, it takes about 10.387 GB in

memory, including data and indices. From Figure 6, we can see that the size of the interval trees

almost grows linearly, since the interval tree contains exactly one leaf node for each triple.

Comparing with the B+ Tree with PostgreSQL and MySQL, Interval Tree takes fewer storage in

memory. However, the time to build index is much slower than the other two structures.

5.3 Query Evaluation

Queries on Wikipedia Infobox temporal RDF knowledge base includes filtering of time

interval, subject, predicate and object. We classify the queries on the Wikipedia Infobox

temporal RDF knowledge base into four scenarios: traditional selection, which only compares

non-temporal fields (subject, predicate, object); temporal selection, which filters the temporal

fields (starttime, endtime); temporal join, which joins the tables on the temporal fields; and

hybrid join, which joins on both non-temporal and temporal fields. In this section, we listed the

SQL query implementation for PostgreSQL and MySQL. Queries in Interval Tree are

implemented in Java.

Scenario 1. Traditional Selection

Traditional selection matches the attributes with specific value. In RDF model, traditional

selection only consider the value condition of subject, predicate and object. For example, Q1

returns the results that match the conditions of subject and predicate.

15

Scenario 2. Temporal Selection

Temporal selection queries are the queries whose predicates involve temporal conditions.

To satisfy temporal selection query, the results have to meet the value conditions if exist and the

temporal conditions. The temporal conditions usually fall into two categories:

1. Point overlapping. Check whether the time interval overlaps with a point in time. In

our paper, the point granularity is DAY. (Q2,Q3)

2. Time interval overlapping. Check whether the time interval overlaps with another time

interval. (Q4, Q5)

We design the Interval Tree to first retrieve all the triples that meet the temporal

conditions since Interval Tree only stores intervals, and scan through the result set to find the

triples that meet the non-temporal conditions. For example, in Q2, the Interval Tree first retrieve

all the triples that overlap with 2011-12-31, and scan through those triples to find if their subject

is ‘Japan’ and predicate is ‘GDP_PPP’.

However, this can be a problem for Interval Tree because the size of the result set is

unknown. For a given time interval, the triples that overlaps that interval might be very large. In

that case, it might cost more time to filter the temporal condition first than to filter the non-

temporal conditions with B+ Tree first. For instance, in Q2, triples whose subject is ‘Japan’ and

key is ‘GDP_PPP’ might be a smaller set than triples that overlap with 2011-12-31, which means

that using B+ Tree would be faster than Interval Tree.

Q1. Find the total number of students at University of California, San Diego during each period
PostgreSQL & MySQL
select distinct * from dataset
where subject='University of California, San Diego'

Interval Tree (Pseudo)
This query is completed with B+ Tree.

16

Overlap In Time Point

Q3. Who are the key people at Bloomberg L.P. on 2010-10-01
PostgreSQL & MySQL
select distinct value from dataset
where subject='Bloomberg L.P.' and key='key_people'
and starttime<=timestamp'2010-10-01 00:00:00' and endtime>=timestamp'2010-10-01
00:00:00';

Interval Tree(Pseudo)
Input: (I) where I is the Interval Tree
Initialize Resultset, Finalresult that stores triples.
Resultset=query (“2010-10-01 00:00:00”) in I
For each triple t in Resultset
 If t.subject=”Bloomberg L.P.” and t.predicate=”key_people”
 Add t to Finalresult
Return Finalresult

Q2.Find the total GDP of Japan on 2011-12-31
PostgreSQL & MySQL
select distinct * from dataset
where subject='Japan' and key='GDP_PPP'
and starttime<=timestamp'2011-12-31' and endtime>='2011-12-31';

Interval Tree(Pseudo)
Input: (I) where I is the Interval Tree
Initialize Resultset, Finalresult that stores triples.
Resultset=query (“2011-12-31 00:00:00”) in I
For each triple t in Resultset
 If t.subject=”Japan” and t.predicate=”GDP_PPP”
 Add t to Finalresult
Return Finalresult

17

Overlap in Time Interval

Q4. Find companies that are owned by Time Warner before 2009
PostgreSQL & MySQL
select distinct subject from dataset
where key='owner' and value='Time Warner'
and starttime<=timestamp'2009-01-01 00:00:00';

Interval Tree(Pseudo)
Input: (I) where I is the Interval Tree
Initialize Resultset, Finalresult that stores triples.
Resultset=query interval (“2004-01-01 00:00:00”, “2009-01-01 00:00:00”) in I
For each triple t in Resultset
 If t.predicate=”owner” and t.value=”Time Warner”
 Add t to Finalresult
Return Finalresult

Q5. Find the governor of Missouri between 2010-01-01 and 2010-05-01
PostgreSQL & MySQL
select distinct * from dataset
where subject='Missouri' and key='Governor'
and (starttime, endtime) overlaps
(timestamp'2010-01-01 00:00:00', timestamp'2010-05-01 00:00:00');

Interval Tree(Pseudo)
Input: (I) where I is the Interval Tree
Initialize Resultset, Finalresult that stores triples.
Resultset=query interval (“2010-01-01 00:00:00”, “2010-05-01 00:00:00”) in I
For each triple t in Resultset
 If t.subject='Missouri' and t.predicate='Governor'
 Add t to Finalresult
Return Finalresult

18

Scenario 3. Temporal Join

A temporal join query performs join on both value and temporal attribute. In addition to

the value condition in traditional query, time dimension is added so that the two tables have to

match in value and have to overlap in time. For example, following conditions exist in Q6:

1. Value conditions in Table A’s predicate, value, and Table B’s predicate.

2. Table A’s subject matches B’s subject.

3. Table A’s time interval overlaps B’s time interval and overlaps 2007.

Q6. Find the players who were at Los Angeles Lakers during 2012 and their positions when they
were at Los Angeles Lakers.
PostgreSQL
Select distinct A.subject from dataset as A, dataset as B
where (A.starttime, A.endtime) OVERLAPS (B.starttime, B.endtime)
and (B.starttime, B.endtime) OVERLAPS
(timestamp'2010-01-01 00:00:00', timestamp'2010-12-31 23:59:59')
and A.subject=B.subject and B.key='team' and B.value='Los Angeles Lakers' and A.key='position';

MySQL
Select distinct A.s from dataset as A, dataset as B
where ((A.st between B.st and B.ed) or (A.ed between B.st and B.ed)
or (B.st between A.st and A.ed))
and ((B.st between timestamp'2010-01-01 00:00:00' and timestamp'2010-12-31 23:59:59')
or (B.ed between timestamp'2010-01-01 00:00:00' and timestamp'2010-12-31 23:59:59')
or(timestamp'2010-01-01 00:00:00' between B.st and B.ed))
and A.s=B.s and B.p='team' and B.o='Los Angeles Lakers' and A.p='position';

IntervalTree(pseudo)
Input: (I) where I is the Interval Tree
Initialize Resultset1, Resultset2, Finalresult that stores triples
Resultset1 = query interval ('2010-01-01 00:00:00', '2010-12-31 23:59:59') in I
For each triple t in Resultset1
 If t.predicate=’team’ and t.value=’Los Angeles Lakers’
 Let st=t.starttime, ed=t.endtime, subject=t.subject
 Resultset2= query interval (st, ed)
 For each triple r in Resultset2
 If r.subject=subject and r.predicate=’position’
 Add r to Finalresult
Return Finalresult

19

Q8. Find population in Los Angeles when Eric Garcetti is the Mayor of Los Angeles
PostgreSQL
Select distinct A.value from dataset as A, dataset as B
where A.subject='Los Angeles' and B.subject=A.subject
and B.key='leader_name' and B.value='Eric Garcetti' and A.key='population_total'
and (A.starttime, A.endtime) OVERLAPS (B.starttime, B.endtime);

MySQL
Select distinct A.o from dataset as A, dataset as B
where A.s='Los Angeles' and B.s=A.s and B.p='leader_name'
and B.o='Eric Garcetti' and A.p='population_total'
and ((A.st between B.st and B.ed) or (A.ed between B.st and B.ed)
or (B.st between A.st and A.ed))

IntervalTree(pseudo)
Input: (I, PV) where I is the Interval Tree, PV is the B+ Tree built on (predicate, value)

Q7. Find team name and the owner of the team Brandon Jennings belongs to when he is at that team
PostgreSQL
Select distinct B.subject, B.value from dataset as A , dataset as B
where A.subject='Brandon Jennings' and A.key='team'
and A.value=B.subject and B.key='owner'
and (A.starttime, A.endtime) OVERLAPS (B.starttime, B.endtime);

MySQL
Select distinct B.s, B.o from dataset as A , dataset as B
where A.s='Brandon Jennings' and A.p='team' and A.o=B.s and B.p='owner'
and ((A.st between B.st and B.ed) or (A.ed between B.st and B.ed)
or (B.st between A.st and A.ed))

IntervalTree(pseudo)
Input: (I, SP) where I is the Interval Tree, SP is the B+ Tree built on (subject, predicate)
Initialize Resultset1, Resultset2, Finalresult that stores triples
Resultset1 = query (subject=”Brandon Jennings” and predicate=”team”) in SP
For each triple t in Resultset1
 Let teamname=t.value, st=t.starttime and ed=t.endtime
 Resultset2= query interval(st, ed) in I
 For each triple r in Resultset2
 If r.subject=teamname and r.predicate=owner
 Add r to Finalresult
Return Finalresult

20

Initialize Resultset1, Resultset2, Finalresult that stores triples
Resultset1 = query (predicate=”leader_name” and value=” Eric Garcetti”) in PV
For each triple t in Resultset1
 Let st=t.starttime and ed=t.endtime
 Resultset2= query interval(st, ed) in I
 For each triple r in Resultset2
 If r.subject=”Los Angeles” and r.predicate=”population”
 Add r to Finalresult
Return Finalresult

Scenario 4. Hybrid Join

The results for hybrid join has to match its value conditions and temporal attribute binds

to a specific time point or time range. The two tables have to be joined by their attribute value

conditions and their time intervals have to overlap with specific time ranges. For example,

following conditions exist in Q9:

1. Table A’s subject matches Table B’s subject.

2. Value conditions in Table A’s predicate, value, and Table B’s predicate, value.

3. Time condition for Table B’s start time.

This kind of join queries are completed by first finding the triples within the query time

range using Interval Tree and the triples that meet the value conditions using B+ Tree, and then

get the intersection set of these triple results. For instance, in order to find resultset for Q9, we

first use Interval Tree to filter out all the records that are before 2012 with key equals to

‘location_city’ and ‘value’ equals to ‘New York’. Then we use B+ Tree to find all the companies

that have financial service as its industry. Finally, we take the intersection of these two result

sets.

Q9. Find financial services companies whose headquarters are in New York before 2012.
PostgreSQL
Select distinct A.subject from dataset as A, dataset as B

21

where A.key='industry' and A.value like '%Financial services%'
and B.key='location_city' and B.value like '%New York%'
and A.subject=B.subject and B.starttime<timestamp'2012-01-01 00:00:00';

MySQL
Select distinct A.s from dataset as A, dataset as B
where A.p='industry' and A.o like '%Financial services%'
and B.p='location_city' and B.o like '%New York%' and A.s=B.s
and B.st<timestamp'2012-01-01 00:00:00';

IntervalTree(pseudo)
Input: (I, PV) where I is the Interval Tree, PV is the B+ Tree built on (predicate, value)
Initialize Resultset1, Resultset2, Tempset, Finalresult that stores triples
Resultset1 = query interval (“2004-01-01 00:00:00”, “2012-01-01 00:00:00) in I
For each triple t in Resultset1
 If t.predicate=”location_city” and t.value contains “New York”
 Add t to Tempset
Resultset2= query (predicate=”industry”, value=”Financial services”) in PV
For each triple r in Resultset2
 For each triple t in Tempset
 If r.subject=t.subject
 Add r to Finalresult
Return Finalresult

Q10. Find distributor of the film directed by Peter Jackson before 2010
PostgreSQL
Select distinct A.subject, A.value from dataset as A, dataset as B
where A.subject=B.subject and B.key='director' and B.value='Peter Jackson'
and A.key='distributor' and B.starttime<timestamp'2010-01-01 00:00:00';

MySQL
Select distinct A.s, A.o from dataset as A, dataset as B where A.s=B.s and B.p='director' and
B.o='Peter Jackson' and A.p='distributor' and B.st<timestamp'2010-01-01 00:00:00';

IntervalTree(pseudo)
Input: (I, SP) where I is the Interval Tree, SP is the B+ Tree built on (subject, predicate)
Initialize Resultset1, Resultset2, Finalresult that stores triples
Resultset1 = query interval (“2004-01-01 00:00:00”, “2010-01-01 00:00:00) in I
For each triple t in Resultset1
 If t.value=”Peter Jackson” and t.predicate=”director”
 Let film=t.subject
 Resultset2= query (subject=film, predicate=”distributor”) in SP
 For each triple r in Resultset2
 Add r to Finalresult

22

Return Finalresult

Q11. Find all albums produced by a rock singer released in 2013
PostgreSQL
Select distinct A.subject, B.subject from dataset as A, dataset as B
where B.key='genre' and B.value like '%rock%' and A.value=B.subject
and A.key='Artist' and (A.starttime, A.endtime)
OVERLAPS(timestamp'2013-01-01 00:00:00', timestamp'2013-12-31 23:59:59');

MySQL
Select distinct A.s, B.s from dataset as A, dataset as B
where B.p='genre' and B.o like '%rock%' and A.o=B.s and A.p='Artist'
and ((B.st between timestamp'2013-01-01 00:00:00' and timestamp'2013-12-31 23:59:59')
or (B.ed between timestamp'2013-01-01 00:00:00' and timestamp'2013-12-31 23:59:59')
or(timestamp'2013-01-01 00:00:00' between B.st and B.ed))

IntervalTree(pseudo)
Input: (I, PV) where I is the Interval Tree, PV is the B+ Tree built on (predicate, value)
Initialize Resultset1, Resultset2, Tempset, Finalresult that stores triples
Resultset1 = query interval (“2013-01-01 00:00:00”, “2013-12-31 23:59:59) in I
For each triple t in Resultset1
 If t.predicate=”Artist”
 Add t to Tempset
Resultset2= query (predicate=”genre”, value contains “rock”) in PV
For each triple r in Resultset2
 For each triple t in Tempset
 If r.subject=t.subject
 Add r to Finalset
Return Finalresult

6. Experiments

We executed queries Q1-11 on PostgreSQL, MySQL and Interval Tree. Since Interval

Tree only stores interval values, for queries that do not involve any time interval, an exhaustive

search has to be performed, which is very time-consuming. In order to support traditional

selection queries, we built a B+ tree on s,p, and o attributes before building Interval Trees to

speed up queries that involve comparing other non-temporal fields.

23

Below are the runtime results for each scenario.

Scenario 1. Traditional Selection (Q1)

Scenario 2. Temporal Selection (Q2-Q5)

24

Scenario 3. Temporal Join

Scenario 4. Hybrid Join

0.01

0.1

1

10

100

1000

Q9 Q10 Q11

Q
ue

ry
 T

im
e

(s
ec

on
ds

)

Hybrid Join

Postgres B+ MySQL B+ Interval Tree

25

Overall, Interval Tree is significantly slower than the other two indices. As explained

earlier, for queries that have both temporal and non-temporal conditions, Interval Tree might be

very inefficient if the result set for the triples that overlap with the temporal conditions are very

large.

In addition, since Interval Tree are built in memory, the index has already taken a lot of

memory. The memory limitation also affects the query time of Interval Tree. In addition, the

implementation of temporal queries for Interval Tree is a lot more complicated than temporal

queries for PostgreSQL and MySQL.

Apparently, for selection queries, PostgreSQL is faster than MySQL. But for join queries,

the query time for PostgreSQl and MySQL are very similar, and sometimes, in fact, MySQL is

slightly faster than PostgreSQL.

7. Previous Work

Previous work on temporal RDF data model and queries are very sparse. In [6], Gutierrez et

al. presents the temporal RDF graphs, which incorporate temporal labels into RDF. It gives a

very robust temporal RDF model. There are several approaches that have been proposed to

support temporal RDF queries. Pugliese and Udrea et al. [1] propose tGRIN, which is a

specialized balanced tree built on the temporal RDF triples based on undirected RDF graph

distance and temporal distances. They use traditional databases but use extended indices to

support temporal queries. [3] and [4] introduce t-SPARQL and SPARQL-st, which store

temporal RDF in RDBMS and convert the temporal queries into SPARQL. These two

approaches use explicit time model and interval operators to construct simple temporal selection

26

and join queries. However, most of these approaches either are not able to support complex

queries, or have performance issues.

8. Future Work

There are some challenges we met that may need future works.

• While parsing the Wikipedia history dump, due to the large size of the dump, reading

dump was a very significant bottleneck that slows down the performance. Even though

multi-thread was implemented, the limit of threads was not able to improve the

performance significantly.

• While parsing Infoboxes, we found that some of the keys in Wikipedia History dump are

not the same as what are shown on the Wikipedia website, even though they refer to the

same thing. For example, the key “mayor” on Wikipedia website shows as “leader_name”

in the Wikidump. This is because Wikidump is in XML format, and Wikipedia has an

internal method (expand template) to convert the key to the presented key on the website.

Thus, we will need to develop a method to convert these keys to their presented key on

the website to avoid inconsistency of triples in the knowledge base with the website

contents.

• As mentioned earlier, the noise of Wikihistory dump is a very large issue during data

processing. Many of the Infoboxes are incomplete, and the formats are very random. This

makes it hard to determine the start and end pattern of the Infoboxes and the pattern of

the triples. Triples that are repeated alternatively are also a big problem for data clean-up.

27

We need to a better way to eliminate the Infoboxes with bad format, and further work is

required to more accurate data clean-up to improve the data quality.

• Since we used parallel programming to speed up Wikidump processing, the limitation of

the memory makes it very hard to process the large volume of data. Processing all the

Wikihistory dump took around 3 weeks. If we can expand the memory, it would be a lot

easier to process all the Wikihistory dump and will save more time.

• Due to the memory limitation, we are not able to build Interval Tree on the whole

Infobox knowledge base. If we can expand memory, in memory Interval Tree would be

more efficient and we would be able to test Interval Tree on the whole Wikipedia Infobox

history dataset.

9. Conclusion

In this paper, we have introduced the Wikipedia Infobox temporal knowledge base built on

Wikipedia history dump using temporal RDF model. The knowledge base contains 170,941,613

temporal triples. We then selected around 30M triples for query testing. We created indices

including PostgreSQL B-Tree, MySQL B+Tree, and in-memory Interval Tree. Overall,

PostgeSQL had the fastest index creation time, and Interval Tree was the slowest. MySQL took

the fewest storage to store the B+ Tree index. Four kinds of queries were used to measure the

query run time with the three indices: traditional selection, temporal selection, temporal join, and

hybrid join. For traditional and temporal selection, PostgreSQL B- Tree showed the best

performance, while Interval Tree was the slowest among all. However, for temporal join and

28

hybrid join, the performances for PostgreSQL B-Tree and MySQL B+Tree were very similar,

where PostgreSQL B- Tree was sometimes a little bit slower than MySQL B+Tree.

Future work such as improving the data quality in the knowledge base and increase the memory

for Interval Tree can improve the performance of the queries.

10. Acknowledgements

I would like to thank Prof. Zaniolo and Mr. Gao, PHD at UCLA, for guiding me through the

thesis, providing me environments for experiments, solving my questions and helping me

complete the thesis.

29

References

[1]Pugliese, Andrea, Octavian Udrea, and V. S. Subrahmanian. "Scaling RDF with time." Proceedings of
the 17th international conference on World Wide Web. ACM, 2008.

[2]Gao, Chen, Atzori, Gu, and Zaniolo. “SPARQLT and its User-Friendly Interface for Querying the
History of RDF Knowledge Bases.” ISWC 2015, Bethlehem, Pennsylvania. 2015.

[3] Grandi, F. T-sparql: a tsql2-like temporal query language for rdf. In International Workshop on on
Querying Graph Structured Data (2010), 21–30.

[4] Perry, M., Sheth, A. P., Hakimpour, F., and Jain, P. Support- ing complex thematic, spatial and
temporal queries over semantic web data. In Proceedings of the 2nd International Conference on
GeoSpatial Semantics (2007), pp. 228–246.

[5] Tappolet, J., and Bernstein, A. Applied temporal rdf: Efficient temporal querying of rdf data with
sparql. In ESWC (2009), pp. 308– 322.

[6] C. Gutierrez, C. A. Hurtado, et al. Introducing time into rdf. TKDE, 19(2):207–218, 2007.

[7]MediaWiki API (https://www.mediawiki.org/wiki/API:Main_page).

[8]Wikipedia History Dump (http://dumps.wikimedia.org/enwiki/latest/).

[9]Interval Tree (https://en.wikipedia.org/wiki/Interval_tree)

[10] Tappolet, Jonas, and Abraham Bernstein. "Applied temporal rdf: Efficient temporal querying of rdf data with
sparql." The Semantic Web: Research and Applications. Springer Berlin Heidelberg, 2009. 308-322.

[11] Gao and Zaniolo. “SPARQLT : Querying Temporal Knowledge Base with Ease”

[12] B. Becker, S. Gschwind, et al. An asymptotically optimal multiversion b-tree. VLDB, 5(4):264–275, Dec. 1996.

[13] RDF (https://en.wikipedia.org/wiki/Resource_Description_Framework)

[14] M. Atzori and C. Zaniolo. Swipe: Searching wikipedia by example. In WWW, pages 309–312, 2012.

[15] Wikipedia: Piped link (https://en.wikipedia.org/wiki/Wikipedia:Piped_link)

[16] Wikipedia:Template (https://en.wikipedia.org/wiki/Help:Template)

30

https://www.mediawiki.org/wiki/API:Main_page
http://dumps.wikimedia.org/enwiki/latest/
https://en.wikipedia.org/wiki/Interval_tree
https://en.wikipedia.org/wiki/Resource_Description_Framework
https://en.wikipedia.org/wiki/Wikipedia:Piped_link

Appendix

Wikiparser
Wikiparser parse the wikihistory dump and extract the Infoboxes. It then
parse each line in the Infobox into (key,value,time interval) and construct
triple for that entity.

* Below are very high level pseudocodes

Function Main()

Input: Wikidump file
Output: parsed file

Initiate entitycontent as String
While not reaching end of file
 Readline l
 If l contains entity end tag
 Append l to entitycontent
 Create new thread for entitycontent
 Empty entitycontent
 Else:
 Append l to entitycontent

Function thread.run()

Input: entitycontent, sbjset (hashset that store triples and time values for
that entity)

Initiate enterInfobox=false
For each line in entitycontent
 /*Infoboxes in bad formats are removed in this process*/
 If line contains <title>
 title= extract entity title from line
 If line contains <timestamp>
 timestamp= extract timestamp from line
 If line contains <Infobox>
 enterInfobox=true
 If enterInfobox is true
 Call attrparser(sbjset, line, timestamp)
Write sbjset to outputfile

Function attrparser()

Input: sbjset (hashset that store triples and time values), line, timestamp

31

Parse line into key and value:
 key= Content between “|” and “=”
 value= Content after “=” is
If sbjset does not contain key
 starttime=timestamp
 endtime=’9999-12-31 12:59:59’

Insert triple (key, value, starttime, endtime)
Else
 Retrieve the last triple t inserted for that key
 If t.value is not the same as value
 starttime=timestamp
 endtime=’9999-12-31 12:59:59’
 Update t.endtime=starttime

 Insert triple (key, value, starttime, endtime)

Wikicleaner
Wikicleaner send requests to MediaWiki API to parse the templates and
pipelines in the triples.

Function main()

Input: parsed file
Output: final file

Open HTTP connection
While not reaching end of file
 Readline l
 Send “parse text” request to MediaWiki API along with l.
 /*This parses the templates and pipelink in the triples*/
 Retrieve response from MediaWiki API in JSON format
 Write cleaned line to final file.

32

	1. Introduction
	2. Overview
	3. Background
	3.1 Temporal RDF
	3.3 SPARQLT

	4. Wikipedia Infobox temporal RDF knowledge base
	4.1 Data Generating Process
	4.1.1 Extract Infobox and timestamp
	4.1.2 Construct Temporal RDF Triples
	4.1.3 Handle Piped Links and Templates
	4.1.4 Data Clean Up

	4.2 Statistics

	5. Temporal Databases
	5.1 Data Insertion
	5.2 Index
	5.2.1 B+ Tree and B-Tree
	5.2.2 Interval Tree

	5.3 Query Evaluation
	Scenario 1. Traditional Selection
	Scenario 2. Temporal Selection
	Scenario 3. Temporal Join
	Scenario 4. Hybrid Join

	6. Experiments
	7. Previous Work
	8. Future Work
	9. Conclusion
	10. Acknowledgements
	References
	Appendix

