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eLife assessment
This work presents an important technological advance, in the form of a high throughput platform 
for Single Particle Tracking allowing us to measure millions of cells and thousands of compounds per 
day. Analysis of the diffusional behaviour of fluorescently-tagged targets permits the identification 
of, and differentiation between, small molecules that bind directly or affect the target indirectly. 
The methodology and metrics employed are compelling, leading to the identification of multiple 
compounds that effectively change the diffusive state of the estrogen receptor, the POC target of 
the study.

Abstract The regulation of cell physiology depends largely upon interactions of functionally 
distinct proteins and cellular components. These interactions may be transient or long-lived, but 
often affect protein motion. Measurement of protein dynamics within a cellular environment, partic-
ularly while perturbing protein function with small molecules, may enable dissection of key inter-
actions and facilitate drug discovery; however, current approaches are limited by throughput with 
respect to data acquisition and analysis. As a result, studies using super-resolution imaging are typi-
cally drawing conclusions from tens of cells and a few experimental conditions tested. We addressed 
these limitations by developing a high-throughput single-molecule tracking (htSMT) platform for 
pharmacologic dissection of protein dynamics in living cells at an unprecedented scale (capable of 
imaging >106 cells/day and screening >104 compounds). We applied htSMT to measure the cellular 
dynamics of fluorescently tagged estrogen receptor (ER) and screened a diverse library to identify 
small molecules that perturbed ER function in real time. With this one experimental modality, we 
determined the potency, pathway selectivity, target engagement, and mechanism of action for 
identified hits. Kinetic htSMT experiments were capable of distinguishing between on-target and 
on-pathway modulators of ER signaling. Integrated pathway analysis recapitulated the network of 
known ER interaction partners and suggested potentially novel, kinase-mediated regulatory mech-
anisms. The sensitivity of htSMT revealed a new correlation between ER dynamics and the ability 
of ER antagonists to suppress cancer cell growth. Therefore, measuring protein motion at scale is a 
powerful method to investigate dynamic interactions among proteins and may facilitate the identifi-
cation and characterization of novel therapeutics.
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Introduction
Both the activity and mobility of proteins within the crowded cellular environment are profoundly 
influenced by interactions with their surroundings (Heo et al., 2022; Guin and Gruebele, 2019; Shen 
et  al., 2017). Under these conditions, where diffusion is no longer well described by the Stokes 
radius of the protein monomer (Skóra et al., 2020), changes in protein motion might be expected 
to correlate closely with changes in the activity of these proteins. The development of increasingly 
sophisticated live-cell microscopy techniques, including early ensemble methods like fluorescence 
recovery after photobleaching (FRAP) and fluctuation correlation spectroscopy, have informed our 
understanding of protein dynamics in cellular biology (Liu et al., 2015). A myriad of technical improve-
ments, such as enhanced labeling methods (Los et al., 2008; Mollwitz et al., 2012), better live-cell 
compatible fluorophores (Grimm et al., 2015), new forms of light microscopy (Tokunaga et al., 2008), 
dramatic increases in computational power (Chenouard et al., 2014), and the addition of machine 
learning approaches to data analysis Chenouard et al., 2014; Speiser et al., 2021 have together 
enabled a new era of imaging-based studies across biological contexts (Shen et al., 2017; Liu et al., 
2015; Boka et al., 2021).

Applying any microscopy technique at scale presents challenges, but recent advances have shown 
the power of high content imaging techniques to address both mechanistic biological questions as 
well as to generate leads for new chemical matter in drug discovery (Chandrasekaran et al., 2021). 
Even these conceptually simple experiments involving fixed cells stained with well-characterized 
commercial reagents take careful experiment design and sophisticated computational approaches to 
execute (Caicedo et al., 2017). It is no wonder, then, that attempts to combine high content imaging 
workflows with more advanced super-resolution microscopy methods have thus far been limited. Such 
advances have enabled the development of systems for fixed-cell STORM imaging at an impressive 
10,000 cells/day (Barentine et al., 2023), though the appropriate application of this increase in scale 
remains an open question.

In single-molecule tracking (SMT), a fluorescently labeled protein of interest is imaged at high 
spatiotemporal resolution to track its motion in a live cell (Chenouard et al., 2014). The information 
embedded in these trajectories has been used to investigate diverse cellular phenomena including 
protein oligomerization state and function (Barentine et al., 2023; Needham et al., 2016; Yasui et al., 
2018), inter-organelle communication (Nixon-Abell et al., 2016), nuclear organization (Hansen et al., 
2017), and transcription regulation (Paakinaho et al., 2017; Mazza et al., 2012; Swinstead et al., 
2016; Presman et al., 2017). Of particular utility are ‘fast-SMT’ approaches which use high frame 
rates and stroboscopic illumination to minimize motion-induced blurring, and hence can measure 
diffusive states over a large dynamic range (Izeddin et al., 2014; Hansen et al., 2018). Specifically, 
proteins that diffuse rapidly throughout the cell are often missed in alternative tracking approaches, 
biasing the resulting data. In spite of the potential biological discoveries that depend on the applica-
tion of SMT on a large scale, SMT in general (and fast-SMT in particular) has not been adapted to a 
high-throughput setting that would enable the analysis of complex, multi-component systems, or the 
identification of compounds that affect protein motion.

Steroid hormone receptors (SHRs) are a class of transcription factors that play crucial roles in normal 
human development and in disease pathogenesis. SHRs like the estrogen receptor (genes ESR1 and 
ESR2), androgen receptor (AR), and progesterone receptor (PR), as examples, contribute decisively to 
the acquisition of secondary sex characteristics, while the glucocorticoid receptor (GR) helps to orches-
trate both metabolism and inflammation (Ahmad and Kumar, 2011). In their ligand-free state, SHRs 
are kept sequestered in multiprotein complexes by the chaperone HSP90 (Saha et al., 2021). Canon-
ically, in the presence of hormone they dimerize and bind their cognate genomic response elements, 
recruiting epigenetic modifiers and transcription machinery (Ahmad and Kumar, 2011; Saha et al., 
2021; Papageorgiou et  al., 2021). At the same time, SHR-derived signals impose a large disease 
burden by promoting the growth of breast cancers (ER) (Ahmad and Kumar, 2011; Lu and Liu, 2020) 
or prostate cancers (AR) Ahmad and Kumar, 2011; or by imposing immune and metabolic dysfunc-
tion (GR) Ahmad and Kumar, 2011; Quatrini and Ugolini, 2021. SHRs therefore provide an excellent 
proof-of-concept system to study the relationship between protein dynamics and protein function due 
to the wealth of information and reagents (Lu and Liu, 2020) already available for these systems as 
well as previous reports characterizing some aspects of their cellular dynamics (Paakinaho et al., 2017; 
Swinstead et al., 2016; Guan et al., 2019; Van Royen et al., 2014; Van Royen et al., 2012).

https://doi.org/10.7554/eLife.93183
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Here, we present the first industrial-scale, high-throughput, fast-SMT (htSMT) platform capable 
of measuring protein motion from more than 13,000 individual assay wells (>1,000,000 individual 
cells) per day. Using ER as a test system, we demonstrate that chemical screening using htSMT is 
specific, robust, and reproducible. The increase in throughput enables classical drug discovery activ-
ities, including compound library screening and the elucidation of structure–activity relationships 
(SARs), yielding accurate and reproducible results that are inaccessible or unmeasurable with other 
techniques or using SMT on a smaller scale. Importantly, we demonstrate that htSMT can be used to 
characterize both known and novel pathway contributions to the ER protein interaction network. More 
than a proof-of-concept for the htSMT platform, these data confirm that analysis of protein motion 
itself on a large scale reveals detailed information about pathway interactions and signaling.

Results
Creation and validation of a high-throughput SMT platform
We developed a robotic system capable of handling reagents, collecting high-quality fast-SMT image 
series, processing time-ordered raw images to yield molecular trajectories, and extracting features 
of biological interest within defined cellular compartments (Figure 1—figure supplement 1A, B). 
Samples start as cells seeded into 384-well plates in a hotel incubator. A central robotic arm retrieves 
the plates, and delivers them to an Echo 650 acoustic dispenser to add dye. After incubating, excess 
dye is washed away and Echo 650 is again used to administer compound treatment. Stained and 
compound-treated plates are then delivered to any of up to four identical SMT microscopes for 
imaging. Both SMT and accompanying Hoechst images are collected and automatically processed 
to identify individual molecule positions, reconnect the spot coordinates into trajectories, and then 
associate each trajectory with a nuclear mask. Finally, the processed SMT data are subjected to quality 
control to omit aberrant fields of view using a convolutional neural network trained to identify technical 
errors in the images (Figure 1—figure supplement 1C), and finally stored for downstream analysis.

To examine htSMT system performance across a broad spectrum of diffusion coefficients, we 
generated three U2OS cell lines ectopically expressing HaloTag (Los et  al., 2008) fused proteins 
with well-established behaviors in the cell. These HaloTag fusions allow the subsequent addition of 
bright and photostable organic fluorophores like JF549 (Grimm et al., 2015) which produce high signal 
spots to detect and track. Histone H2B-Halo, which is predominantly incorporated into chromatin and 
therefore effectively immobile over short timescales (Hansen et al., 2018), was employed to esti-
mate localization error. A prenylation motif (Halo-CaaX) embedded in the plasma membrane exhibits 
moderate diffusion (Natwick and Collins, 2021). Unfused HaloTag was chosen to represent the upper 
limit of cellular ‘free’ diffusion. Single-molecule trajectories measured in these cell lines yielded diffu-
sion coefficients for CaaX similar to published results (Natwick and Collins, 2021), and the diffusion 
for H2B-HaloTag was consistent with the theoretical lower bounds that can be approximated from the 

localization error and 10-ms frame interval (‍Dapparent = Dtrue + localization error2

∆τ ‍) (Figure 1A). Localization 
error can be measured directly from the single-molecule trajectories using the jump covariance of slow 
or immobile particles (Heckert et al., 2022). Using the immobile H2B-Halo trajectories, we found the 
localization error of the htSMT system to be 39 nm (Figure 1—figure supplement 2A), comparable to 
other benchmark stroboscopic illumination datasets (Hansen et al., 2018; Heckert et al., 2022). The 
diffusion coefficient for free HaloTag is consistent with previous SMT reports (Hansen et al., 2018), 
but is also within the theoretical upper bounds of a Mean Squared Displacement (MSD) estimator of 

diffusion coefficient for a 10-ms frame interval and 1.25 µm search radius (‍Dapparent ≤ R2
search

8∆τ ‍), thus we 
consider the distribution recovered from the free HaloTag to represent the upper limit of trackable 
particles with this assay configuration.

We then tested whether our htSMT platform can extract accurate molecular trajectories at scale. 
We employed 384-well plates where free Halo, Halo-CaaX, and H2B-Halo cell lines were mixed in 
equal proportions in each well. Imaging with a 94 µm by 94 µm field of view (FOV), we achieved 
an average of 10 nuclei simultaneously (Figure 1B, Figure 1—figure supplement 2B, Figure 1—
video 1), enough that most FOVs contained cells from each cell line. To limit ambiguity in cell assign-
ment, we considered only the trajectories that fell within nuclear segmented regions. The probability 
distribution of diffusion states cleanly distinguishes between the three cell types (Figure 1C). More 
importantly, by looking at the single-cell state distribution profiles of 103,757 cells from five separate 

https://doi.org/10.7554/eLife.93183


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Physics of Living Systems

McSwiggen et al. eLife 2023;12:RP93183. DOI: https://doi.org/10.7554/eLife.93183 � 4 of 26

A

B

0.01 0.1 1 10 100
0.00

0.05

0.10

Diffusion Coefficient (µm2/sec)
0.01 0.1 1 10 100

0.00

0.05

0.10

Diffusion Coefficient (µm2/sec)
0.01 0.1 1 10 100

0.00

0.05

0.10

0.15

Diffusion Coefficient (µm2/sec)

St
at

e
O

cc
up

at
io

n

Histone H2B CaaX free Halo
0.5-5 µm2/sec 7-30 µm2/sec >0.1 µm2/sec 

State occupations for each cell line 

C

0.01 0.1 1 10 100
0.00

0.02

0.04

0.06
CaaXHistone H2B Free Halo

Diffusion Coefficient (µm2/sec)

Single-cell state distribution

St
at

e
O

cc
up

at
io

n

Hoechst

JF549

1
2

3

1
2

3

1: Free Halo

2: CaaX

3: Histone H2B

Mixture of Histone H2B, CaaX, and Free Halo

0.01 0.1 1 10 100
Diffusion Coefficient (µm2/sec)

60000

40000

20000

0

100000

80000

C
el

l n
um

be
r

0.01 0.1 1 10 100
0.00

0.02

0.04

0.06

Diffusion Coefficient (µm2/sec)

Ensemble of cell mixture

St
at

e
O

cc
up

at
io

n

D

E

0.00

0.01

0.02

0.03

St
at

e 
O

cc
up

at
io

n

ƒbound= 0.9

Figure 1. Benchmarking a high-throughput single-molecule tracking platform. (A) Diffusion state probability distributions from three cell lines 
expressing Histone H2B-Halo, Halo-CaaX, or Halo alone. Shaded bins represent the diffusive states characteristic of each cell line. (B) Example field of 
view. Equal mixture of H2B-Halo, Halo-CaaX, and free Halo cell line single-molecule images (top) and reference Hoechst image (bottom). Insets show 
zoom-ins to individual cells and to sequential frames of individual molecules. Image intensities are equivalently scaled across panels. (C) Single-cell 
diffusive states extracted from, colored based on similarity to the H2B-, CaaX-, or free-Halo dynamics reported in (B). (D) Heatmap representation of 
103757 cell nuclei measured from a mixture of Halo-H2B, Halo-CaaX, or free Halo mixed within each well over 1540 unique wells in five 384-well plates. 
Each horizontal line represents a nucleus. Cells were clustered using k-means clustering and labels assigned based on the diffusive profiles determined 
in (B). (E) Ensemble state occupation of all trajectories recovered from a mixture of Halo-H2B, Halo-CaaX, and free Halo cells. Mean state occupation 
from 308 assay wells.

The online version of this article includes the following video, source data, and figure supplement(s) for figure 1:

Source data 1. TIFF versions of the images in Figure 1.

Figure 1 continued on next page

https://doi.org/10.7554/eLife.93183
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384-well plates, grouped by their distribution profile, we recovered highly consistent estimates of 
protein dynamics at the single cell level, comparable to the pure populations (Figure 1D, Figure 1—
figure supplement 2C).

While single-cell measurements are powerful, the number of trajectories in one cell is limited, and 
so estimates of diffusive states can be broad. Combining trajectories from multiple cells, however, 
provides the expected distribution of diffusive states (Figure  1E). Moreover, combining trajecto-
ries derived from many cells makes model-based (Hansen et al., 2018) or model-agnostic (Heckert 
et al., 2022) state analysis possible, where as few as 103 trajectories permit satisfactory inference of 
the underlying diffusion states. We determined that imaging six fields of view (FOV), for 1.5 s each, 
yielded enough trajectories (>10,000) to accurately estimate protein dynamics, bringing the overall 
throughput of the platform to more than 13,000 individual wells (>90,000 FOVs; >1,000,000 cells/
day), a rate of data acquisition that enables compound screening on a feasible timescale (Figure 1—
figure supplement 2D).

Using htSMT to measure protein dynamics of SHRs
Equipped with an htSMT system capable of measuring protein dynamics broadly, we sought to under-
stand how measuring protein motion can be used to characterize protein activity. SHRs transition 
between inactive and active states via ligand binding (Figure 2—figure supplement 1A), a phenom-
enon that has been previously observed at the single-molecule level (Paakinaho et al., 2017; Swin-
stead et  al., 2016), and we hypothesized that the large dynamic range and orders-of-magnitude 
increase in throughput of our platform could capture these differences in the context of compound 
screening. We generated HaloTag fusions to ER, AR, and PR through ectopic expression, and GR 
through endogenous knock-in. Similar to previous approaches (Paakinaho et al., 2017; Wagh et al., 
2023), we used clonal cell lines in a U2OS cell background to minimize effects of comparing dynamics 
in different cell types. Clones were carefully selected such that the HaloTag fusion SHRs were compa-
rable to each other in transcript abundance, and not higher than transcript levels in tissue-specific 
cell lines like MCF7 and T47d, which are both ER and PR positive (Figure 2—figure supplement 1B).

In the absence of hormone, all four SHR proteins exhibit similar dynamic profiles: a small immo-
bile fraction and a large freely diffusing fraction with a 3.4–4.3 µm2/s average diffusion coefficient 
(Figure 2A, Figure 2—figure supplement 1C). No correlation between diffusion and protein molec-
ular weight (138 kDa for Halo-AR, 102 kDa for ER-Halo, 122 kDa for Halo-GR, and 135 kDa for Halo-
PR) was observed, highlighting the differences between cellular protein dynamics versus purified 
systems. Upon addition of agonist, a dramatic increase in immobile trajectories is observed, which we 
attribute to chromatin binding. Using a conservative upper-bound of chromatin mobility in the nucleus 
and chromatin-associated transcription factors (Heckert et al., 2022), we define the bound fraction 
(fbound) for each SHR as the fraction of trajectories diffusing less than 0.1 µm2/s (Figure 2A). Using this 
threshold, fbound of histone H2B is 0.92 on average, consistent with previous reports (Hansen et al., 
2018). Dfree we defined as the occupation-weighted average diffusion coefficient of the non-bound 
states (Figure 2—figure supplement 1C). Some SHRs had a higher proportion of bound molecules 
than others. The ligand-induced effect is most pronounced for ER, with 34% bound in basal conditions 
and 87% bound after estradiol treatment (Figure 2A, Videos 1 and 2).

SHRs are highly selective for their cognate agonists in biochemical binding assays, which we 
confirmed by measuring the dose-dependent change in dynamics as a function of agonist concen-
tration. The maximal change in fbound (Figure  2B) and decrease in Dfree (Figure  2—figure supple-
ment 1D) differed between SHRs. The dose titration curves also showed variable potencies (EC50) 
for each SHR/hormone pair, with ER-estradiol being both the most potent and most selective pair. 
RNA-seq after estradiol stimulation showed a marked induction of hallmark ER-dependent gene sets 
(Liberzon et al., 2015), confirming that the increase in chromatin binding we observed by SMT has a 

Figure supplement 1. Overview of the high-throughput single-molecule tracking (htSMT) workflow.

Figure supplement 2. Characterization of high-throughput single-molecule tracking (htSMT) system performance.

Figure 1—video 1. Example SMT field of view as shown in Figure 1.

https://elifesciences.org/articles/93183/figures#fig1video1

Figure 1 continued

https://doi.org/10.7554/eLife.93183
https://elifesciences.org/articles/93183/figures#fig1video1
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functional effect in promoting ER-responsive gene 
programs, even in the ectopic expression setting 
(Figure 2—figure supplement 1E, F). Thus, SMT 
can detect functionally relevant changes in tran-
scription factor dynamics and accurately differen-
tiate the ligand/target specificity directly within 
the cellular environment.

Screening a diverse bioactive 
chemical set identifies known and 
novel modulators of ER dynamics
Our characterization efforts of ligand selectivity 
for AR, ER, GR, and PR collectively suggested that 
we could use SMT to interrogate the effects of 
compounds on protein dynamics at a throughput 
conducive to high-throughput screening. We first 
identified a structurally diverse set of 5067 mole-
cules with heterogeneous biological activities as 
a useful screening set. Having determined that 
the same data acquisition parameters (6 FOVs 
imaged for 1.5 s each) were sufficient to recover 

A

B

10-8 10-6 10-4 10-2 100

0.0
0.1
0.2
0.3
0.4
0.5

10-8 10-6 10-4 10-2 100

0.0
0.1
0.2
0.3
0.4
0.5

10-8 10-6 10-4 10-2 100

0.0
0.1
0.2
0.3
0.4
0.5

10-8 10-6 10-4 10-2 100

0.0
0.1
0.2
0.3
0.4
0.5

∆ƒ
bo

un
d

Agonist concentration (µM) Agonist concentration (µM) Agonist concentration (µM) Agonist concentration (µM)

0.01 0.1 1 10 100
0.00

0.05

0.10

0.01 0.1 1 10 100
0.00

0.05

0.10

0.01 0.1 1 10 100
0.00

0.05

0.10

0.01 0.1 1 10 100
0.00

0.05

0.10

Diffusion Coefficient (µm2/sec) Diffusion Coefficient (µm2/sec) Diffusion Coefficient (µm2/sec) Diffusion Coefficient (µm2/sec)

St
at

e
O

cc
up

at
io

n

O
F

HO
HO

O
OH

2-hydroxytestosteroneestradiolDMSO
ƒbound= 0.34 ƒbound= 0.87

OH

HO

DMSO
ƒbound= 0.24 ƒbound= 0.53

progesteroneDMSO
ƒbound= 0.06 ƒbound= 0.31

dexamethasoneDMSO
ƒbound= 0.09 ƒbound= 0.25

ER AR PR GR

estradiol 2-hydroxytestosterone progesterone dexamethasone

ER AR PR GR

HO

O

O

O

Figure 2. Chromatin binding by steroid hormone receptors (SHRs) is affected by compound treatment. (A) Distribution of diffusive states for Halo-AR, 
Halo-ER, Halo-GR, and Halo-PR in U2OS cells before and after stimulation with an activating ligand. The area in the shaded region is fbound. Shaded error 
bands represent SD. (B) Selectivity of individual SHRs to their cognate ligand compared with other steroids, as determined by fbound. Error bars represent 
SEM across three biological replicates. 

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Tabular data to generate plots from Figure 2 and related figure supplements.

Figure supplement 1. Activation of steroid hormone receptors (SHRs) changes free diffusion and impacts downstream gene expression.

Video 1. Example field of view of single-molecule 
tracking (SMT) from Halo-ER cells. Video is played back 
at 10 frames per second, 10× slower than real time.

https://elifesciences.org/articles/93183/figures#video1

https://doi.org/10.7554/eLife.93183
https://elifesciences.org/articles/93183/figures#video1
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more than 10,000 trajectories per well, we could 
achieve a throughput of 15,000 wells per day 
which would permit us to interrogate the whole 
library in a single day (Figure 3—figure supple-
ment 1A). For cells at steady state, such a brief 
acquisition time also means that the dynamical 
state of the cell remains largely constant within an 
FOV (Figure 3—figure supplement 1B), allowing 
all of the trajectories from an FOV to be consid-
ered largely representative of the same cellular 
state. We chose to screen this bioactive compound 
set against ER, assessing change in fbound at 1 µM 
compound versus the vehicle dimethyl sulfoxide 
(DMSO) (Figure 3, Figure 3—figure supplement 
1C, D, Figure 3—source data 1). The screen was 
run twice to assess reproducibility, showing a 
high degree of agreement between replicates for 
ER-active molecules (Figure  3—figure supple-
ment 2A). This screen illustrates some important 
advantages of our htSMT platform over more 
manual lower-throughput approaches.

From plate to plate, the assay window for the 
screen was robust (Zhang et al., 1999) (average 

Z′-factor = 0.79 over 72 plates), the measured potency of the control estradiol in each instance 
remained within threefold of the mean (Figure 3—figure supplement 2B–D), and the distribution of 
negative control wells centered tightly on zero (Figure 3—figure supplement 2E, F). Each compound 
measurement was averaged from SMT trajectories of between 94 and 161 cells (25th to 75th percen-
tiles; Figure 3—figure supplement 2G). Of the 30 compounds, we identified from the bioactive set 
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Figure 3. Bioactive screen results of change in estrogen receptor fbound for two biological replicates, each with 2 well replicates per compound of 5067 
compounds. Select inhibitors are grouped and uniquely colored by pathway or target. Error bars are SEM of all replicates.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. List of compounds as part of the Sellek L-1700 bioactive set along with the ‘Target’ and ‘Pathway’ annotations as identified by Selleck.

Source data 2. Tabular data to generate plots from Figure 3 and related figure supplements.

Figure supplement 1. Experimental design for bioactive molecule screen.

Figure supplement 2. Screen of bioactive molecules produces robust data with good assay performance.

Figure supplement 3. Contributions of different sources of variability of jump length in the high-throughput single-molecule tracking (htSMT) bioactive 
compound screen against ER.

Figure supplement 4. Antagonists of estrogen receptor (ER).

Video 2. Example field of view of single-molecule 
tracking (SMT) from Halo-ER cells treated with 25 nM 
estradiol for 1 hr prior to imaging. Video is played back 
at 10 frames per second, 10× slower than real time.

https://elifesciences.org/articles/93183/figures#video2

https://doi.org/10.7554/eLife.93183
https://elifesciences.org/articles/93183/figures#video2
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that we expected to modulate ER, either as agonists or antagonists (Lu and Liu, 2020; Kuiper et al., 
1997), all significantly increased fbound measured by SMT. This includes agonistic molecules like estra-
diol, but also notable examples such as 4-hydroxytamoxifen (4-OHT), fulvestrant, and bazedoxifene 
(Figure 3, Extended Data 3B, H).

With a large dataset to work from, collected across multiple assay plates on multiple indepen-
dent microscopes, we examined the sources of variability within the screening assay. Using random 
sampling of individual jumps within the screening dataset while holding constant the source of the 
jumps (e.g. sampling jumps within a specific assay well), we could estimate the relative contributions of 
microscope-to-microscope, plate-to-plate, well-to-well, FOV-to-FOV, and cell-to-cell variability. Cell-
to-cell variability was the single largest contributor to overall assay variability, especially when consid-
ering only vehicle treated controls (Figure 3—figure supplement 3B), and stabilized after ~1000 
jumps (Figure 3—figure supplement 3C). These results support the use of a short acquisition time 
per FOV and multiple FOVs to stabilize the dynamical state estimate.

The somewhat counter-intuitive finding that either strong agonism or antagonism can lead to an 
increase in chromatin binding has been reported for ER (Guan et al., 2019), but this appears not to 
a general feature of SHRs. While the PR antagonist mifepristone (Goyeneche et al., 2007) behaves 
similarly to ER (Figure 3—figure supplement 4A), antagonists of AR like Enzalutamide and Darolut-
amide (Rajaram et al., 2020), and antagonists of GR like AL082D06 (Miner and Tyree, 2003) cause 
a decrease in chromatin binding. This decrease occurs when administered singly or when co-ad-
ministered in competition with the cognate agonist (Figure  3—figure supplement 4B, C). These 
results show how the cellular context and interaction partners are critical to understand the effect of 
a compound on its intended target. To underscore this point, in addition to binders of the ER ligand-
binding domain, we also identified a number of active compounds targeting diverse nodes in the 
ER interaction network, including modulators of the proteasome, chaperones, kinases, and others 
(Figure 3).

Cellular ER dynamics elucidate SARs of ER modulators
Our screen revealed that, surprisingly, all the known ER modulators—both agonists like estradiol 
and potent antagonists like fulvestrant—caused an increase in fbound (Figure  4A). We therefore 
characterized a subset of selective ER modulators (SERMs) and selective ER degraders (SERDs) in 
more detail. These molecules all bind competitively to the ER ligand binding domain (Lu and Liu, 
2020). As in the bioactive screen, both SERDs and SERMS increased fbound (Figure 4A) and slightly 
decreased measured Dfree (Figure 4—figure supplement 1A), with potencies ranging from 9 pM 
for GDC-0927 to 4.8 nM for GDC-0810 (Figure 4B). To understand how quickly these compound 
effects take place, we measured the change in fbound as a function of time, collecting timepoints 
roughly every 2  min beginning immediately after compound addition. Despite different phys-
ical–chemical properties, all five increased fbound within minutes of compound addition (Figure 4C, 
Figure  4—figure supplement 1B), with no evidence of transient states distinct from the free 
diffusion and chromatin bound peaks (Figure 4—figure supplement 1C). Presumably, ER disso-
ciation from the chaperone complex, dimerization, and chromatin binding occur on rapid and 
seemingly comparable timescales. Since we cannot distinguish individual steps in these transitions, 
we consider the on rate of the entire process to have the effective rate constant k*on. Importantly, 
selective antagonists of AR and GR did not induce significant modulation of ER dynamics, further 
highlighting the utility of htSMT in characterizing the specificity of interactions between small 
molecule modulators of protein function and their cognate targets (Figure 4—figure supplement 
1D).

Interestingly, SERMs 4-OHT and GDC-0810 show lower maximal increases in fbound compared with 
the SERDs fulvestrant and GDC-0927 (Figure  4D). Similar effects have been described previously 
using FRAP (Guan et al., 2019), which we confirmed using our Halo-ER cell line (Figure 4E). The delay 
in ER signal recovery after 2 min in FRAP was consistent with the changes in fbound measured by SMT 
(Figure 4F). Although FRAP was used to measure these fbound differences, the technique suffers from 
challenges in scalability and depends heavily on prior assumption of the underlying dynamical model 
in the sample. SMT, alternatively, enables detailed characterization of the potency of 4-OHT and 
GDC-0810 relative to other ER ligands in their ability to increase ER chromatin binding on a tractable 
timescale.

https://doi.org/10.7554/eLife.93183
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Figure 4. Selective estrogen receptor (ER) modulators and degraders induce DNA-binding measurable through high-throughput single-molecule 
tracking (htSMT). (A) Diffusion state probability distribution for ER treated with 100 nM of exemplified selective ER modulators (SERMs) and selective ER 
degraders (SERDs). Each state distribution is generated from 10,000 randomly sampled nuclear trajectories per assay well. Shaded regions represent 
the SD. (B) Change in fbound as a function of a 12-point dose titration of fulvestrant (5), 4-hydroxytamoxifen (4-OHT) (6), GDC-0810 (8), AZD9496 (9), or 
GDC-0927 (10) with fitted curve. Compounds colored as in (A). Error bars represent the SEM across three biological replicates. (C) Change in fbound as 
a function of time after agonist or antagonist addition, fitted with a single exponential. Compounds colored as in (A). Estradiol (1, green) and DMSO 
added for comparison. Error bars represent SEM across three biological replicates. (D) Maximum effect of SERMs and SERDs on fbound. Each box 
represents quartiles while whiskers denote the 5–95th percentiles of single well measurements, measured over a minimum of 4 days with at least 8 
wells per compound per day. (E) Fluorescence recovery after photobleaching (FRAP) of ER-Halo cells, treated either with DMSO alone or with 100 nM 
SERM/D. Curves are the mean ± SEM for 18–24 cells, colored as in (A). (F) Quantification of FRAP recovery curves to measure recovery 2 min after 
photobleaching. Whiskers denote the 5–95th percentiles of single cell measurements. (G) Quantification long-lived tracks, each point representing 
the fraction of trajectories greater than 10 s for a single biological replicate consisting of 3–10 wells per condition. Dashed line represents the median 
fraction of trajectories lasting longer than 10 s for Histone H2B-Halo, which is the upper limit of measurement sensitivity. * indicates sample with p < 0.05 
as measured by t-test.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Tabular data to generate plots from Figure 4 and related figure supplements.

Figure supplement 1. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) decrease free diffusion and 
increase fbound rapidly after addition.

https://doi.org/10.7554/eLife.93183


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Physics of Living Systems

McSwiggen et al. eLife 2023;12:RP93183. DOI: https://doi.org/10.7554/eLife.93183 � 10 of 26

Neither FRAP nor htSMT can discriminate between recovery driven by an increase in residence 
time (decreasing k*off) or increasing the rate of chromatin binding (increasing k*on), either of which 
would result in increasing fbound. By changing SMT acquisition conditions to reduce the illumination 
intensity and collect long, 250 ms continuous frame exposures, only immobile proteins form spots. 
Under these imaging conditions, the distribution of track lengths provides a measure of relative resi-
dence times (Paakinaho et al., 2017; Mazza et al., 2012; Liu et al., 2014; Elf et al., 2007). Both 
agonist and antagonist treatment led to longer binding times compared to DMSO, suggesting that 
ligand binding decreases k*off (Figure 4G, Figure 4—figure supplement 1E). Consistent with FRAP, 
estradiol, GDC-0927, and fulvestrant show longer binding times compared with other ER modulators. 
Using fbound and k*off measurements, one can infer the k*on. In all cases, the changes in dissociation rate 
are not proportional to the increase in fbound, and so ligand-imposed increases in k*on likely contribute 
to the observed change in the chromatin-associated ER fraction (Figure 4—figure supplement 1F). 
These data are consistent with a model wherein ER rapidly binds to chromatin irrespective of which 
molecule occupies the ligand-binding domain, but some ligands induce a conformation that can be 
further stabilized on chromatin by co-factors. Consequently, these data support the hypothesis that 
ER may engage chromatin in mechanistically different ways (Guan et al., 2019). An efficacious ER 
inhibitor may promote rapid and transient chromatin binding that fails to effectively recruit necessary 
co-factors to drive transcription (Van Royen et al., 2012).

htSMT reveals a relationship between ER dynamics and efficacy in ER-
dependent cell toxicity
As the name implies, next-generation ER degraders like GDC-0927, AZD9833, and GDC9545 
were optimized to enhance degradation of ER (Guan et al., 2019; Chen et al., 2022). We indeed 
observed compound-induced ER degradation via immunofluorescence, both in established breast 
cancer model lines and our U2OS ectopic expression system (Figure 5—figure supplement 1A, B). 
Structural analogs of GDC0927 have been reported and optimized for ER degradation, however the 
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Figure 5. High-throughput single-molecule tracking (htSMT) can be used to determine chemical structure–activity relationships. (A) Correlation of 
potency measured by estrogen receptor (ER) degradation and cell proliferation in MCF7 cells (black) and T47d cells (magenta) for compounds in the 
GDC-0927 structural series. Cell proliferation and ER degradation-derived potencies are the mean of four and three biological replicates, respectively. 
(B) Change in fbound across a 12-point dose titration of compounds 11 through 16, colored by structure. Points are the mean ± SEM across three 
biological replicates. (C) Correlation of potency measured by change in fbound and cell proliferation in MCF7 cells (black) and T47d cells (magenta) 
for compounds in the GDC-0927 structural series. Cell proliferation and SMT-derived potencies are the mean of four and three biological replicates, 
respectively.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. PDF report of western blot produced by Jess system (Protein Simple).

Source data 2. TIFF versions of the images in Figure 5.

Source data 3. Images to generate plots from Figure 5 and related figure supplements.

Source data 4. Tabular data to generate plots from Figure 5 and related figure supplements.

Figure supplement 1. GDC-0927 structural variants characterized by estrogen receptorER degradation or cell proliferation assays.

https://doi.org/10.7554/eLife.93183
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correlation between ER degradation and cell proliferation is poor (Lu and Liu, 2020; Kahraman et al., 
2019; Figure 5A, Figure 5—figure supplement 1C–E). We hypothesized that by measuring protein 
dynamics we might obtain more precise measurements of inhibitory activity than can be achieved by 
assessing protein degradation. We therefore determined the potency and maximal effect of structural 
analogues of GDC-0927 using htSMT.

Overall, these analogues exhibited a potency range of 15 pM to 12 nM and increased ER fbound by 
0.4–0.56 (Figure 5B). Small changes in the chemical structure produced measurable changes in both 
compound potency and maximal efficacy as determined using SMT, a critical feature if an assay is to 
be used to iteratively optimize a compound for potency or efficacy.

We compared the potencies of GDC-0927 and analogues determined either via ER degradation or 
SMT, with the ability of each of these compounds to block estrogen-induced breast cancer cell prolif-
eration. Potency assessed by ER degradation was not a good predictor of potency in the cell prolifer-
ation assay (Figure 5A). By contrast, SMT measurements of fbound strongly correlate with cell viability 
(Figure 5C; R2 of 0.83 for T47d and 0.84 for MCF7). Intriguingly, SMT EC50 values were on average 
tenfold lower than those observed in the cell growth assay, suggesting that SMT may be sensitive 
enough to identify chemical series that would not show effects in other cellular assays, enabling the 
identification of starting points for medicinal chemistry that could not be obtained by other methods. 
This correlation between effects on protein dynamics (fbound) and protein function (suppression of cell 
proliferation) coupled with the throughput of the SMT system make this an attractive approach for the 
identification of protein modulators with novel properties.

Screening of a diverse chemical library using htSMT enables unbiased 
pathway interaction analysis by monitoring protein dynamics
In addition to known ER-active modulators, many other compounds in our bioactive library provoked 
easily measurable changes in fbound. To define a threshold for calling a molecule from the screen ‘active’, 
we selected 92 compounds with different magnitudes of change in fbound to retest in a dose titration 
(Figure 6—figure supplement 1A, B). We found that a 5% change in fbound was sufficient to reproduc-
ibly distinguish active compounds. Using this approach, we identified 239 compounds in the bioactive 
library that affected the ER mobility (Figure 6—figure supplement 1B). Among these compounds, 
the correlation between the two screen replicates was high (R2 = 0.92) and the level of activity was 
reproducible (the slope for active molecules was 0.94). Some active compounds could be clustered 
based on scaffold homology, but most clusters consisted of one or only a few members (Figure 6—
figure supplement 1C, D). Structural clustering was employed to identify known ER modulators where 
the vendor-provided annotation was poorly defined (Figure 6—figure supplement 1C). Our results 
demonstrate that htSMT is reproducible and robust when screening large collections of molecules.

Most active molecules from the screen were not structurally related to steroids (Figure 6—figure 
supplement 1C, D). On the other hand, many compounds could be grouped based on their reported 
biological targets or pathways (Figure 3, Figure 6—figure supplement 3A, B). For example, heat 
shock protein (HSP) and proteasome inhibitors consistently increased fbound, whereas cyclin-dependent 
kinase (CDK) and mTOR (mammalian target of rapamycin) inhibitors decreased fbound. Though many 
CDK inhibitors lack within-family specificity (Wells et al., 2020; Figure 6—figure supplement 2A, 
pan-CDK), we found that CDK9-specific inhibitors more strongly affected ER dynamics than did 
CDK4/6-specific inhibitors. Furthermore, as with selective AR and GR antagonists, inhibitors targeting 
ALK, BTK, and FLT3 kinases that have not been shown to interact with ER have no impact on ER 
dynamics when assessed using SMT (Figure 3).

For the inhibitors of cellular pathways we identified, we used a dose titration to better charac-
terize the effect of each on ER dynamics. Potencies ranged from the sub-nanomolar to low micro-
molar (Figure 6B), similar to the reported potencies of these compounds against their cellular targets 
(Wang et al., 2018; Olson et al., 2018; Parry et al., 2019; Menezes et al., 2012; McCleese et al., 
2009; Bussenius et al., 2012; Apsel et al., 2008; Thoreen et al., 2009; Yu et al., 2009; Adams 
et al., 1999; Kuhn et al., 2007; Mroczkiewicz et al., 2010). Additionally, we tested these molecules 
against AR (Figure 6—figure supplement 2C) and PR (Figure 6—figure supplement 2D). Each SHR 
differed meaningfully from the others in terms of the response to compounds identified through an 
ER-focused screening effort. Again, the magnitude of ER SMT effect was largely consistent within a 
target class (Figure 6A, Figure 6—figure supplement 2A–D). The finding that structurally distinct 

https://doi.org/10.7554/eLife.93183
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Figure 6. Bioactive molecules targeting pathways associated with estrogen receptor (ER) affect its dynamics. (A) Bioactive screen results with select 
inhibitors grouped and uniquely colored by pathway. Change in fbound across a 12-point dose titration of three representative compounds targeting each 
of HSP90, mTOR, CDK9, and the proteasome. Individual molecules are denoted by specific shapes. Error bars represent SEM across three biological 
replicates. (B) Change in fbound as a function of time after compound addition. Estradiol treatment (black) is compared to ganetespib (blue circles) and 
HSP990 (blue squares). Points are bins of 4 min. Error bars represent SEM across three biological replicates. (C) Change in fbound as a function of time 
after compound addition. Estradiol treatment (black) is compared to HSP90 inhibitors ganetespib (blue circles) and HSP990 (blue squares); proteasome 
inhibitors bortezomib (red circles) and carfilzomib (red squares). Points are bins of 7.5 min of high-throughput single-molecule tracking (htSMT) data, 
marking the mean ± SEM. The shaded region denotes the window of time used during htSMT screening. (D) Track length survival curve of ER-Halo cells 
treated either with DMSO alone, with estradiol stimulation, or with 100 nM HSP90 or proteasome inhibition. Track survival is plotted as the 1-CDF of the 
track length distribution; faster decay means shorter binding times. (E) Quantification of the number of long-lived trajectories as a function of treatment 
condition. All conditions were normalized to the median number of trajectories in DMSO. (F) Diagram summarizing pathway interactions based on 
htSMT results for ER, AR, and PR.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Tabular data to generate plots from Figure 6 and related figure supplements.

Figure supplement 1. Deeper investigation of bioactive screening data identifies cutoff for active molecules.

Figure supplement 2. Some pathway inhibitors modulating estrogen receptor (ER) dynamics are specific to ER.

Figure supplement 3. Dose titration plots of ER(S104A/S106A/S118A) with mTOR and CDK9 compounds.

https://doi.org/10.7554/eLife.93183
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compounds exhibited similar effects based on their biological targets favors the view that these 
biological targets must themselves interact with ER, and that the compounds therefore affect ER 
dynamics indirectly. HSP90 is a chaperone for many proteins, including SHRs. In the canonical model, 
hormone binding releases the SHR–HSP90 complex. Indeed, HSP90 inhibitors increased fbound for 
ER, AR, and PR, consistent with the hypothesis that one function of the chaperone may be to adjust 
the equilibrium of SHR binding to chromatin (Figure  6—figure supplement 2B–D). Proteasome 
inhibition also leads to ER immobilization on chromatin (Stenoien et al., 2001), which aligns with 
the results that we obtained in our htSMT screen of bioactive compounds. ER has been shown to 
be phosphorylated by CDK (Franco et al., 2018), Src (Shah and Rowan, 2005), or GSK-3 through 
MAPK and PI3K/AKT signaling pathways (Anbalagan and Rowan, 2015), and therefore inhibition 
of these pathways could reasonably be expected to affect ER dynamics measured using SMT. While 
CDK inhibition led to an increase in ER mobility, inhibition of PI3K, AKT, or other upstream kinases 
showed no effect (Figure 3).

Interestingly, SMT dynamics of an ER triple point mutant engineered to lack previously defined 
phosphorylation sites important for transactivation (Anbalagan and Rowan, 2015) (S104A/S106A/
S118A) were affected by CDK and mTOR pathway inhibitors (Figure  6—figure supplement 3), 
suggesting that additional phosphorylation sites can mediate the effects of CDK9 and PI3K/AKT 
signaling, or that other molecular targets of CDK and PI3K/AKT can act indirectly to alter the motion 
of ER. The change in ER protein dynamics for characterized pathway inhibitors such as those targeting 
CDK and mTOR is subtle but consistent across compounds, suggesting biological meaning in these 
observations and highlight the need for accurate and precise SMT measurements. Hence, htSMT 
screening offers the promise of providing comprehensive pathway interaction information or revealing 
novel interaction mechanisms.

Kinetic htSMT facilitates evaluation of small molecule mechanism of 
action
Since SMT can identify compounds that act either directly on a fluorescent target, or through some 
intermediary process, we sought to distinguish between these alternative modes of action. We 
hypothesized that by investigating the rate at which changes in protein motion emerge, SMT could 
be used to distinguish direct versus indirect effects on ER activity. Given the live-cell setting of SMT, 
we configured a data collection mode that allows for measurement of protein dynamics in set intervals 
after compound addition (kinetic SMT or kSMT). Both ER agonists and antagonists rapidly induce ER 
immobilization on chromatin when measured in kSMT (t1/2 = 1.6 min for estradiol; Figure 4C). On the 
other hand, HSP90 inhibitors like ganetespib and HSP990 exhibit a delay of 5–7 min before alterations 
in ER dynamics appear, after which we observed an increase in fbound with a t1/2 of 19.3 and 17.5 min, 
respectively. The overall effect of these compounds reached a plateau after an hour (Figure  6B). 
Proteasome inhibitors, for example bortezomib and carfilzomib, acted even more slowly, with changes 
in ER dynamics emerging only after 40 min, and slowly increasing over the 4-hr measurement window 
(Figure  6C). Hence, this exploration of SMT kinetics represents an important tool that can facili-
tate differentiation between on-target and on-pathway modulators. We believe that this approach 
will permit, for example, rapid mechanistic characterization of active compounds in a drug discovery 
setting.

To further differentiate the effect of pathway inhibitors on ER protein dynamics, we sought to 
characterize relative ER residence times for each such molecule. In contrast to the SERDs and SERNs, 
although HSP90 inhibition by HSP990 and ganetespib resulted in an increase in fbound, we observed 
a decrease in the total number long binding events by two- and fourfold, respectively, while the 
binding times were similar to that observed with DMSO alone (Figure 6D, E). These results suggest 
HSP90 inhibition primarily increases k*on while leaving k*off largely unaffected. On the other hand, 
inhibition of the proteasome led to an increase in both the number and duration of long binding 
events. These results demonstrate that ER–chromatin binding can be modulated by changing the 
rate of association or disassociation, and that the inhibition of specific cellular partners can affect 
these rates differentially. Taken together with the different kinetics for direct ER, HSP90, and prote-
asome modulators, our data suggest that each class of molecule alters ER dynamics through distinct 
mechanisms.

https://doi.org/10.7554/eLife.93183
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Discussion
Many pathways that regulate the fundamental biochemistry of cells depend upon the interaction 
of protein ‘sensors’ with distinct protein ‘effectors’ that engage transiently to trigger a change in 
cell physiology. Although the fundamentals of this process have long been appreciated, biochemical 
investigation of these protein interactions has typically required in vitro reconstitution or has been 
interrogated through pull-down assays after cell permeabilization. Here we report the combination of 
SMT, a type of super-resolution microscopy, with high content microscopy as a means of visualizing 
individual protein motion in millions of live cells, and under circumstances where the effect of small 
molecule inhibitors can be assessed quantitatively. We demonstrate the capabilities of the htSMT plat-
form by analyzing the behavior of SHRs, a class of sensors that mediate hormone-induced modulation 
of gene expression, and in particular the dynamics of the ER.

To validate our htSMT platform, our analysis initially focused on the very rapid immobilization of 
SHRs on chromatin observed in cells exposed to their established, cognate steroid ligands. The tech-
nique proved to be highly quantitative, effectively evaluating ligands whose potency differ by more 
than four orders of magnitude, and readily characterizing differences in both the sensitivity and the 
selectivity of the steroid receptor family. These observations prompted us to apply htSMT to screen 
thousands of bioactive compounds, which we hypothesized would reveal new chemical matter as well 
as enable comprehensive pharmacologic dissection of ER pathway interactions. As further validation 
of the technique, automated screening of ER dynamics using htSMT identified all 30 known steroid 
ligands from a library of 5067 bioactive compounds. The potency of these steroid ligands with respect 
to alterations in ER dynamics varied across a thousand-fold range, demonstrating the dynamic range 
of this single experimental setup. Among molecules known to behave as ER signaling inhibitors, the 
change in ER dynamics correlated closely with the ability of these compounds to block estrogen-
induced proliferation of estrogen-dependent breast cancer cells, demonstrating the ability of htSMT 
to document SARs in a chemical series across disparate and biologically relevant readouts. Since our 
analysis relies only on detection of changes in protein dynamics, this unbiased readout will prove 
broadly useful in screening libraries of compounds to identify starting points for the development of 
new therapeutics. In fact, our analysis identified 209 non-steroidal molecules that affect ER dynamics, 
which are likely to act elsewhere in the network of ER-interacting proteins.

Our characterization of the htSMT platform and subsequent screen highlighted some important 
considerations for future screening efforts using SMT. Notably, the observation that cell-to-cell vari-
ability is the dominant driver of assay variance, when compared to other sources like the microscope 
or the assay plate, suggests that an even larger FOV would sample cells more effectively and result 
in a more stable dynamical estimate (Figure  3—figure supplement 3). This could be particularly 
important for detecting subtle dynamical changes such as those seen with the mTOR inhibitors where 
the maximal change in fbound was only around 5% (Figure 6). Similarly, for our screening assay we 
chose a frame interval of 10 ms, which proved very sensitive to detecting a wide range of compound 
effects but is necessarily limited in the types of perturbations it can detect. The diffusion of the most 
mobile ER population was well below the upper limit of detection for 10 ms, suggesting that faster 
frame rates were not necessary, but this may not be the case for other protein targets. On the other 
hand, ER has been reported to have multiple low-mobility chromatin binding states (Wagh et al., 
2023), but these low-mobility states are below the assay lower bound set by our localization error 

(‍Dloc = localization error2

∆τ ‍) and would require a slower frame interval to differentiate.
The observation that by screening large libraries of bioactive compounds for an effect on protein 

motion, htSMT can define networks of biochemical signaling pathways is a critical outcome of this 
high-throughput platform. Protein dynamics in the cell are not governed by singular interactions 
between any two proteins but by biochemical networks within the cell that intersect with the protein 
under observation. Our work enables construction of a putative interaction network connecting 
nodes involving different proteins, the identities of which were deduced based on the impact of 
known inhibitors on the dynamics of steroid receptors (Figure 6F). The interaction map derived from 
unbiased htSMT screening recapitulates many known biological interaction partners of the ER, in a 
single experimental setup using protein motion as a sole readout. More experiments are necessary to 
determine which nodes represent direct physical interactions and which occur through intermediaries. 
To our knowledge, the impact of HSP inhibition in increasing ER–chromatin association has never 
been described, neither has the link between inhibition post-translation modifying enzymes like the 

https://doi.org/10.7554/eLife.93183
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CDKs or mTOR and ER dynamics ever been described. We believe that identifying additional cellular 
interaction networks through htSMT will provide an important foundation for the broader under-
standing of biochemical regulatory mechanisms. For example, CDK4/6 inhibitors are co-administered 
with SERDs and SERMs to improve therapeutic outcomes (Liang et al., 2021; Wardell et al., 2015). 
CDK4/6 inhibition only minimally affects ER dynamics in SMT (Figure 3), supporting the view that the 
combination of CDK4/6 inhibition with ER antagonists functions through a non-redundant ER-inde-
pendent mechanism (Finn et al., 2016).

Most cell-based assays cannot easily be configured for kinetic analysis of treatment effects, as 
these typically involve fixed-endpoint, aggregate readouts. With such endpoint assays, biochem-
ical feedback and compensatory mechanisms often confound interpretation of the direct effect of a 
change in treatment conditions. SMT, however, when implemented in a high-throughput system that 
exhibits consistency over long time intervals, permits kinetic analysis of treatment effects on protein 
dynamics in real time with high reliability. Such kinetic analyses help to define pathway cascades; in a 
first instance, they can be used to rapidly identify compounds that likely engage directly with a ther-
apeutic target.

Mechanistically, an increase in fbound provoked by a change in cell conditions suggests that molec-
ular interactions with the protein being analyzed have been stabilized (either made more probable or 
longer-lasting), while a decrease in fbound suggests the opposite: molecular interactions that have been 
made less robust. Unexpectedly, we observed both SERDs and SERMs, which antagonize ER, cause an 
increase in nuclear bound fraction, likely via chromatin binding, in a way that mimics what is seen with 
traditional ER agonists. We showed that this mechanism is not a commonality among all SHRs, and 
indeed inhibitors of AR and GR behaved more like the prototypical competitive antagonist. Inhibition 
of HSP90 also produces a marked increase in ER fbound, though these binding events are more transient 
(Figure 6E). Transcription factors are thought to find binding sites through free 3D diffusion, 1D sliding, 
and transient, non-specific DNA binding (Liu et al., 2015; Boka et al., 2021; Paakinaho et al., 2017; 
Mazza et al., 2012; Izeddin et al., 2014). ER antagonists may function by promoting ER binding to 
non-specific decoy chromatin sites, thus reducing the amount of ER able to activate transcription at 
ER-responsive genes (Guan et al., 2019; Van Royen et al., 2014; Van Royen et al., 2012). Previous 
work has also shown that SERDs, and to a lesser extent SERMs, induce an alternate conformation of 
ER, thereby inhibiting co-factor recruitment (Guan et al., 2019). If co-factors like CBP and p300 stabi-
lize ER–chromatin binding, then efficacious inhibitors might exhibit shorter binding times compared 
with agonist stimulation (Guan et al., 2019). The SERMs 4-OHT and GDC-0810 dramatically increase 
ER–chromatin binding frequency and only modestly increase binding times; fulvestrant and GDC-
0927 strongly increase both ER–chromatin binding frequency and residence time. Therefore, htSMT 
suggests that agonists and antagonists of SHR signaling operate through a previously unappreciated, 
unified mechanism of chromatin immobilization, meriting further investigation.

Lastly, we note that fast-SMT, as implemented here, can define relationships between the structures 
of chemical inhibitors and their effects on a fundamental property of protein regulatory elements: 
their dynamics in living cells. In our hands, these measurements proved far more reliable in predicting 
the ability of an ER antagonist to block cell proliferation than an ER degradation assay, a conclusion 
that was only able to be drawn due to the scale of htSMT screening capabilities. Notably, saturable 
dose responses were observed for ER antagonists at much lower concentrations using htSMT than 
with ER degradation assays, suggesting that this method will be more sensitive for identifying novel 
therapeutic agents than with corresponding traditional assay formats. Thus, SMT can identify prom-
ising compounds the activity of which might not otherwise be measurable, provide insight into their 
mechanism(s) of action, and in the native environment of the cell. While ER is a transcription factor, the 
same principles may apply broadly to regulatory mechanisms of proteins with diverse function. In this 
context, we conclude that the application of technologies for measuring protein dynamics at scale will 
prove broadly applicable to the elucidation of biological mechanisms.

Methods
Cell lines
The Homo sapiens cell lines U2OS (ATCC Cat. No. HTB-96; RRID:CVCL_0042), MCF7 (ATCC Cat. No. 
HTB-22; RRID:CVCL_0031), T47d (ATCC Cat. No. HTB-133; RRID:CVCL_0553), and SK-BR-3 (ATCC 
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Cat. No. HTB-30; RRID:CVCL_0033) were grown in Dulbecco's Modified Eagle Medium (DMEM, Cat. 
No. 1056601, Gibco DMEM, high glucose, GlutaMAX Supplement, Thermo Fisher) supplemented with 
10% fetal bovine serum (Cat. No. 16000044, Thermo Fisher) and 1% pen-strep (Cat. No. 15140122, 
Thermo Fisher) and maintained in a humidified 37°C incubator at 5% CO2 and subcultivated approx-
imately every 2–3 days.

HaloTag-expressing cell lines
For H2B, CaaX, ER, AR, and PR-HaloTag fusions, mammalian expression vectors containing the fusion 
gene under the control of a weak L30 promoter and containing a Neomycin resistance marker were 
transfected into U2OS cells at 70% confluence using FuGENE 6 (Cat. No. E2691, Promega). Trans-
fected cells were selected with G418 (Cat. No. 10131027, Thermo Fisher) at 500 µg/ml, then clonally 
isolated. Clones expressing the desired fusion gene were determined first by staining with 100 nM 
JF549-HTL (Cat. No. GA1110, Promega) and 50 nM Hoechst 33342 and identifying clones with the 
expected distribution of JF549 signal. Between three and six clones were subsequently tested using 
SMT conditions for response to a control compound, and the most homogenous clones were subse-
quently expanded for further testing. Unless otherwise specified, all experiments are with a single, 
clonally isolated cell line. Because U2OS cells express GR endogenously, HaloTag was inserted right 
before the stop codon of endogenous NR3C1 via homology-directed repair using CRISPR/Cas9. The 
HaloTag knock-in was validated by imaging using HTL-JF646 staining and through DNA sequencing 
(Chu et al., 2023).

Western blot
Cells were grown in the same conditions as described previously. 1.5 × 106 cells were seeded per well 
in a 6-well plate in DMEM overnight, followed by compound treatment (DMSO or 100 nM fulvestrant) 
the following day for 24 hr. Cells are lysed in 200 μl 1× Cell Lysis Buffer (catalogue number 9803, 
Cell Signaling). Protein lysate concentration is then determined using BCA protein assay kit (Catalog 
number 23225, Pierce BCA Protein Assay Kit) following the manufacturer’s instructions. Capillary 
Western Immunoassay were performed using Jess Protein Simple following the manufacturer’s instruc-
tion (Protein Pimple, USA). Levels of ⍺ER (1:100, RM-9101; RRID:AB_149901) were normalized to 
loading control β-tubulin (1:100, NC0244815 LI-COR 92642213, Thermo Fisher; RRID:AB_2637092). 
The peaks were analyzed with the Compass software (Protein Simple, USA).

RNA-seq
Cells were seeded into 12-well tissue culture treated plates at densities of 250,000 cells (U2OS-WT), 
200,000  cells (U2OS-ER), or 300,000  cells (MCF7, SKBR3, T47d) per well. Twenty-four hours later, 
cells were treated with estradiol at a final concentration of 25  nM for 24  hr. To process cells for 
total RNA, cells were washed twice with ice-cold phosphate-buffered saline (PBS), lysed with 350 µl 
Buffer RLT (QIAGEN 79216), scraped off the plate (Fisher 08100241), frozen on dry ice and stored at 
–20°C. Cell lysates were then thawed, homogenized using QIAshredder columns (QIAGEN 79656), 
and processed through the QIAGEN RNeasy Micro kit (QIAGEN 74004) using the standard protocol 
and including the optional on-column DNase digestion step (QIAGEN 79254). All samples had an 
RNA Integrity Number (RIN) score of 10 by TapeStation (Agilent 5067-5576). RNA sequencing libraries 
were prepared from total RNA by Novogene (CA). In brief, mRNA was purified from total RNA using 
poly-T oligo-attached magnetic beads and fragmented. First-strand synthesis was performed using 
random hexamer primers, second-strand synthesis was performed using dTTP, and libraries were 
prepared after end repair, A-tailing, adapter ligation, amplification, and purification. Libraries were 
sequenced on an Illumina NovaSeq with paired 150 cycle reads. For data analysis, paired-end reads 
were aligned to the hg38 reference genome using Hisat2 v2.0.5, featureCounts v1.5.0-p3 was used to 
count the number of reads mapped to each gene, and differential expression analysis was performed 
using DESeq2 (1.20.0).

SMT sample preparation
Cells were seed on tissue culture treated 384-well glass-bottom plates at 6000 cells per well. Seeded 
cells were then incubated at 37°C and 5% CO2 to allow adhesion overnight. For all SMT experiments, 
cells were incubated with 5–100 pM of JF549-HTL (Cat. No. GA1110, Promega) and 50 nM Hoechst 
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33342 for an hour in complete medium. Cells were then washed three times in Dulbecco’s Phosphate 
Buffered Saline (DPBS) and twice in imaging media using an EL406 plate washer, which is fluoroBrite 
DMEM media (Cat. No. A1896701, Thermo Fisher) supplemented with GlutaMAX (Cat. No. 35050079, 
Thermo Fisher) and the same serum and antibiotics as growth media. Where appropriate, compounds 
were serially diluted in an Echo Qualified 384-Well Low Dead Volume Source Microplate (0018544, 
Beckman Coulter) to generate dose-titration source material. Compounds were administered at a final 
1:1000 dilution in cell culture medium. Each dose of a compound has at least 2 replicates per plate 
and 3 plate replicates, 20 DMSO control wells and 2 no dye control wells were randomized across 
each plate. Unless otherwise specified, compounds were allowed to incubate for an hour at 37°C prior 
to image acquisition.

Image acquisition
Unless otherwise stated, all image acquisition using SMT was performed on a custom-built HILO 
microscope based on a Nikon Ti2, motorized stage, stage top environmental chamber (OKO labs), 
quad-band filter cube (Chroma), custom laser launch with 405 nm, and 561 nm wavelengths, coupled 
to a Nikon TIRF illumination module by fiber optic element (KineFlex HPV-P-3-S-405.640–0.7-APC-P2) 
delivering >10 and >600 mW of power in a gaussian beam with a FWHM of approximately 250 µm 
to the back focal plane of the objective. Angle of inclination and beam direction were adjusted by 
micrometer on the TIRF illuminator and empirically set to maximize and flatten the signal across the 
camera FOV. Fluorescence emission was passed through a high-speed filter wheel (Finger Lakes 
Instruments) and collected with a backlit CMOS camera (Prime 95b, Teledyne). Images were acquired 
with a 60× 1.27  NA water immersion objective (Nikon). Environmental chamber was set to 37°C, 
95% humidity, and 5% CO2. For each FOV, 200 SMT frames were collected at a frame rate of 100 Hz, 
with a 2ms stroboscopic laser pulse. Ten frames of the Hoechst channel were collected at the same 
frame rate for downstream registration of trajectories to nuclei. Sample focus was maintained using 
the reflection-based Perfect Focus System to determine the position of the coverglass and apply an 
empirically determined offset to focus into the sample.

Experiment design and sample size
All assays were designed with high-throughput screening in mind. Unless otherwise stated, exper-
iments were performed with three biological replicates and within each assay plate having at least 
three well replicates. In instances where a specific plate or a portion of a plate failed to meet assay 
quality criteria (e.g. no respons from a positive control), those data point were omitted and, where 
possible, the assay was repeated. For htSMT experiments, samples were prepared and acquired such 
that a minimum 20 cells were sampled per assay well, resulting in an minimum of 21,000 detections 
per well; 60 cells and 63,000 detections minimum per condition per assay plate.

htSMT image analysis
Image acquisition produced one JF549 movie and one Hoechst per FOV. The JF549 movie was used to 
track the motion of individual JF549 molecules, while the Hoechst movie was used for nuclear segmen-
tation. Tracking was accomplished in three sequential steps – detection, subpixel localization, and 
linking – using a combination of existing methods. Briefly, spots were detected using a generalized 
log likelihood ratio detector to test every 11x11 pixel window using a gaussian kernel with a radius of 
1.25 pixels and with a log likelihood detection threshold 14 (Sergé et al., 2008). After detection, the 
estimated position of each emitter was refined to subpixel resolution using fitting (Levenberg, 1944; 
Marquardt, 1963; Laurence and Chromy, 2010) with an integrated 2D Gaussian spot model (Smith 
et al., 2010) starting from an initial guess afforded by the radial symmetry method (Parthasarathy, 
2012). Detected spots were linked into trajectories using a custom modification of a hill-climbing 
algorithm with a maximum linking radius of 1.25 µm and allowing a maximum of two gap frames 
where a spot may go undetected but still be linked within the same trajectory (Chenouard et al., 
2014; Sbalzarini and Koumoutsakos, 2005). The same detection, subpixel localization, and linking 
settings were used for all movies used in this manuscript.

For nuclear segmentation, all frames of the Hoechst movie were averaged to generate a mean 
projection. This mean projection was then segmented with a neural network trained on human-
labeled nuclei, the output of which is a mask assigning a semantic category to each pixel in the 
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image (Ronneberger et al., 2015). Each spot was assigned to at most one nucleus using its subpixel 
coordinates.

To recover dynamical information from trajectories, we used state arrays (Heckert et al., 2022), 
a Bayesian inference approach, with the ‘RBME’ likelihood function and a grid of 100 diffusion coef-
ficients from 0.01 to 100.0 µm2 s–1 and 31 localization error magnitudes from 0.02 to 0.08 µm. For 
each assay well, 10,000 trajectories were randomly sampled from the aggregated pool of nuclear 
trajectories, and this set of trajectories was used for state inference. After inference, localization error 
was marginalized out to yield a one-dimensional distribution over the diffusion coefficient for each 
FOV. For single-cell analysis, we performed SMT and nuclear segmentation on a mixture of U2OS cells 
bearing H2B-HaloTag.

HaloTag-CaaX, or free HaloTag. We then evaluated the marginal likelihood of each of a set of 
100 diffusion coefficients on the set of trajectories within each segmented nucleus (Quatrini and 
Ugolini, 2021). These marginal likelihood functions were clustered with k-means (three clusters), and 
the marginal likelihood functions for each cell were ordered by their cluster index to produce the 
heatmap. To estimate the fraction bound (fbound), we integrated the state array posterior distribution 
below 0.1 µm2 s–1. To estimate the free diffusion coefficient (Dfree), we computed the mean of the 
posterior distribution above 0.1 µm2 s–1 using the following equation:

	﻿‍
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htSMT data quality control
High content imaging approaches require image quanity control to systematically remove aberrant 
measurements from the set. Primarily these are fields of view that are empty, that are out of focus, 
or contain large piece of debris in the well or occlusion of the objective. To detect and remove these 
fields of view, we trained a convolutional neural network classifier to score Hoechst image quality on 
a scale of –1 to 1 (low quality to high quality). Annotations from five independent annotators on a 
training set of ~1000 Hoechst images were used as input for the model. After training, a threshold for 
filtering was empirically set so as to remove problem FOVs such as those exemplified in (Figure 1—
figure supplement 1c). Screening wells were only considered if more than two fields of view passed 
QC, and screening plates were only considered if more than eight control wells could be included for 
normalization. During screening, compounds with a standard deviation in fbound greater than 0.15 were 
omitted from analysis and rescreened where possible.

htSMT data analysis
Tracking results from the automated processing pipeline were analyzed using KNIME or Spotfire 
(TIBCO). Individual fbound or Dfree measurements were associated with experimental metadata and 
aggregated by condition. Change in fbound was calculated as the difference between the fbound of each 
well and the median fbound of DMSO in the same plate. Wells that had no cells in the FOV or in which 
the FOV was out of focus were omitted from further analysis. Compounds were assessed for assay 
interference using the median fluorescence intensity of the tracking channel and omitted if it was more 
than 3 standard deviations higher than the median intensity of the DMSO wells. Similarly, plates where 
the active and negative controls could not be clearly resolved or where the significantly deviated from 
the performance of the rest of the screen were removed from further analysis. Finally, compound 
with a variance more than three standard deviations higher than the average compound variance (41 
compounds; 0.08%) were removed from downstream analysis. Z′-factor between the active controls 
on a plate and DMSO was calculated as previously described (Zhang et al., 1999). EC50 values were 
calculated in Prism (GraphPad) by first log-transforming the molecule concentrations and then fitting 
to a four parameter logistic curve.

Sources of variability analysis
The contribution of microscope-to-microscope, plate-to-plate, well-to-well, FOV-to-FOV and cell-to-
cell variability on the 2D jump distribution was estimated using a subsampling approach. We consider 
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a simplified model where the observed jump length distribution (Y) is a function of the intrinsic 
stochasticity in jump length due to diffusion (X) with additional biases introduced at the cell, FOV, 
well, plate or microscope level:

	﻿‍ Y = Bmicroscope + Bplate + Bwell + BFOV + Bcell + X ‍�

For simplicity the biases are assumed independent, although these biases may indeed have some 
dependence.

To estimate the variance of each bias term, we computed the variance in sample means for different 
resampling schemes. Firstly we sample N jumps from all data from one replicate of the bioactive 
screen and compute the average. The resulting sample mean is the average over all sources of vari-
ability (‍Bmicroscope‍, etc.). In a second step, we sample a microscope and randomly sample all jumps 
from all plates on that microscope. This averages over all other sources of variability except ‍Bmicroscope‍ 
can be expected to approach Var(‍Bmicroscope‍) for large N. We continune this same sampling scheme at 
the Plate-, Well-, FOV-, and cell-level, such that for large N results in estimated Var(‍Bplate‍), Var(‍Bwell‍), 
Var(‍BFOV‍), and Var(‍Bcell‍), respectively. 1000 rounds of sampling were performed for each resampling 
scheme, either including all wells or only those containing the vehicle DMSO.

Clustering active molecules
Chemical structure-based clustering was performed on molecules identified as active (239 in total). 
Molecular frameworks were computed as described by Murcko et al. and as implemented in Pipeline 
Pilot (Bemis and Murcko, 1996). Molecular frameworks were clustered using functional class finger-
prints (FCFP_4) with a similarity threshold cut-off of 0.3 Tanimoto distance. A total of 21 clusters were 
obtained with singletons being the major class (124 molecules). The next largest group was the flavone 
class represented by 27 members, followed by a couple of diverse classes within the steroidal class 
with 14 and 20 members, respectively. The other category is the stilbene class with seven members 
representing tamoxifen as one of the members. The remaining actives (47 molecules) were grouped 
into one 3-membered cluster and all the others with 2 members per cluster.

Kinetic experiments
Cells were seeded into a 384-well plate the day before, dyed, and washed as described above. 1 well 
with 25 FOVs per well were taken as a baseline reading. Then, while imaging, compound was manu-
ally added to each well to a final concentration of 100 nM. Data were then collected for 20 wells. A 
pause was included between each FOV such that the entire imaging regime covers the assay window. 
Change in fbound was determined per-well relative to t = 0.

For assays extending to 4  hr, the plate was imaged twice with 8 FOVs per well with different 
FOV locations per readthrough to prevent photobleaching from impacting data. All data presented 
represents was performed in three different biological replicates.

Residence time imaging
Sample preparation and execution of residence time imaging experiments were conducted in a similar 
manner to the SMT assay described above with a few exceptions. Samples were dyed with 1–10 
pM JF549 (Promega) and 50 nM Hoechst 33342 for an hour. 400 frames per FOV were collected with 
a camera integration time was set to 250 ms, and laser sources reduced to 5 mW at the objective. 
During image acquisition, lasers were on continuously. Compound incubation ranged from 1 to 4 hr. 
At least 8 well replicates were collected per condition.

Residence time analysis
Quantifying transcription factor binding times on DNA is an open problem with multiple proposed 
solutions (Mazza et  al., 2012; Garcia et  al., 2021; Reisser et  al., 2020). Here, we adopted an 
approach similar to Hansen et al., 2017. Image processing, including spot detection, localization, 
and track reconnection were performed using the same methods described above. Because residence 
time imaging selectively tracks slow-diffusing molecules, individual localizations were limited to a 
300-nm maximum displacement for individual jump reconnections. Sets of trajectories for each FOV 
were binned into 1-CDF distributions as previously described and fit to a two exponent decay model:
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The kslow term comprises both the rate of molecule unbinding (koff) as well as photobleaching (kbleach) 
and diffusion of chromatin out of the focal volume. Often approaches attempt to derive the unbinding 
rate by applying a correction such as subtracting a bleaching rate measured either directly in the 
sample or by using a separate control sample (Hansen et  al., 2017; Mazza et  al., 2012), where 
Tcorrected = (koff − kbleach)–1. The inverse relationship between Tcorrected and kbleach makes it highly sensitive 
and nonlinear to noise in kbleach. Because the 1-CDF distributions of compound-treated ER samples 
are so close in decay rate to the control Histone H2B, background subtraction yields unfeasible koff 
values after correction. Instead we report only the uncorrected kslow values with the understanding that 
these represent a lower-bound of the actual koff, but that within-experiment comparisons can be made 
between conditions.

Fluorescence recovery after photobleaching
Images were acquired on a custom-built HiLo microscope as described above with a Spectra Light 
Engine RS-232. Stimulation was directed using a miniscanner coupled with a Coherent OBIS 561 nm 
100 mW laser. All imaging was performed using a 60× 1.27 NA water immersion objective (Nikon). 
All experiments were performed at 37°C. For FRAP experiments, cells were seeded into a 384-well 
plate the day before, labeled with 50 nM HTL-JF549, and washed as described above. Compound was 
added to 100 nM final an hour before imaging. Then, a prebleach image was acquired by averaging 
10 consecutive images. Then 8–10 regions were bleached (2 background, 6–8 cells) and 2 regions in 
cells were unbleached. Regions that were bleached were bleached at 10% power without scanning. 
For the next 30 s, an image was acquired every 200 ms, then every 1 s for 2 min. The background-
subtracted average intensity was measured in the region of interest over time and normalized to the 
average of the fluorescence in the baseline images, then normalized to the unbleached regions to 
account for readout-induced photobleaching of fluorophores. Data from 18 to 24 cells were pooled 
per experiment for 3 biological experiments.

Immunofluorescence
Cells were grown in conditions as described previously. Cells were seeded in glass bottom 384-well 
plates coated with 0.05 mg/ml PDL (Cat. No. A3890401, Thermo Fisher) at 6000 cells per well for 
Halo-ER U2OS cells and 8000 for MCF7 and T47d cells. Cells were grown overnight followed by 
compound treatment on the second day for 24 hr at 37°C and 5% CO2. Compounds were serially 
diluted in an Echo Qualified 384-Well Low Dead Volume Source Microplate (0018544, Beckman 
Coulter) to generate a 21-point dose response at 1:3 dilution starting from a concentration of 10 mM. 
Compounds were administered at a final 1:1000 dilution in cell culture medium. An 8- to 12-point 
dose response was selected based on the potency of each compound. Each concentration was repli-
cated at least once per plate and has at least two plate replicates. Cells were fixed by addition of 
paraformaldehyde (Cat. No. 15710-S; Electron Microscopy Sciences), with a final concentration of 4% 
for 20 min. Cells were then permeabilized using blocking buffer containing 1% bovine serum albumin 
and 0.3% Triton X-100 in 1× PBS for an hour at room temperature. Immunofluorescent staining of ER 
was carried out using ⍺ER antibody (1:500, RM-9101; RRID:AB_149899) diluted in the same blocking 
buffer for 1 hr at room temperature. Extensive washing with PBS was performed prior to secondary 
antibody staining. Secondary antibody staining was carried out using Alexa fluor 488 conjugate anti-
rabbit IgG (1:1000, Cat. No. A32731, Thermo Fisher; RRID:AB_2633280) for an hour. Nuclear staining 
was carried out using Hoechst 33342 solution at 1 mg/ml. Imaging of immunofluorescence was done 
using the ImageXpress Micro (Molecular Devices) at ×10 magnification and 4 FOV per well. Fluores-
cence intensity within the nucleus was quantified using CellProfiler (Stirling et al., 2021). All analysis 
and curve fitting were carried out using Prism with DMSO as a baseline. ER degradation experiments 
were performed in three biological replicates with the same source compounds.

Cell proliferation
Cells were grown and seeded in conditions as described above. Cells were seeded in 384well 
plates (Cat. No. 353963, Corning) at 1000 cells per well for Halo-ER U2OS, 1200 cells for SKBR3, 
and 1800 cells for MCF7 and T47d. Cells were grown overnight, then treated with compounds the 

https://doi.org/10.7554/eLife.93183
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following day. Compound concentration and administration are the same as described previously for 
the immunofluorescence assay. Plates are scanned in the IncuCyte live cell analysis system (Sartorius) 
at 24-hr intervals for a total of 5 days using phase contrast. Cell proliferation quantification was carried 
out by the built-in analysis function using whole well confluency mask. All analysis and curve fitting 
were carried out using Prism with DMSO as a baseline. MCF7 and T47d cell proliferation experiments 
were performed in four biological replicates with the same source compounds.

Acknowledgements
The authors extend their deepest gratitude to all the employees and consultants of Eikon, past and 
present, especially Caitlyn Bonilla, Tiffany Cheng, Michael Hirte, David Hoffman, Fedor Ilkov, Yan Li, 
Anuja Lohia, Edith Martinez-Soto, Eugene Masterov, Mai Nguyen, and Gregory Snyder. Their tireless 
work enabled the experiments described here. We thank Rand Miller, Roger Perlmutter, Yan Li, Robert 
Tjian for helpful discussions and critical feedback on the direction of our investigation and on the 
resulting manuscript. Eikon Therapeutics provided all funding. No external funding was received for 
this work.

Additional information

Competing interests
David Trombley McSwiggen, Helen Liu, Ruensern Tan, Sebastia Agramunt Puig, Lakshmi B Akella, 
Russell Berman, Mason Bretan, Hanzhe Chen, Xavier Darzacq, Kelsey Ford, Ruth Godbey, Eric 
Gonzalez, Adi Hanuka, Alec Heckert, Jaclyn J Ho, Stephanie L Johnson, Reed Kelso, Aaron Klammer, 
Ruchira Krishnamurthy, Jifu Li, Kevin Lin, Brian Margolin, Patrick McNamara, Laurence Meyer, Sarah E 
Pierce, Akshay Sule, Connor Stashko, Yangzhong Tang, Daniel J Anderson, Hilary P Beck: Employee 
of Eikon Therapeutics Inc. 

Funding
No external funding was received for this work.

Author contributions
David Trombley McSwiggen, Conceptualization, Resources, Data curation, Formal analysis, Supervi-
sion, Investigation, Visualization, Methodology, Writing – original draft, Writing – review and editing; 
Helen Liu, Ruensern Tan, Data curation, Investigation, Visualization, Methodology, Writing – review and 
editing; Sebastia Agramunt Puig, Adi Hanuka, Software, Visualization; Lakshmi B Akella, Data cura-
tion, Visualization; Russell Berman, Conceptualization, Software, Supervision, Methodology, Writing 
– review and editing; Mason Bretan, Software, Visualization, Methodology; Hanzhe Chen, Resources, 
Investigation, Methodology; Xavier Darzacq, Conceptualization, Writing – review and editing; Kelsey 
Ford, Akshay Sule, Resources, Investigation; Ruth Godbey, Jifu Li, Software; Eric Gonzalez, Resources, 
Methodology; Alec Heckert, Software, Formal analysis, Visualization, Methodology, Writing – review 
and editing; Jaclyn J Ho, Supervision, Methodology, Writing – review and editing; Stephanie L 
Johnson, Software, Supervision; Reed Kelso, Aaron Klammer, Software, Supervision, Methodology; 
Ruchira Krishnamurthy, Investigation; Kevin Lin, Brian Margolin, Supervision, Methodology; Patrick 
McNamara, Laurence Meyer, Software, Methodology; Sarah E Pierce, Formal analysis, Investigation, 
Methodology; Connor Stashko, Formal analysis; Yangzhong Tang, Resources, Supervision; Daniel J 
Anderson, Conceptualization, Supervision, Writing – original draft, Writing – review and editing; Hilary 
P Beck, Conceptualization, Data curation, Supervision, Methodology, Writing – original draft, Writing 
– review and editing

Author ORCIDs
Xavier Darzacq ‍ ‍ https://orcid.org/0000-0003-2537-8395
Brian Margolin ‍ ‍ https://orcid.org/0000-0003-3365-7677
Patrick McNamara ‍ ‍ https://orcid.org/0000-0003-2756-0887
Hilary P Beck ‍ ‍ https://orcid.org/0000-0002-5003-1361

https://doi.org/10.7554/eLife.93183
https://orcid.org/0000-0003-2537-8395
https://orcid.org/0000-0003-3365-7677
https://orcid.org/0000-0003-2756-0887
https://orcid.org/0000-0002-5003-1361


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Physics of Living Systems

McSwiggen et al. eLife 2023;12:RP93183. DOI: https://doi.org/10.7554/eLife.93183 � 22 of 26

Peer review material
Reviewer #1 (Public review): https://doi.org/10.7554/eLife.93183.3.sa1
Reviewer #3 (Public review): https://doi.org/10.7554/eLife.93183.3.sa2
Author response https://doi.org/10.7554/eLife.93183.3.sa3

Additional files
Supplementary files
MDAR checklist 

Data availability
The process of generating single-molecule tracking data as implemented in this manuscript is both 
data storage and data processing intensive. The data in this manuscript alone is ~100 terabytes, 
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manner. Similarly, the computational resources necessary to process the full datasets would be costly 
and impractical for labs wishing to process the entire dataset. The core of the image processing and 
tracking algorithms are implementations of the works we cite in our methods section, but the specific 
software written for the purposes of processing and analyzing these large image sets was developed 
with the specific compute and storage infrastructure of Eikon in mind. In a subsequent manuscript, we 
have provided an example of how the processing pipeline functions operate (Driouchi et al., 2023). 
Where possible we have provided the numerical tables of processed data sufficient to reproduce 
the plots and figures. In addition, we have provided example files with the inputs (raw image files) 
and outputs of segmentation, particle tracks, and state array distributions which can be found in the 
following data repository: https://doi.org/10.5061/dryad.xd2547dsw. Parties interested in accessing 
any additional data contained within the manuscript should contact the corresponding author to 
determine which non-proprietary data are needed and in what format they will be provided through 
a Data Use Agreement with Eikon Therapeutics. Other materials will be made available through a 
Materials Transfer Agreement with Eikon Therapeutics by contacting the corresponding author.

The following dataset was generated:
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McSwiggen DT 2024 Example single molecule 
tracking data from "A high-
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single-molecule tracking 
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