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Expanding Personalized, Data-Driven
Dermatology: Leveraging Digital Health
Technology and Machine Learning to Improve

Patient Outcomes
Shannon Wongvibulsin'~?, Tracy M. Frech’”, Mary-Margaret Chren” and Eric R. Tkaczyk® "

The current revolution of digital health technology and machine learning offers enormous potential to improve
patient care. Nevertheless, it is essential to recognize that dermatology requires an approach different from
those of other specialties. For many dermatological conditions, there is a lack of standardized methodology for
quantitatively tracking disease progression and treatment response (clinimetrics). Furthermore, dermatological
diseases impact patients in complex ways, some of which can be measured only through patient reports
(psychometrics). New tools using digital health technology (e.g., smartphone applications, wearable devices)
can aid in capturing both clinimetric and psychometric variables over time. With these data, machine learning
can inform efforts to improve health care by, for example, the identification of high-risk patient groups,
optimization of treatment strategies, and prediction of disease outcomes. We use the term personalized, data-
driven dermatology to refer to the use of comprehensive data to inform individual patient care and improve
patient outcomes. In this paper, we provide a framework that includes data from multiple sources, leverages
digital health technology, and uses machine learning. Although this framework is applicable broadly to
dermatological conditions, we use the example of a serious inflammatory skin condition, chronic cutaneous

graft-versus-host disease, to illustrate personalized, data-driven dermatology.

JID Innovations (2022);2:100105 doi:10.1016/j.xjidi.2022.100105

Introduction

The growing amounts of healthcare data combined with ad-
vances in computational and analytical approaches have
yielded real-world improvements in patient outcomes
(Abuabara et al., 2018; Ginsburg and Phillips, 2018).
Although risk prediction and prognostic models have been
developed in the past using static, cross-sectional data, fields
such as cardiology and oncology have more recently adopted
data sources and methodology that incorporate longitudinal
electronic health data. In fact, longitudinal data more accu-
rately capture fluctuations in physiological factors over time.
For instance, variables such as systolic and diastolic blood
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pressure, blood glucose level, total cholesterol, triglyceride
level, and body mass index, which are often measured and
recorded into electronic medical records, can be incorpo-
rated into predictive algorithms (Rajkomar et al., 2019; Yu
et al., 2018; Yuan et al., 2021; Zhao et al., 2019). Howev-
er, to capitalize on the advances in healthcare technology
and analytics, dermatology faces unique challenges. Most
skin conditions cannot be followed by traditional vital signs
or laboratory values. In addition, the severity of most skin
diseases is not easily assessed or communicated with typical
medical record documentation. Furthermore, the lack of a
standardized methodology for monitoring dermatological
conditions makes it challenging to quantitatively track dis-
ease progression and treatment response. In addition, a
dermatological disease often raises concerns regarding the
patient’s overall health, which requires communication and
comanagement across different subspecialists (Chamlin and
Chren, 2010; Chen et al., 2002; Chren, 2020, 2012, 2005;
Chren et al., 2001, 1996).

In this paper, we propose a framework for personalized, data-
driven dermatology, which we define as the use of comprehen-
sive data (including both clinimetrics and psychometrics) to
inform individual patient care. With machine learning combined
with digital health technology to capture novel measurements of
skin conditions, there is enormous potential to improve patient
outcomes by optimizing care at the individual patient level.

Measurements in dermatology
Accurate assessment of the impact of dermatological diseases
on a patient’s health state requires the collection of both
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clinimetric (clinical) and psychometric (patient-reported)
data (Chren, 2020, 2005; Chren et al., 1996). Clinimetric
data can include both objective information (e.g., laboratory
values, vital signs, clinical images, biopsy results) and sub-
jective clinician/provider assessment (e.g., clinically assessed
disease severity). However, because dermatological condi-
tions often impact patients not only physically but also psy-
chosocially, clinimetrics alone are often inadequate to
capture the degree of impact the disease has on the patient’s
overall life. For instance, measures such as Skindex,
Dermatology Life Quality Index, Patient-Oriented Eczema
Measure, and Psoriasis Symptom Inventory have been
developed to assess psychometric data in a standardized
manner. Through these measures, the patients’ perspectives
are captured systematically through domains such as health-
related QOL, somatic symptoms (e.g., pain, itch), function
(e.g., activities of daily living, movement), and emotional/
social (e.g., anxiety, depression). Given that patient-reported
assessment of disease severity may differ from clinician/pro-
vider assessment, using patient reports (psychometrics) in
conjunction with traditionally gathered information from the
history, physical examination, and clinical data (clinimetrics)
can provide a more complete picture and allow for individ-
ualized care to address the patients’ needs (Barbieri and
Gelfand, 2021; Kirby, 2022).

The use of digital health technology (e.g., smartphone
applications, sensors, wearables) can increase the feasibility
of capturing these data sources. When machine learning
approaches are applied to these data, it may be possible to
improve our understanding of patients’ health states and
inform our strategies to optimize their care (Lee et al., 2021;
Wongvibulsin et al., 2020, 2019). In particular, digital health
technology that captures patient-generated data can help
engage patients in their health care and better inform clini-
cians of the disease trajectory in the context of the patient’s
everyday life. These tools offer the opportunity to gather a
rich source of real-time information on symptoms and
medication tracking, exposure/environmental/behavioral
data, QOL, and patient-reported outcomes (PROs). In fact,
PROs have already been successfully implemented in
dermatological clinical trials (Copley-Merriman et al., 2017).
Efforts for personalized, data-driven dermatology can build
on these approaches by facilitating the ease of patient
engagement and integration into clinical records through
digital tools to capture PROs in real-time. Incorporation of
PROs is particularly important given the literature supporting
that changes in PROs may reflect changes most important to
patients and may be more sensitive in capturing these dif-
ferences than physician-assessed measures (Cohen et al.,
2004; Strand et al., 1999). The increasing recognition of the
importance of PROs is reflected in the Society of Thoracic
Surgery Adult Cardiac Surgery Database, one of the most
comprehensive clinical data registries developed after
approximately three decades of iterations to refine the data-
base. Previously, the Society of Thoracic Surgery measured
surgical outcomes only with standard clinical metrics.
However, they acknowledged in their 2018 Update on Out-
comes and Quality that these objective measures may not
always reflect what is important to patients. As a result, they
established a Patient Reported Outcomes Task Force and
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adopted the Patient Reported Outcomes Measurement Infor-
mation System with the goal of collecting PROs data in a
format that allows for standardized measurement of patient-
reported symptoms and health outcomes in a longitudinal
manner through advances in health information technology.
In addition, the Society of Thoracic Surgery established the
Informatics Task Force as a central computer science and
informatics resource for their national database and for
investigation of novel methodology for linking longitudinal
database records (Badhwar et al., 2018; Bowdish et al., 2020;
D’Agostino et al., 2018; O’Brien et al., 2018; PROMIS,
2022). Numerous opportunities exist for the field of derma-
tology to benefit from these examples of capturing patients’
journeys through longitudinal information of both clinimetric
and psychometric data. For instance, innovative, multifaceted
longitudinal data have already been recognized as valuable
and necessary sources of information toward the goals of
early diagnosis and preemptive therapy in chronic graft-
versus-host disease (cGVHD; further details are provided in
the section “The potential of personalized, data-driven
dermatology in the care of patients with cGVHD”) (Kitko
et al., 2021; Pavletic et al., 2021; Pidala et al., 2021;
Shakshouk et al., 2021).

Overall, integrating data from multiple sources, such as
biological, clinical, PROs, smartphone, and wearable sensor
data, is essential to fully capture patients’ dermatological
conditions over time. With accurate representation of
dermatological diseases captured through digital health
technology, machine learning can assist in the optimization
of treatment strategies, prediction of disease flares, and
management plans. This framework can also benefit clinical
trials and drug development in dermatology.

Personalized, data-driven dermatology

As shown in Figure 1, the key components of our framework
include (i) data captured over time, (ii) analytics to generate
new insights on disease course and treatment response, and
(iii) the application of this knowledge to patient care. More-
over, in the process of patient care, additional data are
collected, enabling the cycle of learning to continue (i.e.,
learning healthcare systems) (Olsen et al., 2007;
Wongvibulsin and Zeger, 2020). Importantly, data in the
framework are composed of not only traditionally gathered
clinical data but also data generated by patients and through
digital technology. For example, relevant data sources might
include biospecimens with genetic and epigenetic informa-
tion; the electronic medical record (e.g., clinical history,
clinimetrics, laboratory results, histopathology); clinical im-
ages; digital skin measurements; and patient-generated data,
including PROs.

The potential of personalized, data-driven dermatology in

the care of patients with cGVHD

This framework of multiple data sources, digital health
technology, and machine learning is applicable broadly to
the care of most dermatological conditions. In this paper, we
use the specific example of cGVHD to provide a concrete
example. cGVHD is a rich model to convey this framework
for several reasons. First, cGVHD is a complex, serious dis-
ease with high variability in clinical presentations and treat-
ment responses that are difficult to predict. Furthermore,
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Figure 1. Framework for
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New

there is already widespread clinician familiarity with the Lee
Symptom Scale, an extensively validated PRO measure (Lee
et al., 2002), which can serve as an example for further ap-
proaches in dermatological disease quantification. Moreover,
the lack of readily accessible centers for the care of patients
with cGVHD heightens the need for digital approaches for
remote monitoring as well as patient education and
engagement (Kitko et al., 2021). Owing to the complexity of
cGVHD management, the multidisciplinary nature of
cGVHD care can benefit from quantitative measurements of
disease trajectories to facilitate effective communication and
comanagement of patients’ conditions (Jacobsohn et al.,
2012). With the recent publication of the National Institutes
of Health (NIH) Consensus Development Project on Criteria
for Clinical Trials in cGVHD (Pavletic et al., 2021), this is an
opportune time to introduce the framework for personalized,
data-driven dermatology in the context of cGVHD (Figure 2).

cGVHD has been extensively investigated, particularly
with regard to the pulmonary aspect of cGVHD, which is the
leading cause of mortality (Curtis et al., 2014; Palmer et al.,
2014). In fact, research focused on the pulmonary symp-
toms of cGVHD provides an important foundation for po-
tential advances in quantitative approaches in the
dermatological aspects of cGVHD. For instance, the NIH
symptom-based lung score has been shown to be statistically
associated with nonrelapse mortality and overall survival
(Palmer et al., 2016). More recently, a study using machine
learning identified distinct cGVHD phenotypes. Although
there is potential for this work to translate to the clinical
setting, additional research for validation in prospective, in-
dependent cohorts will be necessary to determine the ability
of the algorithm to uncover clinically relevant clusters for
patients with cGVHD for applications in risk stratification
(Gandelman et al.,, 2019). In addition, research with the
eGVHD application has shown the accuracy and usability of
the digital tool to support healthcare professionals in

Knowledge
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Care

stiffness and wound healing. Labs,
laboratory measurements.

assessing the severity of graft-versus-host disease (Schoemans
et al., 2018a, 2018b, 2016). These developments in cGVHD
research overall set the stage for advances in the management
of the dermatological aspects of cGVHD through quantita-
tive, data-driven approaches.

As shown in Figure 2, our framework focuses on quantifi-
cation of the severity and extent of cGVHD through both
clinimetrics and psychometrics. For instance, sclerosis, rash,
pruritus, and ulcers can all be characterized by both clinical
measurements and patient reports. Furthermore, skin stiffness
is a clinical manifestation that has traditionally been difficult
to monitor accurately. However, with the introduction of the
MyotonPRO Device (Myoton, Tallinn, Estonia), skin stiffness
can now be quantified and tracked dynamically (Baker et al.,
202 1h). With skin biomechanical parameters measured using
the MyotonPRO, recent investigation using logistic regression
and machine learning models found that the frequency and
relaxation time offered the highest diagnostic yield for dis-
tinguishing patients with sclerotic cGVHD from post-
hematopoietic cell transplantation controls. Although the
study of most complex diseases utilizes a data-driven
approach, tools at the point of care are not currently avail-
able to provide an indication of which are the most important
variables that correlate with the outcome of interest for the
patient being treated. With further research using this
framework of personalized, data-driven dermatology, it may
be possible to identify differences in the key variables at
varying times in the disease course of cGVHD. For instance,
early in the disease course, PROs and subclinical fibrosis
assessed by measurements of skin stiffness may be most
predictive, whereas during the treatment phase, early pre-
dictors of adverse events from therapy may be more predic-
tive than skin stiffness. These developments could inform
future quantitative biomechanical studies of sclerotic
cGVHD as well as other sclerosing diseases (Baker et al.,
2021a).

www.jidinnovations.org
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Figure 2. The potential of
personalized, data-driven
dermatology in the care of patients
with cGVHD. This framework can
allow for the quantification of the
severity and extent of GVHD through
both clinimetrics and psychometrics.
An example of data that can be
collected includes measurements of
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- patient-reported perception of rash

skin stiffness as shown in the plot, onset and severity

where dynamic stiffness
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involvement; modified from Baker
et al., 2021b). These data can be
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- image analysis for rash characterization and
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collected longitudinally to enable
tools in three main categories: (i) risk l
prediction and early detection, (ii)
individualized therapy and
longitudinal monitoring of treatment
response, and (iii) patient engagement
with digital tools allowing for
individualized patient education and
self-monitoring. Although the figure in

early detection

Risk prediction and

| |

Patient engagement with
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individualized
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this paper focuses on illustrating the digital measurements related to the skin, the same framework can be considered for a much broader set of digital
measurements. For example, including physiological measurements such as home blood pressure and glucose levels to step count and sleep duration/quality
can help to inform skin disease biology and management as well as underscore the relationship of skin diseases with other systemic conditions. Images:
MyotonPRO Device (Baker et al., 2021b); image capturing erythematous lesion severity of GVHD (Tkaczyk et al., 2018; reprinted with permission from
Elsevier). BSA, body surface area; cGVHD, chronic graft-versus-host disease; GVHD, graft-versus-host disease.

Current advances and next steps

As computational healthcare technology and methodology
advance, there is enormous potential to gather, integrate, and
translate data collected to improve health outcomes (Deo,
2015; Rajkomar et al., 2019; Sidey-Gibbons and Sidey-
Gibbons, 2019; Topol, 2019, 2016). For instance, improved
computational speed and algorithms have enabled image
analysis that can offer diagnostic support as well as lesion
tracking over time (Esteva et al., 2021). In addition, a recent
publication focused specifically on the development of a
robust and scalable algorithm for intensive longitudinal data
from electronic health records and personal wearable de-
vices (German et al., 2021).

The American Academy of Dermatology (AAD) has also set
data collection as a top priority. Although AAD’s DataDerm
was initially established with the goals of facilitating quality
demonstration, its goals now also include (i) standardization
of data within and across institutions, (ii) integration of
diverse data sources (including PROs and mobile applica-
tions to minimize the burden of data entry), (iii) aggregation
of skin disease registries, (iv) acceleration of population-
based and health systems research, and (v) incorporation of
data at scale from large health systems (Park et al., 2018).
Efforts such as DataDerm are an important step toward the
integration of information not only across a single provider
but also across multiple providers and institutions to allow for
the acceleration of research and clinical impact. Further-
more, it will also be equally important to inform
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dermatologists of these new tools and encourage their
contribution to these data sources. It is essential that in-
dividuals from diverse backgrounds are involved in the pro-
cess of development of these technological advances to help
ensure an inclusive approach that represents diverse skin
types and helps reduce rather than further widen healthcare
disparities (Adamson and Smith, 2018). Lack of inclusion of
skin of color in initial machine learning algorithm de-
velopments as well as barriers to digital health access in
underserved populations are important considerations as the
field of medicine increasingly adopts a digital infrastructure
(Lyles et al., 2021). Although the framework we propose in-
cludes data more broadly, encompassing both digital and
inherently nondigital data (e.g., clinical assessments or pa-
tient reports), an important caveat is the consideration of
digital health equity to ensure that digital inputs that are
based on wearables, smartphones, or other technologies are
not skewed toward patients from resource-rich settings while
leaving others behind. As the COVID-19 pandemic has
highlighted, there are long-standing disparities in health and
health care, particularly related to racial, ethnic, and socio-
economic status. Given that medicine is at a transition point
of a digital health transformation, it is essential that proactive
planning is undertaken to develop effective solutions to
ensure that the digital healthcare revolution improves health
equity rather than further widens healthcare disparities. The
path forward in this area will require multilevel efforts,
ranging from the individual to community to policy levels, as



Building integrated data sets

Developing and implementing
algorithms into clinical workflows

Addressing digital health equity

Training clinicians in digital health
technology

Continuing to refine the framework for
personalized, data-driven dermatology
based on real-world experience

Figure 3. Key next steps. This figure outlines the key next steps toward
achieving personalized, data-driven dermatology.

described in the digital health equity mapped to the socio-
ecological framework (Lyles et al., 2021).

As digital health technology and machine learning become
increasingly integrated into the field of medicine as a whole,
incorporation of fundamentals of these topics in medical
education can serve as a starting point to ensure the famil-
iarity of clinicians with these emerging tools for enhancing
health care (Kolachalama and Garg, 2018). In addition, as
recently discussed (Li et al., 2022), recruitment, training,
development, and retention of leaders in investigative
dermatology will be essential for the field as a whole and in
particular to accelerate the application of data-driven ap-
proaches to dermatology to advance personalized care and
improve outcomes. As real-world experience accumulates
with personalized, data-driven dermatology over time,
continuing to refine this framework on the basis of results
regarding items such as patient outcomes and clinician
satisfaction will allow the field to further embrace and benefit
from the infrastructure of continuous learning, as shown in
Figure 3.

Conclusion and outlook

Advances in computational and analytical approaches com-
bined with the increasing amounts of healthcare data offer
enormous potential for precision medicine and learning
healthcare systems. Nevertheless, it is essential to recognize
that approaches to the care of patients in dermatology require
a different strategy from that of other specialties because the
clinical severity and course of skin diseases can be chal-
lenging to measure, and skin diseases can impact patients in
ways that may not be captured through traditional vital signs
or laboratory measurements. Instead, the accurate measure-
ment of dermatological diseases includes both clinimetrics
(clinical data) and psychometrics (patient-reported data).
Moreover, the collection and integration of these diverse data
sources can be facilitated through the use of digital health
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technology. When combined with machine learning, these
skin measurements may increase our understanding of the
patient’s health state and help optimize multidisciplinary
management strategies to improve patient outcomes. As
illustrated with cGVHD, this framework provides the oppor-
tunity to enhance patient care in numerous areas, ranging
from risk prediction and early detection to individualized
treatment strategies and patient engagement tools. Overall,
personalized, data-driven dermatology has the potential to
provide a more comprehensive understanding of skin con-
ditions at the individual level and improve patient outcomes.
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