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Abstract
Point 1: The ecological models of Alfred J. Lotka and Vito Volterra have had an enor-
mous impact on ecology over the past century. Some of the earliest—and clearest—
experimental tests of these models were famously conducted by Georgy Gause in 
the 1930s. Although well known, the data from these experiments are not widely 
available and are often difficult to analyze using standard statistical and computa-
tional tools.

Point 2: Here, we introduce the gauseR package, a collection of tools for fitting 
Lotka-Volterra models to time series data of one or more species. The package in-
cludes several methods for parameter estimation and optimization, and includes 42 
datasets from Gause's species interaction experiments and related work. Additionally, 
we include with this paper a short blog post discussing the historical importance 
of these data and models, and an R vignette with a walk-through introducing the 
package methods. The package is available for download at github.com/adamtclark/
gauseR.

Point 3: To demonstrate the package, we apply it to several classic experimental 
studies from Gause, as well as two other well-known datasets on multi-trophic dy-
namics on Isle Royale, and in spatially structured mite populations. In almost all cases, 
models fit observations closely and fitted parameter values make ecological sense.

Point 4: Taken together, we hope that the methods, data, and analyses that we pre-
sent here provide a simple and user-friendly way to interact with complex ecological 
data. We are optimistic that these methods will be especially useful to students and 
educators who are studying ecological dynamics, as well as researchers who would 
like a fast tool for basic analyses.
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1  | INTRODUC TION

A century ago, Alfred J. Lotka (1920, 1925) and Vito Volterra (1926) 
published their canonical works concerning the mathematics of 
species interactions. These theories were among the first to sug-
gest that the dynamics of complex ecological systems could be de-
scribed through simple underlying equations (Israel, 1988; Scudo & 
Ziegler, 1978). Inspired by the possibility of understanding natural 
systems through mathematics, Georgy Gause stated in his “Struggle 
for Existence” (Gause, 1934b):

[…] in order to penetrate deeper into the nature of 
these phenomena we must combine the experimental 
method with the mathematical theory, a possibility 
which has been created by the brilliant researches of 
Lotka and Volterra.

To match the strong assumptions and narrow scope of Lotka and 
Volterra's basic equations, Gause constructed simple experimental 
microcosms, in which he was able to show that interactions between 
pairs of species influenced their abundances and dynamics in ways 
that accorded with theoretical predictions (Gause, 1934a, b). These ex-
periments laid the groundwork for a century of experiments based on 
mathematics as a conceptual framework. It has since become a primary 
goal of ecology to explain empirical observations with mathematical 
theory.

Despite their simplicity, the Lotka-Volterra equations are still the 
primary models used to describe species interactions. At their most 
basic, these models describe the changes per unit time in the abun-
dance of a species, Ni, as.

where ri is the intrinsic growth rate, which describes the growth of a 
species at low density and in the absence of other species, aii describes 
the effect of species i on its own growth, and aij describes the effect of 
species j on the growth of species i. The form that we use here differs 
somewhat from that often portrayed in some textbooks, as we leave ri 
inside the parenthesis and therefore do not standardize interaction co-
efficients by the growth rate (thus, we signify these as a rather than α). 
If we divide both sides of Equation (1a) by Ni to calculate the “per-cap-
ita” growth rate of species i, the model can be written as a simple linear 
equation.

This form is particularly useful for analyzing empirical data, as the 
parameters can be estimated using ordinary least squares regression 
of per-capita growth rates against species abundances, where ri is the 
y-intercept, aii is the slope with respect to species i's own abundance, 
and aij is the slope with respect to other species (Lehman et al., 2020). 
Note that in a single species, this relationship can also be expressed 
in terms of the carrying capacity, Ki, which describes the equilibrium 

abundance reached by a species growing in the absence of other spe-
cies and falls on the x-intercept (Figure 1). For those who are less famil-
iar with regression or dynamical systems modeling, we have included 
a more in-depth discussion of this approach in the vignette accompa-
nying our R package. We can solve for Ki in terms of aii and ri by setting 
Equation (1b) equal to zero, and solving for Ni, which yields.

Because the Lotka-Volterra models make no specific assump-
tions about the mechanisms underlying species interactions, they 
can be parameterized in ways that approximate any combina-

tion of underlying mechanisms, at least locally around equilibrium 
(Chesson, 2000; Letten & Stouffer, 2019; MacArthur, 1970). For ex-
ample, in a system with two species, if both aij and aji are less than 
zero, species suppress each other's growth, indicating competition. 
If both parameters are positive, then both species benefit from the 
other's presence, indicating mutualism. Alternatively, if aij < 0 and 
aji > 0, then species i is suppressed by species j whereas species j 
benefits from the presence of species i, indicating a predator-prey 
relationship. Note, however, that in systems with more than two 
species, interpreting the net effects of species interactions is some-
what less straightforward—for example, if two species jointly re-
spond to a shared predator, they may have a net negative effect on 
one another's abundances even if they do not interact directly (i.e., 
“apparent competition”, Holt (1977)).

Gause's original experimental work still provides some of the 
best examples of these different kinds of interspecific interactions. 

(1a)dNi∕dt=Ni

(

ri+aiiNi+ Σj

(

aijNj

))

(1b)dNi∕Nidt= ri+aiiNi+ Σj

(

aijNj

)

(1c)Ki= −ri∕aii

F I G U R E  1   Figure comparing per-capita growth rate (following 
equation 1b) versus abundance for Paramecium aurelia grown in 
monoculture. Note that when plotted in this manner, the parameter 
values for the Lotka-Volterra equations can be easily “read” off the 
graph, which r as the y-intercept, K as the x-intercept, and aii as 
the slope. In multi-species systems, interaction coefficients aij (i.e., 
effect of species j on species i) can be similarly computed based on 
the slope of dNi/Nidt versus Nj
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However, because of the limited analytical tools available to him in 
the early twentieth century, Gause was only able to fit models to 
a small subset of his experimental data. Moreover, because of the 
journal formatting conventions of his time, much of Gause's data 
was never officially published. In the years since Gause's death, his 
data and results have been widely used as teaching tools and are 
frequently cited as canonical examples of competitive and preda-
tor-prey interactions, and have inspired theoretical work in many 
other fields (Takeuchi, 1996). For more details on this body of work, 
please see the blog post accompanying this article. Many ground-
breaking studies have also gone on to reanalyze parts of his experi-
mental data and extend some components of his theoretical models 
(e.g., Vandermeer, 1969). Nevertheless, to this day, only a small por-
tion of Gause's experimental data has ever been quantitatively ana-
lyzed using the Lotka-Volterra equations.

Here, we introduce the gauseR package, which includes a col-
lection of functions for confronting empirical observations with the 
classical Lotka-Volterra interaction models. The package combines 
methods for data formatting, model simulation, and parameter es-
timation into a simple-to-use, automated wrapper function. The 
package also acts as a digital repository for Gause's experiments 
on the “Struggle for Existence” and includes all available data from 
his 1934 book and associated publications. Below, we introduce the 
functions and basic workflow for the package, and explain the un-
derlying theory. To demonstrate the package's functionality, we an-
alyze two well-known datasets from Gause (1934a), as well as classic 
examples of multi-species interactions from McLaren and Peterson 
(1994) and Huffaker et al. (1963). Additionally, we discuss some lim-
itations and possible extensions of the optimization methods used 
in the package. We foresee that gauseR will be especially helpful 
for researchers who seek simple tools for analyzing their data, as 
well as a teaching aid for introducing students to the Lotka-Volterra 
equations and to Gause's experiments.

2  | METHODS

2.1 | Functions and workflow

The general purpose of the functions in the gauseR package is to 
fit the general Lotka-Volterra model in Equation (1a–b) to observa-
tional time series data of one or more interacting species. The pack-
age, along with a walk-through vignette, is available at github.com/
adamtclark/gauseR. Functions are described in detail in Table 1. In 
general, this procedure will require estimating values for three types 
of parameters: starting abundances (N0i), intrinsic growth rates (ri), 
and interaction coefficients (aij).

For a single species system, dynamics can be directly fit to the 
Logistic growth model using the get _ logistic function. For sys-
tems with two or more species, fitting proceeds in four steps. First, 
time-lagged abundances for each species are calculated using the 
get _ lag function, yielding pairs of abundance values separated 
by a fixed time interval for each species. Second, these time-lagged 

abundances are used to estimate per-capita growth rates at different 
time points, using the percap _ growth function. This function ap-
proximates dynamics following the linearized equation.

Third, linear regressions are used to test how per-capita growth 
rates vary as a function of conspecific and heterospecific species 
abundances, from which the parameters in Equation (1b) can be esti-
mated. Finally, because parameter estimates from linearized growth 
rates often do not match observations for long or complex time se-
ries, the lv _ interaction and lv _ optim function are used to 
directly simulate dynamics and tune parameters to match model out-
puts to observations, which can greatly improve model performance 
(Carrara et al., 2015; Maynard et al., 2019; Rosenbaum & Rall, 2018). 
All four of these steps are automated in the gause _ wrapper 
function, which takes observed species abundances as an input, and 
returns fitted parameter estimates. We suggest this option for most 
users.

To facilitate optimization, we include two additional functions. 
First, the lv _ interaction _ log function simulates dynamics 
for log-transformed species abundances. This approach is helpful in 

(2)dN∕Ndt= log
(

N
(

t2
)

∕N
(

t1
))

∕
(

t2− t1
)

TA B L E  1   Brief descriptions of the gauseR functions

Function Description

get_lag Calculates time-lagged observations for 
variable x, separated by treatment.

percap_growth Calculates per-capita growth rate, using 
log ratios.

get_logistic Calculates logistic growth for a population.

lv_interaction Calculates dn/dt for n species in a Lokta-
Volterra system.

lv_interaction_log Calculates dn/dt for n species in a Lokta-
Volterra system, with log-transformed 
abundances. This form can be helpful 
for optimization routines where species 
abundances are close to zero.

lv_optim Identifies optimal parameter values for 
a Lotka-Volterra interaction system by 
simulating dynamics using differential 
equations.

gause_wrapper Automatically runs routine for finding 
starting values and optimal parameter 
values for a Lotka-Volterra interaction 
system.

test_goodness_of_fit Generates an R2-like goodness of fit 
index, based on the squared difference 
between observed and predicted values. 
Index values of 1 indicate a very close 
fit, whereas values near or below zero 
indicate a poor fit.

ode_prediction Calculates expected abundances for all 
n species in a community. This function 
is potentially useful in combination with 
other optimizer software, for example, as 
might be used for hypothesis testing.



13278  |     MÜHLBAUER et al.

systems where abundances approach zero, which can cause integra-
tion issues (e.g., predictions of negative abundances). This function 
is the default for gause _ wrapper. Lastly, the ode _ prediction 
function simulates dynamics for n species given a set of input param-
eter values and returns estimates of species abundances as a single 
column vector. This function is potentially useful for users who wish 
to apply other, more sophisticated optimization routines.

2.2 | Data and example analyses

The gauseR package includes a wide range of digitized data from 
Gauses’ experimental work, as well as some other well-known multi-
species time series. Full metadata and citations for these datasets 
are available in the help documentation for the package. Dataset 
names refer to the source and figure or table from which the data are 
drawn. Whenever possible, data were taken from tables in Gause's 
publications or appendices. Otherwise, data were digitized from fig-
ures using WebPlotDigitizer (Rohatgi, 2015).

To demonstrate how to apply our functions, we also conduct ex-
ample analyses using four of these datasets. First, gause _ 1934 _

science _ f02 _ 03 shows Gause's classic competition experiment 
between Paramecium aurelia and P. caudatum, including both species 
grown in monoculture and in mixture (Gause, 1934a, b). We use these 
data to demonstrate parameter fitting methods for logistic growth 
and Lotka-Volterra competition. Full source code for these analy-
ses is available in the help documentation for the get _ logistic 
and lv _ interaction functions. Second, gause _ 1934 _ sci-

ence _ f01 includes interactions between the prey species P. 
caudatum and predator species Didinium nasutum, with which we 
demonstrate the difference between estimates derived from linear-
ized models versus. from the optimizer fit to the full simulated dy-
namics. These analyses are shown in the help documentation for the 
lv _ optim function. Third, to demonstrate parameter fitting in a 
system with more than two species, we use mclaren _ 1994 _ f03, 
which summarizes dynamics of wolves (Canis lupus), moose (Alces 
alces), and fir trees (Abies balsamea) on Isle Royale from McLaren 
and Peterson (1994). Finally, to demonstrate a case where classic 
Lotka-Volterra interaction models are unable to match observations, 
we analyze dynamics of the prey species Eotetranychus sexmacula-
tus and predator species Typhlodromus occidentalis from Huffaker's 
classic mite experiments (Huffaker et al., 1963). Data are available in 
huffaker _ 1963. Source code for the analyses of the McLaren and 
Huffaker datasets is available in the Appendix S1.

3  | RESULTS

In most cases, the simple Lotka-Volterra model in Equation (1a–b) 
accurately describe observed dynamics, and provide interpretable 
parameter values. For both logistic growth (Figure 2) and competi-
tive interactions between the two Paramecium species (Figure  3), 
observations closely matched model predictions. Fitted parameter 

values suggest that both species are subject to self-limitation in 
monoculture (i.e., aii and ajj  <  0) and indicate competitive interac-
tions in mixture (i.e., aij and aji < 0) (Table 2a-b).

For predator-prey interactions between D. nasutum and P. cau-
datum, we found that parameter estimates from regressions fitted 
to the linearized growth rates failed to match observed dynamics 
(Figure  4; Table  2c). However, predictions improved substantially 

F I G U R E  2   Logistic growth for size standardized volume of 
Paramecium caudatum grown in monoculture on Osterhout medium 
over 24 days, from Gause (1934a). Points show observations, 
and line shows fitted logistic growth curve, calculated with the 
get _ log() function, that can be used to fit the logistic growth 
function to time series of an individual species. Goodness of fit 
shows results from the tests _ goodness _ of _ fit() function. 
Recall that values near 1 imply a close correspondence between 
observations and predictions. See Table 2a for parameter values
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F I G U R E  3   Lotka-Volterra competition for size standardized 
volume of Paramecium caudatum and Paramecium aurelia grown in 
mixed population over 24 days, from Gause (1934a). Points show 
observations, and lines show growth curves fitted using the lv _
interaction() function, which can be used to simulate dynamics 
in multi-species mixtures following the classic Lotka-Volterra 
equations. See Table 2a for parameter values
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after using the optimizer to tune parameters. For the wolf-moose-fir 
system of McLaren and Peterson (1994), results from the optimizer 
also matched observed dynamics (Figure 5). Because we expected 
no direct interactions between wolves and fir trees, we set these 
interactions to zero prior to analyses. Additionally, because McLaren 
et al. hypothesized that moose populations are subject to top-down 
control in this system, we set self-limitation for moose to zero 
(Table 2d).

Lastly, for the Huffaker mite data, we were not able to fit the 
general Lotka-Volterra model to match observed dynamics (Figure 6; 
Table 2e). In this system, dynamics follow sustained oscillations, but 
with periods and amplitudes that vary over time. However, our fit-
ted models could only achieve either sustained oscillations of a fixed 

period and amplitude (top panel), or damped oscillations where the 
amplitude declined over time (bottom panel), but not both.

4  | DISCUSSION

The gauseR package makes it possible to analyze time series data 
in single- or multi-species systems using the classic Lotka-Volterra 
interaction models in an easy and automated way. For almost all of 
the examples that we consider here, models were able to accurately 
capture observed dynamics, and analyses could be conducted using 
just the default gause _ wrapper function without any modifica-
tion of the code or additional inputs from the user. Furthermore, fit-
ted parameter values matched those expected for logistic growth, 
competition, and predator-prey dynamics, as predicted by Lotka and 
Volterra. We are therefore hopeful that this combination of fitting 
tools, along with the package's repository for Gause's data, will be 
especially useful for teaching Lotka-Volterra's basic equations and 
introducing Gause's experimental work.

4.1 | Interpreting the models

In the monoculture experiments, our results demonstrate that P. 
caudatum followed logistic growth. As expected by theory, the spe-
cies was able to increase from low abundance (i.e., ri > 0), limited its 
own growth as its abundance increased (i.e., aii < 0), and approached 
a fixed carrying capacity (K) over time (Gause, 1934a, b; Lotka, 1925; 
Volterra, 1926). For competition between P. caudatum and P. aure-
lia, fitted parameters indicated self-limitation by both species, and 
inhibition of each species by the other (i.e., aii, ajj, aij and aji  <  0). 
Again, these values match theoretical expectations from Lotka and 
Volterra, and accord with Gause's original analyses of the data.

For the system with D. nasutum and P. caudatum, fitted models 
predicted that prey abundance increased in the absence of preda-
tors (i.e., ri > 0), and that the predators declined exponentially in the 
absence of prey (i.e., ri < 0,). Similarly, parameter estimates indicated 
that predators had a negative effect on prey, and prey had a posi-
tive effect on predators (i.e., aij < 0 and aji > 0, respectively). Jointly, 
these parameter values match biological expectations— that is, that 
predators consume prey, and starve when prey are absent. However, 
in contrast to the classic formulation of the Lotka-Volterra preda-
tor-prey model, we also identified self-limitation by both species 
(i.e., aii < 0 and ajj < 0). These parameter values resulted in damped 
oscillations in species abundances, as predicted by theory (Lehman 
et al., 2020). Results were similar for the wolf-moose-fir tree exam-
ple, for which fitted parameters indicated self-limitation by wolves 
and fir trees, positive effects of moose on wolves and of fir trees 
on moose, and negative effects of wolves on moose and of moose 
on fir trees. Again, predictions from the model closely matched 
observations, supporting the hypothesis that top-down control of 
moose by wolves could explain dynamics in this system (McLaren & 
Peterson, 1994).

F I G U R E  4   Predator-prey interactions between Didinium 
nasutum and Paramecium caudatum grown in mixture over 17 days, 
from Gause (1934a). Additional individuals of both species were 
added to the mixture periodically to prevent local extinction. Points 
show observations, and lines show fitted growth curves. Top panel 
shows results for model fitted using linear regressions of species 
abundances versus per-capita growth rate, whereas bottom panel 
shows results for parameters fitted using the simulated differential 
equations using the lv _ optim() function. Note that goodness of 
fit is varies substantially between the two methods. See Table 2c 
for parameter values
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TA B L E  2   Fitted parameter values for 
each analysis described in the main text

(a) P. caudatum monoculture

N0 0.22 (± 0.18)

r 0.96 (± 0.12)

K 202.31 (± 3.03)

(aii) −0.005 (± 0.001)

(b) Competition experiment

P. caudatum P. aurelia
N0i 1.60 (± 1.59) N0j 1.63 (± 1.54)

ri 1.26 (± 0.91) rj 1.03 (± 0.55)

A P. caudatum P. aurelia
P. caudatum −0.005 (± 0.015) −0.008 (± 0.015)

P. aurelia −0.002 (± 0.009) −0.007 (± 0.008)

(c) Predator-prey experiment

Linear model

P. caudatum (prey) D. nasutum (predator)
ri 0.10 (± 0.30) rj −0.07 (± 0.54)

A P. caudatum D. nasutum
P. caudatum −0.02 (± 0.01) −0.07 (± 0.02)

D. nasutum 0.04 (± 0.01) −0.03 (± 0.02)

ODE optimizer

P. caudatum (prey) D. nasutum (predator)
N0i 1.66 (± 1.14) N0j 0.12 (± 0.11)

ri 1.10 (± 0.30) rj −0.89 (± 0.36)

A P. caudatum D. nasutum
P. caudatum −0.013 (± 0.006) −0.08 (± 0.03)

D. nasutum 0.08 (± 0.02) −0.002 (± 0.004)

(d) McLaren and Peterson (1994)

A. balsamea (producer) A. alces (herbivore) C. lupus (predator)
N0i 0.33 (± 0.09) N0j 699.90 (± 210.30) N0k 24.31 (± 2.40)

ri 0.24 (± 0.03) rj 2.02 (± 0.36) rk 0.010 (± 0.008)

A A. balsamea A. alces C. lupus
A. balsamea −0.14 (± 0.14) −0.0002 (± 0.00002) 0

A. alces 0.002 (± 0.001) 0 −0.09 (± 0.02)

C. lupus 0 0.00004 (± 0.000004) −0.003 (± 0.001)

(e) Huffaker et al. (1963)

E. sexmaculatus (prey) T. occidentalis (predator)
N0i 279.14 (± 60.44) N0j 8.45 (± 0.99)

ri 0.34 (± 0.10) rj −0.24 (± 0.10)

A E. sexmaculatus (prey) T. occidentalis (predator)
E. sexmaculatus 0 −0.06 (± 0.02)

T. occidentalis 0.0005 (± 0.0001) 0

Predator self-limitation

E. sexmaculatus 
(prey)

T. occidentalis 
(predator)

N0i 64.03 (± 5.78) N0j 5.23 (± 0.60)

ri 0.187 (± 0.004) rj −0.38 (± 0.02)

A E. sexmaculatus T. occidentalis
E. sexmaculatus 0 −0.028 (± 0.003)

T. occidentalis 0.0012 (± 0.0001) −0.024 (± 0.002)

Note: Values show parameter estimates ± one standard error. For interaction matrices A, parameters show 
the effect of the species listed in the column on the species listed in the row (i.e., aij is listed in column j and 
row i). Note that standard errors are approximated from the numerically differentiated Hessian values 
calculated for the log-transformed parameters, based on the difference between the mean estimate and 
the lower standard deviation in log space, and are therefore only meant as rough approximations of the 
degree of uncertainty. Note that values are rounded to two digits, except where needed to indicate sign.
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In contrast, none of the models that we fitted were able to 
match observations from the Huffaker et al. mite experiments. 
Importantly, this limitation is a general characteristic of the 
Lotka-Volterra models and not a peculiarity of our fitting meth-
ods (Hatton et al., 2015; Lehman et al., 2020; Lotka, 1925). When 
self-limitation is absent for both species, Lotka-Volterra preda-
tor-prey models display “neutrally stable” oscillations, meaning 
that oscillations maintain a fixed amplitude and period. When 
self-limitation exists for either the prey species or the predator, 
or both, then oscillations become damped, meaning that over time 
they decrease in amplitude and period until they reach stable equi-
librium values. Because the Huffaker data include persistent os-
cillations for which the amplitude and period vary over time, they 
cannot be matched by any parameterization of the Lotka-Volterra 
equations. Potentially, these complex dynamics are a result of the 
spatial structure in the Huffaker experiment, which often can-
not be described with simple equations (Leibold & Chase, 2018). 
Alternatively, they might be indicative of nonlinear or time-vary-
ing interactions among species—for example, that result from 
density-dependent interaction parameters (Murdoch,  1994). 
Importantly, many modern modeling tools exist that are poten-
tially more suitable for fitting these data than are the simple Lotka-
Volterra methods that we present here (e.g., Karakoç et al., 2020).

4.2 | Notes on optimization

For the predator-prey examples that we analyze, our findings show 
that parameter estimates generated from the linearized growth rates 

in Equation (1b) failed to capture observed dynamics. This result ac-
cords with many other studies, which show that model performance 
is typically much better when parameters are tuned to match fully 
simulated dynamics, that is, as is accomplished with the lv _ optim 
function (Carrara et al., 2015; Maynard et al., 2019; Rosenbaum & 
Rall, 2018). In general, the difference in fit between these two ap-
proaches is driven by the sensitivity of the Lotka-Volterra equations 
to noisy parameter estimates—even very small changes in param-
eter values can lead to large changes in model predictions (Clark & 
Neuhauser, 2018; Maynard et al., 2019). We therefore suggest that 
in most cases, the gause _ wrapper function, which automatically 
applies the optimization routine to simulated dynamics, will provide 
the best fits to empirical data.

Importantly, the gause _ wrapper function applies several 
optimization “tricks” that help improve model performance. First, 
comparisons between observations and predictions are carried out 
on standardized abundances, such that the mean for each species 
is equal to one. This prevents abundant species from dominating 
the fitting process. For example, for the McLaren & Peterson data, 

F I G U R E  5   Multi-trophic dynamics for wolves, moose, and 
fir trees on Isle Royale from 1960 to 1994, from McLaren and 
Peterson (1994). Points show observations, and lines show growth 
curves fitted using the lv _ optim() function. The left axis shows 
wolf and moose abundances, separated by a ten-fold scaling 
difference for easier visualization, whereas the right axis shows 
tree growth increments. Two methods for testing goodness of fit 
are shown. In the legend, values show univariate tests for each 
species, whereas “Total GOF” shows fit when considered across 
all observations simultaneously. Note that these two methods of 
comparison can lead to very different conclusions. See Table 2d for 
parameter values
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F I G U R E  6   Predator-prey interactions between Eotetranychus 
sexmaculatus and Typhlodromus occidentalis in a spatially structured 
experiment carried out on a grid of oranges over 60 weeks, from 
Huffaker et al. (1963). Points show observations, and lines show 
growth curves fitted using the lv _ optim() function. Top panel 
shows dynamics for a system where neither species directly 
inhibits its own growth (i.e., aii = ajj =0), whereas bottom panel 
is for a system where only the predator directly inhibits its own 
growth. Note that neither option is able to fully capture the realized 
dynamics, and that goodness of fit is relatively low in both panels. 
See Table 2e for parameter values
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optimization without standardization would closely fit dynamics of 
moose, the most common species, at the cost of model performance 
for wolves and fir trees. Second, by default, dynamics are simulated 
for log-transformed abundances and are then back-transformed for 
comparisons to observations. This approach helps prevent computa-
tional errors in the integration from erroneously driving abundances 
negative. Third, we also log-transform parameter values during the 
optimization process, after determining their sign a priori from the 
linearized functions. This makes it possible to limit the number of 
positive interaction coefficients, which otherwise can cause the 
system to generate unrealistically high abundance values (e.g., via 
run-away mutualism) and crash the optimizer (Lehman et al., 2020). 
A trade-off that comes with this added stability is that this method 
does not allow for significance testing, because it constrains the sign 
of parameters. Thus, the standard errors provided by the gause _

wrapper should only be thought of as rough approximations of the 
degree of uncertainty for each parameter estimate.

Because we rely on a simple OLS method for fitting models to 
data, our approach addresses only uncertainty that is attributable to 
observation error and does not consider other sources of stochas-
ticity. There are several potential sources of observation error in the 
data that we analyze here. Most obviously, data digitized from fig-
ures, and especially from hand-made figures such as those of Gause 
and Huffaker et al., are necessarily imperfect. More generally, there 
is reason to believe that some of Gause's original data and figures 
contained some errors. In particular, in a few cases where data are 
available in both figures and table form, there are small differences 
in reported values. Similarly, many of the units reported by Gause, 
such as “Volume” or “Amount,” are somewhat difficult to interpret 
and compare across figures and experiments. Lastly, in some cases, 
data varies between being reported for individual replicates, to 
mean values summed across replicates. These circumstances pres-
ent a challenge in the analysis, as they make it difficult to compare 
values across the entire time series, and exclude information about 
potentially meaningful replicate-level dynamics and between-repli-
cate variation. Wherever possible, we have noted these inconsisten-
cies in the metadata.

Again, note that many more modern fitting tools and models 
exist that go beyond the approaches that we present here. In par-
ticular, most fitting methods that are in broad use today separately 
incorporate both observation error and process noise, by updating 
predictions based on observations in each time step (Rosenbaum 
& Rall,  2018; Wilkinson,  2011). These approaches have the ad-
vantage of not needing to assume that models perfectly describe 
deterministic interactions among species (i.e., they allow true dy-
namics to vary from model predictions). Additionally, many of the 
modeling studies since Gause apply modified versions of the Lotka-
Volterra equations, for example, by incorporating density-de-
pendent interaction parameters, or “higher order interactions” 
that vary interaction strengths as a function of community size 
or composition (Case & Bender, 1981; Mayfield & Stouffer, 2017; 
Tuck et  al.,  2018). Users who wish to apply more sophisticated 

optimization and modeling methods should see the documenta-
tion and examples for the ode _ prediction function.

4.3 | Future directions

Given the strong correspondence between the models of Lotka 
(1920, 1925) and Volterra (1926) and the experimental data of 
Gause (1934a, b), it is perhaps not surprising that these works have 
had such an enormous impact on ecology over the past century. 
Together, these concepts have helped ecologists better describe and 
model their systems, and have greatly advanced conceptual under-
standing of how different arrangements of species and interaction 
types are likely to play out. Nevertheless, as the type of systems that 
ecologists study grow ever more complex, it seems likely that we 
may need to move beyond these basic models to new frameworks 
that allow more nuanced and dynamic interaction types (Letten & 
Stouffer, 2019). We therefore hope that the gauseR package is use-
ful in better exploring both the classic insights and operational limi-
tations of Lotka, Volterra, and Gause's framework.
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