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Abstract

Understanding the cognitive structure of explanations— and
the cognitive processes that assemble them— is a milestone
for understanding how people learn and communicate. Re-
cent research on explanatory coexistence suggests that peo-
ple’s causal beliefs are less globally coherent than previously
thought: people use seemingly-competing supernatural and bi-
ological causes to explain different aspects of the same phe-
nomenon, or they assemble supernatural and biological causes
into single, coherent explanations (Legare & Gelman, 2008;
Legare & Shtulman, 2018; Shtulman & Lombrozo, 2016).
This coexistence— and unexpected coherence— of diverse
causal mechanisms poses interesting questions about the role
of coherence and fragmentation in people’s mental models and
explanations. This paper presents a computational model of
explanatory coherence in the well-characterized domain of dis-
ease transmission, extending a previous cognitive model of
explanation-based conceptual change (Friedman, Forbus, &
Sherin, 2018). Our approach (1) retrieves diverse causal model
fragments based on the phenomenon to explain, (2) assem-
bles coherent causal models using relevance-directed abduc-
tive reasoning, and (3) selects explanatory paths that support
within-explanation and within-scenario coherence. Our model
simulates the three different types of explanatory coexistence
detailed in the literature.

Keywords: cognitive modeling; explanatory coexistence; AI;
abductive reasoning; explanation

Introduction
The cognitive process of explanation has been a central fo-
cus of cognitive science since its inception, and it has broad
implications for communication, instruction, and conceptual
change (Chi, De Leeuw, Chiu, & LaVancher, 1994; Vosni-
adou, 1994; diSessa & Sherin, 1998; Shtulman & Lombrozo,
2016; Friedman et al., 2018). The more recent focus on ex-
planatory coexistence, whereby people utilize diverse— and
seemingly incompatible— causal mechanisms in their expla-
nations (Legare & Shtulman, 2018), poses additional ques-
tions about how people construct and consider explanations,
how explanations are structured, and how explanations co-
here with other beliefs.

This paper presents a computational cognitive model of ex-
planation, building on previous cognitive models of concep-
tual change (Friedman et al., 2018). We apply our cognitive
model to simulate human subjects’ explanatory coexistence
in the domain of disease, as characterized by Legare and Gel-
man (2008) and later by Legare and Shtulman (2018).

Our cognitive model assembles situation-specific causal
models from smaller, generic model fragments (i.e., causal
knowledge units). Given a new situation to explain, the model
explains the situation by:

1. Retrieving causal model fragments based on the situation.
2. Traversing backwards recursively, instantiating model

fragments within the situation in an relevance-directed
beam search, assuming entities and relations as necessary.

3. Identifying the causal path(s) that maximize an objective
coherence function with respect to global assumptions,
coverage over the situation, and presupposition beliefs.

This model assumes that intuitive and culturally-acquired
knowledge coexists, and that the process of assembling ex-
planations is biased principally by coherence. This means
that scientific and supernatural causal mechanisms can coex-
ist in the same explanation, e.g., so that supernatural events
might cause a biological event that leads to a viral infection,
assuming the causal knowledge is primed and applicable.

Our simulation results demonstrate that that our model (1)
simulates the three categories of explanatory coexistence in
the literature and (2) varies its choice of explanation accord-
ing to priming in a manner similar to human subjects.

We continue with an overview of explanatory coexistence
and computational methods used in our cognitive model. We
then describe our approach, present our simulation results,
and conclude with a discussion of our results, key psycholog-
ical assumptions, and directions for future work.

Background
We describe psychology research on explanatory coexistence,
and then we review computational modeling techniques rele-
vant to our simulation.

Explanatory Coexistence
There are scientific and religious or supernatural explanations
for the same natural phenomena (e.g., creation of the uni-
verse, death, disease transmission). It is intuitive that learn-
ing scientific explanations for natural phenomena would re-
place previously learned supernatural explanations; however,
evidence over the past decade suggests the opposite: scien-
tific explanations replacing supernatural explanations is the
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exceptional case. More frequently, people utilize both expla-
nations (Shtulman & Lombrozo, 2016).

Legare and Gelman (2008) examined the specific case of
explaining HIV transmission in South Africa. Before ed-
ucational interventions focusing on the biological transmis-
sion of HIV, AIDS symptoms were explained as the result of
witchcraft. Legare and Gelman (2008) showed that the educa-
tional interventions did not replace the bewitchment explana-
tions; instead, both biological and bewitchment explanations
coexist. For example, a man may have contracted HIV from
sexual intercourse, but was attracted to a woman with HIV
because of witchcraft.

Legare and Shtulman (2018) acknowledge the following
categories of explanatory coexistence, all of which we simu-
late in this work:

1. Integrated reasoning combines seemingly-incompatible
causal mechanisms into a coherent causal structure. For
instance, bewitchment could cause somebody to choose a
sexual partner who has AIDS, and intercourse with that
partner causes disease transmission.

2. Synthetic reasoning invokes multiple causal mechanisms
without articulating hierarchical or temporal precedence to
any, possibly due to competing explanations.

3. Target-dependent reasoning applies different mecha-
nisms to distinct aspects of a situation, in a highly-
contextualized fashion. The various mechanisms do not
participate in the same explanation.

Compositional Modeling
Simulating people’s causal mental models requires expressive
knowledge representation and reasoning (KR&R). An ap-
proach using only atomic logical propositions is not expres-
sive enough to suit the mental model literature (Vosniadou,
1994; Chi et al., 1994; diSessa & Sherin, 1998; Gentner &
Stevens, 1983) or the analogy literature (Friedman, Barbella,
& Forbus, 2012), and an approach using only neural networks
does not support sufficient interpretability.

Previous KR&R research on compositional modeling
(Falkenhainer & Forbus, 1991) provides (1) representations
for modeling the structure and continuous processes of dy-
namic systems, and (2) algorithms for composing these
models on-the-fly for novel situations. Structure-behavior-
function models (Goel, Rugaber, & Vattam, 2009) expand on
this formalism to capture teleology, and have been used to
simulate people’s mental models.

Following recent cognitive modeling work (see the As-
sembled Coherence subsection), we simulate people’s men-
tal models using compositional modeling semantics extended
with more expressive event structure (Pustejovsky, 2013). We
represent each causal mechanism as a generic model fragment
that can compose with others into large situation-specific ex-
planations. Each model fragment describes:

• Categories that it instantiates, from general (e.g., Misfor-
tune) to specific (e.g., Sexual Transmission [of a virus]).

• Participants are the entities or events that interact within
the described mechanism. Each participant has one or
more categories of its own. Model fragments with the same
binding of participants are semantically equivalent.

• Constraints are existence conditions specified over the
participants. If the constraints hold over participants in a
situation, the model fragment may be instantiated.

• Consequences are functional or behavioral representations
specified over the participants. They are asserted into the
situation when the model fragment is instantiated.1

We include diagrams of three of the ten model fragments
used in this simulation domain: Figure 1 shows a simple
fragment describing an Illness state: a subject participant of
type Person; a object participant of type Disease; and super-
categories of Event and Misfortune.

Figure 2 shows the more complex fragment Blood Trans-
mission [of disease], including sub-events of Blood Transfer

1A consequence may have conditions that must hold in the situ-
ation for them to be asserted, but in this paper each conclusion is a
causal relationship without conditions.
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and Illness, as well as a conclusion stating that, if instantiated,
the Blood Transmission is a cause of the Illness. Importantly,
this model fragment constrains its own participants: its sub-
ject (the Person at lower-right) is the subject of the Illness
and the Blood Transfer. These constraints are required for
the fragment— and its causal structure— to be realized.

Finally, Figure 3 illustrates a simple Witchcraft fragment,
with a conclusion stating that an instantiated Witchcraft can
cause a Misfortune of its subject. Per Figures 1 and 2, both Ill-
ness and Blood Transmission are types of Misfortune, so they
can be directly caused by Witchcraft. This allows assembly
of larger causal models, provided the situation (or explicit as-
sumptions) satisfies the fragments’ constraints. We describe
assumptions below, and their affect on explanation quality.

Scalability of compositional modeling is a key consider-
ation as the number of fragments grows, since the deduc-
tive closure of possible models can grow geometrically. We
later describe a relevance-based heuristic in our approach that
jointly (1) reduces the compositional modeling search space
drastically and (2) helps model priming effects.

Abductive Reasoning
Abductive reasoning generates multiple explanations for
observations— potentially generating assumptions along the
way— and then selects the “best” explanation and its con-
stituent assumptions as inferences or rationale for the ob-
servations. Previous computational approaches have mod-
eled explanation quality as numerical cost (Charniak & Shi-
mony, 1994) or as likelihood maximization with Bayesian
approaches (Raghavan & Mooney, 2010). Our approach
uses cost-based abductive reasoning to select explanations
built from model fragments, and could be extended to use
Bayesian approaches if we had estimates of subjects’ be-
liefs of prior probability distributions. To improve scalability
over previous abduction approaches— since the search space
can grow geometrically (Poole, 1993)— our approach uses a
relevance-based heuristic to guide its search for explanations.

Assembled Coherence
This paper extends recent work on the assembled coherence
(AC) theory (Friedman et al., 2018) of mental models and
conceptual change.

AC theory proposes that fragmented knowledge is assem-
bled into larger, coherent mental models through the process
of abductive reasoning (i.e., reasoning to the best explana-
tion). Once assembled, these mental models are evaluated
against a network of presupposition beliefs and then reused
in novel situations by partial reformulation or by analogy
(Friedman et al., 2012). This incorporates ideas from both
the knowledge-in-pieces (diSessa & Sherin, 1998) and frame-
work theory (Vosniadou, 1994) perspectives of mental mod-
els, and postulates that the two perspectives are compatible
and complementary.

AC theory has been implemented in computational cogni-
tive models to simulate explanation-based conceptual change
in the domains of force dynamics (Friedman & Forbus, 2010),

the day-night cycle (Friedman et al., 2012), the human cir-
culatory system (Friedman & Forbus, 2011), and seasonal
change (Friedman et al., 2018).

Approach
Our computational model generates a causal explanation by
(1) retrieving model fragments based on the scenario to ex-
plain, (2) instantiating causal model fragments in an effect-
to-cause beam search prioritized by relevance, (3) scoring co-
herent explanatory paths for coherence, and (4) selecting the
most optimal explanatory path. We describe each of these
processes below.

Retrieving causal knowledge. Given a new situation to ex-
plain, the system retrieves its model fragments (i.e., causal
mechanisms) based on the categorical and relational overlap
of the situation with those of its model fragments.

Specifically, given a situation s and a model fragment m,
we compute relevance Rel(m,s) with respect to the model
fragment’s participant categories Cm and constraint relations
Rm and the situation’s categories Cs and relations Rs. We use
a simple Jaccard distance as a relevance function:

Rel(m,s) =
|Cm∩Cs|+ |Rm∩Rs|
|Cm∪Cs|+ |Rm∪Rs|

(1)

This relevance function is a very coarse estimate of a model
fragment’s applicability to a situation, and we use it for sim-
plicity: a model fragment’s relevance strictly increases with
situation-shared categories (e.g., Person, Blood, SexualInter-
course) and relations (e.g., infectedWith, knows, motherOf ),
and its relevance decreases monotonically relative to its total
number of categories and relations. This approach is similar
to performing spreading activation (Crestani, 1997) from cat-
egories and relations to relevant model fragments but allows
indexing for scalability.

We discuss other plausible retrieval and salience factors in
the conclusion of this paper.

Relevance-directed beam search. Given its relevance over
causal model components, the system performs an incremen-
tal backward search through the space of possible causal
models. This process is given an explanandum (i.e., event
or assertion to explain), such as the illness of an individual,
and then performs the following recursive operations for its
explanation queue.

For each item x in its queue, it finds applicable model frag-
ments that have x’s type as a habitat consequence, e.g., if x is
an Illness, then BloodTransmission (Figure 2) and Witchcraft
(Figure 3) both apply. It selects applicable model fragments
within the top 10% relevance window and attempts to com-
pose the retrieved model fragment(s), constraining them by
binding x as the consequent participant. The composition al-
gorithm may assume any participants necessary to compose
at least one instance, provided it obeys the input binding(s).
The system then adds these new instances (e.g., BloodTrans-
mission or Witchcraft) to the queue and will focus on those
next, repeating.
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Figure 4: Explanations generated and selected for the same prompt of Lerato’s AIDS after a blood transfer: (a) with relevance-
directed causal search; (b) with undirected causal search; and (c) with exhaustive forward-chaining. All approaches utilize the
same causal knowledge and result in the same final explanation, but with orders of magnitude difference in computation.

Explanation structure. Relevance-directed beam search
produces a network of model fragment instances, as illus-
trated in Figure 4(a). In Figure 4(a), we provided the system
the situation plotted in blue: Lerato has HIV and was the re-
cipient of a blood transfer. Lerato and her Illness instance are
outlined in bold for clarity. As with the human subjects of
Legare and Gelman (2008), Lerato’s illness is the explanan-
dum in every simulation in this paper, but we vary the details
of the situation to model priming effects.

The green (e.g., Blood Transmission) and red (e.g., Moral
Punishment) elements in Figure 4(a) are instances of model
fragments that were retrieved and assembled by this algo-
rithm. The difference is that the green instances were chosen
as part of the best explanation (described below), and the red
instances were assembled and considered by the system, but
were not ultimately included in the best explanation.

The yellow elements (e.g., Moral Fault) were assumed dur-
ing the course of instantiation in order to satisfy model frag-
ment participants and constraints.

In summary, Figure 4(a) shows that the system assembled
a Blood Transmission event as a cause of Lerato’s HIV, given
that Lerato was the recipient of a blood transfer that was in-
fected with HIV. It explained the Blood Transmission with a
possible Moral Punishment, and assumed that Lerato com-
mitted some Moral Fault in the course of instantiating the
Moral Punishment. The Moral Punishment (in red) was not

included in the best explanation due to the additional assump-
tion, since this reduces the coherence score (described be-
low). All of our simulation results use this color-coding.

For reference, we contrast the Figure 4(a) explanation
structure resulting from relevance-directed beam search with
two other (less efficient) explanation-assembly algorithms to
characterize the strength of our approach:

• Figure 4(b) illustrates the same situation and explanandum
(i.e., blue nodes) using a backward search without rele-
vance as a heuristic: it regresses from effects to causes, but
tries all causes rather than those primed by the situation.

• Figure 4(c) illustrates the same situation and explanandum
using exhaustive forward search. This instantiates all ap-
plicable events and then repeats.

Neither of these graphs’ structure are legible, but we include
them to visualize the difference in computation across ap-
proaches. Both of these alternative approaches select the ex-
act same final explanation (in green) as the more efficient
relevance-directed beam search in Figure 4(a). This suggests
that relevance from the situation is a useful heuristic for ap-
proximating coherence while assembling explanations in a
large space of possible explanatory paths.

These plots also demonstrate that our qualitative mod-
els are capable of expressing a wide range of explanations,
many of which are incoherent and not employed by people.
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This means we have not trivially ”baked in” the explanation
within the knowledge representation; rather, it is the product
of assembly and assumption (described above) and coherence
assessment, which we describe next.

Scoring explanations for coherence. After assembling ex-
planation structure from model fragments— and potentially
making assumptions in the process— the system traverses the
explanation structure to select a best explanation. This is the
culmination of abductive reasoning (i.e., inference to the best
explanation), which has been formulated as likelihood maxi-
mization (Raghavan & Mooney, 2010), simplicity, and other
measures of explanation quality (Lombrozo, 2007).

Our system scores explanations by (1) identifying con-
nected causal subgraphs of at least one cause (i.e., of Lerato’s
Illness), (2) scoring those subgraphs for coherence, where
larger scores indicate greater coherence, and (3) selecting the
highest-scoring subgraph as the best explanation.

The coherence score is the sum of epistemic features of
a causal graph, where features positively or negatively con-
tribute to coherence. Each feature is scored once for each
causal graph, so many model fragment instances can rely on
one assumption and incur the cost once. We employ a simple
order-of-magnitude scoring technique over these features:

• Model Fragments (-1) penalize for increasing complexity.
• Assumptions (-10) penalize for increasing complexity.
• Situation premises (10) are situation events and entities that

participate in model fragments, increasing explanatory in-
clusion (i.e., coherence) over the stated situation.

• Causal associations (100) are presuppositions that asso-
ciate categories of causes and effects, e.g., witchcraft
causally contributes to illness.

• Causal dissociations (-100) are presuppositions that disso-
ciate categories of causes and effects, e.g., witchcraft does
not cause physical effects.

These features coarsely quantify coherence: within-
explanation coherence, explanation-to-situation coherence,
and explanation-to-presupposition coherence. Following
Vosniadou (1994), we model presuppositions as overarch-
ing belief-level constraints on people’s explanations acquired
culturally or via observation. We do not believe our list of
is complete, since factors like analogical structure, narrative
structure, likelihood, and other factors all contribute to peo-
ple’s explanatory preferences (Lombrozo, 2007).

Simulation
Our simulation setup is a variation of a human experiment by
Legare and Gelman (2008): as exemplified in the previous
section, we prompt the system to explain how Lerato con-
tracted HIV. We use priming conditions from their study—
biological priming, bewitchment priming, neither priming,
and both types of priming— by varying the information we
provide about Lerato. We provide two alternative types of bi-
ological priming: sexual intercourse and blood transfer. We
also provide a ”moral” priming condition, since other results

from Legare and Gelman (2008) suggests that some subjects
believe immoral behavior can cause illness.

Legare and Gelman (2008) report that 60% to 70% of
their subjects exhibited some case of explanatory coexistence,
where both supernatural and biological mechanisms (a) ex-
plained aspects of the scenario (target-dependent); (b) were
juxtaposed (synthetic); or (c) coexisted in a causal chain (in-
tegrated). Subjects were sensitive to priming effects: biolog-
ical and bewitchment priming was associated with more of
those mechanisms appearing in explanations. We next review
our simulation results for seven priming conditions, shown in
the Figure 5 explanation graphs.

Target-dependent reasoning. Graphs (a-e) are all evi-
dence of target-dependent reasoning. Graph (a) is no prim-
ing, where the system assumes immoral behavior as a sim-
ple cause for the disease. Graph (b) is immoral priming,
which removes the need for the assumption of immorality.
Graph (c) is bewitchment priming, mentioning a practitioner
who knows Lerato, which results in assuming an offense, and
also considering Moral Punishment, but ultimately choosing
Witchcraft as an explanation. Graph (d) is biological priming
with mention of receiving infected blood, resulting in a Blood
Transmission explanation. Graph (e) is biological priming
with mention of sexual intercourse with an HIV-infected part-
ner, resulting in a Sexual Transmission explanation, but con-
sidering that the illness or the sexual transmission might have
been caused by immoral behavior.

Synthetic reasoning. Graph (g) demonstrates one possi-
ble example of synthetic reasoning, where a presupposition
causally associates Witchcraft with Illness, and we prime both
biological and witchcraft causes. In this case, the Sexual
Transmission fragment coheres with the situation (i.e., it re-
quires no assumptions), and the Witchcraft fragment coheres
with the presupposition (rendered in black), so the union of
those causes of the illness is higher-scoring than either alone.
Our system has no hard constraint to select single causes at
causal junctions; however, selecting two causes— when ei-
ther alone is sufficient— is counter-intuitive. The ”synthetic
reasoning” category of explanatory coexistence is not as well-
specified as the other two, and could plausibly represent mul-
tiple sub-strategies, e.g., where subjects integrate causes in
parallel, mention multiple salient or competing causes, or are
vaguely verbalizing a more integrated causal chain (as be-
low). This suggests further research with human subjects.

Integrated reasoning. Graphs (f) and (h) are evidence of
integrated reasoning. Graph (f) is priming of both bewitch-
ment and biology, resulting in an integrated explanation:
witchcraft caused the sexual transmission of HIV during the
sexual encounter. Graph (h) is priming of moral and biology,
resulting in another integrated explanation: immoral behav-
ior caused transmission of HIV during a transfer of blood.
Legare and Gelman (2008) did not explicitly attempt the
priming condition in Graph (h), but our model predicts that
an integrated explanation is plausible for these mechanisms.
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Figure 5: Simulation results with identical causal knowledge, by varying priming: (a) no priming; (b) priming immoral behav-
ior; (c) priming with witchcraft practitioner; (d) priming with blood transfer; (e) priming with sexual encounters; (f) priming
with both sexual encounters and witchcraft; (g) same priming but including a presupposition that illness is caused by witchcraft;
and (h) priming with both immorality and blood transfer.

Conclusion
This paper presents a computational cognitive model that
simulates all three categories of explanatory coexistence
(Legare & Shtulman, 2018; Legare & Gelman, 2008), us-
ing the same psychological assumptions as previous mod-
els of conceptual change and self-explanation (Friedman et
al., 2018). Our computational model retrieves diverse causal
model fragments based on relevance to the scenario, and then
assembles and evaluates explanations that may integrate both
biological and supernatural causes.

We simulated different explanatory coexistence outcomes
by varying high-level presuppositions and priming effects; we
did not vary any causal models, likelihood values, or retrieval
parameters across trials. The simulations demonstrate that the
model’s explanation-assembly is sensitive to priming effects,
similar to people (Legare & Gelman, 2008). We showed that
salient high-level beliefs— which have been termed presup-
positions (Vosniadou, 1994)— bias the system to prefer ex-
planations that cohere with their constraints.
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Psychological claims and assumptions. This model and
simulation support the claims that (1) explanatory coexis-
tence may be the rule rather than the exception (Legare &
Shtulman, 2018) and (2) explanatory coherence is a sec-
ondary property of assembling and assessing fragmentary,
reusable causal knowledge (Friedman et al., 2018). These
claims must be framed within the assumptions and limitations
of our computational cognitive model.

Our model does not explicitly represent prior probabilities
or joint probabilities across causal mechanisms. On the one
hand, this allows it to flexibly assemble human-like causal ex-
planations with diverse, seemingly-conflicting mechanisms;
however, it could produce uncharacteristic explanations in
other domains. This is an empirical question we will in-
vestigate in future work, described below. Although we did
not encode likelihoods in this work, our model is compatible
with Bayesian and statistical relational learning: its situation-
specific explanation structure supports statistical inference
(Raghavan & Mooney, 2010), and its coherence score could
inform likelihood judgments in absence of prior probabilities.

Our model simplifies the psychological processes of
knowledge activation and explanation assessment. Some acti-
vation and assessment factors not modeled here include struc-
tural similarity to previous situations, prior likelihood esti-
mates for any given causal mechanism, and probability distri-
butions over causal mechanisms conditionalized on the situa-
tion. Implementing these factors would increase the power of
our model, but at the expense of interpretability: these factors
make additional assumptions about the belief state of each
simulated subject, such as their episodic knowledge and the
likelihood they ascribe to each causal mechanism.

Future work. In addition to the domain of disease, peo-
ple’s explanatory coexistence has been characterized in the
domains of death and human origins (Legare & Shtulman,
2018). Simulating these domains will provide additional em-
pirical evidence of our model’s generality.

In addition to other domains, running this model of expla-
nation on other explanation tasks will help qualify its broader
psychological plausibility. Also, applying this model of ex-
planation within larger models of explanation-based learning
and conceptual change will help us refine the model’s param-
eters knowledge representations.

Finally, this paper’s simulations utilized a purely qualita-
tive comparison between human and machine explanations
as a proof of concept, but we plan to model quantitative prop-
erties, such as subjects’ reaction time, in future work.
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