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A B S T R A C T

Since the earliest attempts to characterize the “receptive fields” of neurons, a central aim of many neuroscience
experiments is to elucidate the information that is represented in various regions of the brain. Recent studies
suggest that, in the service of memory, information is represented in the medial temporal lobe in a conjunctive
or associative form with the contextual aspects of the experience being the primary factor or highest level of the
conjunctive hierarchy. A critical question is whether the information that has been observed in these studies
reflects notions such as a cognitive representation of context or whether the information reflects the low-level
sensory differences between stimuli. We performed two functional magnetic resonance imaging experiments to
address this question and we found that associative representations observed between context and item (and
order) in the human brain can be highly influenced by low-level sensory differences between stimuli. Our results
place clear constraints on the experimental design of studies that aim to investigate the representation of
contexts and items during performance of associative memory tasks. Moreover, our results raise interesting
theoretical questions regarding the disambiguation of memory-related representations from processing-related
representations.

Introduction

Following the discovery that removal of structures within the human
medial temporal lobe (MTL) causes amnesia (Scoville and Milner, 1957),
decades of research have focused on elucidating the contributions of
subregions of the MTL to declarative memory. While there is still debate
over the precise nature of the division of labor within the MTL, there is
consensus that the MTL sits at the apex of a cortical circuit, which allows
it to bind the constituents of an event (e.g., “what”, “where”, “when”) into
an associative, conjunctive, or relational representation (e.g., “what-
what”, “what-where”; Mishkin et al., 1997; Cohen et al., 1999; Lavenex
and Amaral, 2000; Davachi, 2006; Morris, 2006; Diana et al., 2007;
Eichenbaum et al., 2007; Wixted and Squire, 2011; Ranganath and
Ritchey, 2012, McKenzie et al., 2015). These theories differ in their
emphasis of the role of the hippocampus versus adjacent MTL cortical
regions in the formation of such representations—i.e., some theories
suggest a more exclusive role for the hippocampus with a more domain-
specific involvement of MTL cortical regions—and many studies have
begun to test these competing hypotheses.

In a series of groundbreaking studies, Eichenbaum and colleagues
used a context-guided object association task to explore how the

components of an associative memory such as context, item, position,
and valance are represented neurally (Rajji et al., 2006; Komorowski
et al., 2009, 2013; Navawongse and Eichenbaum, 2013; Tort et al., 2013;
McKenzie et al., 2014; Farovik et al., 2015; Keene et al., 2016). Briefly,
animals learn item-reward associations that differ based on the context,
which was operationally defined as visually, tactilely, and spatially (side
of the apparatus) distinct chambers. Impaired context-guided object
association learning has been shown in rats with hippocampal lesions
(Komorowski et al., 2013) and in mice with impaired NMDA receptor
function in the CA3 subregion of the hippocampus (Rajji et al., 2006),
thus establishing a necessary role for the hippocampus in task perfor-
mance. Recent studies used electrophysiology and representational
similarity analysis to investigate patterns of activity across ensembles of
cells in the hippocampus (McKenzie et al., 2014) and in MTL cortical
regions (Keene et al., 2016). The results of these studies have suggested
that subregions of the MTL—including the hippocampus—carry con-
junctive representations of the features that comprise an event, including
context, item, position, and valence. Moreover, their results suggest that
context plays a dominant, organizing role for representations in the MTL,
sitting at the highest level of a hierarchy of information (for review see:
McKenzie et al., 2015).
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Context is a broad term that encompasses many aspects of an
animal's state, including spatial context, temporal context, expecta-
tions, and internal state (cf. Nadel and Willner, 1980). Context is an
important aspect of memory-driven behavior as it is frequently the case
that in one context a certain set of behaviors are appropriate while in
another context a different set of behaviors are more appropriate. In
many laboratory experiments, context is modeled as a general occasion
setter such that the desired behavior or decision to be made is
contingent upon or altered if the screen background differs, if the
color of the room differs, if the previous time through the corridor you
went left (versus right), etc. In the context-guided object association
task, the contexts and items are composed of distinct elements (i.e.,
different visual, olfactory, and tactile cues). Thus a critical issue to
address is whether the neural representations of contexts and items
reflect the cognitive representation of contexts and items or the low-
level sensory differences between stimuli. The use of distinct contexts
and items allows animals (e.g., rats, humans) to rapidly discriminate
between them (cf. Bulkin et al., 2016); however, as we discovered in the
course of the present report, it is virtually inevitable that representa-
tional differences will also be present in the relevant primary sensory
regions. Given that patterns of activity in the hippocampus (McKenzie
et al., 2014) and MTL cortex (Keene et al., 2016) were very dissimilar
in response to events that took place in different contexts, we examined
whether the representation of context maintains in the absence of low-
level sensory differences between contexts. We propose that the
cognitive representation of a context should be stable across different
versions of the same context (e.g., different viewpoints) so long as the
context signals a reliable behavioral outcome (e.g., Context A + Item X
+ Response 1=Reward).

We developed two human versions of the context-guided object
association task for functional magnetic resonance imaging (fMRI) to
investigate the representation of context, items, order, and their
conjunctions within subregions of the MTL, including the hippocam-
pus, parahippocampal cortex (PHC), and perirhinal cortex (PRC).
Additionally, we investigated representations in retrosplenial cortex
(RSC), a subregion of the posterior cingulate cortex (PCC), which has
been hypothesized to be involved in processing scenes and contexts
(Chen et al., 1994; Ennaceur et al., 1997; Cho and Sharp, 2001; Vann
and Aggleton, 2002; Bar and Aminoff, 2003; Parron and Save, 2004;
Park and Chun, 2009; Walther et al., 2009; Auger and Maguire, 2013;
Alexander and Nitz, 2015; Auger et al., 2015; Wing et al., 2015) in
addition to playing a role in declarative memory, spatial memory, and
the formation of stimulus-stimulus associations (Valenstein et al.,
1987; Vann et al., 2009; Aggleton, 2010; Ranganath and Ritchey,
2012; Bucci and Robinson, 2014). In Experiment 1, we used distinct
stimuli for our contexts and objects, similar to the rodent studies (Rajji
et al., 2006; Komorowski et al., 2009, 2013; Navawongse and
Eichenbaum, 2013; Tort et al., 2013; McKenzie et al., 2014; Farovik
et al., 2015; Keene et al., 2016). In Experiment 2, we matched the low-
level visual features of our stimulus set to test for context and object
representation in the absence of the confounding effect of low-level
sensory differences between stimuli.

The results of Experiment 1 are consistent with the representation
of context in the MTL. Additionally, the results of Experiment 1 are
consistent with the notion that RSC/PCC carries context and conjunc-
tive item-in-context information and such representations correlated
with behavioral performance (a traditional means of enhancing our
confidence that the observed signals are mnemonic in nature).
However, the results of Experiment 1 are also consistent with the
representation of context, item-in-context, and item-in-order-in-con-
text in primary visual cortex. Further, the relationship between such
representations and behavior was at least as strong in primary visual
cortex as in RSC/PCC. Therefore, our results provide a clear demon-
stration of the importance of controlling for low-level feature differ-
ences between contexts and objects. Moreover, these results raise
interesting questions about how to distinguish between memory-

related representations and processing-related representations. In
Experiment 2, we matched the low-level features between our contexts
and objects, and we found that the evidence for context and associative
representations disappeared, suggesting that the results from
Experiment 1 were influenced by differences in the low-level features
that comprised the events. In contrast, we observed evidence for fine-
grained object representation in PRC in the absence of a low-level
confound, thus corroborating theories that suggest that PRC contains
fine-grained semantic representations of objects (e.g., Clarke and Tyler,
2015).

Materials and methods

Participants

Thirty-five participants were recruited from the community at the
University of California, Irvine. Participants were between 18 and 31
years of age, were right handed, and screened negative for neurological
and psychiatric disease. Five participants were excluded due to
excessive motion. Twenty participants were included in the analysis
in Experiment 1 (10 females) and 10 in Experiment 2 (5 females).
Participants consented to the procedures in accordance with the
Institutional Review Board of the University of California, Irvine, and
received monetary compensation for their participation.

Stimuli

Experiment 1: Distinct stimulus set
In Experiment 1, the stimulus set consisted of two time-lapse

videos (clips from Timestorm Films: https://vimeo.com/93003441)
and two object pairs (Fig. 1A).

Experiment 2: Low-level image matching
In Experiment 2, the two contexts consisted of grayscale images

(600×600 pixels) of Saint Peter's Basilica and the U.S. Capitol Building
and the objects consisted of grayscale images (256×256 pixels) of car
and house keys (Fig. 2A). We used a combined approach of image
manipulation and model testing to diminish the presence of category
information from the low-level visual features. First, we used the
SHINE toolbox (Willenbockel et al., 2010) to equate luminance
histograms across all of the scene stimuli and across all of the object
stimuli. Second, we used a modeling approach to select images that
were devoid of low-level category features.

For our scene images, similar to Marchette et al. (2015), we used
pixel-wise correlation, the GIST computational model (Oliva and
Torralba, 2001), and the HMAX computational model (two variants,
one that used all images from the Fifteen Scene Categories dataset
(Lazebnik et al., 2006) as prototypes and one that used a superset of
our scene images as prototypes; we used the model from: Theriault
et al., 2011). Additionally, similar to Kriegeskorte et al. (2008a), we
used two models of V1 (one that included both simple and complex
cells from HMAX and another that included only complex cells;
Theriault et al., 2011), low-pass pixel-wise correlation (low frequency
image features), high-pass pixel-wise correlation (high frequency image
features), and Radon transform. We iteratively looped over a superset
of our scene images and selected images for which all nine models
showed no sign of a relationship between the scene images and the
context matrix for both the selected stimulus set (40×40 matrix with
780 unique entries) and across the odd/even split (20×20 matrix with
400 unique entries; −0.012 < Spearman's rank correlation < 0.011, all
p's > 0.77). As a final control, we simulated an object being presented
on top of each scene image by placing a black square (256×256 pixels)
at the center of the image; importantly, similar results were obtained
using this method.

For the object images, we used the same nine models as well as
binary-silhouette correlation (similar to Kriegeskorte et al., 2008a).
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Similar to the analysis of the scene images, we used two versions of the
HMAX model (one that used all images from the 256 Object Categories
dataset (Griffin et al., 2007) as prototypes and one that used a superset of
our object images as prototypes; Theriault et al., 2011). We iteratively
looped over a superset of our object images and selected images for which
all ten models showed no sign of a relationship to the object matrix for
both the selected stimulus set (40×40 matrix with 780 unique entries)
and across the odd/even split (20×20 matrix with 400 unique entries;
−0.016≤Spearman's rank correlation≤0.014, all p's > 0.74).

Behavioral tasks

Experiment 1: Pre-scan training task
Participants were trained on an associative memory task one day

prior to their scan session. The behavioral task was created using custom-
written code and the Psychophysics Toolbox (Brainard, 1997; Pelli,
1997). Each event began with a 2000 ms presentation of a time-lapse
video. An object was then displayed at the center of the video for 500 ms,
which was replaced by a second object which was displayed for 500 ms,
resulting in a 3 s event duration. One difference from the rodent task was
that rather than using a physical reward, participants learned stimulus-
location associations (the locations consisted of four squares on the

computer screen, Fig. 1A) through trial and error learning with simple
correct/incorrect feedback, similar to previous experiments in our
laboratory (Law et al., 2005). In Experiment 1, the correct location was
unique based on: 1) the video that was displayed, 2) the objects that were
displayed, and 3) the order in which the objects were presented. Thus, the
task required participants to make distinct responses for events that
contain overlapping features. Participants responded using the 4 fingers
on their right hand, and the event-location contingency was balanced
across the two contexts (also see Supplementary Fig. 1). We used a
response window of 800 ms, followed by 700 ms of feedback (“Yes!”,
“No!”, or “?”=no response). The interstimulus interval consisted of a
400 ms fixation cross, a 700 ms arrow presentation (to which partici-
pants were instructed to indicate via button press whether it was pointing
to the left or the right, which served as a non-mnemonic component of
the interstimulus interval), and a 400 ms fixation cross, resulting in a trial
length of 6 s (event duration=3 s, response and feedback=1.5 s, and
interstimulus interval=1.5 s). We also included self-paced perceptual
baseline trials (5.6 s blocks followed by a 400 ms fixation cross) in which
participants were instructed to indicate as quickly and as accurately as
possible which of four static noise boxes was the brightest (Law et al.,
2005). The brightness of the target box was continuously titrated to
maintain performance between 40 and 60% correct (chance=25%).

Fig. 1. Experiment 1 stimuli, event design, and model matrices. A) The task stimuli and an example event. The stimulus set consisted of two time-lapse videos (clips from Timestorm
Films: https://vimeo.com/93003441) and two object pairs. Each event began with a 2000 ms presentation of a time-lapse video (depicted by the scene), then an object was displayed at
the center of the video for 500 ms (depicted by the object on the left), which was then replaced by a second object which was displayed for 500 ms (depicted by the object on the right).
Participants learned event-location associations the day prior to scanning, and were tested on the associations during scanning. B) Model matrices for our representational similarity
analysis.
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At the beginning of the experiment, two events were presented.
After a participant learned an event-location association to criterion—
correct responses on 5 out of the last 6 responses—a new event was
added to the unlearned queue, and the learned event was moved into
the learned queue. Events in the learned queue were presented with
p=0.3, while events in the unlearned queue were presented with p=0.7.
Thus, participants continued to be tested on “learned” event-location
pairs. We counterbalanced the order in which events were added to the
unlearned queue. The session terminated after participants learned all
8 events to criterion.

Experiment 2: Pre-scan training tasks
Experiment 2 differed from Experiment 1 in the choice of stimuli and

in the removal of the order component of the associative memory. To
ensure that participants could readily discriminate between the “context”
images, they were pre-trained on a category discrimination task for the
40 scene images. On each trial an image of either Saint Peter's Basilica or
the U.S. Capitol Building was displayed for 1000 ms. Then, the image was
removed and two boxes were displayed with text labels above each box
(“St. Peter's Basilica” and “U.S. Capitol Building”; the left/right assign-
ment of the text labels was random on each trial). We used a 1300 ms

Fig. 2. Experiment 2 stimuli, event design, and model matrices. A) Task stimuli and an example event. The stimulus set consisted of grayscale images of Saint Peter's Basilica, the U.S.
Capitol Building, car keys, and house keys. The odd numbered rows were used in odd runs of the task while the even numbered rows were used in even runs of the task. Each event began
with a 2000 ms presentation of a context image, then an object was displayed at the center of the scene image of 500 ms. B) Model matrices for the representational similarity analysis.
E1=St. Peter's Basilica+Car Key; E2=St. Peter's Basilica + House Key; E3=U.S. Capitol Building + Car Key; E4=U.S. Capitol Building + House Key.
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response window, followed by 700 ms of feedback. The task terminated
after participants learned each of the 40 scene images to criterion (correct
responses on 5 out of the last 6 responses). In contrast to the associative
memory task, only unlearned items were presented. Next, to ensure that
participants could readily discriminate between the “object” images,
participants performed an object discrimination task for the car and
house key images. The task was identical to the scene task, except the text
labels were “car” and “house.”

After participants learned both the scene categories and the object
categories to criterion, they then learned object-location associations.
The event structure was similar to Experiment 1, with the exception
that we used only one object per event (no item-order component),
resulting in a stimulus duration of 2500 ms. Events were mapped to
two responses (left versus right) and participants used their index
finger to respond. Given the 500 ms reduction of stimulus presentation,
we extended the response window from 800 ms to 1300 ms. We
reduced the perceptual baseline task to contain two boxes, and
performance was continuously titrated to maintain performance be-
tween 60 and 70% correct.

Experiment 1: fMRI task
Participants returned for their functional magnetic resonance

imaging scan session one day after the training phase. During acquisi-
tion of structural scans, participants performed a warm-up phase, in
which they were re-exposed to the associative memory task. The warm-
up phase was included to attenuate novelty effects during the initial
presentations of each event (Law et al., 2005). Once again, participants
were initially tested on two event-location pairs. After participants
learned an event-location association to criterion—two correct re-
sponses in a row—a new event was added to the unlearned queue
and the learned event was added to the learned queue. As in the initial
learning phase, items in the learned queue were presented with p=0.3,
and the warm-up phase terminated after participants relearned all 8
events to criterion.

We designed the training and imaging paradigm to be similar to
that used by McKenzie et al. (2014), in which they trained rats to
criterion prior to neural recording. Thus, both studies investigated
well- learned representations. During functional runs, participants
were repeatedly tested on the event- location association task.
Functional runs consisted of 4 presentations of each event as well as
5 self-paced perceptual baseline trials. We randomized the order of
events within each run, with the exception that every run ended with
one perceptual baseline trial to allow the hemodynamic response of the
2nd to last trial of the run to approach baseline prior to run completion.
Participants completed 16 runs, resulting in 64 presentations of each
event during functional scanning.

Experiment 2: fMRI task
There were a few minor differences between the fMRI task in

Experiment 1 and Experiment 2. First, participants were given a
reminder session for the stimulus categories (i.e., Saint Peter's
Basilica, U.S. Capitol Building, car keys, house keys). Participants
viewed a text label of the stimulus category, followed by a one second
presentation of every image from the category (1 s presentation,
500 ms interstimulus interval). Participants saw each category two
times. Second, functional runs consisted of 5 presentations of each
event as well as 6 self-paced perceptual baseline trials. Third, de Bruijn
sequences were used for stimulus ordering (Aguirre et al., 2011). A
unique sequence was used for each run (randomized across subjects),
and we selected sequences that ended with perceptual baseline trials to
allow the hemodynamic response of the 2nd to last trial of the run to
approach baseline prior to run completion. Carry-over sequences, such
as de Bruijn sequences, match the number of times that each stimulus
precedes every other stimulus, thus controlling for stimulus carry-over
effects and theoretically increasing the detection power in between-run
pattern analysis (Aguirre, 2007; Aguirre et al., 2011). The length of

carry-over sequences was prohibitively large for Experiment 1, but the
reduction of stimulus conditions allowed an entire de Bruijn sequence
to be presented within a short run (for an argument for using short
runs for pattern analysis see: Coutanche and Thompson-Schill, 2012;
Davis and Poldrack, 2013). Finally, participants completed 12 runs,
resulting in 60 presentations of each event during functional scanning.

MRI data acquisition
Data were acquired from a 3.0-T Philips scanner, using a 32

channel sensitivity encoding (SENSE) coil at the Neuroscience
Imaging Center at University of California, Irvine. A high-resolution
3D magnetization-prepared rapid gradient echo (MP-RAGE) structural
scan (0.75 mm isotropic) was acquired for each participant. Functional
MRI scans consisted of a T2*-weighted echo planar imaging sequence
using blood-oxygenation-level-dependent contrast (BOLD; repetition
time [TR]=2500 ms, echo time=26 ms, flip angle=70 degrees, 46 slices,
2.5×2.5 mm in plane resolution, 2.3 mm slice thickness with a 0.2 mm
gap). Each functional run was padded with an initial 4 “dummy”
dynamics, which were immediately discarded to ensure T1 stabiliza-
tion. In Experiment 1, 90 dynamics were collected per run and 16
functional runs were collected for each participant; however, the 16th
run for one participant was not analyzed due to large between-run
motion. In Experiment 2, 64 dynamics were collected per run and 12
functional runs were collected for each participant.

fMRI data preprocessing
Data were preprocessed using Analysis of Functional NeuroImages

(AFNI; Cox, 1996). Functional MRI data were motion corrected using
rigid-body transformation using the function align_epi_anat.py (Saad
et al., 2009). Data were quadratically detrended and high pass filtered
(f > 0.01 Hz), using the 3dBandpass function. To preserve fine-grained
information, the data were left unsmoothed. We manually defined the
hippocampus, PHC, and PRC on a custom template brain according to
previously defined landmarks (for more details see: Law et al., 2005).
We used Advanced Normalization Tools (ANTs; Avants et al., 2008) to
warp each individual participant's MP-RAGE structural scan into our
custom template space. The inverse warp vectors were used to create
masks for the hippocampus, PHC, and PRC within each participant's
original space (Huffman and Stark, 2014). Freesurfer's isthmus
cingulate label (Desikan et al., 2006) was used to define RSC/PCC.
The isthmus cingulate mask contains voxels from RSC (traditionally
defined as Brodmann's areas 29 and 30; Vann et al., 2009) and a
portion of PCC caudal to RSC. Control regions, left primary motor
cortex and bilateral V1, were generated using Freesurfer's precentral
gyrus label (Destrieux et al., 2010) and Freesufer's V1 atlas (Hinds
et al., 2008), respectively. Masks were resampled to 2.5 mm isotropic
(the fMRI grid) and further masked to contain completely-sampled
voxels. We used a combined anatomical and functional approach to
define parahippocampal place area (PPA) and retrosplenial complex
(RS-Complex; Julian et al., 2012). We warped the anatomical masks to
each subject's native space and selected the 100 most active voxels (all
events versus perceptual baseline) in each anatomical mask in each
hemisphere and merged the resultant files to create bilateral masks for
each ROI (Marchette et al., 2015; Vass and Epstein, 2016).

Representational similarity analysis

Data were analyzed using AFNI, custom-written code in Python and
R, and PyMVPA (Hanke et al., 2009) on a GNU/Linux platform using
the NeuroDebian package repository (Hanke and Halchenko, 2012).
The fMRI data were split in half—odd and even runs—and a block-
based general linear model (GLM; AFNI's 3dREMLfit function; the
block length was 3 s in Experiment 1 and 2.5 s in Experiment 2—i.e.,
the length of the event presentations) was used to generate beta values
in each voxel. During volume registration, 6 motion parameters were
generated (3 translation parameters and 3 rotation parameters).
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Framewise displacement is defined as the sum of the absolute value of
the difference between each of the 6 motion parameters (3 translation,
3 rotation: we approximated that 1 degree of rotation caused 1 mm of
movement) between successive frames (Power et al., 2012). Frames
with framewise displacement exceeding 0.5 mm and 1 frame before
and 2 frames after were censored from the analysis (for a similar
approach to functional connectivity analysis see: Power et al., 2012).
Within each split, the mean pattern of activity across all events was
subtracted from each event-specific beta vector (Haxby et al., 2001).
Pearson's correlation coefficients were calculated between each event-
specific beta vector across the split-halves, resulting in non-symme-
trical representational similarity matrices. Hypothesis-driven analyses
were conducted by calculating Spearman's rank correlation coefficient
between each participant's representational similarity matrix and pre-
defined matrices (Figs. 1B and 2B).

In Experiment 1, we performed an iterative approach in our
correlation analysis between each subject's representational similarity
matrix and our model matrices. We chose this approach for two
reasons: 1) the model matrices were correlated with each other, thus
precluding analysis within a single model, 2) correlation analysis is not
sensitive to the magnitude of the values within the similarity matrix (as
opposed to comparing whether within-category correlations were
numerically larger than between-category correlations), thus allowing
us to examine the pattern of similarity regardless of the magnitude of
the values (Kriegeskorte et al., 2008a). In Experiment 1, we began with
the model matrix on the left side of Fig. 1B (i.e., the context matrix)
and proceeded rightwards only for matrices that were significantly
related to the model matrix in the present step (i.e., we terminated
analysis for an ROI when the relationship between the ROI matrix and
model matrix failed to reach significance). A previous study
Kriegeskorte et al. (2008b) investigated the cross-species correlation
between portions of representational similarity matrices, which is
similar to our approach of comparing portions of representational
similarity matrices to model matrices. In both experiments, we used
Spearman's rank correlation, rather than Pearson's correlation coeffi-
cient, because it is better suited for investigating the relationship
between ordinal models and representational similarity matrices
(Kriegeskorte et al., 2008a).

Permutation analysis

Previous reports have suggested that nonparametric methods are
preferable to classical statistical tests for analyzing the significance of
the relationship between representational similarity matrices
(Kriegeskorte et al., 2008a, 2008b); therefore, we used a two-step
permutation method to determine statistical significance (for related
approaches to classification analysis see: Chen et al., 2011; Liang et al.,
2013; Stelzer et al., 2013; Etzel, 2015). For each participant, the
empirical similarity matrix was randomly shuffled and we calculated
the Spearman's rank correlation between the resultant matrix and the
intact model matrix. The resultant value was then Fisher's r-to-z
transformed (z[r]), using the inverse hyperbolic tangent function. We
performed this process 10,000 times for each participant to generate
null distributions at the subject level. To maintain similarity to the
empirical analysis, we used the same permutation of the labels across
participants (Etzel, 2015). The null distributions were averaged across
participants to generate a group-level null distribution. Two-tailed
nonparametric p-values were calculated using the following equation
(Ernst, 2004):

p
I t t t t

=
1+ ∑ ( − ≥ − )

1 + 10, 000
i i=1
10,000 *

(1)

where I(·) is the indicator function which sets the value to 1 if the
statement is true and to 0 otherwise, t is our test statistic (z[r]), ti
represents the ith value of the permutation vector, t represents the

mean of the permutation vector (mean of the null distribution), and t*

represents the empirical (observed) mean. This calculates the prob-
ability that a null value was at least as far (in both directions) from the
mean of the null distribution as the empirical value (akin to a two-
tailed test). To maximize the degree of similarity to a full permutation
approach, 1 is added to both the numerator and the denominator of the
equation (i.e., in a full permutation the stimulus labels would be in the
correct order exactly once, hence the lowest p-value attainable is 1
divided by the number of combinations). For Experiment 2, the full
permutations were tractable, thus p values were calculated using the
following equation (Ernst, 2004):

p
I t t t t

N
=

∑ ( − ≥ − )i
N

i=1
*

(2)

where N is the total number of combinations. In Experiment 2, we
performed nonparametric difference tests by subtracting permutation
matrices from each other across ROIs. The resultant permutation
difference matrices were averaged across participants and significance
was assessed using Eq. (2), where the t's represent difference values.
We compared the results of Experiment 1 and 2 using a permutation
analysis in which we shuffled the experiment labels and calculated the
mean difference between the shuffled groups. We used Eq. (1) to
calculate p-values based on the empirical difference in means relative
to 10,000 random permutations.

Informational correlativity analysis

In Experiment 1, we tested the hypothesis that the hippocampus,
PHC, and RSC/PCC contain similar information about context on a
trial-by-trial basis, using a variant of “informational connectivity”
(Coutanche and Thompson-Schill, 2013; Huffman and Stark, 2014),
which we refer to here as informational correlativity. We used an
extension of the LS2 procedure (Turner et al., 2012) to obtain
individual trial estimates of activity. Briefly, for each trial, we ran a
block-based GLM analysis (using AFNI's 3dDeconvolve function) that
included an individual trial regressor and 8 event-specific regressors
that coded for every other trial. We then performed 512 iterations of
this procedure (i.e., 8 events×64 presentations of each event). Each
iteration of the GLM incorporated the same censor vectors as before
(i.e., framewise displacement > 0.5 mm); additionally, to mitigate the
adverse effect of noisy individual trial estimates from subsequent
analysis, we removed trials that had a motion event within approxi-
mately 15 s of the onset of the trial (the exact duration was variable
because the image acquisition was not time-locked to the trial
presentation).

To maintain similarity to the initial analysis, we used a split-halves
approach in this procedure. Similarly, we subtracted the mean pattern
of activity across all events from each event-specific beta vector,
separately within each split. We then averaged the patterns of activity
within each context (i.e., E1, E2, E5, and E6 were averaged to create an
average “context 1” pattern of activity and E3, E4, E7, and E8 were
averaged to create an average “context 2” pattern of activity) separately
within each split. For each trial, we calculated z[r] Pearson's correlation
coefficient between the pattern of activity on that trial and the average
context 1 and context 2 patterns of activity from the other split. The
value for each trial was set to the correlation to the same context minus
the correlation to the other context (Coutanche and Thompson-Schill,
2013). Thus, values greater than 0 denote correct “neural discrimina-
tion” between the two contexts and the distance from 0 provides an
index of discriminability on that trial. We refer to the trial-by-trial
vector of such values to as the multivariate pattern discriminability
trial-series (for a related approach to functional connectivity see:
Rissman et al., 2004). For each participant, we calculated z[r]
Spearman's rank correlation between the multivariate pattern discri-
minability trial-series in the hippocampus, PHC, and RSC/PCC. We
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averaged the resultant values to obtain the empirical group mean z[r]
Spearman's rank correlations. To assess significance, we used a
permutation approach in which we randomized the order of one of
the ROI's multivariate pattern discriminability trial-series within each
run. We used within-run permutations, rather than permuting the
entire trial-series, to mitigate the possibility that between-run differ-
ences would artificially reduce the permuted correlations. We then
calculated z[r] Spearman's rank correlation between the randomized
ROI's vector and the intact ROI's vector. This procedure was carried
out 10,000 times per subject. Group-level permutation analysis was
conducted by averaging the permuted distributions across subjects,
and p values were obtained using Eq. (1). In this application, the
permutations were independent across subjects because the trial order
was independent across subjects.

Multidimensional scaling analysis

We performed multidimensional scaling (MDS), which is a data-
driven, data-reduction approach that allows visualization of the major
components of similarity matrices such as those obtained using repre-
sentational similarity analysis on fMRI data (Kriegeskorte et al., 2008a,
2008b). We first generated a symmetrical representational similarity
matrix by averaging values across the diagonal of the matrix (i.e., the
same pairs of events across splits). We then converted the matrix from
z[r] Pearson's correlation coefficient to Pearson's correlation coefficient
(r), and converted the resultant matrix to correlation distance (1−r). We
extracted the lower triangle of the correlation distance matrix and
performed multidimensional scaling using the criterion of metric stress
(Kriegeskorte et al., 2008a, 2008b) using package cmdscale in R.We used
custom-written code to place the event stimuli at the coordinates
calculated by the multidimensional scaling procedure.

Relationship between representations and behavioral performance on
the associative memory task

In Experiment 1, we investigated the relationship between repre-
sentations and behavioral performance. For each participant, we
defined model fit as the z[r] Spearman's rank correlation between
their similarity matrix and our proposed model. We calculated the
proportion of correct responses during functional scanning within each
participant, excluding trials in which the participant did not respond
within the response window. We calculated Spearman's rank correla-
tion coefficient between model fit and proportion correct. We used
Spearman's rank correlation because it does not require the assump-
tion that the two variables are normally distributed (as opposed to
Pearson's correlation). To assess significance, we calculated the t
statistic using the following equation (Krzanowski, 2000):

t r k
r

= −1
1− 2 (3)

where r is Spearman's rank correlation, and k is equal to n−1. We
obtained a p value from Student's t distribution with k−1 degrees of
freedom (20-1-1=18).

To mitigate the possibility of a spurious effect of head motion
(Power et al., 2012) on the observed relationship between behavioral
performance and model fit, we performed a follow-up analysis using a
partial correlation approach. Specifically, we examined the relationship
between model fit and behavioral performance while holding the effect
of head motion constant. Previous reports have used mean motion—
defined as the mean amount of motion between successive frames
based on the sum of the 3 translation parameters—as a measure of
head motion (Van Dijk et al., 2012). Mean motion has previously been
shown to be strongly correlated with the total number of motion events
and it has been shown to be a reliable index of subject-specific head
motion (Van Dijk et al., 2012). We used a related measure, mean

framewise displacement, as our measure of head motion. As mentioned
above, framewise displacement is the sum of motion across all 6
alignment parameters (3 translation and 3 rotation parameters)
between successive frames (Power et al., 2012). To calculate the partial
Spearman's rank correlation between the model fit and the proportion
correct while holding the effect of head motion constant, we used the
following equation (Krzanowski, 2000):
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where x represents the model fit array, y represents the proportion
correct array, and z represents the mean framewise displacement array.
In our application, r represents Spearman's rank correlation. The t
statistic was calculated using Eq. (3). With one variable held constant
(i.e., z), k=n−1−1. Therefore, the statistical test for partial correlation is
the same as in typical correlation analysis with fewer degrees of
freedom (Krzanowski, 2000).

Whole-brain searchlight analysis

We performed a whole-brain searchlight analysis using a search-
light radius of 3 voxels within the sphere_searchlight function in
PyMVPA. We ran the analysis in native space and warped the results to
our group template using ANTs (Avants et al., 2008). For each contrast,
we used a voxel-wise threshold of p < 0.01 (parametric) and a cluster
threshold of p < 0.05 (cluster threshold was determined using Monte
Carlo simulation with a simulated blur of 3.75 mm FWHM, i.e., half of
the searchlight radius). First, we investigated the relationship to the
context matrix. Next, we masked the results for the item-in-context
matrix by the regions that were significantly related to the context
matrix. Finally, we masked the results for the item-in-order-in-context
matrix by the regions that were significantly related to both the context
matrix and the item-in-context matrix. The overlap map was warped to
an inflated brain for visualization using FreeSurfer.

Relationship between the empirical V1 similarity matrix and the
model V1 similarity matrix

In Experiment 2, we investigated the similarity of the empirical V1
similarity matrix and the model V1 similarity matrix (using HMAX;
Theriault et al., 2011). We conducted a trialwise analysis in which we
modeled activity in response to both the scene image and the object
image on each trial. Specifically, the V1 model was “shown” the same
stimulus sequence as the participant. On each trial, the V1 model
response vectors from Layer 2 of HMAX were extracted in response to
the scene image and in response to the scene and object images. The
resultant vectors were combined using weighted averaging (4/5 of the
scene only vector plus 1/5 of the scene plus object vector—i.e., 2000 ms
scene presentation and 500 ms scene plus object presentation). The
mean pattern of activity was removed within the odd and even splits,
and correlation matrices were generated by correlating the pattern of
activity across all of trials across the odd and even splits. A similar
approach was conducted to generate the empirical similarity matrix
using the single trial estimation techniques described for representa-
tional correlativity analysis. We calculated Spearman's rank correlation
between the trialwise empirical V1 similarity matrix and the model V1
similarity matrix using the motion censoring steps described for
representational correlativity analysis.

Bayes factor analysis

In Experiment 2, we used a Bayes factor analysis to examine
whether the data were more consistent with the null hypothesis (mean
z[r] Spearman's rank correlation=0) or the alternative hypothesis
(mean z[r] Spearman's rank correlation > 0), where BF01 denotes the
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odds ratio of the null hypothesis relative to the alternative hypothesis
(Rouder et al., 2009). This analysis is a one-sample test in which the
observations are comprised of each participant's z[r] Spearman's rank
correlation between the similarity matrix in a given ROI and a
hypothesis matrix (e.g., the context matrix). As recommended by
Rouder et al. (2009), we used JZS Bayes factors with scaling factor
r=1, within the BayesFactor package in R.

Results

Experiment 1

The task in Experiment 1 consisted of eight events, which differed
in terms of the time-lapse video that was displayed (“context”), the
items that were displayed (“item”), and the order in which the items
were presented (“order”; Fig. 1A). Participants (n=20) learned event-
location associations the day prior to fMRI scanning. The correct
location depended on the video that was displayed, the objects that
were displayed, and the order in which the objects were presented.
Participants were trained to criterion the day prior to their scan
session. During scanning, participants were repeatedly tested on each
event-location association, during which they continued to exhibit
above-chance performance (mean proportion correct=0.86,
t19=27.15, p < 0.0001, 95% CI [0.81, 0.90]). Similar to McKenzie
et al. (2014) and Keene et al. (2016), we performed representational
similarity analysis (Kriegeskorte et al., 2008a, 2008b), in which we
calculated Pearson's correlation coefficient between patterns of activity
in response to each of the 8 events across the odd and even runs.

Investigation of the representation of context
To test the hypothesis that the hippocampus, PHC, and RSC/PCC

are involved in context representation, we generated a context matrix
that contains uniformly large values for events that share the same
context and uniformly small values for events that contain different
contexts (Fig. 1B). We calculated Spearman's rank correlation coeffi-
cient (Fisher's r-to-z transformed: z[r]) between each participant's
similarity matrix and the context matrix. We used group-level two-
tailed nonparametric p values (Ernst, 2004) to assess significance (for
related one-tailed approaches to classification analysis see: Chen et al.,
2011; Liang et al., 2013; Stelzer et al., 2013; Etzel, 2015). The PHC and
RSC/PCC similarity matrices were significantly related to the context
matrix (PHC: mean z[r] Spearman's rank correlation [M]=0.15; RSC/
PCC: M=0.81; both p < 0.0001; Fig. 3A and B) but a relationship was
not observed for the hippocampus similarity matrix (M=0.012,
p=0.71). We also tested the hypothesis that PRC carries object
information; however, the PRC similarity matrix failed to exhibit a
significant relationship to either the object matrix (M=0.032, p=0.30)
or the context matrix (M=0.032, p=0.32).

We performed a searchlight analysis within the hippocampus to
investigate whether there was a relationship to the context matrix in a
portion of the hippocampus, which may have been obscured by
uninformative voxels. Using a searchlight radius of 3 voxels, we
observed a significant cluster in the left posterior hippocampus (33
voxels, parametric voxel-wise threshold p < 0.05; Fig. 3C). A follow-up
analysis, in which we warped the searchlight cluster mask to each
participant's native space and ran a region of interest (ROI) analysis,
indicated that the cluster itself was significantly related to the context
matrix (p=0.017). The follow-up analysis is circular but it is required to
conclude that the cluster itself is informative (Etzel et al., 2013);
therefore, these results bolster the conclusion that the hippocampal
cluster is related to the context matrix.

To eliminate the possibility that the context results were driven solely
by strong relationships between an event and “itself”—i.e., because the
identity matrix is weakly correlated to the context matrix—we performed
a control analysis that excluded the entries from the main diagonal of the
matrix. The results remained in PHC (M=0.15; p < 0.0001), RSC/PCC

(M=0.78; p < 0.0001) and in the hippocampal searchlight cluster (p <
0.01). Conversely, as a control region, the left precentral gyrus (primary
motor cortex) similarity matrix failed to exhibit any sign of a relationship
(M=0.0072; p=0.85); instead (and as one might expect), it was related to
the correct-response matrix (Supplementary Fig. 1). In contrast, there
was no sign of a relationship between the PHC and RSC/PCC similarity
matrices and the motoric-based correct-response matrix (Supplementary
Fig. 1). These results eliminate the possibility that: 1) the relationship
between the similarity matrices and the context matrix was driven by
correlations between patterns of activity in response to an event and
“itself”, 2) the relationships to the context matrix were confounded by
key-press differences between events in opposing contexts.

We used informational correlativity (Coutanche and Thompson-
Schill, 2013; Huffman and Stark, 2014) to test the hypothesis that the
hippocampal searchlight cluster, PHC, and RSC/PCC contain similar
representations of context on a trial-by-trial basis and thus are related
in their processing of contextual information. There was a significant
relationship between trial-by-trial context representation in PHC and
RSC/PCC (M=0.34, p < 0.0001) and both cortical regions and the
hippocampal searchlight cluster (both M=0.085, p < 0.0001; Fig. 3D).

Investigation of the representation of items in context
To test the hypothesis that PHC and RSC/PCC contain item-in-

context information, we calculated z[r] Spearman's rank correlation
between each participant's similarity matrix and the item-in-context
matrix. This analysis investigates whether events that share the same
context and the same items are represented more similarly than events
that share the same context but contain different items (all other events
are excluded from the analysis; see Fig. 1B). The RSC/PCC similarity
matrix was significantly related to the item-in-context matrix (M=0.14, p
< 0.01; Fig. 3E) but this relationship was not observed for the PHC
similarity matrix (M=0.012, p=0.76). In contrast, the relationship
between the RSC/PCC similarity matrix and an item-out-of-context
matrix (uniformly large values for events that shared the same items
but different contexts and uniformly small values for events that contain
different items and different contexts) failed to reach significance
(M=0.047, p=0.32). To get a parsimonious account of the information
coded for in the matrices and to visualize this, we performed MDS. The
first two dimensions captured by MDS were context and items (Fig. 3F).
Altogether, these results are consistent with the notion that RSC/PCC
contains conjunctive item-in-context representations.

To extend this, we tested the hypothesis that representations in
RSC/PCC are related to memory performance by generating a model of
representations in RSC/PCC that contains context and item-in-context
information (Fig. 3G). There was a significant relationship between
model fit (z[r] Spearman's rank correlation between the RSC/PCC
similarity matrix and our proposed model) and proportion correct
(Spearman's rank correlation=0.51, t18=2.51, p < 0.05; Fig. 3H), which
maintained when controlling for the potential confound of head motion
(partial Spearman's rank correlation=0.47, t17=2.18, p < 0.05).

Investigation of parahippocampal place area and retrosplenial
complex

There has been extensive evidence of scene and context proces-
sing in the parahippocampal place area (PPA) and the retrosplenial
complex (RS-Complex; e.g., Epstein and Kanwisher, 1998; Epstein
et al., 2007; Julian et al., 2012; Vass and Epstein, 2013, 2016;
Marchette et al., 2014, 2015). These regions are in close anatomical
proximity to PHC and RSC/PCC, however they are largely non-
overlapping. Specifically, PPA tends to be located posterior to PHC
(i.e., along the parahippocampal gyrus, but posterior to the land-
marks like the splenium of the corpus callosum) and retrosplenial
complex tends to be located posterior to RSC/PCC (Supplementary
Fig. 2A). Within the anatomical masks for PPA and RS-Complex, we
selected the 100 most active voxels (events > perceptual baseline;
Marchette et al., 2015) from each hemisphere. We combined the
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masks into bilateral PPA and RS-Complex. The PPA and RS-Complex
similarity matrices were significantly related to the context matrix
(PPA: M=0.61, p < 0.0001; RS-Complex: M=1.04, p < 0.0001;
Supplementary Fig. 2B) and the item-in-context matrix (PPA:
M=0.15, p < 0.005; RS-Complex: M=0.13, p < 0.01; Supplementary
Fig. 2C), similar to the results in RSC/PCC.

Investigation of V1
We investigated whether there were similar effects in primary visual

cortex (V1), which would indicate the presence of a low-level visual

confound. We found a similar pattern of results to RSC/PCC, including a
strong relationship to both the context matrix (M=1.23, p < 0.0001) and
the item-in-context matrix (M=0.16, p < 0.01). Similarly, the relationship
to the item-out-of- context matrix failed to reach significance (M=0.014,
p=0.81). We observed a relationship between the V1 similarity matrix
and the item-in-order-in-context model (M=0.21, p < 0.005; Fig. 4A-B),
which reveals that patterns of activity in response to events that share the
same context, items, and order of item presentation are representedmore
similarly than events that share the same context and items but a
switched order of item presentation. Similar to RSC/PCC, there was a

Fig. 3. Investigation of the hippocampus, PHC, and RSC/PCC. A) Average correlation matrices. B) Permutation analysis revealed a significant relationship between the context matrix
and the PHC and RSC/PCC similarity matrices (p's < 0.0001) but the relationship failed to reach significance for the hippocampus similarity matrix (p=0.71). C) A searchlight analysis
within the hippocampus revealed a significant cluster in the left posterior hippocampus. D) Informational correlativity analysis revealed a significant relationship between trial-by-trial
representations in all three regions (all p's < 0.0001; sl-HIPP=hippocampus searchlight analysis cluster). E) Permutation analysis revealed a significant relationship between the RSC/
PCC similarity matrix and the item-in-context matrix. F) Multidimensional scaling (MDS) analysis provided further evidence for item-in-context representations in RSC/PCC. The first
dimension split based on event videos and the second dimension split based on event objects, which is consistent with the notion that RSC/PCC contains item-in-context information. G)
Proposed model of RSC/PCC representations, which contains context and item-in-context information. H) There was a relationship between model fit in RSC/PCC and performance on
the task (Spearman's rank correlation=0.51, t18=2.51, p < 0.05).
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significant relationship between model fit in V1 (the proposed model
contained context, item-in-context, and item-in-order-in-context infor-
mation; Fig. 4C) and proportion correct (Spearman's rank correla-
tion=0.58, t17=2.97, p < 0.01; Fig. 4D), which maintained when control-
ling for the effect of head motion (partial Spearman's rank correla-
tion=0.58, t16=2.88, p=0.01; one participant was dropped from the
analysis due to low model fit, however, the effect was stronger, for both
approaches, when the participant was included in the analysis).

Whole-brain searchlight analysis
To assess the extent of these findings, we used a whole-brain

searchlight analysis (3 voxel radius) to investigate the prevalence of the
relationship to each of our model matrices. The analysis revealed clusters
in all four lobes, indicating this was not highly localized. However, the
most prominent findings were in the occipital lobes, where a large
proportion of occipital voxels were significantly related to the context
matrix, the item-in-context matrix, and the item-in-order-in-context
matrix (Supplementary Fig. 3). Altogether, the findings in V1 and the
whole-brain searchlight analysis highlight the possibility that the context
effects that we observed in the posterior hippocampus, PHC, and RSC/
PCC were influenced by low-level visual differences between the stimuli
that comprised the events. Therefore, our primary aim in Experiment 2
was to investigate whether our ROIs would still carry contextual
information after eliminating low-level differences between our contexts.

Experiment 2

There are many possible approaches to reduce the influence of low-
level features (see Discussion), but we chose to investigate whether our

ROIs exhibit stable representations across multiple images of two
contexts and objects. We used stimulus filtering and computational
modeling to diminish the presence of low-level sensory differences
between our contexts and objects. Participants (n=10) learned to
discriminate between the two contexts (images of Saint Peter's
Basilica and the U.S. Capitol Building) and the two objects (images of
car keys and house keys), and then learned event-location associations
(similar to Experiment 1, but without the order manipulation; Fig. 2A).
Participants were trained to criterion on the discrimination tasks and
the associative memory task to ensure that they could rapidly dis-
criminate between our contexts and objects and to ensure that they
could accurately perform the associative memory task. During scan-
ning, participants were repeatedly tested on each event-location
association, during which they continued to exhibit above-chance
performance (mean proportion correct=0.86, t9=14.95, p < 0.0001,
95% CI [0.80, 0.91]). Given that the nature of the memory task was
unchanged, we hypothesized that regions that carry information about
contexts and objects—as those terms relate to performance on this
task—should do so in an invariant manner. Conversely, if our ROI-
based results from Experiment 1 were influenced by low-level stimulus
features, then we should fail to observe a relationship to the context
matrix in our ROIs.

Investigation of in V1
First, we investigated whether our stimulus filtering and computa-

tional modeling approaches removed the low-level visual confound that
was observed in Experiment 1. Importantly, the V1 similarity matrix
showed no sign of a relationship to either the context matrix
(M=−0.029, p=0.81) or the object matrix (M=0.0025, p=0.99;

Fig. 4. The investigation in V1 revealed that our effects in Experiment 1 are confounded by the physical differences between stimuli. A) V1 mask (top), average correlation matrix
(middle), the average correlation matrix of the data used for the item-in-context analysis (bottom left), and the average correlation matrix of the data used for the item-in-order-in-
context analysis (bottom right). Note, the data were replotted in the bottom panel to reveal the visual similarity to both the item-in-context matrix and the item-in-order-in-context
matrix (see Fig. 1B). B) Permutation analysis revealed a significant relationship between the V1 similarity matrix and the context matrix (M=1.23, p < 0.0001), the item-in-context
matrix (M=0.16, p < 0.01), and the item-in-order-in-context matrix (M=0.21, p < 0.005). C) Proposed model of V1 representations, which contains context, item-in-context, and item-in-
order-in-context information. D) There was a relationship between model fit and performance on the task (Spearman's rank correlation=0.58, t17=2.97, p < 0.01).
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Fig. 5). We also performed a Bayes factor analysis to assess the
evidence for the null hypothesis, where BF01 denotes the odds ratio
of the null hypothesis relative to the alternative hypothesis (Rouder
et al., 2009). We found that the relationship between the V1 similarity
matrix and both the context matrix (BF01=4.16) and the object matrix
(BF01=4.30) favored the null hypothesis, suggesting that the null
hypothesis is approximately 4 times more likely than the alternative
hypotheses. Moreover, a permutation analysis revealed a significantly
weaker relationship between the V1 similarity matrix and the context
matrix relative to Experiment 1 (p < 0.0001).

Next, a positive control analysis was performed to demonstrate a
relationship between the empirical V1 similarity matrix and a model V1
similarity matrix (using HMAX; Theriault et al., 2011). We conducted a
trialwise analysis, in which the V1 model was “shown” the same
stimulus sequence as the participant. We generated trialwise similarity
matrices for both the empirical data and the model, and we compared
the empirical and model similarity matrices using Spearman's rank
correlations. There was a significant relationship between the empirical
and model V1 similarity matrices (M=0.019, p < 0.0001; Fig. 5). The
relationship between the two matrices was numerically small but highly
reliable, which was expected given that individual trial estimates of
activity were used for the analysis. We also observed a significant
relationship between the V1 similarity matrix and the correct-response
matrix (M=0.38, p < 0.005), which was likely driven by the hemifield
differences of the selected responses. Altogether, the results in V1
suggest that the low-level confound has been, at the very least,
attenuated and the control analyses establish the quality of the data.

Investigation of the representation of context
We investigated whether the relationship to the context matrix

maintained in our a priori ROIs. In contrast to Experiment 1, there

was no sign of a relationship between the PHC and RSC/PCC similarity
matrices and the context matrix (PHC: M=0.011, p=0.80; RSC/PCC:
M=0.022, p=0.81; Fig. 6), and a within-hippocampus searchlight failed
to reveal significant results. Additionally, the relationship between the
PPA and the RS-Complex similarity matrices and the context matrix
was severely diminished relative to Experiment 1, showing no sign of a
relationship in PPA (M=0.029, p=0.69) and only a trend in RS-
Complex (M=0.12, uncorrected p=0.051; Supplementary Fig. 4). A
Bayes factor analysis revealed evidence in favor of the null hypothesis
in PHC (BF01=4.29), RSC/PCC (BF01=4.23), PPA (BF01=3.87), and RS-
Complex (BF01=2.16). Moreover, a permutation analysis revealed
significantly weaker relationships between the context matrix and the
similarity matrices in RSC/PCC, PPA, and RS-Complex relative to
Experiment 1 (all p's < 0.0001; the decrease in PHC failed to reach
significance: p=0.23). Thus, reducing (or eliminating) the low-level
sensory differences across contexts markedly decreased the substantial
contextual effects that we observed in Experiment 1.

Activation analysis: Events versus perceptual baseline
To ensure that the data were reliable and that the task was

activating our ROIs, a standard activation analysis (events versus
perceptual baseline) was conducted. This revealed significantly greater
blood-oxygen-level dependent (BOLD) activity for events than the
perceptual baseline task in PHC, RSC/PCC, PPA, and RS-Complex
(PHC: t9=6.4443, p < 0.0005; RSC/PCC: t9=2.9574, p < 0.02; Left
anatomical PPA: t9=7.3008, p < 0.0001; Right anatomical PPA:
t9=6.6446, p < 0.0001; Left anatomical retrosplenial complex:
t9=4.5301, p < 0.005; Right anatomical retrosplenial complex:
t9=4.2866, p < 0.005). These findings suggest that our ROIs responded
to the events relative to the baseline task even though there was little
evidence for a relationship to the context matrix.

Fig. 5. The low-level confound was attenuated in Experiment 2. The V1 similarity matrix showed no sign of a relationship to either the context matrix (M=−0.029, p=0.81; BF01=4.16)
or the object matrix (M=0.0025, p=0.99; BF01=4.30). Trialwise analysis revealed a significant relationship between the empirical V1 similarity matrix and the model V1 similarity matrix
(M=0.019, p < 0.0001). The V1 similarity matrix was also related to the correct-response matrix (M=0.38, p < 0.005; data not shown).

Fig. 6. No evidence for invariant context representation in PHC and RSC/PCC. The relationship between the context matrix and the PHC and the RSC/PCC similarity matrices failed to
reach significance (PHC: M=0.011, p=0.80; BF01=4.29; RSC/PCC: M=0.022, p=0.81; BF01=4.23), suggesting that the relationships to the context matrix that were observed in
Experiment 1 were highly influenced by the low-level sensory differences between the distinct contexts.
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Investigation of object representation
To test the hypothesis that PRC carries object information (when

the low-level stimulus features have been matched), we generated an
object matrix that contains uniformly large values for events that
share the same objects and uniformly small values for events that
contain different objects (Fig. 2B). There was a significant relation-
ship between the PRC similarity matrix and the object matrix
(M=0.28, p=0.002), while the relationship to the context matrix
failed to reach significance (M=−0.022, p=0.81; Fig. 7A). We next
tested the prevalence of the relationship to the object matrix using a
whole-brain searchlight analysis (3 voxel radius). A cluster was
observed in left PRC, supporting the ROI-based results (57 voxel
cluster, parametric voxel-wise p < 0.01; Fig. 7B). Additionally, two
clusters were observed in the right anterior temporal cortex (53 and
42 voxels; middle and left panels of Fig. 7B, respectively). A follow-
up analysis revealed that all three clusters themselves were signifi-
cantly related to the object matrix (cluster 1: M=0.44, p < 0.0005;
cluster 2: M=0.38, p < 0.0005; cluster 3: M=0.40, p=0.011, one
participant was excluded from the cluster 3 analysis due to insuffi-
cient coverage). The follow-up analysis is circular but it is required to
conclude that the cluster itself is informative (Etzel et al., 2013);
therefore, the significant effects from this analysis bolster the
conclusion that the clusters are related to the object matrix.

Testing for a double dissociation between PRC and V1
An important next step is to reveal a double dissociation between

representations in PRC and V1. In contrast to V1, the relationship
between the trialwise PRC and model V1 similarity matrices failed to
reach significance (M=0.0025, p=0.36; left panel Fig. 7C). A nonpara-
metric difference test revealed that the relationship between the
empirical V1 similarity matrix and the model V1 similarity matrix
was significantly stronger than the relationship between PRC similarity
matrix and the model V1 similarity matrix (M=0.017, p < 0.0001;
middle panel Fig. 7C). Finally, we observed some evidence that the
relationship between the PRC similarity matrix and the object matrix
was stronger than the relationship between the V1 similarity matrix
and the object matrix (M=0.28, one-tailed p < 0.05; right panel
Fig. 7C). Similarly, the relationship between the left PRC cluster (left
panel of Fig. 7B) similarity matrix and the object matrix was stronger
than the relationship between the V1 similarity matrix and the object
matrix (M=0.44, p < 0.005). These results mitigate the possibility that
object representations were inherited from V1.

Discussion

We conducted two experiments to investigate whether RSC/PCC and
subregions of the MTL carry information about context, items, order, and

Fig. 7. Evidence for invariant object representation in perirhinal cortex. A) Permutation analysis revealed a significant relationship between the PRC similarity matrix and the object
matrix (M=0.28, p=0.002) but the relationship to the context matrix failed to reach significance (M=−0.022, p=0.81). B) A whole-brain searchlight analysis revealed a cluster in the left
PRC as well as two other clusters in the right anterior temporal lobe. C) The relationship between the trialwise PRC similarity matrix and the trialwise V1 model similarity matrix failed
to reach significance (M=0.0025, p=0.36; left panel), the relationship between the trialwise V1 similarity matrix and the trialwise V1 model similarity matrix was significantly stronger
that the relationship between the trialwise PRC similarity matrix and the trialwise V1 model similarity matrix (M=0.017, p < 0.0001; middle panel), and there was evidence that the
relationship between the PRC similarity matrix and the object matrix was stronger than the relationship between the V1 similarity matrix and the object matrix (M=0.28, one-tailed p <
0.05; right panel). Similarly, the relationship between the left PRC cluster (left panel of B) similarity matrix and the object matrix was stronger than the relationship between the V1
similarity matrix and the object matrix (M=0.44, p < 0.005).
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their conjunctions. We built upon a well-designed approach used in the
rodent (Rajji et al., 2006; Komorowski et al., 2009, 2013; Navawongse
and Eichenbaum, 2013; Tort et al., 2013; McKenzie et al., 2014; Farovik
et al., 2015; Keene et al., 2016) and observed many analogous patterns
using fMRI in humans. However, the results of our experiments highlight
the importance of controlling for low-level sensory differences between
the experimental conditions—here, different contexts and objects.
Moreover, our results raise interesting questions about how to distin-
guish memory-related representations from processing-related represen-
tations. We will expand on these issues below.

Investigation of the representation of distinct contexts and objects

In Experiment 1, we observed a relationship between the context
matrix and the similarity matrices in PHC, RSC/PCC, and the left
posterior hippocampus. There are many reasons to expect that resol-
ving what kind of information is coded for in the hippocampus will be
more challenging when using fMRI data than when using electrophy-
siological data. However, the largest differences in patterns of activity
in the rodent dorsal hippocampus (the homolog of human posterior
hippocampus; McKenzie et al., 2014) and MTL cortical regions (Keene
et al., 2016) were observed in response to changes to the context;
therefore, the observed relationship to the context matrix in the left
posterior hippocampus, PHC, and RSC/PCC is consistent with the
results in the rodent. Furthermore, the RSC/PCC similarity matrix was
related to the item-in-context matrix, and we observed a relationship
between context and item-in-context representations in RSC/PCC and
performance on the associative memory task. A critical question arises,
however, about whether these results are confounded by the low-level
visual differences between the stimuli, which we addressed by inves-
tigating representations in primary visual cortex.

The V1 similarity matrix was related to the context matrix and the
item-in-context matrix, suggesting that our results in Experiment 1
could have been influenced by low-level visual differences between the
stimuli. The V1 similarity matrix was also related to the item-in-order-
in-context matrix, suggesting that early processing areas can exhibit
distinct patterns of activity in response to a reconfiguration of the same
stimuli. Moreover, we observed a relationship between representations
in V1 and behavioral performance. Altogether, the results in V1
highlight the difficulty of disentangling the role of a brain region in
memory versus processing (see The difficulty of dissociating proces-
sing-related representations from memory-related representations),
especially given that MTL regions, and the hippocampus in particular,
receive inputs from all sensory modalities.

We performed a whole-brain searchlight analysis to investigate the
prevalence of the relationship to each of our matrices. The strongest
effects were observed in the occipital lobes, where many voxels were
related to not only the context matrix but also the item-in-context
matrix and the item-in-order-in-context matrix. In hindsight, the
whole-brain searchlight results and the V1 results are not surprising
given the visual nature of the events, but these findings could provide a
challenge to the conclusion that context plays an organizing role for
processing within the MTL (McKenzie et al., 2014, 2015; Farovik et al.,
2015; Keene et al., 2016). In the rodent version of the context-guided
object association task, the contexts differed in terms of visual cues
(black versus white), tactile cues (sandpaper versus cloth), and spatial
cues (side of the apparatus) and the items differed in terms of the
digging media (visual and tactile cues) and the olfactory cues, which
makes it is difficult to interpret the degree to which regions differed in
their responses. More generally, whenever two fixed (and constantly
present) stimuli are compared (e.g., our two time-lapse videos), there
will necessarily be low-level sensory differences between stimuli; thus,
moving to stimulus sets can be advantageous. Additionally, computa-
tional models can be used to select stimuli that are devoid of a low-level
visual confound prior to running an experiment. We provide an
example of this approach in Experiment 2.

Investigation of invariant context representation

In Experiment 2, we tested whether the results from Experiment 1
would maintain in the absence of low-level sensory differences between
the stimuli. We used a combined approach of image manipulation and
computational model testing to eliminate the presence of category
information from the low-level visual features. There was no sign of a
relationship between the V1 similarity matrix and either the context
matrix or the object matrix, suggesting that we adequately reduced the
low-level visual confound. Importantly, two control analyses showed that
V1 contained task-relevant information. First, a trialwise analysis
revealed a relationship between the empirical and model V1 similarity
matrices. Second, there was a relationship between the V1 similarity
matrix and the correct-response matrix, which likely reflects the hemi-
field differences based on the left versus right response box being
displayed (see bottom of Fig. 2A). The relationship between the
correct-response matrix and the V1 similarity matrix provides further
evidence that the low-level confound was attenuated—i.e., these results
suggest that the image information canceled out and that the only reliable
visual information was the filling in of the box in either hemifield. The
positive control analysis results in V1 establish data quality.

We next investigated whether the hippocampus, PHC, and RSC/
PCC contain invariant representations of context. We found a severely
diminished relationship between the similarity matrices in these
regions and the context matrix relative to Experiment 1. While these
results suggest that the context effects in Experiment 1 were highly
dependent on low-level visual differences between contexts, we do not
take these results to be evidence that these regions do not contain
invariant representations of context. The effect was clearly diminished
(to the point of being undetectable), but we cannot say that it was
entirely eliminated or that it could not be observed under other
circumstances. We also acknowledge that the manipulation in
Experiment 2 might have caused not only differences in the low-level
sensory features between the contexts but could also have caused the
memory content to be degraded relative to Experiment 1. Critically,
participants performed well above chance on the associative memory
task in Experiment 2, suggesting that they formed stable memory
representations. Accordingly, it is clear that the substantial reduction
in observed contextual information weakens the inference one might
make from Experiment 1 or similar experiments that these regions
contain generalized contextual information.

Future studies using electrophysiology and fMRI will be useful to help
elucidate the conditions under which these regions exhibit invariant
context coding. Additionally, designs that manipulate stimulus familiarity
will be useful for understanding the involvement of subregions of the
MTL and of RSC/PCC in context representation as well as the role of
memory in the formation of these representations. For example, it is
possible that our participants did not have real-world experience with
Saint Peter's Basilica or with the U.S. Capitol Building, which led to little
evidence for invariant context representation (for evidence for the
importance of landmark familiarity in PPA see: Marchette et al., 2015).
Importantly, all of our scene ROIs showed greater BOLD activation for
events compared to the perceptual baseline task, suggesting that they
were activated by the associative memory task.

Investigation of invariant object representation

In contrast to the relative lack of findings for invariant context
representation, we observed a relationship between the PRC similarity
matrix and the object matrix in Experiment 2. These results support
the hypothesis that PRC is involved in the representation of objects
(Burwell, 2000; Davachi, 2006; Knierim et al., 2006; Diana et al., 2007;
Eichenbaum et al., 2007; Wixted and Squire, 2011; Ranganath and
Ritchey, 2012). A whole-brain searchlight analysis revealed only three
clusters, the first of which was centered in left PRC and the other two of
which were located in right anterior temporal lobe (one of which was in

D.J. Huffman, C.E.L. Stark NeuroImage 155 (2017) 513–529

525



close proximity to PRC, containing some overlapping voxels with the
temporal-polar portion of PRC). Importantly, a follow-up analysis
revealed that the clusters themselves were related to the object matrix.
These results corroborate the ROI-based approach and suggest that the
relationship to the object matrix is relatively exclusive to the more
anterior portions of the MTL.

We propose that an important next step is to confirm that there is a
dissociation between representations in PRC and early visual areas,
which mitigates the possibility that representations were inherited
from earlier processing regions. Accordingly, we used nonparametric
difference tests to investigate whether there was a double dissociation
between representations in PRC and V1. After establishing that PRC
was not related to the trialwise model V1 similarity matrix, we showed
that the relationship between the empirical V1 similarity matrix and
the model V1 similarity matrix was stronger than the relationship
between the PRC similarity matrix and the model V1 similarity matrix.
Next, we provided evidence to suggest that the relationship between the
PRC similarity matrix and the object matrix was stronger than the
relationship between the V1 similarity matrix and the object matrix.
Taken together, these results suggest that PRC contains representa-
tions of car keys and house keys that generalize across multiple
exemplars and these representations are not inherited from V1.
Future studies can investigate whether these effects depend on the
associative memory task or would be observed more generally.

An alternative to our difference tests would be to use a partial
correlation approach. For example, Clarke and Tyler (2014) used a
partial correlation representational similarity analysis to investigate
representations throughout the visual stream. One benefit of this
approach is that it is straightforward to implement in experiments
with larger and less constrained stimulus sets than we used in
Experiment 2, similar to the stimulus set used by Clarke and Tyler
(2014). Their results suggest that PRC represents fine-grained seman-
tic information about individual objects. Importantly, this effect
maintained while holding the effect of a model of V1 representations
constant. Furthermore, they used a modeling approach to show that
BOLD activation in PRC was modulated by the confusability of objects.
Taken together, their results suggest a role for PRC in fine-grained
semantic representations of objects (for review see: Clarke and Tyler,
2015). Similarly, research in patient populations has revealed a
necessary role for the anterior temporal cortex, and PRC in particular,
in naming highly confusable objects (Kivisaari et al., 2012; Wright
et al., 2015). Our results extend previous findings by showing invariant
representation of subordinate object categories (car keys versus house
keys). The differences in experimental design between our Experiment
2 and the approach used by Clarke and Tyler (2014) provide conver-
ging evidence for the representation of fine-grained category informa-
tion in PRC. These experimental designs can reveal complementary
information, thus we propose that both approaches will be useful for
future studies.

High-level cognitive representations versus low-level sensory
representations

While many neuroimaging studies have investigated the involve-
ment of high-level cortical regions in the processing of categories of
visual stimuli, relatively few fMRI studies have investigated whether
low-level stimulus properties modulate the responses in these regions.
Recent studies have found evidence for retinotopic responses in PPA
(Arcaro et al., 2009; Silson et al., 2015). Specifically, these studies
reported that PPA responded preferentially to stimuli that were
presented in the upper contralateral visual field (relative to other
locations). PPA has also been shown to exhibit greater activation in
response to images with high spatial frequencies compared to low
spatial frequencies (Rajimehr et al., 2011) and in response to cardinal
orientations (i.e., vertical or horizontal) relative to oblique orientations
(Nasr and Tootell, 2012). Moreover, Nasr et al. (2014) showed that

scene stimuli from previously published studies had larger values of
rectilinearity (i.e., energy at 90 degree angles) than stimuli from other
categories, and they reported greater PPA activation in response to
rectilinear stimuli compared to round stimuli. Lescroart et al. (2015)
showed that a Fourier power model, which measures the spectral
features of images, accounted for a large amount of variance in PPA
and RS-Complex. Additionally, recent studies have found that the
representational similarity matrices in category-selective cortical re-
gions were related to the low-level features of the stimuli (as measured
using the GIST model) for object categories (Rice et al., 2014; Watson
et al., 2016b) and scene categories (Watson et al., 2014; for review see
Andrews et al., 2015). Finally, image filtering (high-pass versus low-
pass) of scene images has been shown to influence the representational
similarity matrices in scene-selective regions (Watson et al., 2016a).

Recent studies have suggested that hippocampal place cells might
also be influenced by low-level sensory cues. Geva-Sagiv et al. (2016)
recorded from the bat hippocampus (CA1 and subiculum) and pro-
vided evidence that place cell maps between vision- and echolocation-
based navigation of the same environment are unrelated, raising
questions about whether place cells represent the neural instantiation
of an invariant spatial map or whether they contain sensory-specific
signals. Additionally, studies in the rodent that have recorded simulta-
neously from V1 and the hippocampus have shown “place cell” activity
in V1 (Ji and Wilson, 2007), which was also shown to precede place cell
activity in the hippocampus (Haggerty and Ji, 2015). Thus, a more
complete understanding of the sensory versus cognitive influences on
representations in the MTL can be realized by studies that simulta-
neously investigate representations in sensory cortices and the MTL
(also see Investigation of invariant object representation). Taken
together, our results and the results of the studies discussed here
suggest that we need to be very careful in designing experiments—
especially visual experiments in humans—to ensure that high-level
cognitive representations are not confounded by low-level sensory
features (for similar arguments regarding the importance of controlling
for confounds in multivariate pattern analysis see: Davis and Poldrack,
2013; Todd et al., 2013).

In our daily lives we can use low-level sensory features to provide us
with information about our current context. However, in experiments
that attempt to decode the representation of context, such features
become confounds. We propose that there are two classes of experi-
mental designs that allow the investigation of the representation of
context while minimizing the presence of low-level confounds: 1)
investigations of stable representations across different instances of
the same context (the aggregate of which are not discriminable based
on the low-level features), 2) investigations of distinct representations
while the animal is exposed to the same sensory cues but with different
contextual cues (which are not concurrently available to the animal's
sensory system). We used the first approach in Experiment 2 (also see:
Marchette et al., 2015) because it provided a straightforward method
for controlling the low-level features of both the contexts and the
objects; however, other studies have used the second approach to
investigate representations in the hippocampus.

Previous studies have shown differential place cell firing in the rat
hippocampus in response to the same physical stimuli as a result of
behavioral conditions (Wood et al., 2000; Smith and Mizumori, 2006b)
and expectations (Skaggs and McNaughton, 1998), suggesting that
internal context can play a dramatic role even within the same physical
environment (for reviews see: Smith and Mizumori, 2006a; Smith and
Bulkin, 2014). Additionally, recent studies in humans (Hsieh et al., 2014)
and rats (Allen et al., 2016) have shown that the hippocampus carries
conjunctive item-in-sequence information (i.e., temporal context).
Collectively, the experimental designs of these studies are interesting
because they allow the investigation of the influence of context without
manipulating the physical stimuli (i.e., the low-level cues are controlled
because they are identical across contexts). These examples suggest that
context undoubtedly plays an important role in the organization of
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representations in the hippocampus, however future experiments should
test the degree to which sensory versus cognitive factors influence
representations in both rats and humans. For example, representations
of sinusoidal gratings have been shown to be modulated by attention in
the lateral geniculate nucleus (i.e., the first synapse from the retina)
during a fixation task (Ling et al., 2015). These results demonstrate the
potential for low-level sensory processing to change as a result of
attention and memory. Therefore, it is possible that confounds similar
to those observed in Experiment 1 can persist even in experiments that
expose animals to the same physical stimuli.

We acknowledge that the task used in the present experiments is
not a traditional single-shot episodic memory task. However, we argue
that our results can be brought to bear to raise similar concerns
regarding episodic memory tasks. For example, one approach for
turning Experiment 1 into a single-shot episodic memory task would
be to present a sequence of objects (each of which would be shown only
once) embedded within a distinct context (e.g., a room, a time-lapse
video of a location [as in Experiment 1]). Then, participants would be
exposed to a second sequence of images embedded within a second
distinct context. Participants would then perform a retrieval task in
which they are asked to decide the context in which each image was
presented. However, the same low-level confound would be present
because such a study would use distinct stimuli for the contexts. In fact,
in the limit in which the representations of two distinct experiences are
examined, a low-level sensory confound will be guaranteed to be
present—i.e., two experiences that differ in terms of “what-where-
when” will always differ in both the high-level cognitive features and
the low-level sensory features. Accordingly, we suggest that the
experimental design of such an experiment should implement an
approach similar to that taken in Experiment 2—i.e., match the low-
level features between the stimuli that comprise the events in addition
to using large stimulus sets. Therefore, while the task used in the
present experiments is not an episodic memory task per se, we argue
that our results have implications for memory experiments writ large
and are not limited to any one type of memory task.

The difficulty of dissociating processing-related representations from
memory-related representations

Separate from the difficulty of dissociating low-level sensory repre-
sentations and high-level cognitive representations, there is an additional
difficulty in dissociating processing-related representations (which are
comprised of both low- and high-level representations of stimulus-related
information) from memory-related representations. For example, the
relationship that we observed in Experiment 1 between representations
in V1 and behavioral performance raises interesting questions about how
to infer whether brain-behavior relationships are indicative of memory or
processing; i.e., while V1 clearly could play a role in memory, it is not
traditionally included in models of declarative memory. Similar chal-
lenges have been raised from the results an electrophysiological study in
which monkeys were trained to learn an association between static cue
stimuli (up and down arrows) and the direction of movement of stimuli
(upward moving dots and downward moving dots; the up/down arrow
and movement pairing was counterbalanced across monkeys; Schlack
and Albright, 2007). They found that area MT, which is known to show
motion-selective responses, exhibited selective responses to the cue
stimuli after learning. Specifically, neurons began responding to the cue
stimuli in a similar manner to their responses to the associated motion
stimuli. The authors suggested that the selective responses to the cue
could reflect either the dynamic reorganization of area MT (i.e., neurons
in MT were modified to represent non-motion stimuli) or “recall-related”
activity (i.e., motion-related activity was reactivated as a result of
associative memory retrieval in another brain region), concluding that
the latter option is more likely (also see: Albright, 2012).

Findings from human neuroimaging studies have also demon-
strated the difficulty of discriminating between memory and proces-

sing. For example, Lee et al. (2012) and Naselaris et al. (2015) trained
participants to vividly imagine images. Lee et al. (2012) found that
classifiers that were trained on patterns of activity during perception
were able to decode the identity of objects during imagery in early
visual areas, and decoding accuracy correlated with the vividness of
imagery. Moreover, Naselaris et al. (2015) found that an encoding
model that was based solely on the low-level features of the images (the
model used Gabor wavelets; for review see: Naselaris et al., 2011) could
be used to successfully decode the identity of images during mental
imagery (i.e., retrieval of those stimuli). While virtually all memory
models posit that recollection would result in the reactivation of the
cortical regions that were involved during encoding (and presumably
the low-level features as well), the results of these studies reveal the
difficulty of inferring whether brain-behavior relationships are indica-
tive of memory that is localized to the ROI or whether such relation-
ships reflect perceptual reactivation from other regions that encoded or
retrieved the memory. Moreover, separate from the difficulty of
dissociating processing-related representations from memory-related
representations, these studies suggest that memory retrieval paradigms
are not immune to the challenges associated with discriminating
between low-level versus high-level representations (see High-level
cognitive representations versus low-level sensory representations)
because memory retrieval can reactivate the low-level confound in
early visual areas.

The studies discussed thus far are inherently correlational; how-
ever, similar challenges exist for more causal approaches. For example,
optogenetic techniques allow researchers to “tag” neurons that are
active during encoding and then to later selectively silence or reactivate
those cells. Tanaka et al. (2014) tagged hippocampal cells that were
active during contextual fear conditioning. They later silenced the same
hippocampal cells during re-exposure to the previously shocked con-
text, which was sufficient to decrease both freezing (memory-related
behavior) and the reactivation of previously active cortical cells.
Cowansage et al. (2014) used similar techniques to tag active neurons
in retrospenial cortex during contextual fear conditioning. They
demonstrated that pharmacological inactivation of the dorsal hippo-
campus decreased freezing upon re-exposure to the previously shocked
context. Interestingly, selective reactivation of tagged cells in retro-
splenial cortex during pharmacological inactivation of the hippocam-
pus was sufficient to elicit a similar amount of freezing to a control
group with an intact hippocampus. Accordingly, these studies provide
causal evidence that specific neuronal ensembles in the hippocampus
and retrosplenial cortex are involved in processing contextual informa-
tion (or at least the low-level features that comprise the context);
however, even these studies do not provide evidence that these
ensembles reflect memory representations (Mayford and Reijmers,
2016). In fact, Mayford and Reijmers (2016, pg. 14) provided a
convincing example of the difficulty of discriminating between memory
and processing in these studies, stating: “[I]f one could stimulate
retinal neurons in precisely the same pattern as when an animal
explored a specific context, then the animal would presumably perceive
that they were in the box, and freeze if fear conditioned, but we would
not suggest that the engram for that memory lies in the retina.”

Taken together, changes from a pre-experimental state (e.g.,
Schlack and Albright, 2007), retrieval-based reactivation (including
stimulus-specific reactivation; e.g., Lee et al., 2012; Naselaris et al.,
2015), brain-behavior relationships (e.g., Experiment 1; Lee et al.,
2012), and changes in memory-related behavior during optogenetic
silencing or reactivation (e.g., Tanaka et al., 2014; Cowansage et al.,
2014) are not sufficient to conclude that decoded representations are
indicative of memory. Accordingly, invasive studies can address
whether the results of recording (e.g., electrophysiology, fMRI) and
stimulation (e.g., optogenetic reactivation) studies reflect processing or
memory. For example, Mayford and Reijmers (2016) suggested that
the combination of optogenetic silencing and reactivation with techni-
ques for studying learning-induced synaptic reorganization will be
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important for understanding how neuronal ensembles relate to mem-
ory versus processing.
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