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Altered K+ current profiles underlie cardiac action potential 
shortening in hyperkalemia and β-adrenergic stimulation
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Tamás Bányász
Department of Pharmacology, University of California, Davis, CA 95616, USA; Department of 
Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary

Abstract

Hyperkalemia is known to develop in various conditions including vigorous physical exercise. 

In the heart, hyperkalemia is associated with action potential (AP) shortening that was attributed 

to altered gating of K+ channels. However, it remains unknown how hyperkalemia changes the 

profiles of each K+ current under a cardiac AP. Therefore, we recorded the major K+ currents 

(inward rectifier K+ current, IK1; rapid and slow delayed rectifier K+ currents, IKr and IKs, 

respectively) using AP-clamp in rabbit ventricular myocytes. As K+ may accumulate at rapid 

heart rates during sympathetic stimulation, we also examined the effect of isoproterenol on 

these K+ currents. We found that IK1 was significantly increased in hyperkalemia, whereas the 

reduction of driving force for K+ efflux dominated over the altered channel gating in case of 

IKr and IKs. Overall, the markedly increased IK1 in hyperkalemia overcame the relative decreases 

of IKr and IKs during AP, resulting in an increased net repolarizing current during AP phase 

3. β-Adrenergic stimulation of IKs also provided further repolarizing power during sympathetic 

activation, although hyperkalemia limited IKs upregulation. These results indicate that facilitation 

of IK1 in hyperkalemia and β-adrenergic stimulation of IKs represent important compensatory 

mechanisms against AP prolongation and arrhythmia susceptibility.

Résumé :
On sait que l’hyperkaliémie se produit dans diverses situations, y compris pendant l’exercice 

physique vigoureux. Dans le cœur, l’hyperkaliémie est associée avec une diminution de la durée 

du potentiel d’action (PA), qui est attribuée à des canaux K+ dont les propriétés de « gating » sont 
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altérées. Toutefois, on ne sait toujours pas comment l’hyperkaliémie entraîne des variations dans le 

profil de chacun des courants K+ à la base du PA cardiaque. Par conséquent, nous avons enregistré 

les principaux courants K+ (courant à rectification entrante (IK1); courants à rectification rapide et 

lente (IKr et IKs, respectivement)) à l’aide de la technique de clampage du PA dans des myocytes 

ventriculaires de lapin. Comme les ions K+ peuvent s’accumuler à des fréquences cardiaques 

élevées pendant une stimulation sympathique, nous avons aussi étudié l’effet de l’isoprotérénol sur 

ces courants K+. Nous avons observé qu’IK1 était nettement augmenté en hyperkaliémie, tandis 

que la diminution de la force motrice de l’efflux de K+ dominait comparativement au défaut de 

« gating » des canaux dans le cas d’IKr et d’IKs. Dans l’ensemble, l’augmentation marquée d’IK1 

en hyperkaliémie parvenait à contrer la diminution relative d’IKr et d’IKs pendant le PA, entraînant 

une augmentation nette des courants de repolarisation pendant la phase 3 du PA. La stimulation 

β-adrénergique d’IKs fournissait aussi une puissance de repolarisation supplémentaire pendant 

l’activation sympathique, même si l’hyperkaliémie limitait la régulation à la hausse d’IKs. Ces 

résultats montrent que la facilitation d’IK1 en hyperkaliémie et la stimulation β-adrénergique d’IKs 

représentent des modes d’action compensatoires importants contre l’augmentation de la durée du 

PA et la susceptibilité aux arythmies. [Traduit par la Rédaction]

Keywords

hyperkalemia; sympathetic stimulation; cellular electrophysiology; heart; potassium channels; 
action potential voltage-clamp; physical exercise; arrhythmia

Mots-clés :

hyperkaliémie; stimulation sympathique; électrophysiologie cellulaire; cœeur; canaux potassiques; 
voltage-clamp du potentiel d’action; exercice physique; arythmie

Introduction

Hyperkalemia is commonly encountered clinically in various physiological and pathological 

conditions including vigorous physical exercise, ischemia, kidney failure, hemolysis, 

endocrine diseases, and side effects of the pharmacological therapy (Weiss et al. 2017). 

Muscle contraction has been shown to cause release of intracellular K+ that may lead to 

marked hyperkalemia especially during strenuous exercise. As a consequence of that, K+ 

concentration in blood plasma may rise up to 8–9 mM during intense physical activity in 

humans (Hansen et al. 2005; Medbo and Sejersted 1990; Tenan et al. 2010). This value 

is about double the normal extracellular K+ concentration ([K+]o), thus it significantly 

reduces the Nernst potential for K+. However, despite the reduction of driving force for 

K+ efflux that predicts a lengthening of the action potential (AP), hyperkalemia has been 

shown to shorten cardiac AP (Weidmann 1956). However, hyperkalemia is known to 

depolarize the cell membrane that alters Na+ and Ca2+ channel availability (steady-state 

inactivation) and recovery from inactivation influencing cardiac excitability and excitation–

contraction coupling (Hansen et al. 2005; Sejersted and Sjogaard 2000). Moreover, an 

increase in incidence of atrial fibrillation and ventricular arrhythmias during intense physical 

activity has been reported (Albert et al. 2000; Manolis and Manolis 2016). Vigorous 
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exercise, especially in untrained subjects but also in top athletes, has been associated with 

sudden cardiac death (Albert et al. 2000; Busuttil 1990; Varro and Baczko 2010). Even 

though the pathophysiology of these fatal events is complex, electrolyte abnormalities like 

hyperkalemia are often listed amongst the factors leading to cardiac electrical disorders. 

Additionally, the existence of multiple adaptive mechanisms that preserves cellular functions 

in hyperkalemia underlines the severity of [K+]o elevation during exercise. Longitudinal 

studies using either animal models or human volunteers have shown an increase in muscle 

Na+/K+ pump density and its transport capacity, a shift between the α and β isoforms 

of Na+/K+-pump mRNA expression levels, and a reduction of ATP-sensitive K+ channel 

expression as a consequence of endurance training (Gunnarsson et al. 2013; Murphy et al. 

2007).

The mechanistic understanding of cellular mechanisms that serve as defense mechanisms 

against hyperkalemia-induced cardiac arrhythmias has high importance. High [K+]o is 

known to facilitate the inward rectifier K+ current (IK1) despite the reduced driving force 

for K+ efflux (Boyett et al. 1980; McAllister and Noble 1966). Moreover, it has also 

been reported that the rapid delayed rectifier K+ current (IKr) but not the slow component 

(IKs) exhibits a similar response to elevated [K+]o (Chang and Shieh 2013; Matsuda 1991; 

Sanguinetti et al. 1995; Sanguinetti and Jurkiewicz 1992; Scamps and Carmeliet 1989). 

These previous studies characterized the behavior of different K+ channels in various [K+]o, 

but did not provide information on the exact profile and contribution of K+ currents under 

a physiological AP. It is well established that the AP shortening seen in hyperkalemia is 

a direct effect of K+ ions (Weidmann 1956), but there is no information on the magnitude 

of individual K+ current contribution to changes in AP morphology under physiologically 

relevant conditions.

The goal of this work was to investigate how ventricular cardiomyocytes maintain sufficient 

AP repolarization when [K+]o increases, and driving force for K+ is reduced. To understand 

the mechanism of altered repolarization, we studied the effect of hyperkalemia on the profile 

of the major K+ currents during the ventricular AP. We recorded IKr, IKs, and IK1 using 

AP voltage-clamp sequential dissection technique (Banyasz et al. 2011) to determine (1) 

what is the impact of elevated [K+]o on the profile of each K+ current under the AP; and 

(2) how the relative contribution of the K+ currents to net repolarization changes in high 

[K+]o. As physical exercise is often associated with sympathetic activation, experiments 

were performed also in the presence of isoproterenol (ISO). We tested the hypotheses that 

(1) upregulation of IK1 is the key step in adaptation to hyperkalemia and (2) β-adrenergic 

stimulation of IKs contributes to the increased repolarization power during sympathetic 

activation.

Materials and methods

Ethical approval

All animal handling and laboratory procedures were in accordance with the approved 

protocol of the local Institutional Animal Care and Use Committee at University of 

California, Davis (Protocol No. 18803), conforming to the Guide for the Care and Use 
of Laboratory Animals published by the US National Institute of Health (8th edition, 2011).
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Animal model and cell isolation

Sixteen adult male (3–4 months old, 2.5–3 kg) New Zealand White rabbits (Charles River, 

Wilmington, Massachusetts, USA) rabbits were used for experiments. Fifteenminutes before 

terminal surgery, rabbits were injected with heparin (400 U/kg, i.v.) and then anesthetized 

with isoflurane (3%–3.5%) inhalation. After achieving deep anaesthesia, hearts were quickly 

excised, and placed in a cold Tyrode solution. Then, a standard enzymatic technique 

was used to isolate ventricular cardiomyocytes at 37 °C as previously described (Hegyi 

et al. 2016). Briefly, hearts were mounted on a Langendorff apparatus and retrogradely 

perfused for 3–5 min with oxygenated Tyrode solution to remove blood from the coronary 

vasculature. Then, a Ca2+-free Tyrode solution was perfused for 3 min to stop the 

contraction of the heart. Next, a Tyrode solution supplemented with 1 mg/mL type II 

collagenase (Worthington, Lakewood, New Jersey, USA), 0.05 mg/mL protease type XIV 

(Sigma–Aldrich, St. Louis, Missouri, USA), and 50 μM Ca2+ was used to perfuse the 

heart for 25–30 min to enzymatically dissociate cells. After perfusion, both atria and the 

right ventricle were removed, the left ventricle was minced, and cardiomyocytes were then 

harvested and stored in a modified bicarbonate-containing Tyrode solution (BTY) with 

the following composition (in mM): NaCl 124, NaHCO3 25, KCl 4, CaCl2 1.2, MgCl2 

1, HEPES 10, glucose 10; pH 7.4 (adjusted using NaOH) and osmolality of 295–300 

mOsm/kg.

Electrophysiology

Isolated ventricular cardiomyocytes were placed in a temperature-controlled plexiglass 

chamber (Cell Microsystems Inc., Research Triangle Park, North Carolina, USA), then 

continuously perfused with BTY solution (see composition above). The internal solution 

contained the following (in mM): K-Aspartate 100, KCl 25, NaCl 5, Mg-ATP 3, HEPES 

10, cAMP 0.002, phosphocreatine dipotassium salt 10, and BAPTA 10; pH 7.2 (i.e., the 

intracellular Ca2+ concentration was buffered to nominally zero). Electrodes were fabricated 

from borosilicate glass (World Precision Instruments Inc., Sarasota, Florida, USA) having 

tip resistances of 2–2.5 MΩ when filled with internal solution. The electrodes were 

connected to the input of an Axopatch 200B amplifier (Axon Instruments, Union City, 

California, USA). Outputs from the amplifier were digitized at 50 kHz using Digidata1440A 

A/D card (Molecular Devices, San Jose, California, USA) under software control (pClamp 

10). Seal formation was performed always in BTY with 4 mM [K+]o. The series resistance 

was typically 3–5 MΩ, and it was compensated by 85%. The seal condition was monitored 

periodically, and experiments were discarded from analysis if the series resistance increased 

by >10%. All experiments were conducted at 36 ± 0.1 °C.

APs of single ventricular cardiomyocytes were recorded in ruptured patch current-clamp 

experiments. The cells were paced using an external stimulator (Grass S44; Grass 

Instrument Co., Quincy, Massachusetts, USA) generating depolarizing pulses (2 ms long 

with 1.5× the threshold amplitude) delivered via the patch pipette at a steady-state frequency 

of 0.2, 0.5, and 1 Hz. Experiments have been performed using the internal solution described 

above (containing 10 mM BAPTA) and the extracellular BTY solution with 4 mM [K+]o, 

then perfusion was switched to BTY with 8 mM [K+]o for 3 min, and the recordings were 

repeated in the same cell.
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IK1 was measured in conventional voltage-clamp using a ramp protocol arising from −160 

mV to 30 mV within 300 ms using a holding potential of −80 mV. Extracellular BTY 

solution was supplemented with 1 μM E-4031, 1 μM HMR-1556, 10 μM nifedipine, and 10 

μM tetrodotoxin to inhibit IKr, IKs, Ca2+ and Na+ currents, respectively. After recording the 

current of interest in 4 and 8 mM [K+]o, 100 μM Ba2+ was added to inhibit IK1.

AP-clamp experiments were conducted as previously described (Chen-Izu et al. 2017; Hegyi 

et al. 2018b). Briefly, the basic steps included the following: (1) Apply cell’s own steady-

state AP (self AP-clamp) or choose a previously recorded typical AP (canonical AP-clamp) 

onto the cell as voltage command under V-clamp at a given pacing frequency. The net 

current output (reference current) should reach steady-state and be stable over time. (2) 

Isolate the current of interest by using its specific inhibitor to remove it from the net current 

output (compensation current). (3) The current of interest is then obtained by subtraction 

(drug-sensitive current = reference current – compensation current). (4) Next, isolate the 

second current of interest by applying the second channel blocker; when it reaches steady 

state, another compensation current is recorded, and the second current of interest can be 

determined again by subtraction. (5) Repeating the same procedure, a third (or more) ionic 

current can be determined by sequentially applying the specific inhibitors for each ion 

channel in a cumulative manner and by obtaining the difference currents. Representative 

traces are shown in the Supplementary Data1 with further methodological details. A 

prerecorded, typical, physiological rabbit ventricular AP (canonical AP-clamp) was used 

at 2 Hz frequency (Hegyi et al. 2015, 2018b). This typical AP has been selected from our 

collection of APs recorded at 2 Hz pacing frequency in extracellular BTY solution and an 

internal solution with the following composition (in mM): K-aspartate 110, KCl 25, NaCl 

5, Mg-ATP 3, HEPES 10, cAMP 0.002, phosphocreatine dipotassium salt 10, and EGTA 

0.01; pH 7.2. This ionic composition preserves physiological Ca2+ transient and myocyte 

contraction (Horvath et al. 2013). However, in the present study, all AP-clamp experiments 

have been performed using 10 mM BAPTA in the pipette solution and the extracellular 

BTY solution was supplemented with 10 μM nifedipine and 10 μM tetrodotoxin to avoid 

contamination of the measured K+ currents with Na+/Ca2+ exchanger, L-type Ca2+ and 

Na+ currents, respectively (Hegyi et al. 2018b). Under AP-clamp, all ionic currents were 

recorded as difference currents after each specific blocker had reached its steady-state effect 

(2 min of perfusion). Sixty consecutive traces were recorded (to evaluate the stability) and 

averaged in each case before applying a drug (reference current) and 2 min after drug 

application (compensation current). The following sequence of drugs was used to measure 

the major K+ currents during phase 3 repolarization of the AP: 1 μM HMR-1556 for IKs 

(Thomas et al. 2003), 1 μM E-4031 for IKr (Wettwer et al. 1991), and 100 μM Ba2+ for 

IK1 (Alagem et al. 2001). When studying the effect of β-adrenergic stimulation, 10 nM ISO 

was added to the perfusion solution and after it reached a steady-state effect (3 min), the K+ 

current inhibitors were added to the perfusion solution in a cumulative manner. Experiments 

were excluded from analysis if membrane current did not reach steady-state.

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/
cjpp-2019-0056.
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Ionic currents were normalized to cell capacitance, determined in each cell using short (10 

ms) hyperpolarizing pulses from −10 to −20 mV. Cell capacitance was 140.58 ± 1.26 pF (n = 

74 cells/16 animals).

Chemicals and reagents were purchased from Sigma–Aldrich if not specified otherwise. 

E-4031 and HMR-1556 were from Tocris Bioscience (Bristol, UK).

Statistical analysis

Data are expressed as mean ± SEM. The number of cells in each experimental group was 

reported as n = number of cells/number of animals. Statistical significance of differences 

was evaluated using Student’s paired t test and ANOVA with Bonferroni correction as 

appropriate. Differences were deemed significant if p < 0.05.

Results

Hyperkalemia shortens AP duration and increases the rate of repolarization

First, we measured APs and characterized the frequency-dependent changes in 8 mM [K+]o 

(8K) vs. 4 mM [K+]o (4K). All experiments were performed in the presence of 10 mM 

BAPTA in the pipette solution to avoid the effect of secondary changes in [Ca2+]i. As 

shown in representative APs in Fig. 1A, substantial depolarization and AP shortening was 

observed in 8K. AP duration measured at 90% repolarization (APD90) was significantly 

shortened in 8K vs. 4K. The difference in APD90 was smaller at high pacing rates and 

the frequency response of APD90 was less prominent in 8K (Fig. 1B). Resting membrane 

potential (Vrest) was more positive in line with the change in Nernst-potential for K+ (Fig. 

1C). Accordingly, the AP peak voltage (Vpeak) and maximal upstroke velocity (dV/dtmax) 

significantly decreased in 8K, consistent with the decreased availability of Na+ channels 

at depolarized Vrest. But importantly, the maximum rate of repolarization (−dV/dtmax) 

increased by 75% in 8K (Fig. 1D).

Hyperkalemia increases outward IK1

Next, we examined the mechanism of IK1 facilitation shown in Fig. 2. In the following 

experiments, IK1 was measured as Ba2+-sensitive current under a slow voltage ramp (Fig. 

2A). Hyperkalemia shifted the reversal potential of the measured current to more positive 

values as expected from the change in Nernst-potential for K+. However, despite the reduced 

driving force for K+, 8K markedly increased outward IK1. The peak outward IK1 density was 

increased by 45% in 8K vs. 4K (3.00 ± 0.08 pA/pF vs. 4.32 ± 0.12 pA/pF) as shown in Fig. 

2B. The reversal potential and the membrane potential where IK1 peaked were shifted by 

17.52 ± 1.04 and 20.98 ± 0.85 mV, respectively. The increased inward IK1 followed the shift 

of Nernst-potential for K+ (Figs. 2C, 2D) and the slope of the inward IK1 did not change 

in 8K vs. 4K. In contrast to the inward IK1, the outward IK1 was markedly enhanced in 8K 

when determined at −50 mV (Fig. 2D).
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Profile of major repolarizing K+ currents under ventricular AP in hyperkalemia and β-
adrenergic stimulation

Next, we compared the profile of IK1, IKr, and IKs currents under AP-clamp in 4K and 

8K at 2 Hz pacing rate under AP-clamp in the same cell. To eliminate the impact of 

individual cell’s AP configuration on the profiles of K+ currents studied, we used the same 

prerecorded, typical, physiological rabbit AP (obtained with preserved [Ca2+]i transient) in 

all AP-clamp experiments. Because in this study we were interested in the profiles of each 

K+ current under AP-clamp, inward currents (Na+, Ca2+, and Na+/Ca2+ exchanger currents) 

were inhibited using tetrodotoxin and nifedipine in the extracellular solution as well as 10 

mM BAPTA in the internal (pipette) solution.

IK1 (measured as Ba2+-sensitive current) was markedly increased under AP-clamp in 

8K vs. 4K as shown in Fig. 3A. IK1 reached higher peak at earlier time, i.e., at more 

positive membrane potential. This increased current provided the extra repolarizing power 

that facilitated AP repolarization shown in Fig. 1C. Moreover, the positive shift in Nernst-

potential for K+ resulted in a large inward current at diastolic potential of −86 mV (0.81 

± 0.39 pA/pF vs. −9.19 ± 1.34 pA/pF in 4K and 8K, respectively). IKr (measured as 

E-4031-sensitive current) started to increase during phase 2 and peaked during phase 3 

of the AP (Fig. 3B). The peak IKr density was reduced from 0.96 ± 0.03 pA/pF in 4K 

to 0.64 ± 0.04 pA/pF in 8K; however, the profile of IKr. under AP-clamp did not change 

significantly. Baseline IKs (measured as HMR-1556-sensitive current) was a small current 

under AP plateau, and it was further decreased in 8K vs. 4K (0.24 ± 0.02 pA/pF vs. 0.19 ± 

0.01 pA/pF; Fig. 3C).

β-Adrenergic receptor stimulation using 10 nM ISO did not affect IK1 significantly in either 

4K or 8K when [Ca2+]i was buffered with 10 mM BAPTA in the pipette (Fig. 3D). IKr 

also did not change after ISO stimulation (Fig. 3E). On the contrary, IKs was significantly 

upregulated upon ISO application both in 4K and in 8K (Fig. 3F) and significant IKs 

was observed during the early AP plateau that may reflect both faster activation of IKs 

and accumulation of the open state channels due to the slow deactivation kinetics of IKs, 

as previously reported (Rocchetti et al. 2006). Interestingly, 8K not simply reduced the 

magnitude of IKs in ISO, but markedly distorted the shape of the current. The profile of IKs 

under AP-clamp in 8K following ISO stimulation became similar to that of IKr. Statistical 

analysis of the currents revealed that IK1 outward peak density increased by ~40% in 8K, 

IKr. peak decreased by ~30%, while IKs decreased by ~20% (Figs. 3G–3I).

Relative contribution of each K+ current under ventricular AP in hyperkalemia and β-
adrenergic stimulation

Hyperkalemia suppressed the moving charge of IKr and IKs significantly both in control 

and following ISO stimulation. The reduction of IKr under AP-clamp was similar in control 

and 10 nM ISO. However, 8K reduced IKs by 24% and 42% in control and 10 nM ISO, 

respectively. Nonetheless, the total charge carried by IKs in 10 nM ISO and in 8K was 

increased to 194% of that measured in 4K and in basal condition. 8K increased IK1 in 

both control and 10 nM ISO in a similar extent compared with that measured in 4K (Fig. 

4A). These data indicate that IKs can compensate the hyperkalemia-induced reduction in 
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repolarizing power of IKr only following sympathetic activation. However, IK1 is still able to 

provide considerable extra repolarizing power in the absence of sympathetic stimulation.

As repolarizing K+ currents have different profiles under AP, we analysed the relative 

contribution of these currents to the net repolarizing current at different AP voltages (20, 

−20, and −60 mV). Despite the strong rectification of IK1 at potentials positive to the resting 

potential, IK1 was still the largest repolarizing current during the phase 3 of the AP. IKr 

also significantly contributed to phase 3 repolarization (Fig. 4B). Even though IKr was 

diminished in 8K, this reduction was not only compensated by the IK1 facilitation, but the 

sum of the repolarizing K+ currents was increased by 65% at this phase of repolarization 

(Fig. 4B). IK1 and IKr provided almost entirely the repolarizing power during phase 3 of 

the AP (at −20 and −60 mV) under basal condition; however, the relative contribution of 

IKs to the net repolarization was markedly increased following β-adrenergic stimulation 

especially during the AP plateau phase (at 20 mV; Fig. 4C). Similar to that seen in control, 

hyperkalemia reduced IKs in 10 nM ISO, but the absolute magnitude of IKs was still higher 

than that measured in control under AP-clamp (Figs. 4B, 4C). These data indicate that IKs 

becomes an important contributor of the defense mechanism against hyperkalemia during 

sympathetic stimulation.

Discussion

Effect of hyperkalemia on K+ currents

The goal of this project was to gain mechanistic insight on the electrophysiological 

adaptation of ventricular cardiomyocytes to hyperkalemia. Here we showed that IK1 is 

markedly upregulated, but IKr and IKs are downregulated in hyperkalemia under the AP 

(Fig. 3). We found that the extent of IK1 upregulation exceeded the reduction of IKr and 

IKs. Therefore, despite the reduced driving force for K+ efflux in hyperkalemia, the net 

repolarizing current was increased (Fig. 4) and the AP duration was shortened (Fig. 1).

Facilitation of IK1 in elevated [K+]o due to increased single-channel conductance of Kir 

channels has already been reported in previous studies employing rectangular voltage clamp 

protocols (Boyett et al. 1980; Liu et al. 2011; McAllister and Noble 1966). [K+]o also affects 

the rectification of IK1 resulting in increased outward IK1 density that was attributed to 

the competition between Mg2+ and K+ binding (Matsuda 1991). Our data provide the first 

experimental evidence to prove that these mechanisms are effectively facilitate IK1 under the 

ventricular AP (Figs. 2–3).

Increased [K+]o has also been reported to increase IKr in Xenopus oocyte expression 

system (Sanguinetti et al. 1995), but we found that hyperkalemia actually reduced IKr 

peak density under AP-clamp in rabbit. This conflicting result can be explained by the 

substantial differences between the experimental model and conditions used in these studies. 

Sanguinetti et al. used a Xenopus oocyte expression system, whereas we used freshly 

isolated adult rabbit ventricular cardiomyocytes. Besides the important differences between 

the compositions of extra- and intra-cellular solutions used, the voltage protocols were also 

conceptually different. Sanguinetti et al. recorded IKr with a conventional voltage clamp 

protocol, using 4 s long rectangular depolarization steps with 1–3 pulses/min pacing rate 
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to study the activation and the deactivation of IKr. The long depolarizing and interpulse 

intervals are critical for the complete transition of the whole channel population to uniform 

states (equilibrium condition) but these conditions differ markedly from that present in 

beating heart. We used AP voltage-clamp technique, when a prerecorded physiological 

rabbit AP (200 ms long) was applied as voltage command at much higher pacing rate 

(120 pulses/min). Under these conditions, the channel population has no time for complete 

deactivation; therefore, the increasing magnitude of the current is explained predominantly 

by accumulation and not activation of the current (non-equilibrium condition) (Rocchetti et 

al. 2001). The traditional square-pulse voltage protocol used by Sanguinetti et al. is a precise 

biophysical approach aiming to understand the gating mechanism of individual channels, 

whereas our approach measures the actual current during an AP to gain functional insights 

on the role of each current in shaping the AP (Chen-Izu et al. 2017). Our data indicates 

that the decreased driving force for K+ efflux during AP overcomes the stimulatory effect of 

hyperkalemia on IKr gating. This is in line with a publication of Sanguinetti and Jurkiewicz 

(1992)), who demonstrated that native IKr showed much lower [K+]o-dependence than the 

hERG channels in heterologous expression systems. Note that the exact physiological profile 

and magnitude of both IKr and IKs under AP crucially depend on the timing and the plateau 

voltages of the AP, which require further investigation.

Effect of β-adrenergic stimulation on K+ currents in hyperkalemia

Vigorous physical exercise is associated with increased cardiac output with higher 

sympathetic tone present. Activation of β-adrenergic receptors is known to upregulate 

L-type Ca2+ current (Hegyi et al. 2019b; Szentandrassy et al. 2012) and late Na+ current 

(Hegyi et al. 2018a), which enhance depolarization drive; however, the AP duration is 

still usually shortened because of the substantial K+ current upregulation (Banyasz et al. 

2014; Hegyi et al. 2018b; Ruzsnavszky et al. 2014). Hence, we repeated our experiments 

in the presence of 10 nM ISO to investigate the impact of β-adrenergic stimulation on 

the adaptive mechanism to hyperkalemia. Our data indicate that IKr and IK1 were the 2 

dominant repolarizing currents during AP under baseline conditions, but these currents were 

not significantly modulated by ISO treatment (Fig. 3). This later finding is in contrast 

with previous studies that reported slightly increased IKr and IK1 following β-adrenergic 

stimulation (Banyasz et al. 2014; Harmati et al. 2011). One possible explanation for this 

discrepancy can be the Ca2+-dependence of these currents. IK1 has been shown to be 

increased acutely by the Ca2+/calmodulin-dependent protein kinase II (Hegyi et al. 2019a; 

Wagner et al. 2009), which is also known to get activated during β-adrenergic stimulation 

(Hegyi et al. 2018a). Similarly, IKr can be upregulated by Ca2+-dependent protein kinase 

C (Heath and Terrar 2000); however, others reported that protein kinase C decreased IKr 

(Cockerill et al. 2007). In this study, we buffered [Ca2+]i below its physiological diastolic 

level using 10 mM BAPTA in the pipette, which might have masked these regulations.

In line with previous reports (Banyasz et al. 2014; Rocchetti et al. 2006; Ruzsnavszky et al. 

2014; Sala et al. 2018; Szentandrassy et al. 2012), 10 nM ISO markedly increased IKs peak 

density and moving charge to 268% and 331% of control, respectively (Fig. 3). Increasing 

[K+]o from 4 to 8 mM reduced IKs in a similar extent both in control and following ISO 

stimulation (IKs peak density decreased by 19% and 17%, respectively). However, following 
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ISO stimulation, the net charge of IKs in 8K was still larger than that of IKr in any conditions 

measured in our study. These data suggests that both IKr and IKs are reduced under the 

AP in high [K+]o due to decreased driving force for K+ efflux, but the facilitation of IKs 

during increased β-adrenergic stimulation can compensate for the reduction of delayed 

rectifier K+ currents in hyperkalemia. The reversal of IKr – IKs dominant pattern of AP 

repolarization after β-adrenergic stimulation in rabbit cardiomyocytes is consistent with 

our previous results in guinea pig (Banyasz et al. 2014) and canine ventricular myocytes 

(Szentandrassy et al. 2012). Therefore, we propose that IKs is an important component of the 

cardiac adaptation to high [K+]o under physiological conditions, when strenuous physical 

activity is associated with increased sympathetic tone. Also, our observations indicate that 

sympathetic stimulation-induced IKs facilitation may provide efficient protection against 

electrical dysfunction in cardiac cells.

Transient outward K+ current (Ito) was not studied here, but it also significantly contributes 

to AP repolarization and AP duration response to β-adrenergic stimulation (Sala et al. 

2018; Szentandrassy et al. 2012). Therefore, the regulation of Ito by hyperkalemia and 

the way it influences the transmural dispersion of ventricular repolarization are important 

questions to be tested in the future. Moreover, it also has been demonstrated previously 

that functionally distinct Na+ channels in different transmural regions of the left ventricle 

also significantly contribute to the AP duration response to hyperkalemia (Cordeiro et 

al. 2008). The depolarization of the resting membrane potential in hyperkalemia reduces 

the availability and recovery from inactivation kinetics of Na+ and L-type Ca2+ channels 

influencing AP duration, conduction velocity (Weiss et al. 2017), but also Ca2+ cycling and 

signaling in cardiomyocytes (Bers 2008), which requires further investigation.

Importantly, under pathological conditions characterized by reduced repolarization reserve 

(Bebarova et al. 2017; Hegyi et al. 2018b, 2018c; Lengyel et al. 2007; Varro and Baczko 

2011), the significantly decreased IK1 and IKs may not be able to compensate for the reduced 

driving force for K+ in hyperkalemia and the risk of arrhythmias can be further increased.

Conclusions

In this study, we characterized the role of 3 major K+ currents (IKr, IKs, and IK1) in the 

adaptation of ventricular myocyte to hyperkalemia. We found that reduced driving force for 

K+ combined with altered ion channel gating results in a net reduction for IKr and IKs and 

a marked increase for IK1 in hyperkalemia. Furthermore, we demonstrated that increased 

IK1 in hyperkalemia is able to overcome the decreases of IKr and IKs during ventricular 

AP, thus increasing the net repolarizing current in phase 3 of the AP. β-Adrenergic receptor 

stimulation significantly upregulates IKs; however, the IKs upregulation is diminished in 

hyperkalemia. Increased IK1 and IKs enhance the repolarizing power to reduce the risk 

of early afterdepolarizations and, hence, they represent an important defense mechanism 

against AP prolongation and arrhythmia susceptibility in hyperkalemia that may occur under 

intense physical activity. Interestingly, we found reduced IKr response to hyperkalemia in 

cardiomyocytes under AP-clamp, which contrasts with previous findings in heterologous 

expression of hERG channels. The attenuated regulation of native IKr may have significant 

arrhythmogenic consequences, especially when the repolarization reserve is reduced (e.g., in 
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heart failure and long QT syndromes); therefore, the determinants of IKr gating alterations in 

hyperkalemia demand further investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Shortening of ventricular action potential (AP) in hyperkalemia. (A) Representative 

ventricular APs at 1 Hz pacing in either 4 or 8 mM [K+]o. Pipette solution contained 10 

mM BAPTA. AP upstroke and its derivative (dV/dt) are enlarged in insets. (B) AP duration 

measured at 90% repolarization (APD90) was significantly decreased in hyperkalemia in 

a reverse-rate dependent manner. (C) Depolarization of resting membrane potential (Vrest) 

followed the change in Nernst-potential for K+, which led to a decrease in peak voltage of 

the AP overshoot (Vpeak). (D) Maximal upstroke velocity (dV/dtmax) significantly decreased, 

while maximal rate of repolarization (−dV/dtmax) significantly increased in hyperkalemia. 

Columns/symbols and bars represent mean ± SEM. n = 11 cells from 4 animals. Student’s 

paired t test. ***, p < 0.001. [Color online.]
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Fig. 2. 
Outward IK1 is significantly increased in hyperkalemia. (A) Representative traces and I–
V relationships of 100 μM Ba2+-sensitive inward rectifier K+ current (IK1) in a rabbit 

ventricular myocyte (applied voltage protocol is shown in the inset). [Ca2+]i was buffered to 

nominally zero by 10 mM BAPTA in the pipette solution. IKr, IKs, L-type Ca2+, and voltage-

gated Na+ currents were inhibited using 1 μM E-4031, 1 μM HMR-1556, 10 μM nifedipine, 

and 10 μM tetrodotoxin, respectively. (B) Hyperkalemia increased the peak outward current. 

(C) The shift in reversal potential followed the change in the Nernst-potential for K+. The 

voltage where the outward current reached its peak density was more positive in high 

[K+]o. (D) Both inward and outward IK1 (measured at −160 and −50 mV, respectively) were 

significantly increased in hyperkalemia. Columns and bars represent mean ± SEM. n = 18 

cells from 6 animals. Student’s paired t test. ***, p < 0.001. [Color online.]
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Fig. 3. 
Altered K+ current profiles under action potential (AP)-clamp in hyperkalemia and 

β-adrenergic stimulation. (A) IK1 traces (mean ± SEM) recorded under AP-clamp in 

physiological (4 mM) and elevated (8 mM) [K+]o. A prerecorded, typical rabbit ventricular 

AP (shown above) was used as voltage command in all AP-clamp experiments (canonical 

AP-clamp) at 2 Hz pacing frequency. IK1 was measured as 100 μM Ba2+-sensitive current. 

[Ca2+]i was buffered using 10 mM BAPTA in the pipette, whereas Ca2+ and Na+ channels 

were inhibited using 10 μM nifedipine and 10 μM tetrodotoxin, respectively. Diastolic 

IK1 in 8 mM [K+]o is out of range. (B) IKr traces (mean ± SEM) were recorded under 

AP-clamp using 1 μM E-4031. (C) IKs traces (mean ± SEM) recorded under AP-clamp 

using 1 μM HMR-1556. (D–F) IK1, IKr, and IKs traces recorded (mean ± SEM) in the 
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presence of 10 nM isoproterenol (ISO) in 4 and 8 mM [K+]o. (G–I) Peak current densities. 

IK1 peak density was significantly increased in 8 mM [K+]o both in basal conditions and 

following ISO stimulation. IKr was decreased in 8 mM [K+]o and its density was unchanged 

by ISO stimulation. IKs was significantly upregulated following ISO stimulation; however, 

the increase in IKs amplitude was attenuated in 8 mM [K+]o. Columns and bars represent 

mean ± SEM. n refers to cells/animals measured in each group. Two-way ANOVA with 

Bonferroni post hoc test. *, p < 0.05; ***, p < 0.001; NS, not significant. [Color online.]
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Fig. 4. 
Relative contributions of each K+ current in adaptation to hyperkalemia and β-adrenergic 

stimulation. (A) Net charges of IKr, IKs, and IK1 in 4 and 8 mM [K+]o under control and in 

the presence of 10 nM isoproterenol (ISO). (B) Relative contributions and magnitudes of the 

main K+ currents during action potential (AP) phase 3 are compared in different phase of the 

repolarization process in 4 and 8 mM [K+]o. Upregulation of IK1 overcomes the decreases of 

IKr and IKs during AP phase 3 measured at −20 and −60 mV. (C) β-Adrenergic stimulation 

significantly increased net repolarizing current via IKs upregulation; however, the relative 

contribution of IK1 was still dominant in 8 mM [K+]o vs. 4 mM [K+]o. Columns represent 

mean current densities. [Color online.]
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