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Trends
Molecular networking has been used to
develop the world's largest repository
and data analysis tool for tandem mass
spectrometry (MS/MS) data, named
Global Natural Products Social Mole-
cular Networking (GNPS). GNPS is
being used to decipher the metabolo-
mic ‘dark matter’ of our world, in every-
thing from plant extracts and microbial
cultures to a variety of human and
environmental samples, by propagat-
ing spectral library-based annotation
and showing that there are chemical
Review
Molecular Networking As a
Drug Discovery, Drug
Metabolism, and Precision
Medicine Strategy
Robert A. Quinn,1,4 Louis-Felix Nothias,1,4 Oliver Vining,2

Michael Meehan,1 Eduardo Esquenazi,2 and
Pieter C. Dorrestein1,3,*

Molecular networking is a tandem mass spectrometry (MS/MS) data organiza-
tional approach that has been recently introduced in the drug discovery, metab-
olomics, and medical fields. The chemistry of molecules dictates how they will
be fragmented by MS/MS in the gas phase and, therefore, two related molecules
are likely to display similar fragment ion spectra. Molecular networking organ-
izes the MS/MS data as a relational spectral network thereby mapping the
chemistry that was detected in an MS/MS-based metabolomics experiment.
Although the wider utility of molecular networking is just beginning to be
recognized, in this review we highlight the principles behind molecular network-
ing and its use for the discovery of therapeutic leads, monitoring drug metabo-
lism, clinical diagnostics, and emerging applications in precision medicine.
relationships between detected mole-
cules across many sample types.

Molecular networking is being used to
identify compounds related to medi-
cally important drugs that can be devel-
oped as new therapies.

Molecular networking can identify a
broad diversity of unknown natural pro-
ducts with potential medical relevance,
even from organisms that have already
been extensively characterized.

GNPS and molecular networking are
beginning to show cross-associations
between the chemistries of seemingly
unrelated biological systems. For
example, platelet-activating factor, a
bioactive lipid involved in human inflam-
mation, was shown to also be involved
in immune defense in corals by mole-
cular networking-based annotation of
untargeted MS data.

Molecular networking is beginning to
be used in clinical medicine. MS/MS
data can be collected and analyzed
Introduction to Molecular Networking
Mass spectrometry (MS) (see Glossary)-based profiling of human samples for the identification
of disease began with the analysis of human urine and breath in the late 1960s [1,2]. Since these
early days, the technology has advanced to the point that the instruments are being applied in real
time during surgery to determine tumor phenotype [3]. MS has also become essential for research
on active biological small molecules from nature and led to the development of new methodologi-
cal approaches to explore the immense diversity of these molecules, also called natural
products. These molecules are produced by diverse organisms found around the globe and
have become some of our most essential medicines (e.g., penicillin, vancomycin, rapamycin,
taxol, lovastatin). Despite the broad applicability of untargeted MS analysis and its widespread
use, it remains challenging to annotate most of the chemical signatures detected by untargeted
MS, limiting the utility of the data collected [4]. These chemical signatures can include unknown
analogs of known compounds, completely unique chemical entities with no known relatives, or
spectral signatures resulting from in-source fragmentation and ionization adducts. Molecular
networking [5] is a computational strategy that aids visualization and interpretation of the
chemical repertoire that can be detected using MS. It is has great potential to aid both MS-
based disease diagnostics and drug development, including metabolism, because it harnesses
the power of untargeted MS data that has historically been underutilized.

Molecular networking is a visualization strategy for untargeted MS. Untargeted MS is one of the
key metabolite discovery and annotation strategies in metabolomics. Molecular networking
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within hours to identify the molecular
signatures of disease and metabolites
of microbial, host, and xenobiotic
origin.
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provides a visual overview of all of the ions of molecules that were detected and fragmented during
an MS experiment and the chemical relationships between them. This fragmentation-based MS
method is referred to as MS/MS. Current methods using molecular networking of MS/MS data
show that we can annotate only approximately 1.8% of the data compared with existing MS/MS
reference libraries in the public domain [4,6]. The inability to annotate data is a significant
bottleneck for the MS community that generally results in reporting of only the known molecules
in an untargeted dataset and ignoring the rest. Although not directly annotated, there are many
related ions that give rise to similar MS/MS spectra in a metabolomics experiment. Molecular
networking enables the visualization of this chemical similarity, which is otherwise left unanalyzed.

Molecular networking uses a vector-based computational algorithm to compare the degree
of spectral similarity between every MS/MS spectra in a dataset [5,7]. Output can be visualized
as networks of MS/MS spectra called molecular networks [5,7]. When molecular networking
was introduced, a commentary highlighted that this method is the chemical analog of meta-
genomics and that it would ‘usher a new era in therapeutic discovery’ [8]. Since its introduction in
the field of metabolomics in 2012 [5], it has been successfully applied to benefit drug discovery
pipelines, for the identification of novel virulence factors [9] and natural products, and in drug
metabolism studies [10–12]. Molecular networking has led to the development of Global Natural
Products Social Molecular Networking (GNPS) (http://gnps.ucsd.edu), a molecular networking
and data-sharing web-based platform [6] allowing an ever-growing community of users to take
advantage of this bioinformatics strategy and perform data-driven, crowd-sourced analysis.
As database and algorithm, GNPS and molecular networking are analogous to GenBank and
Basic Local Alignment Search Tool (BLAST) [13], which have had a significant impact on the
field of DNA and RNA sequence-based science.

Several powerful metabolomics workflows, such as XC-MS online [14] or, more recently, W4M
[15], MetaboAnalyst [16], and many other tools, use feature detection/alignment algorithms and
various statistical approaches to discover biomarkers that are meaningful in a biological context.
These bioinformatics pipelines are experiencing widespread use [17–19]. The molecular net-
working-based metabolomics workflow differs from previously established statistical workflows
in that it analyzes chemical relationships between every MS/MS spectrum, visualizing the entire
metabolome detected in a sample. Future workflows that integrate molecular networking with
statistical comparison of samples or cohorts are being developed and becoming available
through GNPS [6]. Here we introduce molecular networking and then focus on the range of its
applications to highlight how it can be used as an innovative tool for drug discovery, clinical
applications, and precision medicine.

Molecular Network Generation and Visualization
Molecular networking of MS/MS data is a graph-based workflow that aims to organize large MS
datasets by mining spectral similarity between the MS/MS fragmentation patterns of different,
but structurally related precursor ions (Figure 1, Key Figure) [5,7,8,20]. First, MS/MS data are
simplified to reduce the downstream computational load and to enhance the efficiency of the
spectral similarity algorithm [20,21]. In particular, low-intensity fragment ions and the precursor
ion are removed from the MS/MS spectra. Moreover, spectra with the same precursor ion
mass-to-charge ratio (m/z) and that have similar MS/MS spectra are merged into a single
consensus spectrum [20,21]. These necessary data preprocessing steps tend to improve the
spectral quality of lower-intensity precursor ions but cause most structural isomers to be merged
into a single consensus spectrum. These consensus MS/MS spectra are then simplified as
vectors in a multidimensional normalized space where each dimension corresponds to an m/z
value and its respective intensity. These vectors are then used to calculate a cosine score
(normalized dot product) between every possible pair of consensus MS/MS spectra, which
allows the determination of the degree of spectral similarity between them (ranging from 0 to 1, 1
144 Trends in Pharmacological Sciences, February 2017, Vol. 38, No. 2
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Glossary
Basic Local Alignment Search
Tool (BLAST): a method of
comparing the similarity of nucleic
acid sequences.
Bioinformatics: computational tools
that can help in the analysis of large
datasets generated on biological
samples, most often nucleic acid
sequencing and MS data.
Computational algorithm:
sequence of operations that is
computationally integrated.
Cosine score: expresses the angles
between a pair of vectored MS/MS
spectra.
Cystic fibrosis (CF): a genetic
disease caused by mutations in the
CF transmembrane conductance
regulator gene that result in mucus
accumulation in multiple organs and
chronic lung infections.
Dereplication: the annotation of
known molecules in a biological
sample. In untargeted MS it is
typically performed by spectral
matching with spectral library
spectra. In targeted MS it can be
done by comparison with the
properties of reference standards.
Edge: in a molecular network, the
link between two metabolite nodes
represented by the existence of a
significantly spectral similarity,
expressed as the cosine score value
between a pair of MS/MS spectra.
Fragmentation/fragmented:
dissociation of a precursor ion; can
occur in-source and/or in the collision
chamber, such as collision-induced
dissociation (CID) or high-energy
collision dissociation (HCD).
Liquid chromatography (LC):
separates molecules based on their
chemical interaction with the
stationary phase.
Liquid chromatography–tandem
mass spectrometry (LC-MS/MS):
a hyphenated method comprising a
liquid chromatography system
coupled to a tandem mass
spectrometer.
Mass spectrometry (MS): an
analytical instrument that produces a
beam of gas-phase ions from
samples, sorts the resulting mixture
of ions according to their m/z value
and provides output signals from
which the m/z and intensity
(abundance) of each detected ionic
species may be determined.
Mass-to-charge ratio (m/z): of an
ion, measured by a mass
spectrometer.
representing identical spectra [20]). Note that several parameters can be modified depending on
the mass spectrometer used, such as the precursor ion mass tolerance for the consensus
spectrum and the fragment ion mass tolerance (typically � 0.02 Da for high-resolution instru-
ments, in the range m/z 100–1500 Da). Moreover, the number of minimum-match fragment ions
can be adjusted to meet the specificity of the fragmentation behavior of the analyzed molecules.

The output of these vector-based comparisons can then be visualized as graphs of spectral
similarity called spectral networks [7] or molecular networks [5], where each node is a consen-
sus MS/MS spectrum and edges between nodes indicate the degree of similarity between
consensus spectra (above the similarity score threshold defined by the user, usually 0.7).

Early studies on molecular networking used MATLAB (The Mathworks, Inc.®) scripts installed on
a desktop computer for the computation of similarity scores and visualization was achieved
using Cytoscape® software [22]. With the introduction of the GNPS web platform (http://gnps.
ucsd.edu), users can upload and store MS/MS data online, generate molecular networks,
capture knowledge of the networks as an individual or as a community, and add sample
information and other metadata to understand the network [6]. Subclusters of a molecular
network represent molecules that are structurally related and are referred to as molecular families
[23]. Data visualization of molecular families can now be performed directly online on GNPS,
whereas visualization of an entire molecular network and its constituent molecular families is best
done off-line with Cytoscape [22] or another network visualization tool. In Cytoscape, attributes
of molecular networks can be tuned to help data interpretation, such as edge thickness, which
can be proportional to the cosine score, node size, which can be correlated to precursor ion
intensity, or node color, which can be used to map various metadata associated with samples
(group mapping).

Originating from the assumption that related molecules produce similar fragmentation patterns in
MS/MS [5,8], molecular networking produces an MS/MS spectral similarity map that allows the
visualization of structurally related molecules. The main strength of this approach is that it can be
used for the exploration of thousands to millions (and potentially billions) of MS/MS spectra
without any prior knowledge regarding the chemical composition of the samples [24]. Moreover,
GNPS can automatically perform a spectral library search for known molecules in the molecular
networks, if their MS/MS spectra are available in public MS/MS spectral libraries [6]. This
process, called dereplication by the natural product community and also known as identifying
‘known unknowns’ in metabolomics, is critical not only for the molecular annotation of MS/MS
spectra, but also for the propagation of these annotations through the networks, allowing
detection of analogs and the discovery of novel chemical products (Figure 2) [25]. It is in this way
that molecular networking is analogous to the BLAST [13] algorithms used to identify similar
nucleic acid sequences, a method that led to the explosion in the use of sequence data
generated by the field of genomics.

Thus, the interpretation of MS/MS molecular networks can be conceptualized in two comple-
mentary paradigms: (i) an ab initio paradigm where data is organized without any prior knowl-
edge of its chemical composition; and (ii) an incrementum paradigm in which molecular
annotation is propagated through the molecular networks by ‘seeding’ confident annotation
of molecular features.

Molecular Networking for Drug Discovery Leads
Natural products are a prolific source for new therapeutic leads [26]. Several studies report the
successful application of molecular networking for the detection and isolation of bioactive
compounds. Application of molecular networking to the natural products produced by marine
Vibrio species led to the discovery of a series of antibacterial amino-polyketide derivatives named
Trends in Pharmacological Sciences, February 2017, Vol. 38, No. 2 145
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Metabolomics: the study of the
whole set of small molecules from an
organism.
Molecular networking: also called
spectral networking; a method for the
analysis and visualization of MS/MS
data using vector-based spectral
matching.
Molecular network: also called
spectral network; a visual
representation of the degree of
spectral similarity between a dataset
of MS/MS spectra.
Natural products: small-molecule
secondary metabolites produced by
a biological organism.
Node: in a molecular network,
represents a cluster of highly similar
MS/MS spectra (also called
consensus MS/MS spectra) as
determined by vector-based spectral
matching.
Precision medicine: a method of
medical practice involving a focused
approach to diagnosis and treatment
based on large amounts of data from
a single individual.
Tandem mass spectrometry (MS/
MS): an MS method that combines
several mass analyzers into a single
instrument allowing the filtering and
fragmentation of a precursor ion and
measurement of its product ions.
Targeted MS: MS method aimed at
detecting specific ions and/or
precursor-to-product transitions.
Untargeted MS: MS methods that
are able to acquire the mass spectra
of any detected ions that meet
predefined characteristics (such as
threshold level or m/z range).
Xenobiotics: metabolites of
exogenous sources found in the
human body.
vitroprocines [27] as well as the anti-inflammatory and analgesic sphongonucleosides [28]. A
joint metabolomics and genomics approach allowed the detection of unreported analogs and
the biosynthetic intermediates of four non-ribosomal peptide synthase-derived molecular fami-
lies with antibacterial activities in Streptomyces roseosporus [29]. The columbamides, a new
class of trichlorinated acyl-amides from Moorea species with cannabinomimetic activity, were
also discovered by a similar combined approach [30].

When larger numbers of organisms and their metabolomics datasets and genomes are avail-
able, pattern-based genome mining becomes possible. In effect, this enables the correlation of
molecular families with the presence or absence of genes (or gene clusters) that encode them.
The unique nature of molecular networking is that the molecules do not have to be identical but
belong to the same family, as biosynthetic evolutionary processes often expand the diversity of
bioactive molecules through attaching novel structural groups to base chemical backbones,
enabling the discovery of related molecules. The first paper describing pattern-based genome
mining was used to explore the molecular composition of thirty-five closely related strains of
Salinispora (Actinomycetes) [31]. In this paper, pattern-based genome mining identified a unique
biogenetic gene cluster observed in only a single strain. The MS/MS molecular networking used
in this study led to the isolation and characterization of retimycin A, a new member of the
quinomycin family of antibiotics.

Recently, molecular networking was also employed to explore the induced metabolome of
Burkholderia thailandensis in response to the antibiotic trimethoprim. Over 100 novel com-
pounds not seen in standard growth conditions were observed [32]. This example illustrates the
power of molecular networking to reveal unknown bioactive compounds, even from micro-
organisms that have been extensively studied by conventional means.

The use of molecular networking in industrial settings is also becoming more prevalent. In the
biotechnology sector, Sirenas LLC often relies on molecular networking to help expedite the
discovery of novel small-molecule therapeutic leads from complex marine sources. The com-
pany has successfully used molecular networking in the discovery of potent cytotoxins that can
serve as payloads for antibody–drug conjugates (ADCs). ADCs combine potent cytotoxic small
molecules with highly specific monoclonal antibodies (mAbs) targeted to tumor-specific anti-
gens, forging an important tool in personalized cancer treatment [33]. Sirenas has integrated
molecular networking with chemometrics-based bioactivity predictions into their drug discovery
platform. This approach has been successful in identifying new classes of molecules, including a
new member of the well-studied dolastatin 10 structural class (the origin of the most successful
ADC payload, auristatin, which is found in over 20 clinical-stage cancer products and the FDA-
approved product Adcetris). The novel discovery exhibits increased potency and a more
desirable physicochemical profile. To find this new molecule with molecular networking, a
marine fraction library was screened against several cancer cell lines and analyzed by liquid
chromatography (LC)-MS/MS. All metabolites observed in the fraction library were assigned
‘activity scores’ to prioritize efforts on only the molecules most likely to exhibit cytotoxic activity.
Briefly, these scores were generated by determining the relative abundance of each metabolite
through the integration of LC-MS features, which provides a comprehensive semiquantitative
database of metabolites across the fraction library. Importantly, a single metabolite can be
present in varying abundances across multiple fractions, allowing rank-order correlations to be
made between the relative abundance of a metabolite and the strength of biological activity
observed for each fraction in which it is present. Global analysis of the fraction library yields a
correlative value, or activity score, for each metabolite tested in a given assay. This score falls
between 0 and 1, with a score of 1 representing perfect correlation between the abundance of a
metabolite and the biological activity of the fraction. Mapping these scores to the corresponding
metabolites in a molecular network provides a method to visualize the structural and bioactivity
146 Trends in Pharmacological Sciences, February 2017, Vol. 38, No. 2



Key Figure

Molecular Networking: A Graph-Based Tool to Explore Spectral Similarity in Liquid Chromatogra-
phy–Tandem Mass Spectrometry (LC-MS/MS) Data from Molecular Mixtures
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Figure 1. Molecular networks from LC-MS/MS spectra of tryptophan and biotin derivatives (from EMBL MCF spectral library on GNPS). The interactive view of the
molecular network can be visualized directly on GNPS via the following link http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=0415c5ae1d65449297b8aef26a480af9.
relationships between molecules (Figure 2). Interrogation of this network revealed a molecular
family exhibiting strong activity scores and several member nodes were dereplicated as
dolastatin 10 [34], as well as the related symplostatins 1 and 3 [35,36], and malevamide D
[37] family members (Figure 2), along with a novel analog (SMD5041). Relying on mass-directed
isolation, �15 mg of pure compound was recovered from the original extract, allowing verifica-
tion of an MS/MS-proposed structure by NMR. Secondary assays confirmed the predicted
activity, with an IC50 of 1 nM against bt474 cancer cells. Importantly, isolation of this extremely
minor metabolite would not have been possible via traditional bioassay-guided fractionation, as
the requirement for iterative biological testing would have consumed all available material.

Synthesis of SMD5041 has been completed alongside several analogs, many of which retained
low-nanomolar activity. Currently, clinically relevant ADCs using this molecular network-identi-
fied payload are undergoing preclinical evaluation. Development of these analogs, in addition to
isolation and characterization of the natural product, represents a novel intellectual property
space within a group of compounds that has been actively pursued in the pharmaceutical
industry for over three decades.

The examples above demonstrate that in only a few years molecular networking has proved to
be a valuable tool for drug lead discovery from nature. First, molecular networking can prioritize
and rationalize the search for molecules in a biomass collection by accelerating the dereplication/
annotation steps, putative recognition of bioactive molecules, and the detection of unique
chemical space or niches. Second, its integration with genomic analysis can lead to the
Trends in Pharmacological Sciences, February 2017, Vol. 38, No. 2 147
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Figure 2. Molecular Networking in Natural Product Drug Discovery. Extracts of marine organisms are analyzed by liquid chromatography–tandem mass
spectrometry (LC-MS/MS) and subjected to biological assay. Individual metabolites in the spectral network are colored according to their presence or absence in active
samples (red and blue nodes, respectively). Statistical analysis of MS data for each sample is used to generate an ‘activity score’ represented as node size, with larger
nodes corresponding to greater likelihood of contribution to observed biological activity. Expanded view of the dolastatin 10 tetrapeptide molecular family shows a new,
highly active structural analog.
identification of biogenetic gene clusters of molecular families. The analysis of a biosynthetic
pathway is the starting point for metabolic engineering efforts to optimize the production yield
and is the biosynthetic platform for synthetic biology [38,39], such as that used for the industrial
semisynthesis of artemisinin in Saccharomyces cerevisiae by Sanofi [40].

Molecular Networking to Visualize Medications and Drug Metabolism
Drug metabolism can significantly affect disease treatment because slight chemical changes of
molecules administered as drugs can have profound physiological effects, including making an
inactive drug active and vice versa. These transformations can be performed by host enzymes
such as cytochromes [41], but more recently microbial enzymes from human-associated
microbiota have been identified as mediators of drug metabolism [42–44]. This creates the
potential for the discovery of an array of unique chemical structures of xenobiotic molecules
generated by microbial and host enzymes and the novel application of molecular networking to
aid pharmacology and medicine.

MS is currently a central tool in the study of drug metabolism [45,46]. Typically, targeted MS
approaches are used for the quantitation of a drug and its metabolized products within biofluids
or samples [47–49]. Although still at the proof-of-principle stage, the use of molecular network-
ing for the discovery of drug metabolism was recently introduced [50]. This approach allows one
to capture related molecules in an untargeted fashion, enabling the discovery of metabolized
derivatives of compounds that could have been overlooked by a targeted approach in a complex
148 Trends in Pharmacological Sciences, February 2017, Vol. 38, No. 2
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biological sample. For example, the diversity of xenobiotics in cystic fibrosis (CF) mucus has
been described using molecular networking [50]. CF is a genetic disease that results in mucus
accumulation in the lungs and susceptibility to chronic bacterial, fungal, and viral infections [51].
CF patients are administered myriad medicines, from antibiotics to anti-inflammatories to
antidepressants. Many of these molecules were detected by untargeted LC-MS/MS analysis
of lung mucus samples and annotated by spectral searching of GNPS libraries, which are largely
populated with MS/MS spectra from commercial drugs [6]. Moreover, molecular networking
was used to capture and annotate unknown biotransformed analogs. Figure 3 illustrates some
of the chemical transformations seen in actual data generated from CF lung mucus. Albuterol, an
anti-inflammatory drug, and antibiotics such as azithromycin show marked transformations,
appearing as connected nodes in clusters containing known medicines. Some of these mol-
ecules represent previously observed breakdown and/or metabolic products of drugs, such as
descladinose azithromycin, where a sugar is removed, and hydroxymethyl ivacaftor, a natural
metabolic byproduct of the metabolism of this CF drug [52], but many of these nodes represent
unknown metabolites. The LC-MS/MS and molecular networking approach is compatible with
all sample types, including biopsies, fecal samples, urine, plasma or blood, and even skin [53].
Molecular networking should enable a more comprehensive understanding of drug metabolism
and lead to the discovery of unknown molecular byproducts and metabolites of drugs that can
help in deciphering their mechanism of action and side effects. This unique capability of
molecular networking to visualize the chemical relatives of known pharmaceuticals represents
a useful application in the pharmaceutical and medical fields.

The Potential of Molecular Networking in Clinical Diagnostics and Precision
Medicine
Metabolic and infectious diseases result in an altered physiological state that can be detected
through changes in small molecules. For example, elevated glucose and/or uric acid content has
long been used as a signature of metabolic syndrome [54–56]. More recently, many diseases are
Trends in Pharmacological Sciences, February 2017, Vol. 38, No. 2 149



being diagnosed with tandem MS, such as inborn metabolic disorders of newborns including
phenylketonuria, maple syrup urine disease, tyrosinemia, citrullinemia, and others [57]. Clinical
outcomes in some infectious diseases, such as dengue fever, can be distinguished by numerous
small molecules identified by LC-MS/MS [58], GC-MS detection of volatile metabolites in breath
gas or breath condensate has seen great interest for the identification of infectious diseases of
the airway [59], and in 2014 the FDA approved the clinical use of MS in typing of microbes [60].
MS is an especially attractive clinical tool for the detection of chemical changes associated with
disease due to the speed of its use and the breadth of metabolites that can be screened. Its
application has become commonplace in clinical diagnostics, to the extent that it is even being
used in the operating room [3].

The potential power of MS-based diagnostics could be even greater because many of the
spectral signatures in an MS experiment remain unknown, leaving their diagnostic capacity rarely
explored. Untargeted fecal, urine, saliva, or skin MS data are very complex; within a single
sample there are several thousand molecular signals. Molecular networking represents a tool
with the ability to expand the potential of MS/MS-based diagnostics by visualizing the complete
repertoire of chemical signals within a clinical sample and better aiding their annotation as
biomarkers. Current MS approaches for clinical diagnostics target specific molecules; thus,
different experimental procedures are required to detect multiple molecules of interest. Molecu-
lar networking can better visualize the known spectra in a single MS experiment and their
relatives, including those from host, diet, medications, personal lifestyle, pathogens, and other
exogenous sources [50]. Furthermore, molecular networking through GNPS can now be
completed within hours of sample collection, making the timeframe for LC-MS/MS data
generation and analysis clinically relevant [61]. The algorithm enables rapid interpretation of
metabolites that are present in complex clinical samples and facilitates an easier path to the
annotation of unknown molecular signatures that may be associated with a disease state.

CF is the first example in which molecular networking is being used to aid disease diagnostics.
Some CF bacterial pathogens produce specialized metabolites detectable by molecular net-
working that can be used as potentially diagnostic markers of infection [9]. The CF bacterial
pathogen Pseudomonas aeruginosa produces quorum-sensing molecules called quinolones,
redox-active metabolites called phenazines, and the rhamnolipids, all of which can aid in the
detection of this pathogen in CF patients [50,62,63]. Molecular networking allows the visualiza-
tion of microbial metabolites, including related ones not normally screened for diagnostics. The
approach has been used to identify microbial metabolites, host inflammatory markers, and drug
metabolism in CF samples [50]. Other studies are beginning to use similar approaches to identify
metabolites specific to particular pathogens as biomarkers for infection, including the agent of
tuberculosis [64]. The method has also been employed to analyze the chemical repertoire on
human skin, identifying the microbial metabolism of host compounds [53]. The current challenge
with this approach is that many bacterial pathogens do not have a well-characterized specialized
metabolome, another area in which the algorithm could aid the field. However, some are
beginning to use molecular networking to help annotate the specialized metabolites produced
by important human-associated microorganisms. Colibactins, for example, are small molecules
produced by Escherichia coli that were found to be associated with increased inflammation and
colon cancer risk [65]. Molecular networking was used to explore their biosynthesis and mode of
action. Clearly, better annotation and documentation of the metabolites produced by important
human-associated or pathogenic microbes, whether known or unknown, will greatly aid the
application of molecular networking as diagnostic tool for microbial infections and other clinical
manifestations that are microbe associated.

Precision medicine is a patient management approach that takes into account the individual
patient's phenotypic and genotypic disease in the context of his or her environment and lifestyle
150 Trends in Pharmacological Sciences, February 2017, Vol. 38, No. 2



to better tune treatments towards the individual. A new initiative on precision medicine was
launched by the US Government in 2015 aiming to make this approach a common method of
treating disease [66]. The expansion of precision medicine has been in part due to the
development of omics approaches, such as genomics and metabolomics, and the availability
of databases in which to compare data from an individual with those from all others with similar
disease characteristics [66]. We speculate that molecular networking has significant potential for
use as a precision medicine tool because it can serve as a general scanning approach for
detecting, visualizing, and identifying the molecules on and in a patient in the context of his or her
disease. Chemical changes within individuals can point to aspects of their particular disease and
inform a clinician about drug metabolism, drug penetration, inflammatory load, metabolic
activity, microbial infections, and other medically relevant aspects of a patient's metabolome
[50]. Molecular networking can aid the translation of MS data to precision medicine because it
better enables data visualization and the identification of molecules associated with a specific
individual's disease state or pathogens of interest [50]. The visual aspects of molecular net-
working are especially well designed for detecting changes in metabolite signatures in a
personalized manner, because nodes can be highlighted by various metadata attributes making
it easy to identify molecules unique to an individual during times of disease or symptom
worsening [67]. The visual nature of the node-mapping approach can also aid longitudinal
studies of patient health, as one can easily observe changes in a patient through time as unique
nodes in a molecular network.

An example of a molecular networking approach to precision medicine is shown in Figure 4,
using actual data from a CF patient to illustrate the method's potential. Clinical samples, in this
case sputum from a CF lung, can be collected at the bedside and then extracted with various
solvents in the laboratory. MS/MS acquisition of metabolite signatures of the sample can be
completed within minutes using today's mass spectrometers and molecular networks can be
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Figure 4. Implementation of Molecular Networking in Clinical Medicine. Samples of any type are collected and subjected to metabolite extraction and liquid
chromatography–tandem mass spectrometry (LC-MS/MS). Molecular networks can then be mined based on metadata for microbial, inflammatory, drug metabolism,
and other chemical signatures. Clusters of molecules reveal microbial, host, and drug chemistry, including virulence factors such as rhamnolipids, drug penetration at the
site of action, and host metabolism and inflammatory metabolites, such as ceramides and other bioactive lipids.
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Outstanding Questions
Can molecular networking help us bet-
ter visualize the chemical communica-
tion between organisms that are
clinically relevant? Who produces what
is a fundamentally hard question when
investigating human biology and its
interface with the microbiome. A major
area of interest in molecular networking
is its ability to help us visualize the
chemical crosstalk within complex bio-
logical samples and to track the spec-
tral signatures to their microbial or host
origin.

What information is contained in a
molecular network that has not yet
been mined? There is potential to
use molecular networking to provide
a systems-level view of biological trans-
formations or enzyme activity within a
biological system. While this approach
has not yet been systematized, it could
be a novel method to monitor pathway
and enzymatic activity within a biologi-
cal system by looking at the atomic
differences between MS/MS spectra
of molecules detected to infer the
chemical reactions involved (e.g., acet-
ylation, methylation, phosphorylation,
lipid chain saturation and desaturation)

Can molecular networking census the
world's medical chemistry as a step-
ping stone towards chemical epidemi-
ology? Broad use of the molecular
networking algorithm through publi-
cally available databases such as
GNPS will provide a census of the
chemistry of our planet and allow
cross-comparison between datasets
to ask broad questions about ubiquity,
prevalence, correlation, and the
strength of association between partic-
ular molecules and various human
diseases.
built within minutes to hours of data acquisition via GNPS. In this example a patient presents with
an increase in symptom severity and the clinicians are interested in identifying the signatures of
metabolites related to microbial infections, inflammatory load, basic metabolism, and therapeu-
tic penetration. In this example P. aeruginosa rhamnolipids are detected, indicating a potential
role of this bacterium in the malady being assessed. Fungicides given to the patient are also
observed, indicating that these drugs are present at the site of infection where they are meant to
act but may not be effective in this instance if the infection is primarily bacterial. Bioactive lipids
indicate a possibly heightened inflammatory response, telling the clinician that steroid or other
anti-inflammatory therapies may be needed. This example illustrates how molecular networking
can provide a chemical picture of a patient's disease, aiding clinical decisions for personalized
medicine.

Concluding Remarks and Future Perspectives
Although molecular networking has only recently been implemented in drug discovery and
metabolomics following the first paper on microbial metabolite networks in 2012 [5], the breadth
of its applications has been ever expanding and will continue to increase now that GNPS is
available [6]. There are two main bottlenecks preventing molecular networking from reaching its
full potential (see Outstanding Questions). The first is the lack of efficient integration with existing
LC-MS detection tools. The second is the remaining challenge in annotating detected MS/MS
spectra. Because GNPS has a community-based platform, annotations are crowd sourced,
taking advantage of the knowledge available in the MS community. This is beginning to increase
the number of annotations, but better informatics tools are still required. Recent tools are now
able to propose the correct molecular formula in automated manner with a high success rate [68]
and tools that provide insight into candidate molecules based on in silico approaches, like CSI:
FingerID [69], MetFrag [70], ISDB-UNPD [71], and CFM-ID [72], are advancing rapidly. The
expected union of these approaches in one comprehensive and accessible workflow will
unleash a tremendous amount of chemical information on our biological world. Ultimately, this
will accelerate the discovery of new drugs by revealing the chemical language of an entire
microbial ecosystem. Moreover, the visual nature of molecular networks enables rapid inter-
pretation of MS data, crucial for translation in a clinically relevant time frame [61].

As MS methods become increasingly more tractable and amenable to direct clinical application,
molecular networking will become an indispensable tool for such translation. To truly harness the
power of this tool, scientists from a broad range of fields must be encouraged to use it.
Fundamentally, one must understand that molecular networking organizes and visualizes the
chemical information from MS/MS data and that its potential applications far exceed the
chemistry laboratory and MS experts. Nonetheless, it should be taken into account that the
interpretation of molecular networking cannot surpass classical challenges in MS and metab-
olomics. Thus, the novice must collaborate with MS experts and educate themselves [73] to
avoid common pitfalls that can occur upstream during sample preparation (polymers released
from plastics or the matrix effect [74,75]), batch design (batch effects [76] and carryover [77]),
and MS data acquisition (in-source fragmentation, ionization method, fragmentation behavior of
molecules, etc.) and downstream during data analysis, such as adjustment of molecular
networking parameters (https://bix-lab.ucsd.edu/display/Public/Molecular+Networking
+Documentation), validation of automatic annotation, and chimeric spectra resulting from
isobaric compounds [78].

Now that molecular networking is readily accessible through GNPS, the true power of the
algorithm can be better realized. The billions of spectra generated with MS/MS around the world
can be now compared with each other to identify novel compounds related to known drugs and
completely new chemical families. Integration with other bioinformatics tools such as those
described above will be a methodological tipping point in natural product discovery,
152 Trends in Pharmacological Sciences, February 2017, Vol. 38, No. 2
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metabolomics-based clinical screening, and medicine, finally harnessing the power of the highly
advanced mass spectrometers available to scientists and clinicians today.

Disclaimer Statement
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