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LETTERS
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Fragile materials1 ranging from sand to fire retardant to
toothpaste are able to exhibit both solid and fluid-like
properties across the jamming transition. Unlike ordinary
fusion, systems of grains, foams and colloids jam and cease
to flow under conditions that still remain unknown. Here,
we quantify jamming using a thermodynamic approach by
accounting for the structural ageing and the shear-induced
compressibility2 of dry sand. Specifically, the jamming threshold
is defined using a non-thermal temperature3 that measures
the ‘fluffiness’ of a granular mixture. The thermodynamic
model, cast in terms of pressure, temperature and free volume,
also successfully predicts the entropic data of five molecular
glasses. Notably, the predicted configurational entropy averts
the Kauzmann paradox4—an unresolved crisis where the
configurational entropy becomes negative—entirely. Without
any free parameters, the proposed equation-of-state also governs
the mechanism of shear banding and the associated features of
shear softening5,6 and thickness invariance2,7.

Despite their mundane appearance, granular materials exhibit
a wide range of intriguing phenomena8,9. Dry sand, for instance,
can deform readily9 but can also jam abruptly, for example, as
observed in the sudden stoppage of flow in an hourglass or a salt
shaker. The abruptness of jamming refers to the narrow range
of packing fractions10 (0.62–0.64) under which the material no
longer deforms. Molecular systems also exhibit similar jamming
phenomena. For example, liquids such as wood glue become
extremely viscous and resistant to flow when cooled within a
narrow range of temperatures11 (2–3 ◦C) below the freezing point.
This jamming behaviour shared by both granular fluids and viscous
liquids is astonishing8,12,13 and suggestive of a common underlying
mechanism, but thus far, a definitive theoretical connection
remains unknown.

Jamming was defined14,15 as a means to unify all fragile systems1

and has been qualitatively described using three independent
variables: pressure, packing fraction and an effective temperature13.
It is known, however, that granular packings are metastable: any
perturbation in the magnitude or the direction of the applied stress
will cause structural ageing1,10, during which particles rearrange
through irreversible compaction. It is thus problematic to neglect
ageing and assume, for example, that the temperature at which
jamming occurs can be defined by pressure and packing fraction
alone. Still, many studies of fragile systems neglect the implications
of ageing, possibly because of the narrow range in the temperature
and packing density of glassy and granular systems near structural
arrest. Here, we present a new perspective on jamming that includes
a connection to the glass transition of viscous liquids. The proposed
equation-of-state (EOS) will introduce jamming as path-dependent
states definable by the stationary observables pressure, packing
density and shear rate.

Recent shear flow experiments2 deduced the EOS of dense
granular flows. We observed that the external pressure, P, in terms
of shear rate, γ̇ , and the free volume16, ε, has the form

P(ε, γ̇) =
1

κ1

ln

[
ε0

ε

1

1−Cexp(−κ2 γ̇)

]
. (1)

For dry sand, the constants κ1 ≈ 7×10−4 Pa−1 and κ2 ≈ 2×10−5 s.
These constants also match values found independently from
experimental data using the cyclic rule2. The free volume
ε ≡ (V −VRCP) is the flowing shear-band volume V referenced to
its dynamic random-close-packing volume, VRCP. It is normalized
by a fit value of the minimum free volume ε0. As shown in Fig. 1,
equation (1) indicates that the isochoric flows are shear weakening
at intermediate shear velocities. The experimental data, spanning
five decades from 0.001 to 10 rad s−1, reveal that the pressure dips
and reaches a minimum between the quasi-static and grain-inertial
regimes17. As may be expected, the weakening mechanism also
applies to isobaric flows. Indeed, isobaric shear compacting is the
counterpart to isochoric shear weakening; the solid volume fraction
peaks within intermediate shear velocities. These isochoric and
isobaric flow regimes, however, are interdependent; together, they
constitute the transitional regime of granular flow. (A flow sweet
spot is observed near γ̇ ≈ 200 s−1.)

The shear-softening scenario presented above has been
observed in driven metallic5 and colloidal6 glasses, substances that
are disordered solids that lack the periodicity of crystals. Why do
granular fluids flow like glassy liquids? To explain, we measured the
volume compaction of a sand column (radius ≈ 10 cm) sheared
at constant velocity. Figure 2 shows that granular compaction
occurs at a rate that decreases nonlinearly in time with a decaying
relaxation constant, τ. The result is fitted using the Kohlrausch–
Williams–Watts4,18 equation,

h(t)−h(∞)

h(0)−h(∞)
= exp

[
−

(
t

τ(T)

)β
]

. (2)

The equation models the normalized change in the sand column
height, h(t), as a function of time, t , and the Kolrausch exponent,
β. As noted previously18, the relaxation constant τ is Arrhenius
at high temperatures, that is, τ ∼ exp(H/kBT) where kB is the
Boltzmann constant, T is the thermal temperature and H is the
single ‘void-hopping’ activation energy11.

From Fig. 2, inset, we observed that the relaxation is defined by
a stretched exponential with a Kolrauch exponent that approaches
β ≈ 0.6 as τ → ∞. The value of β < 1 corresponds physically to
the multiple relaxation mechanisms4,11,16 of granular compaction.
Furthermore, its inverse dependence on τ signifies an increase
of the apparent activation energy as packing density increases18,
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Figure 1 A log–log plot of granular rheology of isochoric pressure, P, versus
shear rate, γ̇ , and isobaric (normalized) packing-density∗ , ε0/ε, versus γ̇ .
Measurements are made using a torsional rheometer (AR-2000, TA Instruments).
Compacted beach sand (grain size≈ 438±188 µm, from Santa Monica) is confined
concentrically while the top surface shears through logarithmically distributed
velocities. The theoretical fit uses equation (1) with an extra grain-inertial term17,
MρD 2 γ̇ 2, in terms of grain density, ρ, averaged grain diameter, D, and fitting
constant, M. The sweet spot signifies the optimum efficiency in achieving
steady-state flow. Shear rate γ̇ is calculated on the basis of a two-grain-diameter
thickness2. The values for the isochoric fit are C= 0.990±0.004,
κ1 = 7.3±0.4×10−4 Pa−1, κ2 = 2.1±0.8×10−5 s and M= 0.9±0.7×10−3.
For the isobaric fit, the values are C= 0.990±0.008, κ1 = 7.0±0.3×10−4 Pa−1,
κ2 = 2.5±0.6×10−5 s and M= 2.1±0.5×10−3; ε0 ≈ 4.1×10−9 m3

from all fits.

progressively hindering the process of particle rearrangement.
This age-dependent activation energy of granular fluids is a
type of non-Arrhenius behaviour11,16 reminiscent of heterogeneous
glassy liquids.

The steady-state rheology of Fig. 1 is ageing and path
independent, on the basis of the reversible branch of packing
fraction (0.62–0.64) observed experimentally10. The irreversible
branch has an expected broader density range (0.555–0.645)
(ref. 19). Figure 2, however, suggests that any constitutive model
such as equation (1) must account for the continued compaction
of granular flow even on much longer timescales (�105 s). This
implies that the phenomenological equation (1) is a special case of
a more fundamental theory. To find it, we incorporate an ageing
temperature, Θ , into equation (1). The temperature Θ ∼ 10−7 J (or
equivalently, ∼1015 K as kB ∼ 10−23 J K−1) was measured by Song
et al.20 for millimetre-sized acrylic beads sheared in gravity, which
is significant considering the fact that these particles (size �1 µm)
are not subjected to thermal fluctuations. This fictive notion of hot
and cold will explain a thermodynamic theory that governs the
dynamics of both reversible shear flow and irreversible compaction.

To build a meaningful generalization of equation (1), we will
incorporate Θ into the Helmholtz free energy of flowing sand,
Fsand. Using the thermodynamic relation21 of P = −(dF/dε), Fsand

is derived from equation (1) as
Fsand

NΘ
= ln

(
ε

ε0

)
−1+ ln

[
1−Cexp

(
−

ζ

Θ

)]
. (3)

The variables have been recombined into new quantities that are
defined as follows: N ≡ ε/ν, ζ ≡ κ2Θ γ̇ and Θ ≡ v/κ1 where
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Figure 2 A semi-log plot of structural ageing of sheared granular mixture.
Reduced column height of sand, (h (t )− h (tmax ) )/ (h (0)− h (tmax ) ), versus compaction
time, t ; the fit uses the Kohlrausch–Williams–Watts relation of equation (2). The
τ-dependent relaxation, ageing, is non-Arrhenius; different activation energies
correspond to different stages of structural ageing. The relaxation is also
non-exponential; the inset shows that the Kohlrausch exponent, β, reaches a
steady-state value of ≈0.5 after ≈1 h to reflect the onset of cooperative particle
motion representative of jammed systems. The non-Arrhenius and the
non-exponential relaxations are reminiscent of the key features of glassy liquids.
The sample uses 2.6 g of beach sand sheared at a constant velocity of 0.15 rad s−1.
The system maintains a constant compression at ≈1.5 kPa while recording height
data at 0.1 Hz. Note that the entire figure consists of a single experiment where all
runs are renormalized by their individual values of 1hmax.

ν is grain volume (∼10−11 m3 for 300 µm particles). Thus far,
the manipulation of equation (1) has been strictly algebraic and
the original definition of the constants was entirely empiric.
The recasting, however, suggests thermodynamic interpretations
of the parameters. The variable N is the number of grains
and ζ is the average dissipation per grain. Later we will verify
these assumptions, in particular the use of Θ , by predicting the
configurational entropy of various molecular glass-formers.

The free energy of sand makes two critical predictions as
confirmed by experiment. First, microscopically, the constant
κ1 = v/Θ is an elastic property of the material normalized by the
only energy scale8 of the system, Θ . Macroscopically, κ1 is deduced
from the experiment2 as κ1 =−1/ε(dε/dP)γ̇ , in a quantity defined
as the mechanical compressibility of granular flows. Second, the
energy of the flow supplied from the shearing surface is fully
dissipated at steady state. The normalized energy, κ2 γ̇ , would
therefore scale as the viscous loss of the flow, ζ = υηγ̇ where η
is the effective viscosity of the granular mixture. Comparing the
flow of sand and other fluids drained through a funnel (0.25′′

opening), we measured a granular viscosity of ∼10−1 Pa s that
matches mineral oil viscosity at room temperature. Using the value8

of Θ ∼ 10−7 J, we compute κ1 ∼ 10−4 Pa−1 and κ2 ∼ 10−5 s. These
values not only fit to the data of Fig. 1, they also have consistent
thermodynamic interpretations.

A unifying theory of jamming must also account for the slow
dynamics of glassy liquids. From the volume relaxation of Fig. 2, we
observed that sand compacts with a Kolrauch exponent of β ≈ 0.6.
Interestingly, typical values of 0.2 < β < 1 are also observed in
molecular glasses near jamming. To unify their dynamics, we recall
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Figure 3 A plot of the concave jamming-transition surface. The shaded surface
corresponds to equation (1) by substituting in κ1 ≡ v/Θ and κ2 ≡ ην/Θ . The
jamming parameter, J (P, ε, γ̇ ,Θ ), is defined by dividing equation (1) by P (ε, γ̇ ).
The axes are pressure, Pv/Θ , shear rate, ζ/Θ , and the free volume, ε/ε0, in
normalized forms. The jamming transitions given at J (Θ )= 1 (solid) and J (Θ ′ )= 1
(mesh) represent two examples of equilibrium metastable packing arrangements,
where the packing at Θ is denser than the one at Θ ′ such that Θ ′ > Θ . The
unjammed path initiates above the jamming transition where J > 1, but terminates
at J= 1 when compaction or structural ageing stops within experimental time. This
ensures that the ageing temperature Θ remains constant so that the values of ε0,
κ1 and κ2 are stationary in equation (1). The surface is convex if a logarithmic scale
is used (see the concavity of the quasi-static fit in Fig. 1).

that a glass is a liquid in which crystallization is bypassed during
cooling16. This is the exact scenario exhibited by sand; the angular
particles jam because the bulk crystallization never nucleates on
densification. In light of these similarities, we propose that the
EOS of equation (1), as a function of the ageing temperature,
encompasses the path-dependent states of both jamming and glass
transition. In Fig. 3, two examples of jammed states are shown by
two metastable1 isothermal surfaces, each defined by a particular
ageing temperature, Θ .

To substantiate the above claims, we use Edwards’s proposition3

that the granular temperature reflects the ‘fluffiness’ of densely
packed grains. To see how ‘fluffiness’ relates to particle
configuration, we derive the entropy difference, 1Ssand, between
the jammed and crystalline states of granular packing. We
compute the total entropy S = −kB(dF/dΘ ) from equation (3)
and cancel the contributions of the dissipation term in the
entropy difference21. Conceptually, dissipation is irrelevant to the
architectural arrangement of particles. The result is

1Ssand = N kB −N kB ln(ε/ε0). (4)

Parameters P, ε and Θ are all measured above an ideal
jamming condition very near the hypothetical crystalline
phase. Therefore, ideally, at the minimum free volume ε = ε0,
1Ssand = N kB is the communal entropy22. (The communal
entropy, kBN ≈ k[ln(V N /N !)− ln(V/N )N

] using the Stirling
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Figure 4 The Kauzmann plot4 for five glass-formers of molar configurational
entropy∗ , s c/s c

fusion, versus temperature
∗ , T/ T fusion, with both quantities

normalized by their respective values at the fusion point. The fit agrees well with
the entropic data, providing strong evidence for the unification of granular jamming
and glass transition. Notably, the entropy averts the Kauzmann paradox (green
dashed line), in a prediction unlike the one made by the most elegant glass model4

so far (red dotted–dashed line). Inset: Fragility plot of s c
glass/s

c versus Tglass/T for
the same five glass-formers, and the dashed line here is not physical being above
the fusion point. The fitting function uses equation (5) where the molar entropy, s c,
is given as s c (T )∼= xR ln[1−exp(−ζ/k (T− T0 ) )]−1 for T≥ T0 and R is the
universal gas constant. The values of fragility4,11 x, ζ/kB and the Kauzmann
temperature T0, are respectively listed from strong to fragile: 3.24, 8.97 and 45 K
(59.5) for 1-butene26; 3.55, 17.7 and 80.6 K (84.0) for 3-bromopentane27; 3.24, 30.7
and 114 K (153) for ethylene glycol28; 4.22, 38.9 and 87.8 K (100) for toluene29; and
6.01, 65.5 and 182 K (204) for ortho-terphenyl30. The values in parentheses are the
glass-transition temperatures. The matching x between 1-butane and ethylene
glycol indicates that the fragility index alone cannot quantify the glass transition
completely. The molar configurational entropy is derived using the equation,
s c (T )= 1fusions−

∫ Tfusion
T dT ′

[(C liq
p − C cr

p )/T
′
] for T≤ Tfusion, and C liq

p and C cr
p are

the experimentally measured isobaric (molar) heat capacities of the liquid and
crystalline states. The interpolation/extrapolation of the heat-capacity data were in
terms of second-order polynomials.

approximation21, accounts for the entropy difference between a
liquid and a solid.) In the case for a non-ideal packing (ε > ε0),
however, work must be done to constrain the otherwise purely
random particles/molecules to sample only the jammed/glassy
states4,18—the possible configurational states for all particles.
This work reduces the communal entropy by an amount of the
configurational entropy, Sc

= N kB ln(ε/ε0), scaling in proportion
to the volume above ideal packing, ε. In other words, as interpreted
from equation (4), equally jammed (or fluffy) configurations can
be realized for high packing densities as for low ones at the expense
of structural order23.

To verify the configurational entropy Sc, we solve equation (1)
for ln(ε/ε0) so that

Sc ∼= N kB ln[1−exp(−ζ/Θ )]−1, (5)

for C ≈ 1 and P � Θ/ν—which is true for most glasses
under atmospheric pressure and thus pressure effects are
typically negligible. Figure 4 shows the fit of equation (5) to
the configurational entropy data of five different glass-formers.
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At thermal equilibrium, the ageing temperature of equation (5) is
rescaled as Θ = kB(T −T0), in terms of the Kauzmann temperature
T0, to preserve the third law of thermodynamics. The results
show a good agreement between theory and experiment in both
Kauzmann and fragility plots4. Notably, the Kauzmann paradox4,11

is entirely averted.
The shear flow experiment of sand has guided a new

classification of jamming as a solid–liquid transition uniquely
defined at different structural temperatures. The path-dependent
transition is purely kinetic, and yet the transition itself is
in structural equilibrium with the ageing temperature for
Θ ≥ kB(T −T0) (ref. 8). In contrast, other variations14,15 of the
theory rely on an effective granular temperature that is unrelated
to the architectural arrangement of particles. Ultimately, the state
variables that govern the isothermal states of jamming are pressure,
shear rate5 and the free volume16.

Moreover, the EOS for dense granular flows has provided strong
evidence for the unification of jamming in fragile materials. Broadly
speaking, it considers the elastic, the entropic, the free volume and
the hydrodynamic bases of other glass theories presented so far.
This view of jamming applies to phenomena such as stick–slip
nucleation in seismic fault ruptures24, shear banding in metallic
alloys5, strain softening in colloidal glasses6 and even stop-and-go
driving in traffic jams25. These types of flow, defiant of conservative
fluid models, are closely governed by dynamics that straddle the
tipping point of jamming.

Received 5 September 2007; accepted 5 March 2008; published 6 April 2008.
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