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Frustrated interactions can lead to short-range ordering arising from 

incompatible interactions of fundamental physical quantities with the 

underlying lattice. The simplest example is the triangular lattice of spins with

antiferromagnetic interactions, where the nearest-neighbor spin-spin 

interactions cannot simultaneously be energy minimized. Here we show that 

engineering frustrated interactions is a possible route for controlling 

structural and electronic phenomena in semiconductor alloys. Using 

aberration-corrected scanning transmission electron microscopy in 

conjunction with density functional theory calculations, we demonstrate 

atomic ordering in a two-dimensional semiconductor alloy as a result of the 

competition between geometrical constraints and nearest-neighbor 

interactions. Statistical analyses uncover the presence of short-range 
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ordering in the lattice. In addition, we show how the induced ordering can be 

used as another degree of freedom to considerably modify the bandgap of 

monolayer semiconductor alloys.

Geometrical frustration occurs when the geometry of a system 

prevents its component interactions from being simultaneously satisfied, and

can hinder long-range ordered ground-states [1]. Ideal frustrated systems, 

such as the 2D Ising model of anti-ferromagnetic spins in a triangular lattice, 

are characterized by degenerate ground-states and extensive entropy at 

zero temperature  [1]. However, in real materials, the interplay between 

geometrical frustration and subtle effects such as lattice distortions  [2,3], 

long-range interactions  [4], and elasticity  [5], can lead to relieving of 

frustration and formation of ordered configurations. The induced atomic 

ordering by frustrated interactions can be exploited as another degree of 

freedom to modify the material properties. In particular, ordering in 

multispecies alloys can significantly affect their electronic  [6], optical  [7], 

thermal  [8], catalytic  [9], and mechanical  [10] properties. 

While ordering in multispecies alloys has long been experimentally 

studied, most examinations have been limited to indirect methods, e.g. 

scattering techniques  [11,12]. Two-dimensional (2D) materials provide an 

ideal platform to study atomic ordering in alloys via direct visualization of the

lattice in real space, for example via scanning transmission electron 

microscopy (STEM). Isovalent substitutional alloying of transition metal 
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dichalcogenides (TMDs) has been demonstrated  [13,14], but they form 

random solid solutions due to the small formation energy (Ef ) of the alloys 

with respect to parent materials  [15]. Here, we investigate a TMD alloy 

consisting of transition metal elements from groups 5 and 7 and 

demonstrate experimental observation of atomic ordering using aberration-

corrected STEM. We also suggest a general approach for controlling ordering 

and consequently some fundamental properties of 2D alloys through 

engineering frustrated nearest-neighbor interactions. Statistical analyses 

uncover the presence of short-range ordering in the monolayer alloy due to 

the interplay between geometrical frustration and Coulomb interactions. This

observation is analogous to antiferromagnetic Ising spins in a triangular 

lattice. Additionally, using optical spectroscopy combined with theoretical 

calculations, we demonstrate how the induced atomic ordering can 

significantly modify the alloy’s bandgap.

TMD alloys consisting of non-isovalent transition metals (e.g. groups 5 

and 7) offer rich systems for engineering their physical properties by 

chemical composition and layer number. In particular, monolayer 

ReS2 exhibits the 1T' structure (Fig. 1a) and is a semiconductor with a 

bandgap of 1.43 eV [16], while monolayer NbS2 adopts the 1H structure (Fig. 

1b) and is a metal [17]. Hence, alloying ReS2 and NbS2 enables both phase 

and band structure engineering. Previous preliminary theoretical studies 

show that RexNb1-xS2 alloys can be stable [15]. In particular, Re0.5Nb0.5S2 was 

shown to be valence isoelectronic to MoS2 but with a smaller bandgap [15]. 
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The fully ordered structure of Re0.5Nb0.5S2, where the “different nearest-

neighbor number” (DNN) (i.e. the number of nearest neighbors of the other 

kind) is 4, is shown in Fig. 1c. If the atomic species Re and Nb were randomly

distributed, the average DNN ( ´DNN) would be 3.

In this work we theoretically and experimentally examine RexNb1-xS2 

alloys and demonstrate that the synthesized Re0.5Nb0.5S2 alloy possesses a

´DNN between the random and the fully ordered alloys due to the competition

between the drives toward satisfying a higher portion of the nearest-

neighbor interactions and higher entropy. We first expand upon previous 

theoretical predictions using larger simulation cells. Total energy calculations

of RexNb1-xS2 as a function of composition reveal a phase transition from 1H 

to 1T' at x=0.68 (Fig. 1d). Knowing the ground state phase for each 

composition, we compute the formation energies (Ef ) with respect to the two

parent TMD components (Fig. 1e) (see Supplemental Material). We find that 

the alloys are stable up to x=0.63 with the x=0.50 alloy being the most 

stable. The high stability of Re0.5Nb0.5S2 can be attributed to the equal mixing 

of Re and Nb, which have one more and one fewer valence electron than Mo,

respectively. Alloying also enables bandgap engineering of RexNb1-xS2. Figure 

1f presents the composition-dependent bandgap of monolayer RexNb1-xS2 in 

the 1H and 1T' phases. It shows a broad range of bandgaps, from metallic (

x=0, NbS2) to semiconducting (x=1, ReS2), in contrast to a limited bandgap 

range offered by isovalent TMD alloys [8,14,18]. Particularly, the monolayer 

Re0.5Nb0.5S2 displays a bandgap of 1.15 eV (1.08 eV with spin-orbit interaction
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(SOI) included). Additionally, the Coulomb interaction between Re and Nb 

atoms with different charge states leads to correlated nearest-neighbor 

pairs. Equal numbers of Re and Nb atoms in such a system can be easily 

distributed in a square lattice while satisfying the nearest-neighbor 

interactions (i.e. an unfrustrated system (Fig. 1g)). However, it is not possible

to simultaneously satisfy all interactions in a triangular lattice like the 

transition metal sub-lattice in Re0.5Nb0.5S2, and hence such a system is 

frustrated (Fig. 1h). The presence of frustrated interactions in Re0.5Nb0.5S2, in 

addition to it having the lowest formation energy among all RexNb1-xS2 and 

being valence isoelectronic to MoS2, make it an intriguing system to explore 

experimentally.

We synthesize bulk single crystals of Re0.5Nb0.5S2 with a layered 

structure that can be easily exfoliated (Fig. S1). The alloy is air-stable and 

the samples are exfoliated under ambient conditions. Figure 2a shows an 

aberration-corrected annular dark-field scanning transmission electron 

microscope (ADF-STEM) image of the monolayer Re0.5Nb0.5S2. The fast Fourier

transform (FFT) (inset) reveals the hexagonal symmetry of the lattice as 

expected from the total energy calculations. Owing to the Z-contrast 

mechanism in ADF-STEM images, brighter and dimmer spots correspond to 

Re and Nb atoms, respectively. Chemical composition directly extracted from

the ADF-STEM image confirms near-equal concentration of Re and Nb within 

the lattice (i.e. Re0.51Nb0.49S2). 

5



The most striking structural feature of Re0.5Nb0.5S2 is the formation of 

meandering transition metal stripes. This is quite distinct from the atomic 

structure of other 2D TMD alloys reported to date. It suggests Re0.5Nb0.5S2 has

short-range order, in sharp contrast to the random structure of the isovalent 

TMD alloys [13,14,19]. This can be attributed to the small formation energy 

of the group 6 TMD alloys (~-2 meV/atom [15]) compared to the formation 

energy of about -70 meV/atom for Re0.5Nb0.5S2. To verify the presence of 

atomic ordering, we perform statistical analysis on multiple ADF-STEM 

images. A representative image and its filtered counterpart highlighting the 

meandering atomic stripes formed by Re atoms are shown in Figs. 2b-c. 

Figure 2d presents the probabilities of having DNN values of 1 through 6. It 

shows that the majority of metal atoms have 4 nearest neighbors of the 

other kind with a ´DNN of 3.82, very different from the ´DNN of 3 for a random 

distribution. This preference to be adjacent to the other atomic species is 

analogous to antiferromagnetic Ising spins, which leads to geometrical 

frustration in a triangular lattice [1]. In such a system, there is an energy 

cost for having two parallel spins as nearest neighbors, yet it is not possible 

to have all nearest-neighbor pairs be anti-parallel. This lattice can be thought

of as consisting of triangles in which each nearest-neighbor interaction is 

part of only one triangle (Fig. S5). If all the triangles have at least (and only) 

one pair of parallel spins, the energy is minimized. In our system, up and 

down spins correspond to Nb and Re atoms, and the triangular lattice is the 

transition metal sub-lattice. The parameter that we call ´DNN is related to the 
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Warren–Cowley short-range order (SRO) parameter [8,20] α via the simple 

relation α=1−
´DNN
3

, for the case of a triangular lattice in which the lattice 

sites are occupied with two different kinds of atoms with equal probability. 

We note that the sizes of the Nb and Re atoms in the lattice are similar 

(computed NbS2 and ReS2 lattice constants in the 1H phase are 3.34 Å and 

3.19 Å, respectively), and they constitute an almost perfect triangular lattice 

with distortions smaller than a few picometers regardless of the atomic 

species distribution (see Supplemental Material). Therefore, the 

heteroatomic tendency cannot be attributed to this size difference. 

Additionally, the experimental and computed lattice constants for the 

monolayer Re0.5Nb0.5S2 are 3.35 Å and 3.22 Å, respectively (a match to within 

4%).

We also calculate the spatial correlation functions along three zigzag 

directions (see Supplemental Material). A positive (negative) value for the 

correlation function corresponds to the fact that the pair of sites tend to be 

homoatomic (heteroatomic), whereas a value of zero indicates that the sites 

are uncorrelated. Figure 2e shows that the correlation for the nearest 

neighbors in all zigzag directions is between 0 and −0.1 with an average of

−0.068±0.022. The value being negative indicates a tendency for the alloy 

to form heteroatomic nearest-neighbor coordination. The correlation goes to 

zero beyond the first nearest neighbors, suggesting the lack of long-range 

order.
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The statistical analyses are extended by examining the lengths of 

homoatomic stripes along the zigzag directions. Figure 2f contains 

histograms of the stripe length along the three zigzag directions extracted 

from the ADF-STEM image in Fig. 2b. The nearly similar length distribution of 

the homoatomic stripes along all three directions suggests that the 

monolayer alloy is also isotropic.

The DNN and correlation data presented in Figs. 2d-e suggest that a 

nearest-neighbor-based model may be applicable to explain the preferred 

distribution of atomic species. To build such a model, we run 60 simulations 

including 12 experimental and 12 random 6×6 configurations. For each 

simulation, we compute the ´DNN and relax all the atomic coordinates to find 

the total energy. Figure 3a presents the results where the energy of the 

reference structure shown in Fig. 1c is taken as zero. The fact that a linear fit

is possible suggests that a nearest-neighbor model where the energy cost of 

having neighbors of the same (different) kind is 0 eV (−0.15) eV should be a 

faithful representation of this system. 

To explore the thermodynamics of species distribution at finite 

temperature in the alloys, we solve a nearest-neighbor model using Monte 

Carlo simulations [21,22]. The simulated ´DNN for temperatures ranging from

11.6 K to 3.8×105 K is shown in Fig. 3b. We choose this wide temperature 

range to explore the full range of behavior within our model, even though 

the actual material would not stay solid at such high temperatures. At each 

temperature, ten simulations are run, and the plotted values reflect the 
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averages and the standard deviations among those runs. It is observed that, 

at low temperatures, the ´DNN is equal to its upper bound of 4 (α=
−1
3

), and 

at high temperatures, it approaches 3 as the distribution becomes random (

α=0). This transition occurs gradually at temperatures of the order of the 

nearest-neighbor interaction energy (0.15 eV or 1740 K). This agrees with 

the studies of antiferromagnetic Ising spins in a triangular lattice [1,23].

Figure 3c presents a well-thermalized instance of a simulation run at

kBT=0.105 eV (T=1220 K), which is in the range of the temperature at which

the crystal is grown. The spatial correlation functions and DNN probability 

distribution extracted from the low-temperature nearest-neighbor model 

(Fig. 3c) agree well with the averaged data extracted from several 

experimental images (Fig. 3d). To show how the configuration with short-

range atomic order compares with a random configuration, a sample 20×20 

supercell where a randomly-chosen half of the sites are occupied with Nb 

and the other half with Re is demonstrated in Fig. 3e. Quantifying the spatial 

correlation functions and DNN probability distribution for the random 

configuration (Fig. 3e) clearly differentiates it from the observed 

experimental atomic structure of Re0.5Nb0.5S2.

The 2D materials offer a potentially lucrative playground for bandgap 

engineering not only by alloy composition [14] but also by layer number [24].

Here, we show that, in addition to the composition and layer number, 

induced atomic ordering can be used to engineer the bandgap of layered 
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semiconductor alloys. The bandgap of the reference configuration (Fig. 1c) is

found to be 1.15 eV in a no-SOI calculation (Fig. 1f). However, in the real 

alloy such long-range order is not present. In order to investigate the effects 

of the atomic species distribution, we compute the bandgaps of 12 6×6 

configurations taken from the ADF-STEM images as well as 12 random 6×6 

configurations. Figure 4a displays the bandgap versus total energy. The 

results can be summarized in three main observations: (i) The experimental 

and random configurations are clearly separated in terms of both total 

energy and bandgap. (ii) The bandgap is negatively correlated with the total 

energy, and hence with the randomness. This has previously been observed 

in W0.5Mo0.5S2 to a lesser degree [8]. (iii) For the experimental configurations, 

the bandgap values average to 0.70±0.18 eV. Such a large spread is 

unusual and points to the importance of the atomic distribution at the 

smallest scale in determining the electronic structure of these systems. 

Fourier transform infrared (FTIR) spectroscopy is used to measure the 

bandgap of Re0.5Nb0.5S2 with different layer numbers. We obtain absorption 

spectra (Fig. 4b) from the transmission and reflection measurements. A red-

shift in the onset of the absorption and an increase in the absorption peak 

with increasing thickness can be clearly seen. The absorption spectrum for 

the monolayer Re0.5Nb0.5S2 suggests a bandgap of ~1.03 eV, which is in the 

range of the computed bandgaps for the experimental configurations and 

considerably different from that of the random configurations. We further 

explore the dependence of bandgap on the Re0.5Nb0.5S2 thickness. Figure 4c 
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summarizes the experimental and computed bandgap as a function of layer 

number. Experimental and theoretical results are in well agreement, 

suggesting a reduction of bandgap from ~1.03 eV to ~0.36 eV when the 

thickness increases from a monolayer to bulk. This is a very useful bandgap 

range for which there is currently a need for air-stable 2D materials. 

Additionally, the bandgap of the monolayer alloy is similar to that of silicon 

(~1.1 eV) that enables fabrication of functional heterostructures and devices.

We have demonstrated a promising avenue for controlling atomic 

ordering in semiconductor alloys by engineering frustrated interactions as an

effective approach to tune their fundamental properties. Additionally, we find

a quantitative connection between frustrated interactions and ordering of 

atomic species in a crystal lattice, and the 2D Ising model of 

antiferromagnetically-coupled spins in a triangular lattice. Based on our 

model, further work to synthesize Re0.5Nb0.5S2 at lower temperatures might 

result in a ´DNN closer to 4 (i.e. ´DNN is expected to increase as the growth 

temperature decreases). This enables to control the degree of ordering and 

the resulting electrical, optical, and thermal properties.
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Fig. 1. Monolayer RexNb1-xS2. Top and side view models of monolayer (a) 
ReS2, (b) NbS2, and (c) Re0.5Nb0.5S2. (d) Total energies of the 1T' structure 
with respect to the 1H structure. (e) Compositional formation energy of the 
lowest-energy phase with respect to the parent TMDs. (f) Computed 
composition-dependent bandgaps for RexNb1-xS2. Filled points indicate a 
direct gap and energies are reported in eV/MS2. (g) An unfrustrated system 
with a square lattice versus (h) a frustrated system with a triangular lattice. 

Fig. 2. Atomic ordering in monolayer Re0.5Nb0.5S2. (a) An ADF-STEM 
image of the monolayer Re0.5Nb0.5S2 with the corresponding FFT (inset). (b) A 
higher magnification ADF-STEM image of Re0.5Nb0.5S2 used for statistical 
analyses and (c) its filtered version. (d) Probability distribution of DNN, (e) 
spatial correlation functions in the three zigzag directions, and (f) histograms
of homoatomic stripe lengths for a 20×20 unit cell portion of the image 
presented in (b).
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Fig. 3. Nearest-neighbor-based model describing the preferred 
distribution of atomic species. (a) DFT total energies of 60 Re0.5Nb0.5S2 
configurations and Nb-Re distributions versus their ´DNN. Energies are 
reported in eV/MS2 and the best fit line is shown. R2 stands for the coefficient 
of determination, and is close to 1, indicating that the linear fit closely 
represents the data. (b) ´DNN versus temperature in the nearest-neighbor 
model solved by Monte Carlo simulations. A portion of the Nb-Re distribution 
(c) obtained by the Monte Carlo simulations at T=1220 K, (d) extracted from 
the image in Fig. 2b, and (e) for a random configuration, as well as the 
average probability distribution of DNN and the averaged correlation function
for four such configurations. (Re: navy, Nb: light violet)

Fig. 4. Bandgap tunability of Re0.5Nb0.5S2 by ordering and layer 
number. (a) DFT bandgaps versus DFT total energies for 12 experimental 
and 12 random configurations. Energies are reported in eV/MS2 and the 
energy of the reference structure (Fig. 1c) is taken as zero. (b) Optical 
absorption spectra of Re0.5Nb0.5S2 as a function of layer number. The intensity
of the spectrum for bulk Re0.5Nb0.5S2 is divided by 10. (c) Experimental and 
theoretical band gaps versus the Re0.5Nb0.5S2 thickness. For the experimental 
values, several measurements are performed on each flake and the error 
bars represent standard deviation. For the theoretical values, the monolayer 
alloy shown in Fig. 1c is taken as the reference structure, and multiple high-
symmetry stacking sequences with lowest energy are used for calculations of
bandgap for the multilayer alloys. SOI is included.
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